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Abstract. Automatic multi-organ segmentation in medical image anal-
ysis is a crucial task with various applications in computer-aided diag-
nosis and treatment. Convolutional neural networks (CNNs) have shown
success in segmenting abdominal organs in CT images, but challenges
arise due to complex morphology, low tissue contrast, and limited fully
labeled datasets. Learning from partially labeled datasets has emerged as
a promising solution. However, assembling partially annotated datasets
presents formidable challenges, including background inconsistency and
label orthogonality. To address these challenges, this study introduces
the Universal Model, which incorporates text embedding and a masked
back-propagation mechanism with binary segmentation masks. A revised
label taxonomy is maintained, and binary segmentation masks are gen-
erated for each class during image pre-processing. The CLIP-based label
encoding enhances the anatomical structure of the universal model’s fea-
ture embedding, and loss is only computed for classes with available
labels.
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1 Introduction

Automatic multi-organ segmentation is a crucial task in medical image analysis,
with applications in computer-aided diagnosis and treatment [16]. Deep learn-
ing techniques, particularly convolutional neural networks (CNNs), have been
successfully applied to this task. However, segmenting abdominal organs in CT
images presents challenges due to their complex morphology, low tissue contrast,
and the scarcity of fully labeled datasets [17]. Learning from partially labeled
datasets has emerged as a promising solution to address the limitations of fully
labeled data.

Formidable challenges exist in assembling partially annotated datasets. First,
Background inconsistency. For example, the pancreas may be marked as the
background in one volume, but it should have been marked as the foreground.
Second, label orthogonality. Most segmentation methods, trained with one-hot
labels [32], ignore the semantic relationship between classes. Given one-hot labels
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of liver [1,0,0], liver tumor [0,1,0], and pancreas [0,0,1], there is no semantic
difference between liver↔liver tumor and liver↔pancreas. A possible solution
is few-hot labels [24], with which, the liver, liver tumor, and pancreas can be
encoded as [1,0,0], [1,1,0], and [0,0,1]. Although few-hot labels could indicate
that liver tumors are part of the liver, the relationship between organs remains
orthogonal.

To address above mentioned challenged, Universal Model incorporates text
embedding and adopts masked back-propagation mechanism with binary seg-
mentation mask. Specifically, we maintain a revised label taxonomy derived from
a collection of public datasets and generate a binary segmentation mask for each
class during image pre-processing. For architecture design, we draw inspiration
from Guo et. al. [8] and replaced one- or few-hot labels with the text embedding
generated by the pre-trained text encoder from CLIP4. This CLIP-based label
encoding enhances the anatomical structure of universal model feature embed-
ding. At last, we only compute loss for the classes with available labels.

2 Method

2.1 Background

Problem definition. Let M and N be the total number of datasets to combine
and data points in the combination of the datasets, respectively. Given a dataset
D = {(X1,Y1), (X2,Y2), ..., (XN ,YN )}, there are a total of K unique classes.
For ∀n ∈ [1, N ], if the presence of ∀k ∈ [1,K] classes in Xi is annotated in Yi,
D is a fully labeled dataset; otherwise, D is a partially labeled dataset.
Previous solutions. Two groups of solutions were proposed to address the
partial label problem. Given a data point Xn, n ∈ [1, N ], the objective is to
train a model F(·) using the assembly dataset DA = {D1,D2, ...,DM}, and the
model can predict all K classes, if presented in Xn.

– Solution #1 [5,24,29,24,33,3,12,26] aims to solve Fθ(Xn) = P k
n , n ∈ [1, N ], k ∈

[1,K], where the prediction Pn is one-hot encoding with length k.
– Solution #2 [32,14,34] aims to solve Fθ(Xn,wk) = Pn, n ∈ [1, N ], k ∈ [1,K],

where wk is an one-hot vector to indicate which class to be predicted.

According to Zhang et al. [32], both solutions have similar segmentation per-
formance, but #2 is computationally more efficient. However, both solutions rely
on one-hot labels, sharing two limitations. First, they ignore the semantic and
anatomical relationship between organs and tumors. Second, they are inappro-
priate for segmenting various subtypes of tumors. To address these limitations,
we modify wk in Solution #2 to CLIP embedding and introduce in-depth in the
following sections.
4 CLIP (Contrastive Language–Image Pre-training) was pre-trained on 400 million

image-text pairs (some are medical images and text [2]), exploiting the semantic
relationship between images and language.
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Fig. 1. Overview. To deal with partial labels, Universal Model consists of a text
branch and a vision branch (§2.2).

2.2 Universal Model

The overall framework of CLIP-Driven Universal Model (see Figure 1) has a text
branch and a vision branch. The text branch first generates the CLIP embedding
for each organ and tumor using an appropriate medical prompting, and then
the vision branch takes both CT scans and CLIP embedding to predict the
segmentation mask5.

Text branch. Let wk be the CLIP embedding of the k-th class, produced by the
pre-trained text encoder in CLIP and a medical prompt (e.g., , “a computerized
tomography of a [CLS]”, where [CLS] is a concrete class name). We first con-
catenate the CLIP embedding (wk) and the global image feature (f) and then
input it to a multi-layer perceptron (MLP), namely text-based controller [27], to
generate parameters (θk), i.e., , θk = MLP(wk ⊕ f), where ⊕ is the concate-
nation. Although CLIP embedding significantly outperforms one-hot labels [32],
we mark that the choice of medical prompt template is critical.

5 Our framework design is conceptually similar to Segment Anything Model
(SAM) [15], which is a concurrent study of ours in computer vision. By leveraging
CLIP embedding as a prompt within our Universal Model, we are able to generate
highly accurate masks for organs and tumors of interest, as opposed to producing
masks for arbitrary objects.
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Vision branch. We pre-process CT scans using isotropic spacing and uniformed
intensity scale to reduce the domain gap among various volumes6. The stan-
dardized and normalized CT scans are then processed by the vision encoder.
To facilitate the inference speed, we employ the light weight network SegRes-
Net as backbone. Let F be the image features extracted by the vision encoder.
To process F , we use three sequential convolutional layers with 1 × 1 × 1 ker-
nels, namely text-driven segmentor. The first two layers have 8 channels, and the
last one has 1 channel, corresponding to the class of [CLS]k. The prediction for
the class [CLS]k is computed as Pk = Sigmoid (((F ∗ θk1

) ∗ θk2
) ∗ θk3

), where
θk = {θk1

,θk2
,θk3

} are computed in the text branch, and ∗ represents the con-
volution. For each class [CLS]k, we generate the prediction Pk ∈ R1×D×W×H

representing the foreground of each class in one vs. all manner (i.e., , Sigmoid
instead of Softmax).
Masked back-propagation. To address the label inconsistency problem, we
proposed the masked back-propagation technique. The BCE loss function is uti-
lized for supervision. We masked the loss terms of these classes that are not
contained in Y and only back-propagate the accurate supervision to update the
whole framework. The masked back-propagation addresses the label inconsis-
tency in the partial label problem. Specifically, partially labeled datasets an-
notate some other organs as background, leading to the disability of existing
training schemes (Solution #1).

Moreover, we utilize the pseudo-label for unlabeled data to training the model
to imporve the performance. During the inference, we conduct connected com-
ponent analysis for different organs.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [19][20],
aiming to aim to promote the development of foundation models in abdomi-
nal disease analysis. The segmentation targets cover 13 organs and various ab-
dominal lesions. The training dataset is curated from more than 30 medical
centers under the license permission, including TCIA [4], LiTS [1], MSD [25],
KiTS [10,11], autoPET [7,6], TotalSegmentator [28], and AbdomenCT-1K [21].
The training set includes 4000 abdomen CT scans where 2200 CT scans with
partial labels and 1800 CT scans without labels. The validation and testing sets
include 100 and 400 CT scans, respectively, which cover various abdominal can-
cer types, such as liver cancer, kidney cancer, pancreas cancer, colon cancer,
gastric cancer, and so on. The organ annotation process used ITK-SNAP [31],
nnU-Net [13], and MedSAM [18].
6 A standardized and normalized CT pre-processing is important when combining

multiple datasets. Substantial differences in CT scans can occur in image quality and
technical display, originating from different acquisition parameters, reconstruction
kernels, contrast enhancements, intensity variation, and so on [22,30,9].
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The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

Table 1. Development environments and requirements.

System Ubuntu 18.04.5 LTS
CPU Intel(R) Core(R) Gold 5317 CPU@3.00GHz
RAM 16×4GB; 2.67MT/s
GPU (number and type) Four NVIDIA 4090 24G
CUDA version 11.8
Programming language Python 3.20
Deep learning framework torch 2.0, torchvision 0.2.2, monai 1.1.0

Table 2. Training protocols.

Network initialization He Initialization
Batch size 4
Patch size 32×192×192
Total epochs 300
Optimizer NovoGrad
Initial learning rate (lr) 1e-4
Lr decay schedule Cosine Annealing
Training time 72.5 hours
Loss function BCE and Dice Loss
Number of model parameters 4.69M7

Number of flops 81.93G8

CO2eq 1.38 Kg9

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1. The system is running Ubuntu 18.04.5 LTS as the operating
system. The CPU in use is an Intel(R) Core(R) Gold 5317 CPU with a clock
speed of 3.00GHz. The system has a total of 64GB RAM, divided into 16 modules
of 4GB each, operating at a speed of 2.67MT/s. The system is equipped with four
NVIDIA 4090 24G GPUs. The CUDA version installed on the system is 11.8. The
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programming language used for development is Python 3.20. The deep learning
framework employed includes torch 2.0, torchvision 0.2.2, and monai 1.1.0. These
specifications provide insight into the hardware and software setup used for the
development of a specific project or application.

Training protocols The training protocols are presented in Table 1. The net-
work is initialized using He Initialization, and training is performed with a batch
size of 4. The input patches during training have a size of 32x192x192. The train-
ing process runs for a total of 300 epochs using the NovoGrad optimizer with an
initial learning rate of 1e-4. The learning rate decay schedule follows the Cosine
Annealing method. The entire training process takes approximately 72.5 hours.
The loss function used combines Binary Cross Entropy (BCE) loss and Dice loss.
The network has a total of 4.69 million parameters and performs 81.93 billion
floating-point operations (flops). The training process results in approximately
1.38 kg of CO2eq emissions.

Table 3. Quantitative evaluation results.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 97.77 ± 0.01 98.64 ± 0.01 97.65 98.15
Right Kidney 90.67 ± 3.71 90.82 ± 4.00 87.32 87.33
Spleen 96.58 ± 0.03 98.85 ± 0.13 97.08 98.87
Pancreas 81.66 ± 3.10 92.32 ± 3.72 82.48 93.75
Aorta 84.52 ± 1.44 87.53 ± 1.49 84.95 87.60
Inferior vena cava 87.83 ± 0.52 89.74 ± 0.65 87.76 89.60
Right adrenal gland 77.80 ± 2.80 91.77 ± 3.65 78.11 91.54
Left adrenal gland 76.65 ± 1.75 90.38 ± 2.03 75.62 87.88
Gallbladder 82.14 ± 6.68 83.33 ± 7.52 78.51 79.60
Esophagus 76.79 ± 3.07 87.15 ± 3.40 78.00 88.41
Stomach 92.88 ± 0.16 95.63 ± 0.25 91.92 94.40
Duodenum 77.30 ± 1.10 90.49 ± 0.59 77.07 89.23
Left kidney 91.00 ± 3.49 92.27 ± 3.08 88.19 87.89
Tumor 50.83 ± 11.26 41.00 ± 8.95 40.05 31.04
Average 85.66 ± 2.14 91.46 ± 2.35 84.97 90.35

4 Results and discussion

4.1 Quantitative and Qualitative results on validation set

Table 3 report the Dice and NSD scores of organs and tumors on the validation
set. The targets include liver, right kidney, spleen, pancreas, aorta, inferior vena
cava, right adrenal gland, left adrenal gland, gallbladder, esophagus, stomach,
duodenum, left kidney, and tumor. The evaluation is performed on three sets:
public validation, online validation, and testing. The segmentation performance
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of the liver, as indicated by high DSC and NSD scores across all validation sets,
demonstrates accurate segmentation. While the right kidney achieves slightly
lower scores compared to the left kidney, both kidneys still exhibit reasonable
segmentation performance. Similarly, the spleen segmentation showcases high
DSC and NSD scores across all validation sets, indicating accurate segmenta-
tion. Although the pancreas segmentation yields lower scores compared to other
organs, it still attains a reasonable level of segmentation accuracy. The seg-
mentation performance for the aorta and inferior vena cava remains relatively
consistent across the validation sets. On the other hand, the adrenal glands, gall-
bladder, esophagus, stomach, and duodenum exhibit varying levels of segmen-
tation performance, with some structures achieving higher scores than others.
Notably, the tumor segmentation demonstrates the lowest scores among all tar-
gets, highlighting it as the most challenging segmentation task. Furethermore,
we show four example results in the validation set in Figure 2.

CT scan Ground truth Ours

Case #FLARETs_0003 (slice #58)

Case #FLARETs_0009 (slice #107)

Case #FLARETs_0029 (slice #278)

Case #FLARETs_0049 (slice #119)

Fig. 2. Qualitative results on validation set.

4.2 Segmentation efficiency results on validation set

Table 4 presents a quantitative evaluation of segmentation efficiency in terms of
running time and GPU memory consumption. The running time varies across
different cases, ranging from 30.06 seconds to 91.43 seconds. As the image size
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increases, the running time tends to increase as well. For example, the cases with
larger image sizes, such as Case ID 0048 and 0029, have higher running times
compared to the cases with smaller image sizes, such as Case ID 0001 and 0051.
The table provides insights into the GPU memory usage during segmentation.
The maximum GPU memory usage ranges from 2574 MB to 3240 MB, while
the total GPU memory usage varies from 34,352 MB to 187,594 MB. Similar to
the running time, the memory consumption tends to increase with larger image
sizes.

Table 4. Quantitative evaluation of segmentation efficiency in terms of the running
them and GPU memory consumption.

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 33.49 3198 34352
0051 (512, 512, 100) 30.06 3226 52476
0017 (512, 512, 150) 46.09 2938 72434
0019 (512, 512, 215) 45.73 2574 86161
0099 (512, 512, 334) 65.02 2928 130350
0063 (512, 512, 448) 89.16 3222 183466
0048 (512, 512, 499) 91.43 3218 187594
0029 (512, 512, 554) 69.74 3240 137061

4.3 Results on final testing set

This is a placeholder. We will send you the testing results during MICCAI
(2023.10.8).

5 Conclusion

In conclusion, the development of the Universal Model for automatic multi-
organ segmentation in CT images addresses the challenges posed by partially la-
beled datasets. By incorporating text embedding and a masked back-propagation
mechanism, the model enhances the anatomical structure representation and
overcomes issues of background inconsistency and label orthogonality. The use
of binary segmentation masks generated during image pre-processing and the
adoption of CLIP-based label encoding contribute to improved segmentation
accuracy. This approach enables the model to effectively learn from partially
labeled datasets, which are more readily available than fully labeled datasets.
The Universal Model represents a promising solution for accurate and efficient
multi-organ segmentation, with potential applications in computer-aided diagno-
sis and treatment planning in medical imaging. Further research and validation
on diverse datasets are warranted to assess the generalizability and robustness
of the Universal Model in real-world clinical settings.
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