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Abstract
State-Space Models (SSMs), and particularly
Mamba, have recently emerged as a promising
alternative to Transformers. Mamba introduces
input selectivity to its SSM layer (S6) and in-
corporates convolution and gating into its block
definition. While these modifications do improve
Mamba’s performance over its SSM predeces-
sors, it remains largely unclear how Mamba lever-
ages the additional functionalities provided by
input selectivity, and how these interact with the
other operations in the Mamba architecture. In
this work, we demystify the role of input selectiv-
ity in Mamba, investigating its impact on function
approximation power, long-term memorization,
and associative recall capabilities. In particular:
(i) we prove that the S6 layer of Mamba can repre-
sent projections onto Haar wavelets, providing an
edge over its Diagonal SSM (S4D) predecessor
in approximating discontinuous functions com-
monly arising in practice; (ii) we show how the S6
layer can dynamically counteract memory decay;
(iii) we provide analytical solutions to the MQAR
associative recall task using the Mamba architec-
ture with different mixers — Mamba, Mamba-2,
and S4D. We demonstrate the tightness of our the-
oretical constructions with empirical results on
concrete tasks. Our findings offer a mechanistic
understanding of Mamba and reveal opportunities
for improvement.

1. Introduction
State Space Models (SSMs) have recently emerged as a
promising approach for long-range sequence modeling, due
to their computational efficiency compared to Transform-

1Work done while at Apple 2Flatiron Institute, New York, USA
3Apple 4Mila Research Institute, Montreal, Canada. Correspon-
dence to: Ningyuan Huang <thuang@flatironinstitute.org>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

ers, and parallelizability compared to (nonlinear) Recurrent
Neural Networks (RNNs). In particular, Mamba (Gu & Dao,
2023; Dao & Gu, 2024) demonstrated state-of-the-art per-
formance on various language modeling tasks, with smaller
model size and faster inference than Transformers. The suc-
cess of Mamba has largely been attributed to the fact that
the parameters in its SSM layer (S6) are input-dependent,
leading to improved expressivity compared to its SSM pre-
decessors (Cirone et al., 2024). The goal of this work is to
provide a more structural explanation for Mamba’s superior
performance. We do so by answering two questions: (i) how
does the S6 layer’s expressivity translate into its practical
performance? (ii) how can the S6 layer interact with the rest
of the Mamba block to solve concrete tasks?

We answer question (i) by providing a fine-grained analysis
of the S6 layer via the lens of function approximation and
long-term memory. We prove that the S6 layer can represent
projections onto Haar wavelets and thus efficiently model
discontinuous signals, which is relevant for solving practical
tasks. Moreover, we show that the S6 layer still suffers
from exponential memory decay, but highlight a mechanism
which allows it to dynamically counteract such decay.

Building on the understanding of the S6 layer, we then
investigate how S6 interacts with the other components
of the Mamba block (which also encompasses a short-
convolution and a gate branch, see Tab. 2) to tackle the
Multiple-Query Associative Recall (MQAR) task (Arora
et al., 2024a). We prove that 1-layer Mamba and Mamba-2
models can both solve MQAR, even without gating; we
describe how S6 and the convolution interact to achieve this,
and how Mamba-2 leverages its independent convolutions
to get more parameter-efficient solutions. We also show that
a 1-layer Mamba can solve MQAR exactly even without
input-dependence in its SSM: this (perhaps unexpected) re-
sult helps cementing the importance of convolution and gat-
ing in the Mamba architecture. This analysis further informs
us on how a variation to the functional form of Mamba,
and particularly to how the SSM state matrix is affected by
the input, can improve its performance on the INDUCTION
HEADS task (Bietti et al., 2024; Sanford et al., 2024a).

We complement our theoretical findings with numerical ex-
periments on synthetic sequence modeling tasks. For the S6
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layer, we demonstrate its approximation power on discon-
tinuous functions, and its counteraction of memory decay,
via the KEEP n-TH task — a generalization of KEEP FIRST
from (Chiang & Cholak, 2022) requiring to memorize the
n-th token in a sequence. Finally, for the full Mamba model,
we confirm empirically that the model sizes prescribed the-
oretically by our analytical solutions to the MQAR and
INDUCTION HEADS tasks are tight in practice. Overall, our
contributions can be summarized as follows:

• We prove that the S6 layer of Mamba can represent
projections onto Haar wavelets, providing an edge
over the S4D layer in approximating discontinuous
functions commonly arising in practice (Sec. 4.1).

• We use sensitivity analysis to show the S6 layer gener-
ally suffers from exponential decay of memory, and de-
scribe how it can dynamically counteract it (Sec. 4.2).

• We show how the Mamba architecture can exactly
solve the MQAR task using different SSM mixers,
with an explicit characterization of the required model
size, which helps explaining their performance differ-
ence (Sec. 5.1).

• Our findings reveal opportunities to further improve
Mamba, such as by changing the way input dependence
is incorporated into the SSM state matrix (Sec. 5.2).

2. Related Work
State-Space Models (SSMs) SSMs (i.e., linear RNNs)
have recently emerged as a promising sequence-modeling
approach, with faster training than (nonlinear) RNNs, and
faster inference time than Transformers. To enable long-
term memorization capability, Gu et al. (2020) designed
SSMs as polynomial approximations of signals, by prescrib-
ing non-normal HiPPO matrices as state matrices. To im-
prove computational efficiency, Gu et al. (2022b) proposed
the S4 model: first by reparameterizing HiPPO as a sum
of normal and low-rank matrices, then by further consider-
ing a diagonal simplification in the S4D model (Gu et al.,
2022a). All these SSMs are Linear Time-Invariant and thus
computationally efficient, but consequently lack the ability
to process information in a time-varying, input-dependent
manner. Mamba (Gu & Dao, 2023) overcomes this by us-
ing input-dependent SSM parameters, without sacrificing
computational efficiency, showing performance competitive
with Transformers on long-range language modeling tasks.
Mamba-2 (Dao & Gu, 2024) simplifies the state matrix to a
scalar multiple of identity and modifies the Mamba model
architecture, showing further empirical improvements.

Expressivity of SSMs The analyses on the expressivity
of SSMs can be divided into two main approaches: formal

language theory and approximation theory. Studies follow-
ing the first approach investigate what formal languages
can SSM recognize (Merrill et al., 2024; Sarrof et al., 2024;
Grazzi et al., 2025). Studies ascribing to the second ap-
proach — including this work — characterize what function
classes can SSMs approximate: Li et al. (2022) showed that
SSMs can approximate linear functionals with exponential
memory decay; Wang et al. (2024) extended this analysis to
nonlinear RNNs, showing however that adding nonlinearity
(in the hidden state recurrence) does not fix the memory
decay issues. Orvieto et al. (2024) proved that SSMs aug-
mented with MLPs are universal approximators of regular
functionals, but this improvement over Li et al. (2022) and
Wang et al. (2024) requires the hidden state size to grow lin-
early with sequence length. Cirone et al. (2024) extended the
results from Li et al. (2022) to input-dependent SSMs such
as Mamba, showing their universal approximation on the
class of nonlinear functionals arising from controlled differ-
ential equations. While Cirone et al. (2024) highlighted how
Mamba can approximate a larger class of functionals than
S4D, we explore the consequences of this observation by
characterizing specific function classes arising in practice.

Associative Recall Capability Associative Recall (AR)
describes the ability of a model to retrieve information from
its memory, based on the input context. Tasks for evaluating
associative recall capabilities include INDUCTION HEADS
(Olsson et al., 2022; Sanford et al., 2024a), k-HOP INDUC-
TION HEADS (Sanford et al., 2024b), MULTIPLE-QUERY
ASSOCIATIVE RECALL (MQAR) (Arora et al., 2024a), and
NEEDLE-IN-THE-HAYSTACK (Kamradt, 2023).Empirically,
Mamba (Gu & Dao, 2023) and Mamba-2 (Dao & Gu, 2024)
demonstrated performance competitive with Transformers
on (a simple version of) INDUCTION HEADS and MQAR,
respectively. Theoretical understanding of how language
models perform associative recall begins to emerge: Bi-
etti et al. (2024) constructed a 2-layer Transformer with
positional encoding that solves the INDUCTION HEADS
task; Sanford et al. (2024b) extended such construction
to a log-depth Transformer that solves the k-HOP INDUC-
TION HEADS task; Arora et al. (2024a) showed that a gated
convolution model can solve MQAR. However, these con-
structions all require the model size to scale with the input
sequence length. In this work, we show that 1-layer Mamba
models can solve INDUCTION HEADS and MQAR with
model size independent of the sequence length, highlighting
the role of the convolution operation and the gate branch,
that has been previously overlooked in the literature.

3. Preliminaries: Linear RNNs as SSMs
The application of a Linear RNN can be interpreted as the
discrete solution of a linear dynamical system, or SSMs,

ḣ(t) = A(t)h(t)+B(t)x(t), y(t) = C(t)h(t). (1)
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Here, the input x(t) ∈ R acts as forcing term for the hidden
state h ∈ RN through the application of the input matrix
B(t) ∈ RN×1. The natural evolution of the hidden state
is dictated by the state matrix A(t) ∈ RN×N . Finally, the
output y ∈ Rdy is obtained by linearly transforming the
hidden state via the output matrix C(t) ∈ Rdy×N . Col-
lectively, we call A(t),B(t),C(t) the SSM parameters.
For computational efficiency, modern Linear RNNs con-
sider diagonal state matrices, with negative eigenvalues
A(t) = Λ(t) = −diag([λ1(t), . . . , λN (t)]). This simpli-
fies the solution of (1), and ensures stability in the evolution
of the hidden state. Under this assumption, and considering
an initial state h(0) ≡ 0, we can explicitly write the hidden
state solution as an integral function of the input (Dahleh
et al., 2011):

h(t) =

∫ t

0

e
∫ t
s
Λ(r) drB(s)x(s) ds. (2)

Generally, inputs to Linear RNNs are provided as (discrete)
sequences of values [xt]

T
t=1, and thus we consider a dis-

cretization of system (1). This amounts to substituting the
differential equation with an (approximating) recurrent one:

(1) ≈ ht = Λtht−1 +Bt xt, yt = Cth(t), (3)

where Λt,Bt,Ct are the discrete counterparts of Λ(t),
B(t), C(t), respectively. Notice we can recover an explicit
solution to (3) by unrolling the recurrence relation starting
from h0 ≡ 0, to obtain

ht =

t∑
s=1

(
t∏

r=s+1

Λr

)
Bs xs. (4)

The discretized SSM parameters are usually obtained follow-
ing a Zeroth-Order Hold (ZOH) scheme (Tóth et al., 2008).
Given a discrete time-step ∆(t) ∈ R+, ZOH prescribes

Λt = eΛ(t)∆(t), Ct = C(t),

Bt = (Λ(t)∆(t))−1(eΛ(t)∆(t) − I)(B(t)∆(t)).
(5)

Note that in the original Mamba formulation the authors use
Forward Euler for B(t) for simplicity, Bt = B(t)∆(t).

In general, there is some flexibility in the choice of the func-
tional form that the system parameters can take. The main
requirements are that: (i) Λt is diagonal(-izable), so that
the product

∏t
r=s+1 Λr in (4) can be computed efficiently;

(ii) the eigenvalues of Λt are bounded in [−1, 1], to ensure
stability; and that (iii) the SSM parameters do not depend
on the state h(t), so to keep the system linear in h(t), and
allow to compute its solution in parallel along t. The most
relevant choices analyzed in this paper are: S4D (Gu et al.,
2022a), which models linear time-invariant dynamics,

∆(t) := 1, Λ(t) := Λ, B(t) := B, C(t) := C; (6)

and Mamba (Gu & Dao, 2023), which models time-varying
(input-dependent) dynamics,

∆(t) := SoftPlus(Linear(x(t))), Λ(t) := Λ,

B(t) ≡ B(x(t)) := Linear(x(t)),

C(t) ≡ C(x(t)) := Linear(x(t)).

(7)

Note that both the Mamba-2 mixer and Linear Attention
(Katharopoulos et al., 2020) can be interpreted as special-
izations of Mamba (Dao & Gu, 2024), where Λt ≡ λtI and
Λt ≡ I , respectively.

4. Mamba SSM Mixer Layer Analysis
In this section, we focus on the core of the Mamba architec-
ture: its SSM mixer layer, also referred to as S6. The goal
is to understand how input-selectivity impacts its expres-
sivity and long-range memorization capacity. We show that
an S6 layer can represent projections onto wavelets, thus
efficiently modeling discontinuous signals. This is useful
in practice, e.g., for isolating specific tokens in a sequence.
For long-range memorization, we use sensitivity analysis
to show that, while S6 suffers from exponential decay of
memory (akin to S4D), input-selectivity allows to decrease
the rate of such memory decay by “freezing time”. We vali-
date our theoretical insights by experimenting on the KEEP
n-TH task.

4.1. Function Approximation Power: Expressing
Wavelets via the S6 Layer

We begin by analyzing the expressivity of the S6 layer and
the power of its input-dependent discretization in terms of
function approximation capabilities. We prove that an S6
layer can approximate projections onto wavelets arbitrar-
ily well (Thm. 1), while an S4D layer can at best project
onto Fourier bases. Consequently, in approximating target
functions with discontinuities, S6 achieves a faster approx-
imation rate than S4D (Cor. 1). The advantage of S6 over
S4D in approximating discontinuous functions translates
into their performance differences in memorization tasks.

Linear RNNs as Time-Projection Onto Basis Functions
The idea that Linear RNNs could perform projections onto
specific sets of basis functions is not new, and indeed served
as theoretical grounding for the HiPPO work (Gu et al.,
2020). However, to our knowledge, this interpretation has
not yet been leveraged to explain the capabilities of modern
Linear RNNs. In what follows, we take such interpretation
to analyze their expressivity. To streamline the analysis and
slim notation, we focus on 1D inputs and view them as
continuous signals, xs ≡ x(s) ∈ R, s ∈ [0, T ], without
loss of generality. For direct comparison with S4D, we con-
sider a simplified version of S6 where the input-dependence
only affects the state matrix via ∆(x), and does not af-
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fect B(xt) (i.e., B(xt) = [B1, . . . , BN ]⊤ independent of
the input xt). Substituting this into (2), and recalling that
Λ = −diag([λ1, . . . , λN ]), each component n = 1, . . . , N
of the hidden state can be evaluated separately as an inner
product between time-dependent functions:

hMn(t) =

∫ t

0

e−λn

∫ t
s
∆(xr) drBn︸ ︷︷ ︸

=:gMn(s;t,x)

x(s) ds =
〈
gMn, x

〉
. (8)

We refer to gMn(s; t, x) as the Mamba basis function, with
the notation emphasizing its general dependency on the
input signal x up to time t. For ease of comparison, we can
recover an analogous formula to (8) also for S4D, by letting
∆(xt) ≡ 1 ∀t (see also (6)). This gives

hS4Dn (t) =

∫ t

0

e−λn(t−s)Bn︸ ︷︷ ︸
=:gS4Dn (s;t)

x(s) ds =
〈
gS4Dn , x

〉
. (9)

As we can see, S4D can provide only exponentials as basis
functions. The approximation properties of these functions
are limited: this is established in the literature, and ties back
to the theory of Vandermonde matrices (Gautschi & Inglese,
1987), as recently pointed out by Orvieto et al. (2024). Their
poor performance are mainly due to: (i) the stability con-
straint, Re(−λn) ≤ 0, which causes an exponentially fast
decay to 0, de-facto limiting the effective support of said
bases; (ii) the large degree of overlap between different
bases (obtained by varying the only free parameter λn). The
only way to curb these negative effects is by pushing the
eigenvalues to be equispaced onto the complex unit disk,
namely e−λn → ei

2πn
N . This is precisely the strategy rec-

ommended by Orvieto et al. (2024), however it reduces the
application of the S4D layer to simply performing a Fourier
transform. In contrast, the additional flexibility provided by
the input-selectivity in Mamba allows for a much richer va-
riety of basis functions (8) to be employed in the projection,
an example of which is shown next.

Mamba Bases Can Represent Haar Wavelets Here we
provide the main theoretical result in this section, namely
that the Mamba S6 layer can perform projections onto Haar
wavelets. Due to their ability to capture local aspects of a
function such as spikes and discontinuities, wavelets are
generally better suited than Fourier bases in solving cer-
tain signal processing tasks, (e.g., needles-in-the-haystack
(Kamradt, 2023), transient signals (Mallat, 2012)). Recall
the Haar wavelets are defined by dilation and translation,

ψ0,0(s) = ψ(s) := 1[0, 12 )
(s)− 1[ 12 ,1]

(s)

ψj,k(s) := 2j/2ψ(2js− k),
(10)

with j ∈ N denoting the dilation scale, and k = 0, . . . , 2j−1
the translation. Higher-order wavelets correspond to local-
ized and “spiky” bases; see Fig. A.1 (left) for an illustration.

Theorem 1. Consider a Haar wavelet ψj,k : [0, 1] → R,
and the Mamba basis function (8) at t = 1, gMj,k(s; 1, x) =

e−λj,k

∫ 1
s
∆j,k(xr)drBj,k. Let x̃s := concat[xs; s] be the in-

put signal augmented with time positional encoding. For any
ϵ > 0, there exist 3 Mamba basis functions gM1

j,k, g
M2

j,k, g
M3

j,k

such that the approximation error∣∣∣ψj,k(s)− (gM1

j,k(s; 1, x̃) + gM3

j,k(s; 1, x̃)− 2gM2

j,k(s; 1, x̃)
)∣∣∣

is smaller than ϵ, ∀s ∈ [0, 1].

The proof relies on tweaking the input-dependent discretiza-
tion ∆(s) to output ∆(s) → ∞ or ∆(s) → 0 (note that ∆
can directly depend on the time variable s instead of the
input signal xs, due to time Positional Encoding (PE)). This
effectively allows Mamba to represent Heaviside functions
as bases: by linearly combining shifted Heaviside bases, one
can immediately recover the required Haar wavelets (see
Fig. A.1, middle-right subplots). The details of the proof are
reported in App. A.2, where we also proceed to relax the
inclusion of PE as an assumption for Thm. 1.

Theorem 1 translates into practical advantages of Mamba
over S4D, as Haar wavelets are much better than Fourier
bases for approximating discontinuous functions common
in practice. This is formalized in the following corollary.

Corollary 1. For a piecewise-constant function ρ(t) with
m ≥ 1 discontinuities, there existN Mamba basis functions
(8) such that the L2 approximation error ∥ρ−

∑N
n=1 g

M
n∥L2

is of order O(2−
N
3m ). On the other hand, S4D basis func-

tions can achieve an approximation error of O(N−1).

Corollary 1 stems from Thm. 1, and from approximation
results using Haar wavelets and Fourier bases available in
the literature (Vetterli, 2001; Eckhoff, 1993); see proof in
App. A.2. In the following, we illustrate how approximating
wavelets translates into advantages on concrete tasks.

Task KEEP n-TH The goal of the KEEP n-TH task is to
recover the n-th element in a randomly-generated sequence,
yt = xn. This generalizes the KEEP FIRST task in (Chiang
& Cholak, 2022) where n = 1. The solution of KEEP n-TH
can be directly represented by combining the projections
of a piecewise-constant signal x(s) =

∑t
i=1 xi1[i−1,i)(s)

onto two Heaviside functions H(s − n), H(s − (n − 1)).
As we have shown in Thm. 1, one S6 layer in Mamba can
reproduce precisely this type of projections, provided the
input is augmented with time-positional information. Thus,
we arrive at the following Corollary:

Corollary 2. There exists an S6 layer that solves KEEP
n-TH on input augmented with time Positional Encoding.

The proof of Cor. 2 is reported in App. A.3; the results in
Tab. 1 verify empirically that Mamba with PE can perfectly
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Table 1. KEEP FIFTH experimental results. Average accuracy
across 3 seeds with T = 50 and |V | = 128. Standard error across
3 seeds is 0.00 for all models. Mamba and S4D models consist of
embedding, SSM (h ∈ R8×32), and linear layers (without convo-
lution and gating, see Tab. 2). Positional Encoding (PE) encodes
the position in the last element of the embedding, resulting in |V |
fewer parameters.

MAMBA+PE MAMBA S4D S4D+PE TRANSFORMER

Accuracy↑ 1.00 0.08 0.09 0.08 1.0
Parameters 9.2k 9.3k 8.8k 8.7k 6.4k

solve the task (same as Transformers), whereas Mamba
without PE and S4D both fail, highlighting the advantage of
Mamba over S4D in approximating discontinuous functions
in practice. Additional ablations on model size, sequence
length, and the role of PE are reported in App. D.2.

4.2. Long-Range Modelling: Sensitivity Analysis

In this section, we examine the long-range memorization
capacity of SSM layers, by performing a sensitivity analysis
of the layer output with respect to changes to the input, as
the sequence length increases. To this end, we analyze the
derivative of the SSM hidden state at time t with respect
to the past input at time j, | ∂ht

∂xj
|. We argue that preserving

sensitivity (i.e., a non-zero derivative) is necessary for mem-
orization: if the past input has no impact on the current state,
one cannot hope for any information about it to be retained.
With Lem. 1, we show how generally the sensitivity of an
S6 layer decays exponentially fast, similarly to S4D. Thanks
to input selectivity, however, the S6 layer can adjust the rate
of this decay, thus dynamically tweaking the amount of in-
formation to retain. In Lem. 2 we illustrate this mechanism,
which proves to be useful for solving the task in Sec. 5.2.

For simplicity, we consider 1D inputs xt ∈ R. Given a
generic, input-dependent recurrence relationship as in (4),
we show in App. B that the sensitivity of the state with
respect to its inputs at the j-th instant xj ∈ R is given by

∂ht
∂xj

=
∂

∂xj

(∑t
s=1

(∏t
r=s+1 Λr

)
Bsxs

)
=
(∏t

r=j+1 Λr

)(
∂
∂xj

(Bjxj)

+
∂Λj

∂xj

∑j−1
s=1

(∏j−1
r=s+1 Λr

)
Bsxs

)
.

(11)

Lemma 1. Consider the hidden states arising from the
S4D and S6 SSMs defined in (6) and (7). The sensitivity of
the n-th component of their states at time t with respect to
the input at time j ≪ t is given by, respectively,∣∣∣∣∂hS4Dt

∂xj

∣∣∣∣ = c̃(λn, Bn, x≤j) e
−λn(t−(j+1)),∣∣∣∣∂hMt∂xj

∣∣∣∣ = c̃(∆, λn, Bn, x≤j) e
−λn

∑t
r=j+1 ∆(xr),

where c̃(∆, λn, Bn, x≤j) depends on the input subsequence
x≤j , independent of the sequence length t.

Lemma 1 shows that both S4D and S6 have exponential
decay of sensitivity when the sequence length t increases.
For S4D, the only mitigation strategy is to set λn → 0
(and thus eλn → 1). While S6 can implement the same
strategy, it can also counteract the decay by adapting the
input-dependent discretization, as formalized in Lem. 2.

Lemma 2. Consider the discrete-time S6 in (7) where
Bt = [B1(xt), . . . , Bn(xt)]

⊤ ∈ RN . Suppose there exists
a constant c ≥ 0 such that

lim
t→∞

λn

t∑
r=1

∆(xr) ≤ c. (12)

Then the sensitivity of the n-th component of the state at
time t with respect to any input xj is lower bounded by

lim
t→∞

∣∣∣∣∂hMt∂xj

∣∣∣∣ ≥ e−c
∣∣∣∣ ∂∂xjBn(xs)∆(xs)xs

∣∣∣∣ . (13)

This implies that, to retain sensitivity for longer sequences,
Mamba must necessarily push λ∆(xt) → 0 (or equivalently,
e−λ∆(xt) → 1). We illustrate this with the KEEP n-TH task
shown in Fig. 1, where we report the distribution of the
learned parameters e−λ∆(xt) as we increase the sequence
length. The shift towards 1 appears clear, validating the
condition discussed in Lem. 2.

Remark 1. While in this section we mainly focus on the
properties of the original Mamba mixer layer (Gu & Dao,
2023), we note that the results proven in Thm. 1, Lem. 1 and
Lem. 2 hold analogously for the Mamba-2 mixer (Dao & Gu,
2024). We remind that the Mamba-2 mixer layer can be seen
as a simplification of Mamba’s, whereby the state matrix
is parameterized by a single scalar, Λ = λI , rather than
its full diagonal. Nonetheless, we do not rely on Mamba’s
additional flexibility for our derivations; choosing a suitable
scalar λ suffices (see details in App. A.2).

5. Full Mamba Architecture Analysis
In this section, we describe the full Mamba architecture and
study how its SSM mixer coordinates with the other com-
ponents in the model to efficiently solve associative-recall
tasks. A full Mamba architecture includes an embedding
layer, a number of Mamba mixer blocks, and an output layer.
The mixer block is further composed of a short convolution,
an SSM, and a gate — we refer to Tab. 2 for details in the
differences between Mamba and Mamba-2, but point out
that Mamba-2 leverages three independent short convolu-
tions (rather than a single common one) to compute its SSM
parameters, as outlined in (14b).
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Figure 1. Distribution of e−λ∆t computed on test inputs by models trained to successfully solve KEEP n-TH tasks for various sequence
lengths T (same setup as Tab. 1). The left histogram confirms that the Mamba model must push e−λ∆t → 1 as T increases, as implied
by Lem. 2, to retain information throughout the sequence. Also the S4D must behave similarly. Meanwhile, the right histogram shows
that, compared to S4D, Mamba has additional flexibility in forgetting irrelevant information (e−λ∆t is mostly 0 before timestep n) and
memorizing information selectively (e−λ∆t is mostly 1 from timestep n onwards), while S4D is forced to memorize indiscriminately.

Table 2. Comparison of Mamba (including S4D as a special case) and Mamba-2 (single-head) mixers. We denote with ⊙ the Hadamard
(elementwise) product, ⊗ the Kronecker (outer) product, conv(x)[t] the t-th output of the convolution, and σ the pointwise nonlinearity.

MAMBA MAMBA-2

Λ ∈ Rd×N
, xt ∈ Rd

, ht ∈ Rd×N
Λ = λ ∈ R, xt ∈ Rd

, ht ∈ Rd×N (14a)

x̂t = σ(conv(x)[t]) ∈ Rd x̂t = σ(convu(Linear(x))[t]) ∈ Rd (14b)
∆t = SoftPlus(Linear(x̂t)) ∈ Rd

(∆
S4D
t = 1) ∆t = SoftPlus(Linear(xt)) ∈ R (14c)

Bt = Linear(x̂t) ∈ RN
(B

S4D
t = B) Bt = σ(convB(Linear(x))[t]) ∈ RN (14d)

Ct = Linear(x̂t) ∈ RN
(C

S4D
t = C) Ct = σ(convC(Linear(x))[t]) ∈ RN (14e)

ht = e
Λ⊙(∆t⊗1N ) ⊙ ht−1 + (∆t ⊙ x̂t) ⊗ Bt ht = e

λ∆tht−1 + (∆tx̂t) ⊗ Bt (14f)

yt = ht Ct ∈ Rd, ỹt = g(xt) ⊙ yt := σ(Linear(xt)) ⊙ yt ∈ Rd (14g)

While Mamba and Mamba-2 achieve performance competi-
tive with Transformers and outperform their SSM predeces-
sors in solving MQAR and INDUCTION HEADS, the details
of how this solution can be assembled by the architecture
remain elusive, with only lower bounds on the SSM mixer
size available in the literature (Arora et al., 2024b; Sanford
et al., 2024b), lacking the consideration of other compo-
nents of Mamba such as convolution and gating. Here we
close this gap by providing analytical constructions for a
1-layer Mamba model that can exactly solve these tasks for
any input. Perhaps counterintuitively, as we prove in Thm. 4,
the components of a single Mamba mixer block are already
powerful enough to solve MQAR exactly, even just using
an S4D mixer layer (replacing the S6). With Thm. 2 and
Thm. 3 we further show how, thanks to the input selectivity
of S6, Mamba and Mamba-2 can leverage leaner mecha-
nisms to solve MQAR. Particularly, the S6 layer can use Bt

and Ct to efficiently structure information within its hidden
state, and retrieve it when required. Finally, we show how
the ability to structure the hidden state (used for MQAR)
can be combined with the capacity to dynamically adjust
the rate of memory decay (investigated for KEEP n-TH) to
exactly solve INDUCTION HEADS with a variant of S6. We
name this variant Mamba-∆⊤, and discuss it in Sec. 5.2.

We remark that the constructions described in this section
are just possible solutions that the Mamba architectures
can implement, and we do not exclude the existence of
alternative ones. Nonetheless, in Fig. 2 we verify empirically
that our solutions are tight in terms of model size.

5.1. 1-Layer Mamba Can Solve MQAR

The MQAR task (Arora et al., 2024a) prescribes input and
output sequences as follows

x = [k1, v1, . . . , kκ, vκ︸ ︷︷ ︸
κ key-value pairs

, | . . . , ki1 , . . . , kiκ , . . .︸ ︷︷ ︸
shuffled keys, interwoven with noise

],

y = [×,×, . . . ,×,×, | . . . , vi1 , . . . , vij , . . . ].

The keys ki are randomly chosen from a key set of size κ,
whereas the values vi and the noise are randomly taken from
a vocabulary of size |V |. The goal is to correctly predict the
value associated with the corresponding key at the query
positions, while other non-query positions (denoted with ×)
are ignored.

In this section we prove that the MQAR task can be ex-
actly solved by three architectures: vanilla Mamba (Thm. 2),
Mamba-2 (Thm. 3), and Mamba with an S4D mixer
(Thm. 4), which we refer to as Mamba-S4D. Next we pro-
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Table 3. Overview of exact solutions to the MQAR task that can be implemented by the Mamba model with S4D-mixer in Thm. 4 (top),
Mamba-mixer in Thm. 2 (middle), and Mamba-2-mixer in Thm. 3 (bottom). While S4D-mixer lacks input selectivity in its SSM layer, it
can solve MQAR via the gated-convolution mechanism on a larger embedding space (top). By contrast, both Mamba and Mamba-2 can
solve MQAR with the same selective SSM layer construction without gating, and differ on the choice of convolutions (middle, bottom).
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vide a sketch of the proofs, which we further illustrate in
Tab. 3, and defer the full details to App. C.

Theorem 2. There exists a 1-layer Mamba model without
gating that solves MQAR with κ pairs using embedding
size d = O(κ+ log |V |), and state size N = κ.

Proof sketch. We first prove a construction using standard
basis embeddings with d = κ+|V |, and then apply Johnson-
Linderstrass (JL) Lemma (see Lem. 4) to reduce dimension-
ality. We specify the Mamba model as follows. A size-2
(nonlinear) convolution kernel combines token pairs, ex-
tracting key-value pairs and removing non-informative ones
(e.g., value-key, value-value). The SSM layer (S6) organizes
the hidden state matrix (14f) via Bt (14d) such that each
column corresponds to a specific key, and holds the value
embedding associated with said key (hence the state size
N = κ). At query time, Ct (14e) uses the query(=key)
embedding to retrieve the desired value from the correct
column in the hidden state matrix.

Theorem 3. There exists a 1-layer Mamba-2 model with-
out gating that solves MQAR with κ pairs using embedding
size d = O(log κ+ log |V |), and state size N = log κ.

Proof sketch. The construction is similar to Thm. 2 for
Mamba, but with some simplifications due to the additional
flexibility provided by three independent convolutions in
Mamba-2. Specifically, we set convB = (1, 0) as a shift-
1 convolution kernel (i.e., shifting the input sequence to
the right by one position), while convu ≡ convC as the
identity maps. Once again, JL Lemma allows us to reduce
dimensionalities for both keys and values embeddings.

Remark 2. Our construction of Mamba-2 is similar to the
construction in (Li et al., 2025) that shows how convolution-
augmented Transformers can solve MQAR. Indeed, in light
of the convolution layer in Tab. 2, we can interpret Mamba-2
as a convolution-augmented subquadratic Transformer.

Remark 3. With the results from Thm. 2 and 3, we can
infer that the extra convolutions included in the Mamba-
2 layer over vanilla Mamba in general allow for a more
parameter-efficient solution of MQAR, by noting that d =
log κ+ log |V | < κ+ log |V |, and N = log κ < κ.

Theorem 4. There exists a 1-layer Mamba model with an
S4D mixer that solves MQAR with κ pairs, using embed-
ding size d = O(κ log |V |), and state size N = 1.
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Our bound 100% accuracy 99% accuracy <99% accuracy
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Figure 2. Trained models accuracy on MQAR task (best of 7 seeds), varying κ and d. For
S4D N = 4, for Mamba N = 2κ, and for Mamba-2 N = 8 lnκ. We use T = 100 and
|V | = 128 for all runs. The theoretical bounds on model size for assembling the solutions
proposed in Thm. 2 to 4 (black lines) separate reasonably well models that can achieve
100% accuracy (above black lines) from those that do not (below). In terms of model size
efficiency, Mamba-2 is better than Mamba, which in turn is better than S4D.

MAMBA AND MAMBA-∆⊤
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Figure 3. Trained models accuracy on INDUC-
TION HEADS task (best of 5 seeds), varying
|V | and d, N = 4|V |. Mamba-∆⊤’s per-
formance (outlined) is equal or better than
Mamba’s (filled) and only hits 100% above
the theoretical bound from Lem. 3 (black).

Proof sketch. We first present the construction using d =
O(κ|V |), and again apply JL Lemma to reduce to d =
O(κ log |V |). To overcome the limitation given by the lack
of input selectivity in the SSM layer, we organize the hidden
state along the embedding dimension only, and partition it
so that each chunk holds the value associated with a specific
key. At query time, the retrieval of the desired key-value
chunk is done by leveraging the gating layer.

Remark 4. Our construction of the S4D-mixer relies both
on gated convolution and the SSM recurrence. Arora et al.
(2024a) provided a construction to solve MQAR based on
gated convolution only. While such construction has better
parallelizability, it requires the convolution kernel size to
scale with the sequence length (in order to look back and
find the matching keys). In contrast, our construction relies
on size-2 kernels only, thanks to the SSM recurrence.

To validate our theoretical constructions, we train Mamba,
Mamba-2, and Mamba-S4D models with varying embed-
ding size d, on MQAR tasks with different number of key-
value pairs κ. The goal is to check how tight in practice are
the theoretical bounds on model dimension derived above,
and whether indeed trained models must respect them to
solve the tasks. Results are reported in Fig. 2, where dashed
curves denote our theoretical bounds and markers indicate
empirical results. Notice our bounds in Thm. 2 to 4 are close
to the empirical threshold between models sizes that can
recover exact solutions or not, illustrating the tightness of
our theoretical results. See additional details in App. D.3.

5.2. 1-Layer Mamba-∆⊤ Can Solve INDUCTION HEADS

The INDUCTION HEADS task was first introduced by Ols-
son et al. (2022) to study Associative Recall capabilities
in Transformers. Here we use the formulation from San-
ford et al. (2024a): given an input sequence of tokens

[x1, . . . , xt] from a finite vocabulary xt ∈ V , the goal
is to report, for each xt, the token coming immediately
after the latest previous occurrence in the input of token
xi. That is, the output yt must be yt = xj(t)+1 where
j(t) = max{j : j < t, xj = xt} (or a “blank” token,
yi = ×, if xt appears for the first time).

Note the INDUCTION HEADS task is similar to MQAR,
but with two significant differences. (i) There is no logical
distinction between keys and values, so the model needs to
identify the role of each token, but this can be handled by
the short convolution, as we will show. More importantly,
(ii) we need to retain information about only the latest previ-
ous occurrence of a token, so the model should dynamically
forget and remember information pertaining different to-
kens. Since the latter memorization ability was investigated
in Sec. 4.2, it is natural to leverage those insights in our
solution. To do so efficiently, we introduce a slight variation
to the S6 layer: the Mamba-∆⊤ SSM mixer, prescribing the
following hidden state evolution

ht = eΛ⊙(1d⊗∆(x̂t)) ⊙ ht−1 + x̂t ⊗Bt. (15)

Comparing this to (14f), the only difference lies in the action
of ∆(x̂t), which now varies along the state dimension N ,
rather than the embedding dimension d. While Gu & Dao
(2023) hypothesized a similar performance for both versions,
our findings reveal that the dependence along state dimen-
sion is better suited to solving the INDUCTION HEADS task:

Lemma 3. There exists a 1-layer Mamba model with
the Mamba-∆⊤ SSM mixer (15) that solves INDUCTION
HEADS with vocabulary V using embedding size d = 2|V |
and state size N = |V |.

Proof sketch. The proof follows closely the MQAR con-
struction, in that we leverage the matrix structure in the
hidden state such that its columns are indexed by the keys
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and store the associated values. In the INDUCTION HEADS
task, though, each token xi acts as key in the (xi, xi+1) pair,
and as value in the (xi−1, xi) pair. To handle this distinction,
we simply duplicate the embedding, and let the convolution
layer correctly combine tokens information pairwise, so
that after convolution each token encapsulates information
both regarding a value and its preceding key. Moreover, we
use ∆(xt) to selectively erase outdated information, or to
retain currently valid information, depending on the input
observed. Pushing ∆(xt) → ∞ flushes a previously mem-
orized value, while ∆(xt) → 0 preserves it. We refer to
App. C.2 for the detailed proof.

Remark 5. To solve INDUCTION HEADS, Bietti et al.
(2024); Sanford et al. (2024b) constructed 2-layer Trans-
formers relying on PE and with size scaling as sequence
length. On the other hand, we propose a 1-layer Mamba
composing a convolution and a variant SSM layer. Notably,
this allows us to drop the PE and thus have the model size
depend only on |V |, and not the sequence length, improving
upon the constructions for Transformers.

To demonstrate the efficiency of our Mamba-∆⊤ variant
on the INDUCTION HEADS task, we compare it against the
Mamba baseline, and report results in Fig. 3. For all model
sizes considered, Mamba-∆⊤ performs equally or better,
demonstrating that selectivity along the state dimension (in
the state matrix) improves Mamba’s ability to solve the
INDUCTION HEADS task.

6. Conclusion and Future Work
In this work, we demystify the role of input selectivity in
Mamba, showing its impact on approximation power, long-
term memory, and associative recall capabilities. We prove
that the S6 layer can efficiently represent discontinuous sig-
nals and adaptively mitigate sensitivity decay. We also un-
cover the role of other architectural components in Mamba,
particularly convolution and gating. We present a mecha-
nistic explanation of how Mamba solves memorization and
associative recall tasks, with tight theoretical model size
bounds matching empirical results. Our findings reveal op-
portunities to further improve Mamba, such as an alternative
way to inject input dependence within the SSM state matrix.

Our current theory does not consider the aspects of optimiza-
tion and generalization, both of which are interesting future
directions to explore. Moreover, our analysis focuses on sim-
ple associative recall tasks; extending it to more complicated
tasks such as k-HOP INDUCTION HEADS (Sanford et al.,
2024b), SEQUENTIAL FUNCTION COMPOSITION (Chen
et al., 2024), and POINTER VALUE RETRIEVAL (Zhang
et al., 2021) would be a natural next step. Overall, our work
and proposed improvements add to the growing understand-
ing of SSMs and could accelerate their development.

Impact Statement
The goal of this paper is to improve the understanding of
the Mamba architecture, specifically through analyzing the
role of input selectivity. Our findings contribute to the ad-
vancement of State Space Models, which may in turn further
democratize access to Large Language Models, sharpening
both the existing positive and negative aspects of LLMs. No
additional societal impact is expected from this work.
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A. Approximation Power of Mamba
A.1. Notation

We typically use bold upper case A,B,C to denote matrices and bold lower case x,y to denote vectors or sequence. In
Sec. 3 and Sec. 4, the hidden state at time t is denoted as h(t) (in the continuous setting) or ht (in the discrete setting). In
Sec. 5, with a slight abuse of notation, the hidden state ht ∈ Rd×N denotes a matrix. We use A, λ to denote the discretized
versions of A, λ. We use R,N to denote the reals and the natural number. The identity matrix is denoted as I , where the
all-ones vector is denoted as 1. We let diag(v) be the diagonal matrix with diagonal filled with the vector v. We denote
SoftPlus,ReLU,SiLU as the corresponding pointwise nonlinearity σ, and Linear as the linear layer. We let 1 be the
indicator function, H(s) be the heaviside function. We denote with ⊙ the Hadamard (elementwise) product and ⊗ the
Kronecker (outer) product. We use d for embedding size, N for state size, and t or T for sequence length.

A.2. Mamba Approximates Haar Wavelets

In the following, we recall and outline the complete proof for Thm. 1.
Theorem 1. Consider a Haar wavelet ψj,k : [0, 1] → R, and the Mamba basis function (8) at t = 1, gMj,k(s; 1, x) =

e−λj,k

∫ 1
s
∆j,k(xr)drBj,k. Let x̃s := concat[xs; s] be the input signal augmented with time positional encoding. For any

ϵ > 0, there exist 3 Mamba basis functions gM1

j,k, g
M2

j,k, g
M3

j,k such that the approximation error∣∣∣ψj,k(s)− (gM1

j,k(s; 1, x̃) + gM3

j,k(s; 1, x̃)− 2gM2

j,k(s; 1, x̃)
)∣∣∣

is smaller than ϵ, ∀s ∈ [0, 1].

Proof. The Haar wavelet at scale j with translation k is defined on the interval s ∈ [0, 1] as

ψj,0(s) =


2j/2 s ∈ [0, 2−(j+1))

−2j/2 s ∈ [2−(j+1), 2−j)

0 otherwise
, (16)

ψj,k(s) = ψj,0(s− 2−jk) =


2j/2 s ∈ [2−jk, 2−jk + 2−(j+1))

−2j/2 s ∈ [2−jk + 2−(j+1), 2−j(k + 1))

0 otherwise
. (17)

See also Fig. A.1 for an illustration. Notice that each wavelet can be represented as a linear combination of three shifted
Heaviside functions, namely:

ψj,k(s) = 2
j
2

(
H
(
s− 2−jk

)
− 2H

(
s−

(
2−jk + 2−(j+1)

))
+H

(
s− 2−j(k + 1)

))
, (18)

where H(s) = 1s>0 denotes the Heaviside function. The goal is then to show that Mamba can indeed reproduce a shifted
Heaviside as one of its basis functions gMj,k, by opportunely choosing its free parameters λj,k,∆j,k and Bj,k determining
gMj,k.

Figure A.1. (Left) Example of Haar Wavelets; (Middle-Right) Shape of the 3 Mamba basis gM1j,k, g
M2
j,k, g

M3
j,k, whose linear combination can

arbitrarily approximate the Haar wavelet ψj,k.
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To this end, we consider a 1D input. We set λj,k = 1 and Bj,k = 2
j
2 , which reduces the Mamba basis function to

gMj,k(s; 1, x) = 2
j
2 e−

∫ 1
s
∆(x(r)) dr. (19)

We then leave it to the last free parameter ∆(x(r)) to perform most of the heavy-lifting. By extending the input signal x to
include the absolute time t as an input, we can directly write ∆(x(t)) = ∆(t) (this requirement will be relaxed in Prop. 1).
Notice that we can use the Mamba basis function to recover a (scaled) Heaviside centered at any given instant t̂k, provided
∆(t) behaves as follows:

∆(s) → ∆̂k(s) =

{
∞ if s < t̂k

0 else
=⇒ gMj,k(s; 1, x) =

{
0 if s < t̂k

2
j
2 else

→ 2
j
2H(s− t̂k). (20)

Remember from (7) that ∆(s) ≡ ∆(s; b∆, w∆) := SoftPlus (w∆s+ b∆). Note that

lim
x→−∞

Softplus(x) = 0, lim
x→∞

Softplus(x) = ∞. (21)

Then, by choosing b∆ = −w∆t̂k, and pushing w∆ → −∞, we can get arbitrarily close to approximating ∆̂k(s). Concretely,
we have

gMj,k(s; 1, x) := 2
j
2 e−

∫ 1
s
∆(r;b∆=−w∆ t̂k,w∆) dr w∆→−∞−−−−−−→ 2

j
2H

(
s− t̂k

)
. (22)

By substituting t̂k ∈ {2−jk, 2−jk + 2−(j+1), 2−j(k + 1)}, the resulting mamba basis functions gM1

j,k, g
M2

j,k, g
M3

j,k can approxi-
mate arbitrarily well H(s− 2−jk), H(s− (2−jk + 2−(j+1))), H(s− 2−j(k + 1)), respectively, which are precisely the
shifted Heaviside functions appearing in (18). This allows us to finally write that ∀ϵ, ∃w∆ such that∣∣∣ψj,k(t)− (gM1

j,k + gM3

j,k − 2gM2

j,k

)∣∣∣ < ϵ. (23)

Additionally, to remove the requirement of explicitly augmenting the Mamba input with time positional encoding, we show
that Mamba can autonomously recover said time position by considering a constant input xt ≡ 1 ∀t. This further relaxes the
assumption in Thm. 1 to using an additional Mamba layer receiving all-ones as input.

Proposition 1. A 1-layer Mamba can recover absolute time, given an all-ones input.

Proof. The proof follows by considering a Mamba layer (8) with B ≡ 1, λ ≡ 0. Substituting this into (8), and providing an
all-one input xt ≡ 1 ∀t gives

hM(t) =

∫ t

0

x(s)ds = t. (24)

This applies analogously to the discrete view, hMt =
∑t
s=1 x(s) = t.

Before proving Cor. 1, we recall the function approximation problem. Given a function ρ ∈ L2([0, 1]) (as a function of time
t ∈ [0, 1]), and a set of bases parameterized by the SSM {gn} (e.g. Mamba or S4D), the goal is to project ρ into the best
size-N basis GN = {g1, . . . , gN} that minimizes the approximation error,

argmin
GN

∥ρ− projGN
(ρ)∥L2 = argmin

GN

∫ 1

0

(
ρ(t)− projGN

(ρ)(t)
)2
dt, (25)

where N denotes the hidden state size and

projGN
(ρ) :=

∑
gn∈GN

⟨ρ, gn⟩ gn. (26)

We note that theN basis GN is optimally chosen for the target function ρ (instead of using a fixed set ofN bases independent
of ρ). The inner products ⟨ρ, gn⟩ =

∫ t
0
ρ(t)gn(t)dt for the various n determine the coefficients of the projection of the target

function ρ onto the basis GN .

We are now ready to prove Cor. 1.
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Corollary 1. For a piecewise-constant function ρ(t) with m ≥ 1 discontinuities, there exist N Mamba basis functions (8)
such that the L2 approximation error ∥ρ−

∑N
n=1 g

M
n∥L2 is of order O(2−

N
3m ). On the other hand, S4D basis functions can

achieve an approximation error of O(N−1).

Proof. As discussed in Sec. 4.1, a S4D basis function (9) can represent any Fourier basis function fn = ei2πn. When
approximating a target function with discontinuities, the Fourier coefficients decay very slowly (Eckhoff, 1993),

lim
n→∞

|⟨ρ, fn⟩| = O(n−1). (27)

This implies that using N Fourier bases (and thus N S4D basis functions) for approximating discontinuous functions yields
an approximation error O(N−1), proving the second part of Cor. 1.

By Thm. 1, N Mamba basis functions can approximate arbitrarily close any N/3 number of Haar wavelets. A set of N/3
Haar wavelets can achieve an approximation error of O(2−N/3m) (Vetterli, 2001) when targeting a piecewise-constant
function with m ≥ 1 discontinuities. We provide a concrete argument for completeness. Suppose the function ρ is piecewise
constant with m = 1 discontinuity. Then using an optimal set of N Haar wavelets HN ⊂ {ψj,k}j∈N,0≤k≤2j−1, we can
achieve an approximation error of

min
HN

∥ρ− projHN
(ρ)∥L2 =

∞∑
j=0

2j−1∑
k=0

⟨ρ, ψj,k⟩2 −
∑

ψj,k∈HN

⟨ρ, ψj,k⟩2 (28)

=

∞∑
j=0

⟨ρ, ψj,k(ρ)⟩2 −
N−1∑
j=0

⟨ρ, ψj,k(ρ)⟩2 (29)

=

∞∑
j=N

⟨ρ, ψj,k(ρ)⟩2 (30)

= O(2−N ). (31)

The second equality holds by noting that ⟨ρ, ψj,k⟩ =
∫ 1

0
ρ(t)ψj,k(t)dt = 0 if ρ is constant in the interval [2−j(k− 1), 2−jk].

Thus, for a piecewise-constant ρ with one discontinuity, only one wavelet at each scale j has ⟨ρ, ψj,k(x)⟩ ≠ 0. Given that
we can choose adaptively the best N wavelets, we pick the ones with nonzero coefficients across all J = N scales. Then
the approximation error is bounded the coefficient the highest scale, which has magnitude O(2−N/2) and squared error
O(2−N ). Similar analysis shows that for piecewise-constant functions with m discontinuities, the optimal adaptive wavelet
basis with N wavelet functions achieves an approximation error of O(2−N/m).

Remark 6. While the assumption of a piecewise-constant target function seems restrictive in Cor. 1, we note that this
can be relaxed to a continuous target function ρ by additionally assuming the input signals x are piecewise-constant. The
equivalence is due to the intermediate value theorem. Note that piecewise-constant input signals are ubiquitous in language
modelling tasks, where xt takes values in a finite-size vocabulary.

A.3. Mamba can solve KEEP n-TH

Here we provide a direct application of the result from App. A.2, to explain the ability of Mamba to exactly solve the KEEP
n-TH task when equipped with Positional Encoding.

Corollary 2. There exists an S6 layer that solves KEEP n-TH on input augmented with time Positional Encoding.

Proof. To memorize the n-th position of a piecewise-constant signal x(s) =
∑t
i=1 xi1[i−1,i)(s), it suffices to represent

two Heaviside functions h1 = H(s− n), h2 = H(s− (n− 1)) (recall H(s− n) := 1s>n), by noting that h1 − h2 is one
at the interval [n− 1, n) and zero elsewhere, we have ⟨x, h1 − h2⟩ = xn, as desired.
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As shown in (22), the Mamba basis function can represent any Heaviside function. Specifically, we can let w∆ → −∞, and

∆1([xt; t]) = SoftPlus(w∆t− w∆n) =

{
∞ t < n

0 t ≥ n
, (32a)

∆2([xt; t]) = SoftPlus(w∆t− w∆(n− 1)) =

{
∞ t < n− 1

0 t ≥ n− 1
. (32b)

Suppose λ ≡ 1, B = 1 in the Mamba basis function (8). Using the above ∆1,∆2, we can obtain the Mamba basis functions
representing the desired Heavisides,

gM1(s; t, x) = e−
∫ t
s
∆1(x(r)) dr w∆→−∞−−−−−−→ H(s− n). (33a)

gM2(s; t, x) = e−
∫ t
s
∆2(x(r)) dr w∆→−∞−−−−−−→ H(s− (n− 1)). (33b)

15



Understanding Selectivity in Mamba

B. Sensitivity of Mamba
In this section, we prove Lem. 1 and 2. These follow directly from the general sensitivity formula (11), which we derive in
more details below: Given a generic, input-dependent recurrence relationship as in (4), we have that the sensitivity of the
state at time t with respect to its input sequence at the j-th instant xj ∈ R is given by

∂ht
∂xj

=
∂

∂xj

(
t∑

s=1

(
t∏

r=s+1

Λr

)
Bsxs

)

=

t∑
s=1

[
∂

∂xj

(
t∏

r=s+1

Λr

)
Bsxs +

(
t∏

r=s+1

Λr

)
∂

∂xj

(
Bsxs

)]

=

t∑
s=1

∂Λj

∂xj

 t∏
r=s+1,
r ̸=j

Λr

Bsxsδs<j +

(
t∏

r=s+1

Λr

)
∂

∂xj

(
Bsxs

)

=

 t∏
r=j+1

Λr

 ∂

∂xj

(
Bjxj

)
+

j−1∑
s=1

∂Λj

∂xj

 t∏
r=s+1,
r ̸=j

Λr

Bsxs

=

 t∏
r=j+1

Λr

( ∂

∂xj

(
Bjxj

)
+
∂Λj

∂xj

j−1∑
s=1

(
j−1∏
r=s+1

Λr

)
Bsxs

)
.

(34)

Since Λr = −diag([λ1(r), . . . , λn(r)]) is diagonal and Bj = [B1(j), . . . , Bn(j)], we obtain from (34) the sensitivity of
the n-th component of the hidden state ht,n ≡ ht with respect to the input xj as

∂ht
∂xj

=

 t∏
r=j+1

λn(r)

( ∂

∂xj
(Bn(j)xj) +

∂λn(j)

∂xj

j−1∑
s=1

(
j−1∏
r=s+1

λn(r)

)
Bn(s)xs

)
. (35)

With these ingredients, we are now ready to prove the main results in this section.
Lemma 1. Consider the hidden states arising from the S4D and S6 SSMs defined in (6) and (7). The sensitivity of the n-th
component of their states at time t with respect to the input at time j ≪ t is given by, respectively,∣∣∣∣∂hS4Dt

∂xj

∣∣∣∣ = c̃(λn, Bn, x≤j) e
−λn(t−(j+1)),∣∣∣∣∂hMt∂xj

∣∣∣∣ = c̃(∆, λn, Bn, x≤j) e
−λn

∑t
r=j+1 ∆(xr),

where c̃(∆, λn, Bn, x≤j) depends on the input subsequence x≤j , independent of the sequence length t.

Proof. Recall the Mamba discretization (5) chooses input-dependent SSM parameters as

λn(r) = e−λn∆(xr), Bn(j) = Bn(xj)∆(xj). (36)

Substituting (36) to (35), we see that the first factor becomes
t∏

r=j+1

λn(r) = e−λn
∑t

r=j+1 ∆(xr), (37)

while the second factor becomes

∂

∂xj
(Bn(j)xj) +

∂λn(r)

∂xj

j−1∑
s=1

(
j−1∏
r=s+1

λn(r)

)
Bn(s)xs

=
∂

∂xj
(Bn(xj)∆(xj)xj)− λe−λ∆(xj)

∂∆(xj)

∂xj

j−1∑
s=1

e−λn
∑j−1

r=s+1 ∆(xr)Bn(xs)∆(xs)xs. (38)
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We are interested in the behavior of the sensitivity for j fixed and t→ ∞ (i.e., the sensitivity of the current state with respect
to early input in long-range sequences). Notice that the second factor does not scale with t (since j is fixed), and can be
bound in terms of the parameters defining the transformations B(x) and ∆(x), as well as λn and x, as such:

|(38)| ≤ c̃(Bn,∆, λn, x≤j). (39)

On the other hand, the first factor in (37) shows in general exponential dependence on t. Putting both together, we have∣∣∣∣∂hMt∂xj

∣∣∣∣ ≤ c̃(∆, λn, Bn, x≤j) e
−λn

∑t
r=j+1 ∆(xr). (40)

The proof for S4D is immediate by taking ∆(xt) = 1, Bn(xt) = Bn for all t, resulting in∣∣∣∣∂hS4Dt

∂xj

∣∣∣∣ ≤ c̃(λn, Bn, x≤j) e
−λn(t−(j+1)). (41)

Lemma 2. Consider the discrete-time S6 in (7) where Bt = [B1(xt), . . . , Bn(xt)]
⊤ ∈ RN . Suppose there exists a

constant c ≥ 0 such that

lim
t→∞

λn

t∑
r=1

∆(xr) ≤ c. (12)

Then the sensitivity of the n-th component of the state at time t with respect to any input xj is lower bounded by

lim
t→∞

∣∣∣∣∂hMt∂xj

∣∣∣∣ ≥ e−c
∣∣∣∣ ∂∂xjBn(xs)∆(xs)xs

∣∣∣∣ . (13)

Proof. Recall for the scalar input sequence, each component of the Mamba hidden state is given by

hMt =

t∑
s=1

e−λn
∑t

r=s+1 ∆(xr)Bn(xs)∆(xs)xs. (42)

Then the condition in (12) implies

lim
t→∞

hMt ≥
t∑

s=1

e−cBn(xs)∆(xs)xs. (43)

Straightforward computation of limt→∞

∣∣∣∂hMt∂xj

∣∣∣ completes the proof.

For comparison, we provide a similar sensitivity analysis for the softmax Attention layer as well.

Proof of Sensitivity of Softmax Attention.

∂yAttnt

∂xj
=

∂

∂xj

(
t∑

s=1

extW
⊤
Q WKxs∑t

r=1 e
xtW⊤

Q WKxr
WV xs

)

=
extW

⊤
Q WKxj (xtW

⊤
QWKWV xj +WV )∑t

r=1 e
xtW⊤

Q WKxr
−
extW

⊤
Q WKxjxtW

⊤
QWK(∑t

r=1 e
xtW⊤

Q WKxr

)2 t∑
s=1

extW
⊤
Q WKxsWV xs

=
extW

⊤
Q WKxj∑t

r=1 e
xtW⊤

Q WKxr

(
xtW

⊤
QWKWV xj +WV − xtW

⊤
QWK

∑t
s=1 e

xtW
⊤
Q WKxsWV xs∑t

r=1 e
xtW⊤

Q WKxr

)

=
extW

⊤
Q WKxj∑t

r=1 e
xtW⊤

Q WKxr

(
WV + xtW

⊤
QWK

(
WV xj −

∑t
s=1 e

xtW
⊤
Q WKxsWV xs∑t

r=1 e
xtW⊤

Q WKxr

))
.

(44)
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Even in this case, the second term can be bound by a constant C in terms of ∥WQ∥, ∥WK∥, ∥WV ∥ and ∥x∥ (notice that
the rightmost term, where a fraction of two sums over t appear, behaves as a weighted average of WV xs, and hence does
not scale with t). Only the denominator at the first factor remains as a function of t, providing∣∣∣∣∂hAttnt

∂xj

∣∣∣∣ ≤ C
1

t

(
min
r
extW

⊤
Q WKxr

)−1

. (45)
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C. Proofs of Section 5
C.1. Proofs of Mamba Solving the MQAR Task

The MQAR Task As a reminder, the MQAR task receives an input in the form

x = [k1 v1 . . . ki vi . . . kκ vκ︸ ︷︷ ︸
κ key-value pairs

| v× . . . v× ki1 v× . . . v× kij v× . . . v× kiκ v× . . .︸ ︷︷ ︸
shuffled queries (=keys), interwoven with noise

] ∈ RT , (46)

where the keys ki are randomly taken from a key set of size κ, and the values vi and the various noise tokens v× are
randomly taken from a vocabulary of size |V |. The goal is to output a sequence that, at the location of each query, reports
the value matching the corresponding key, that is

y = [× . . . × | × . . . × vi1 × . . . × vij × . . . × viκ × . . . ×], (47)

while the other components of the output (denoted with ×) are ignored.

For the rest of the proofs, we often make use of the Johnson-Lindenstrauss (JL) Lemma to reduce the embedding dimension-
ality. For completeness, we state and prove JL lemma below.

Lemma 4 (JL Lemma). Given a set of standard bases {e1, . . . , ed} and ϵ ∈ (0, 0.5), there exists a random projection

matrix M : Rd → Rp where p = O(ϵ−2 log d),Mi,j
i.i.d.∼ 1√

p Unif{±1} such that for all pairs (i, j),

|⟨Mei,Mej⟩| ≤ ϵ. (48)

Proof. Let
√
pMi,j := Zi,j , where Zi,j is the symmetric Bernoulli variable. For any i, j ∈ [d], we have

⟨Mei,Mej⟩ = ⟨M[:,i],M[:,j]⟩ =
1

p

p∑
l=1

Zl,iZl,j ≡
1

p

p∑
l=1

Zl,

where the last equality follows from the fact that the product of two independent Bernoulli variables is Bernoulli. In other
words, the dot product of the two projected vectors is a sum of k i.i.d. symmetric Bernoullis. By Hoeffding’s inequality (e.g.
Vershynin (2018, Theorem 2.2.2)),

P

[
1

p

p∑
l=1

Zl ≥ ϵ

]
≤ exp (−pϵ

2

2
). (49)

Thus

P [|⟨Mei,Mej⟩| ≥ ϵ] = 2P

[
1

p

p∑
l=1

Zl ≥ ϵ

]
≤ 2 exp (−pϵ

2

2
). (50)

Therefore, except with probability less than 2 exp (−pϵ2

2 ), it holds that |⟨Mei,Mej⟩| ≤ ϵ. Let p = 4
ϵ2 ln

d
δ for some

δ ∈ (0, 1). By a union bound, this holds for all
(
d
2

)
pairs of (ei, ej) except with probability(

d

2

)
2 exp (−pϵ

2

2
) < d2 exp (−pϵ

2

2
) = exp(−2 ln

d

δ
) = δ2. (51)

Since there is a probability grater than 1− δ2 that |⟨Mei,Mej⟩| ≤ ϵ holds for all i, j, this guarantees the existence of such
M by the probabilistic method.

Theorem 2. There exists a 1-layer Mamba model without gating that solves MQAR with κ pairs using embedding size
d = O(κ+ log |V |), and state size N = κ.

Proof. The proof is divided into two steps: We first construct a 1-layer Mamba model without gating that solves MQAR
using standard basis vectors d = O(κ+ |V |); based on such construction, we then apply the JL Lemma (Lem. 4) together
with a shifting trick to complete the proof for d = O(κ+ log |V |).
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Step 1: Construction With d = (κ+O(|V |). We consider one-hot encoding of keys and values. The main idea is to (i) use
the size-2 convolution to combine key-value pairs and filter out other uninformative pairs (particularly, preserve key-value
pairs and discard value-value pairs); (ii) use appropriate input-dependent SSM matrices to store and retrieve the key-value
information in the hidden state; (iii) use the output layer to project to the value embedding subspace. Crucially, we observe
that the hidden state of Mamba at time t is a d ×N matrix (14f). Thus, we leverage this matrix structure such that each
column of the state corresponds to a given key (N = κ), and holds the value associated with it, that is:

h = [ vj1 | vj2 | . . . | vjκ ] ∈ Rd×N . (52)

We first describe how our proposed solution operates, and then prove that indeed our solution solves the MQAR task exactly.

• Embedding The task of the embedding layer is to clearly distinguish values and keys. We achieve this by letting it map
to orthogonal directions: let the embedding dimension be d = |V |+ κ, and ei ∈ Rd denote the standard basis vector.
We impose

ki 7→ ki := k · ei, and vi 7→ vi := v · eκ+i (53)

for some parameters k, v > 0.

• Convolution We use a size-2 convolution to combine information of a key-value pair, as it is essential to the task
solution. We remind that for a sequence (. . . ,xt−1,xt, . . .), the action of the convolution layer with size-2 kernel with
left padding x0 is given by

x̂t = conv(xt−1,xt) := σ (c0 ⊙ xt−1 + c1 ⊙ xt − b) , x0 := 0, (54)

for certain parameters c0, c1, b ∈ Rd and a nonlinearity1 σ = ReLU. For our construction, it suffices to pick
c0 = c01, c1 = c11, and b = b1, with c0, c1, b > 0. We want such nonlinear convolution to preserve information
from the (ki,vj) pairs, so we impose c0k > b and c1v > b. We also need to prevent the value in (vi,kj) from getting
associated to the wrong key, but we want to preserve key information to be able to extract it at retrieval time, so we ask
c0v ≤ b and c1k > b. The (ki,kj) pair represents an edge-case, and we will show later how to deal with this. Finally,
we want to ignore contributions from (vi,vj) pairs (as they refer to “noise” tokens), but we will delegate this task to
input-selectivity in the SSM layer. To summarize, we need to satisfy

c0k > b, c1v > b, c1k > b, c0v ≤ b. (55)

A feasible parameter combination satisfying (55) is given by:

v = 1, k = 2, c0 = 1, c1 = 2, and b = 1. (56)

Let us show how such nonlinear convolution acts on the four different types of input pairs, under the assumptions (55):

conv((ki,vj)) = ReLU(c0ki + c1vj − b) = (c0k − b)ei + (c1v − b)eκ+j (57a)
conv((vi,kj)) = ReLU(c0vi + c1kj − b) = (c1k − b)ej (57b)
conv((ki,kj)) = ReLU(c0ki + c1kj − b) = (c0k − b)ei + (c1k − b)ej (57c)
conv((vi,vj)) = ReLU(c0vi + c1vj − b) = (c1v − b)eκ+j . (57d)

• Mamba SSM The SSM layer organizes a hidden state matrix where its columns are indexed by the keys and store
information of the associated values. To this end, we let

Λ = 0, ∆t = 1, B(x) = C(x) = [Iκ|0|V |]x ≡Wkx, (58)

where Wk projects the input to the key embedding subspace. Consequently, the SSM layer covers three roles at once:

1In the original Mamba definition, we have σ ≡ SiLU; for ease of illustration we consider instead σ ≡ ReLU, but notice that similar
considerations still hold in this case, in light of the fact that SiLU(x) → ReLU(x) for x→ ±∞: it suffices then to opportunely scale the
inputs.
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1. Ensure that the right key get associated to the right column in the hidden state. This role is covered by the input
matrix B(x) =WBx. By picking WB =Wk = [Iκ|0|V |], we can see that only keys in the convolved input pair
are used for populating the hidden state. This choice of the input matrix also ensures that information from (vi,vj)
pairs does not affect the hidden state.

2. Propagate information down the sequence without corrupting it (i.e., memorization). The state matrix A(x) can
take care of this, provided we fix it to the all-one matrix. This can be achieved by prescribing Λ ≡ 0 in (14a).
Notice that with this choice, the SSM layer simply performs a cumulative sum ht =

∑t
s=1 x̂s ⊗Bs.

3. Retrieve the correct column when needed. This task is taken care of by the output matrix C(x) =WCx. As with
the input matrix, it suffices to have WC =Wk = [Iκ|0|V |]: also in this case, when an input containing a key is
encountered, the C(x) matrix will retrieve information only from the column corresponding to that specific key.

• Output The final output layer simply needs to correctly classify vi as the most likely value from the retrieved vector
yt. To this end, it suffices to consider

Wo =

 v⊤
1
...

v⊤
|V |

 , (59)

as vi will return the maximum scalar product with yt.

Let us illustrate with a step-by-step example how the above construction yields the required result. Consider a generic input
sequence x for the MQAR task. Under the embedding layer prescribed in (53), the (embeded) input will be in the form

x =
[
ki1 vj(i1) ki2 vj(i2) . . . kiκ vj(iκ) v× . . . kk1 . . . kkκ . . .

]
∈ Rd×T , (60)

so that the im-th key is associated to the j(im)-th value. The order in which the keys appear at query time is also random
and denoted by the km subscript. Moreover, keys at query time are randomly interwoven with value tokens, denoted as v×.
After convolution, this input gets mapped to

x̂ =

 c1,kei1 c0,kei1 c1,kei2 c0,kei2 . . . c1,keiκ c0,keiκ 0 . . . c1,kek1 . . . c1,kekκ . . .
+ + + + + + + + +
0 c1,vej(i1) 0 c1,vej(i2) . . . 0 c1,vej(iκ) 0 . . . 0 . . . 0 . . .

 ,
(61)

where we denote c0,k = c0k − b, c1,k = c1k − b, c1,v = c1v − b to slim notation, and separate the components of x̂ into
key-related (top) and value-related (bottom) for illustrative purposes. Notice how, for the initial part of the input, distinct
keys (the various eim at the top) are only associated with their respective values (the various ej(im) at the bottom), or with 0.
Before moving on to the SSM layer, let us remind its action (14f):

yt =
(
eΛ⊙(∆t⊗1N ) ⊙ ht−1 + (∆t ⊙ x̂t)⊗Bt

)
Ct =

t∑
s=1

(
t−1∏
m=s

eΛ⊙(∆m⊗1N ) ⊙ (x̂s ·B⊤
s )

)
Ct

Λ≡0,∆m≡1
========⇒ yt =

(
ht−1 + x̂t ·B⊤

s

)
Ct =

t∑
s=1

(
x̂s ·B⊤

s

)
Ct.

(62)

Notice how the hidden state naturally admits a matrix structure ht ∈ Rd×N due to the outer product xs · B⊤
s , whose

columns are updated by xt, where Bs determines which columns are affected. If Bt ∝ ei (i.e., only nonzero at component
i), then xt will contribute to only the i-th column in ht. Similarly, taking Ct ∝ ei ensures that only the i-th column from
the hidden state is retrieved. This is precisely what we achieve with the choice outlined above. In light of this, the hidden
state after the initial part of the input (where the key-value pairs are listed) admits the following form at time 2κ

h2κ =

 k̂e1 k̂e2 . . . k̂eκ
+ + +

v̂ej(1) v̂ej(2) . . . v̂ej(κ)

 , with k̂ = c21,k + c20,k, v̂ = c1,vc0,k, (63)

and remains unchanged until the first key kk1 is encountered at query time, as B(x) = B((vi,vi)) = 0 for all the tokens
in between. For each key ki encountered at query time, C(x) then takes care of extracting the corresponding i-th column of
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h, which holds a vector proportional to the embedding of its associated value, ej(i). Finally, the output matrix computes
scalar products of all the values embedding with the extracted vector, which will then be maximum for ej(i), thus accurately
solving the MQAR task.

There is an edge case to this construction, which occurs when, at retrieval time, two keys appear adjacent to each other in a
key-key pair (ki,kl). In this case, kl represents the actual query, while ki acts as noise: the convolution will in fact contain
information from two keys, implying that C(x) will have two nonzero components at that point. However, with the correct
parameter choice, we can have the query information dominate the noise, and still recover the desired solution. We have by
(57c)

C(conv(ki,kl)) = (c0k − b)ei + (c1k − b)el. (64)

When tested against the hidden state at that instant, then, the output matrix will return a linear combination of the values
associated to the two keys:

C(conv(ki,kl))ht = (c0k − b)
(
k̂ei + v̂ej(i)

)
+ (c1k − b)

(
k̂el + v̂ej(l)

)
. (65)

To ensure the key-value pair of kl dominates that of ki, we need to impose

c0k − b≪ c1k − b ⇐= c0 ≪ c1, (66)

which is already satisfied by the parameter choice (56).

Step 2: Dimensionality Reduction to d = O(κ+ log |V |). Having proved the construction with d = O(κ+ |V |), we now
apply JL Lemma to reduce the embedding dimension and suitably adjust the Mamba architecture weights to ensure the
desired output. Concretely:

• Embedding We use the same key embeddings as above {e1, . . . , eκ} while reducing the value embedding dimen-
sionality to satisfy almost-orthogonality. By JL Lemma (c.f. Lem. 4), given the value embeddings {ej}|V |+κ

j=1+κ and
ϵ ∈ (0, 0.5), there exists Mv : R|V | → Rp where p = O(log |V |) and each of its entry is in {− 1√

p ,
1√
p} such that

⟨Mvej1 ,Mvej2⟩ ≤ ϵ for any j1 ̸= j2. Let M := Iκ ⊕Mv ∈ R(κ+p)×(κ+|V |) be the direct sum of the identity matrix
preserving the one-hot key embeddings and the JL matrix projecting the value embeddings. Let the normalized value
embedding be v̄j :=Mej Let the shifted value embedding be

vj :=Mej + β[0κ|1p]⊤ =

p∑
i=1

(Mi+κ,j + β)ei+κ ∈ Rκ+p, (67)

where each component of vj is in the range [− 1√
p + β, 1√

p + β] ≡ [vmin, vmax]. Note that by letting β > − 1√
p , we

can ensure all components of vj are nonnegative.

• Convolution We use a size-2 convolution as (54), to retain the value from (ki,vj) pairs and discard the value from
(vi,kj) pairs. Ideally we want

conv(ki,vj) := ReLU(c0ki + c1vj − b) ∝ (c0 − b)ki + (c1 − b)vj (68a)
conv(vi,kj) := ReLU(c0vi + c1kj − b) ⊥ span({v1, . . . ,v|V |}). (68b)

Given the shifted value embeddings, we must impose the following constraints to achieve (68):

c0k > b, c1vmin > b, c0vmax ≤ b. (69)

A feasible parameter combination satisfying (69) is given by

β = 2 ( =⇒ [vmin, vmax] ⊆ [1, 3] since p ≥ 1), k = 10, c0 = 1, c1 = 10, and b = 3. (70)

Consequently, we have the desired convolution outputs

conv(ki,vj) = (c0k − b)ei +

p∑
i=1

(c1(Mi+κ,j + β)− b) ei+κ = (c0k − b)ei + c1v̄j + (c1β − b)

p∑
i=1

ei+κ︸ ︷︷ ︸
:=s

(71a)

conv(vi,kj) = (c1k − b)ej . (71b)
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Note that the edge case for conv(ki,kj) is taken care of since c0 ≪ c1, while the (vi,vj) pairs will be ignored in the
SSM layer, following the same argument as in step 1.

• Mamba SSM The SSM layer is the same as in step 1 (58), propagating information through the hidden state (c.f. (63)).
At the query time for key ki, i = 1, . . . , κ, the output yt =

(
(c0k − b)2 + (c1k − b)2

)
ei + (c0k − b)

(
c1v̄j(i) + s

)
contains the (scaled) normalized value embedding shifted by a constant vector s.

• Output The output layer undoes the shift and classifies based on the normalized value embeddings. Recall Mv ∈
R|V |×p is the JL matrix from the value embedding projection. We set the output linear layer with the weight matrix
Wo = [0|M⊤

v ] ∈ R|V |×(κ+p) and the bias vector bo = −(c0k − b)Wos. The final output is given by

Woyt + bo = (c0k − b)Wo

(
c1v̄j(i) + s

)
− (c0k − b)Wos = (c0k − b)c1M

⊤
v Mvej(i), (72)

which yields the maximum at component j(i) since ⟨Mvej(i),Mvel⟩ ≤ ϵ for any l ̸= j(i) by JL Lemma. This
completes the proof.

Theorem 3. There exists a 1-layer Mamba-2 model without gating that solves MQAR with κ pairs using embedding size
d = O(log κ+ log |V |), and state size N = log κ.

Proof. The idea is to execute the Mamba solution outlined in the proof of Thm. 2, but in a leaner manner due to the
additional degrees of freedom in Mamba-2: particularly, we leverage the fact that the convolutions for the value (14b),
key (14d), and query (14e) can be chosen independently (instead of using the same convolution in Mamba). The proof is
divided into two steps: We first present the construction using standard basis vectors with d = κ+ |V |; We then reduce the
embedding dimension by applying JL lemma.

Step 1: Construction With d = O(κ+ |V |).

• Embedding - Same as Mamba The role of the embedding layer is to clearly distinguish values and keys. We achieve
this by letting it map to independent directions: let the embedding dimension be d = |V |+ κ, and ei ∈ Rd denote the
standard basis vector. We let

ki 7→ ki := ei, and vi 7→ vi := eκ+i. (73)

• Convolution Differently from Mamba that uses the same convolution kernel to compute the SSM input u and
parameters B,C, Mamba-2 has the additional flexibility of using three independent convolutions for computing
u,B,C (see details in Tab. 2). We now exploit this flexibility by setting:

x̂Bt = convB(xt−1,xt) = σ(c0 ⊙ xt−1 + c1 ⊙ xt − b) := xt−1,

x̂t = convu(xt−1,xt) := xt,

x̂Ct = convC(xt−1,xt) := xt.

(74)

Consequently, the output from convB shifts the input sequence to the right by one position, whereas the outputs from
convu, convC are the same as the input.

• Mamba-2 SSM - Same as Mamba The role of the SSM layer is to associate key-value pairs, propagate information
through the state, and retrieve the correct value given a query(=key). Unlike Thm. 2, the convolved input (74) contains
only key or value information but never mixes them. A simple choice is to set B,C as the identity matrices, but this
requires the state size be the same as the embedding size N = d. To further reduce the state size to N = κ, we use the
same choice as Mamba (58) by letting

λ = 0,B(xt) = C(xt) = [Iκ|0|V |]xt ≡Wkxt, (75)

• Output - Same as Mamba Even in this case, as a classifier it suffices to pick

Wo =

 v⊤
1
...

v⊤
|V |

 . (76)
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With the definitions above, we can simplify the outcome of the Mamba-2 layer application. This in fact reduces to

yt =

t∑
s=1

(
x̂sB(x̂Bs )

⊤) C(x̂Cs ) =

t∑
s=1

(
xs (Wkxs−1)

⊤)Wkxt =

t∑
s=1

xs(x
⊤
s−1W

⊤
k Wkxt) (77)

where x0 = 0 is the zero padding vector. Note that the output yt for t ≥ 2κ contains the desired key-value association,
xs(Wkxs−1)

⊤ = vj(i)k
⊤
i for s = 2, 4, . . . , 2κ.

At query time where xt = ki, thanks to our construction of the Embedding layer, ⟨ki,xs−1⟩ = 0 for all s, except when
xs−1 = ki: in that case we have instead ⟨ki,xs−1⟩ = 1. Whatever the index s − 1 at which this occurs, the associated
value xs is precisely the one we are seeking, i.e., the value embedding vj(i) immediately following the key matching the
corresponding query ki. Thus, yt = vj(i). Now, applying the output matrix amounts to computing scalar products between
vj(i) and all possible value vectors, which will return 1 only at the desired value per the orthogonal embedding construction.

Step 2: Dimensionality Reduction to d = O(log κ+ log |V |). We now reduce the embedding dimension d = |V |+ κ to
d = O(log |V |+ log κ). To this end, we apply JL Lemma (c.f. Lem. 4) to construct nearly orthogonal embedding vectors,
while keeping the convolution, SSM, and output layers the same as step 1. By JL lemma, fixed ϵ ∈ (0, 0.5), there exists a
matrix M ∈ Rd×p for p = O(log d) such that |⟨Mei,Mej⟩| ≤ ϵ for all i, j ∈ [d]. We apply JL lemma separately for the
key embedding subspace (with a JL matrix Mk ∈ Rlog κ×κ) and the value embedding subspace (with another JL matrix
Mv ∈ Rlog |V |×|V |). We collect the final JL matrix via a direct sum, M = Mk ⊕Mv. Let ki := Mei,vj := Meκ+j .
Then for i ̸= j, we have ⟨ki,kj⟩ ≤ ϵ, ⟨vi,vj⟩ ≤ ϵ. On the other hand, ⟨kj ,kj⟩ =

∑p
i=1M

2
i,j ≈ 1. Similarly, we see that

⟨vj ,vj⟩ ≈ 1. It remains to show such low-dimensional embeddings, followed by convolutions, SSM, and output layer,
yields the desired solution. The action of the convolution layer on the low-dimensional embeddings is the same as in step 1,
shifting the attention-keys by one position to the right while keeping the attention-queries and attention-values unchanged.
Also the action of the SSM layer is the same as step 1 (77), where the hidden state is a sum of key-value association matrices
vj(i)k

⊤
i , except with embedding dimension O(log |V |+ log κ). At query time, upon encountering ki, the retrieved output

is yt ∝ vj(i) + ϵ(
∑
l ̸=j(i) vl) for ϵ≪ 1, in light of the fact that the low-dimensional embeddings are nearly orthogonal by

construction. Then, applying the output matrix Woyt yields the maximum component at j(i), as desired.

Remark 7. The above construction with N = log κ works for generic inputs where the values are drawn randomly from
the vocabulary with sufficient size. Such construction may fail in the adversarial case where most values are the same and
the number of keys κ is large. Concretely, suppose the input is [k1, v1, k2, v, . . . , kκ, v], such that all the values at time
t = 4, 6, . . . , 2κ are the same token v, and v1 ̸= v. Then at the retrieval time for the query token k1, the signal value is v1,
whereas the noisy values from other keys contribute to ϵ(κ− 1)v. Then if ϵ(κ− 1) > 1, the model might fail to retrieve the
desired value. This can be counteracted by decreasing ϵ; as per JL Lemma, though, this might come at the cost of scaling
the embedding dimension — without however impacting its logarithmic behavior (remember p = O(ϵ−2 log d)).

Theorem 4. There exists a 1-layer Mamba model with an S4D mixer that solves MQAR with κ pairs, using embedding
size d = O(κ log |V |), and state size N = 1.

Proof. The proof is divided into two steps: we first construct a 1-layer Mamba model using S4D as SSM layer, that solves
MQAR using d = O(κ|V |); we then apply JL Lemma with a shifting trick to complete the proof for d = O(κ log |V |).

Step 1: Construction With d = O(κ|V |). On a high level, the idea is to organize the hidden state of the SSM in chunks,
each collecting a vector representing the value associated to a specific key, similarly to the proof in Thm. 2. However, unlike
the Mamba layer, the S4D layer does not have access to input-dependent matrices B(x), C(x), implying that the N columns
of the S4D state are the same up to scaling, and hence cannot encapsulate additional information regarding the input. We
then decide to work with a single-column as hidden state, and instead partition it along the embedding dimension d. Ideally,
we want the hidden state before retrieval to be a long column vector,

ht = [ v⊤
1 | v⊤

2 | . . . | v⊤
κ ]⊤ ∈ Rκ|V |. (78)

This can be achieved by specifying each component of the full Mamba architecture as follows.

• Embedding The goal of the embedding layer is to organize keys and values in a form that is suitable to assemble a
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hidden state as in (78). More in detail, we let a key ki and a value vi be mapped to, respectively

ki 7→ ki = k · [0, . . . , 0| . . . | 1, . . . , 1︸ ︷︷ ︸
|V |i:|V |(i+1)

| . . . |0, . . . , 0| . . . ]⊤ (79)

vi 7→ vi = v · [0, . . . , 1︸︷︷︸
i

, . . . , 0| . . . |0, . . . , 1︸︷︷︸
κ|V |+i

, . . . , 0]⊤ (80)

= v · [ e⊤i | . . . | e⊤i ]⊤, (81)

for some fixed parameters k > 0, v > 0. Notice that, in light of this, any combination ki + vj can form a dictionary: it
has a maximum value at a component uniquely defined by the pair i, j.

• Convolution The (short) convolution layer is responsible for filtering out irrelevant information from the sequence, and
retaining only the one pertaining (ki,vj) pairs. To this end, we limit ourselves to a convolution with kernel size 2: this
acts on any pair (xt,xt+1) of the input sequence by mapping it to

(xt,xt+1) 7→ σ (c0 ⊙ xt + c1 ⊙ xt+1 − b) . (82)

By carefully picking the parameters k, v, c0, c1, b, we can ensure that only a (ki,vj) pair “survives” the operation,
and everything else gets mapped to the null vector. This for example can be achieved by setting k = 10, v = 1, c0 =
10 · 1, c1 = 1, b = kc0. With this choice, we see that the convolution maps

(ki,vj) 7→ [0, . . . , 0| . . . |0, . . . , 1︸︷︷︸
|V |i+j

, . . . , 0| . . . |0, . . . , 0]⊤ (83)

= [ 0⊤ | . . . | e⊤j | . . . | 0⊤ ]⊤ (84)

(ki,kj) 7→ [0, . . . , 0]⊤ (85)
(vi,kj) 7→ [0, . . . , 0]⊤ (86)
(vi,vj) 7→ [0, . . . , 0]⊤, (87)

• S4D SSM The SSM layer simply needs to accumulate and propagate the combined values down the sequence. We
remind that from (5) and (6), the output of S4D is given by

hS4D
t =

t∑
s=1

xs ·
(
Λ
t−(s+1)

Bs

)⊤
. (88)

We make use of a “trivial” SSM where Λ = B = 1, resulting in a hidden state which, after collecting the initial
(ki,vj(i)) pairs, is constant in the form:

ht = [0, . . . , 1︸︷︷︸
j1

, . . . , 0|0, . . . , 1︸︷︷︸
|V |+j2

, . . . , 0| . . . |0, . . . , 1︸︷︷︸
κ|V |+jκ

, . . . , 0]⊤

= [ e⊤j1 | e⊤j2 | . . . | e⊤jκ ]⊤.

(89)

• Gate The role of the gating mechanism (14g) is to retrieve the part of the hidden state which refer to the requested key.
The gate branch acts on a linear transformation of the original sequence: by picking this transformation as the identity.
we ensure that, when a key is encountered, only the corresponding value is retrieved from the hidden state, in fact:

ỹt = ki ⊙ ht = [0, . . . , 0| . . . |0, . . . , 1︸︷︷︸
|V |i+j(i)

, . . . , 0|0, . . . , 0| . . . ]. (90)

• Output The final output layer simply needs to test the retrieved vector yt against all values vi: only the correct one
will return a scalar product different from 0. It suffices to pick

W S4D
o =

 v⊤
1
...

v⊤
|V |

 =

 e⊤1 . . . e⊤1
...

...
...

e⊤|V | . . . e⊤|V |

 . (91)
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Step 2: Dimensionality Reduction to d = O(κ log(|V |+ 1)). Having proved the construction with d = O(|V |), we now
apply JL Lemma to reduce the embedding dimension and suitably adjust the Mamba architecture weights to ensure the
desired output. Concretely:

• Embedding We use JL lemma to identify d = |V | + 1 almost-orthogonal vectors within a p ∼ O(log(|V | + 1))-
dimensional space. Namely, there exists a random matrix M : Rd → Rp such that any two (different) vectors in the set
{Me1, . . . ,Me|V |,Me|V |+1} are almost-orthogonal, in the sense that |⟨Mei,Mej⟩| < ϵ for some small ϵ ∈ (0, 0.5).
Without loss of generality, we ensure that the last of these vectors is parallel to the all-one vector 1p: notice this is
always possible via an opportune rotation, which does not affect the scalar product of the recovered vectors (and hence,
their almost-orthogonality). We let the embedding layer perform the following map

ki 7→ ki = k · [0, . . . , 0| . . . | 1, . . . , 1︸ ︷︷ ︸
pi:p(i+1)

| . . . |0, . . . , 0| . . . ]⊤ ∈ Rκp, i = 1 . . . κ (92)

vi 7→ vi = [(Mei + β1)⊤| . . . |(Mei + β1)⊤]⊤ ∈ Rκp, i = 1 . . . |V |, (93)

where M : Rd → Rp, Mi,j ∈ {− 1√
p ,

1√
p} is the (rotated) projection matrix recovered with JL Lemma, and β > 1√

p ,

so that each component of the value embedding vi is nonnegative, and falls in the range of [β − 1√
p , β + 1√

p ].

• Convolution We use a size-2 convolution as in step 1, requiring it to retain only the (ki,vj) pair information while
sending other pairs (vi,kj), (vi,vj), (ki,kj) to zero. To this end, we let

β = 1, k = 10, c0 = 10, c1 = 1, b = kc0. (94)

Note that by the choice of β and p ≥ 1, the range of components in vi is limited to [0, 2]. Consequently, we have

conv(ki,vj) = ReLU(c0ki + c1vj − b) = [ 0⊤ | . . . | (Mej + β1)⊤ | . . . | 0⊤ ]⊤; (95)
conv(vi,kj) = conv(ki,kj) = conv(vi,vj) = 0. (96)

• S4D SSM The SSM layer proceeds similarly as the construction in step 1, yielding the state at t > 2κ as

ht = [(Mej1 + β1)⊤|(Mej2 + β1)⊤ | . . . |(Mejκ + β1)⊤]⊤. (97)

• Gate and Output Also the gating layer and the output layer proceed similarly as the construction in step 1. After
gating, when a key ki is encountered, we have

ŷt = ht ⊙ ki = ·[0, . . . , 0| . . . | (Meji + β1)⊤︸ ︷︷ ︸
pi:p(i+1)

| . . . |0, . . . , 0| . . . ]⊤. (98)

And finally, after applying the output matrix, we obtain

W S4D
o ŷt =

 (Me1)
⊤ . . . (Me1)

⊤

...
...

...
(Me|V |)

⊤ . . . (Me|V |)
⊤




0
...

(Meji + β1)
...
0

 ≈


ϵ+ ϵβ

...
1 + ϵβ

...
ϵ+ ϵβ

 , (99)

in light of the fact that both (Mei)
⊤ ·Mej ≈ ϵ if i ̸= j otherwise (Mei)

⊤ ·Mei ≈ 1 per JL construction, and
(Mei)

⊤ · 1 ≤ ϵ per the assumption that Me|V |+1 is parallel to 1p. This allows us to recover the correct value,
completing the proof.
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C.2. Proofs of Mamba Solving the INDUCTION HEADS Task

The INDUCTION HEADS Task As a reminder, for the INDUCTION HEADS task, the input is a sequence of tokens
[x1, . . . , xt] from a finite vocabulary V ; The output is a sequence of tokens [y1, . . . , yt] from the augmented vocabulary
V ∪ {×}, where yi equals the input token right after the latest previous occurrence of the input token xi, i.e., yi = xj(i)+1

where j(i) = max{j : j < i, xj = xi}; otherwise yi = ×. An example input and output drawn from the vocabulary
V = {1, 2, 3, 4} with sequence length 8 is shown below:

t = [ 1, 2, 3, 4, 5, 6, 7, 8]
x = [ 2, 1, 3, 2, 4, 3, 2, 4]
y = [ ×, ×, ×, 1, ×, 2, 4, 3]

.

Note that the input token 2 appears three times, at instants t = 1, 4, 7. Thus, at t = 7, the latest previous occurrence of
j(7) = 4, which yields the output y7 = xj(7)+1 = x4+1 = 4.

Lemma 3. There exists a 1-layer Mamba model with the Mamba-∆⊤ SSM mixer (15) that solves INDUCTION HEADS
with vocabulary V using embedding size d = 2|V | and state size N = |V |.

Proof. We follow a procedure similar to the MQAR construction, in that we leverage the matrix structure in the hidden
state such that its columns are indexed by the key token and store the associated value token. However, differently from
the MQAR task, in the INDUCTION HEADS task there is no distinction between the key and value set, but rather all
tokens are drawn from the same vocabulary V – i.e., each token xi acts as key in the (xi, xi+1) pair, and as value in the
(xi−1, xi) pair. To resolve this, we use a doubling-embedding trick in Mamba, together with suitable choices of convolution.
Moreover, the INDUCTION HEADS task requires finding the latest previous occurrence; we will achieve this by leveraging
the input-dependent state matrix.

The main idea is to double the embedding size in Mamba, which enables the convolution layer to perform concatenations of
the adjacent embedding pairs. Concretely: we let the state size N = |V |, and the embedding size d = 2|V |. We design the
architecture as follows.

• Embedding We use 2|V |-dimensional standard basis vectors to embed the vocabulary V = {1, 2, . . . , |V |}, i.e.,

vi 7→
[
evi
evi

]
∈ Rd ≡ R2|V |. (100)

• Convolution We use size-2 convolution (with left-padding 0) combining the pair (xi−1,xi) by summing the first
|V |-dimensions of xi−1 with the last |V |-dimensions of xi, effectively concatenating (exi−1

, exi
). We let

x̂i ≡ conv(xi−1,xi) = c0 ⊙ xi−1 + c1 ⊙ xi, where c0 =

[
1
0

]
, c1 =

[
0
1

]
. (101)

Note that we describe the proof for linear convolution here to simplify notation, but it holds also for nonlinear
convolution (14b), noting that each embedding vector xi and the convolution weights c0, c1 are nonnegative, effectively
reducing the nonlinearity σ = ReLU (or SiLU) to be the identity map. The same reasoning applies to the design of
B,C, as we discuss next.

• Mamba-∆⊤ SSM Since the convolved output x̂i contains xi−1 in its first |V | dimensions and xi in its last |V |
dimensions, we choose the state matrix Λ and the input matrix B to depend on the first |V | dimensions of x̂ (i.e.,
extracting the key), and the output matrix C to depend on the last |V | dimensions (i.e., extracting the query). To this
end, we let Λ = −1 ∈ Rd×N , w∆ ≫ 0, and

∆(x̂i) := SoftPlus(Linear(x̂i)), where Linear(x̂i) := w∆[I|V | | 0|V |]x̂i ∈ RN , (102a)

Λ(x̂i) := eΛ⊙(1d⊗∆(x̂i)) = e−1⊗∆(x̂i) ∈ Rd×N ≡ R|V |×|V |, (102b)

B(x̂i) := Linear(x̂i) = [I|V | | 0|V |] x̂i ∈ RN , (102c)

C(x̂i) := Linear(x̂i) = [0|V | | I|V |] x̂i ∈ RN . (102d)
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• Output Wo = [0|V | | I|V |] ∈ R|V |×d

We now show the correctness of such construction. Consider the generic input and output sequences:

t = [ 1, 2, 3, 4, 5, 6, 7, 8, . . .]
x = [ v2, v1, v3, v2, v4, v3, v2, v4, . . .]
y = [ ×, ×, ×, v1, ×, v2, v4, v3, . . .].

(103)

After the embedding and convolution layers, the SSM input is a sequence of d-dimensional vectors for d = 2|V |,

x̂ =

[
0 ev2 ev1 ev3 ev2 ev4 ev3 ev2 . . .
ev2 ev1 ev3 ev2 ev4 ev3 ev2 ev4 . . .

]
∈ R2|V |×t, (104)

where x̂i stores the (xi−1, xi) pair.

The action of the SSM layer organizes the hidden state matrix of size d×N ≡ 2|V | × |V | by the input matrix B(x̂i) taking
outer-product with x̂i, followed by retrieving the desired column via the output matrix C(x̂i). Now by the choice of SSM
parameters, we have[

B(x̂)
C(x̂)

]
=

[
0 ev2 ev1 ev3 ev2 ev4 ev3 ev2 . . .
ev2 ev1 ev3 ev2 ev4 ev3 ev2 ev4 . . .

]
∈ R2|V |×t, (105)

where we stack them together to visualize that B(x̂) amounts to shifting C(x̂) to the right by one position, due to the
design of convB .

We now verify the desired behavior in the SSM layer. Suppose temporarily the state matrix is Λ = 1 ∈ Rd×N . Then the
hidden state at time s ≤ t would be a cumulative sum,

hs =

s∑
i=1

x̂iB(x̂i)
⊤ =

s∑
i=2

[
exi−1

exi

]
e⊤xi−1

. (106)

Thus, the j-th column of the hidden state matrix would store the sum of all x̂i where the key B(x̂i) = xi−1 = ej . Yet
the INDUCTION HEADS task requires storing the latest associated value only (not all associated values). To this end, we
leverage the input-dependence of the state matrix, and particularly of ∆(xt). Recall the Mamba-∆⊤ layer is given by

hs = eΛ⊙(1⊗∆(x̂s)) ⊙ hs−1 + x̂sB(x̂s)
⊤, (107)

ys = hsC(x̂s). (108)

We design ∆(x̂t) ∈ RN ≡ R|V | such that when the input contains the key information, the corresponding key column in
the state is erased (while the other columns remain the same). Without loss of generality, suppose B(x̂s) = ej . By the
definition of B (102c), this implies that [I|V | | 0|V |]x̂s = ej . By the choice of w∆ ≫ 0 and the definition of ∆ (102a), we
have

∆(x̂i) = SoftPlus(w∆[Id | 0d]x̂i) = w∆ej . (109)

Therefore (102b) yields the state matrix as

Λs = e−1⊗∆(x̂s) = e−1⊗(w∆ej) = 1⊗ exp [0, . . . ,−w∆︸ ︷︷ ︸
j

, . . . , 0]⊤
w∆→∞
= 1⊗ (1− ej) ∈ Rd×N , (110)

which has an all-zeros j-th column and all-ones columns elsewhere. Consequently, the j-th column of the hidden state
hs[:, j] is erased by the action e−1⊗∆(x̂s) ⊙ hs−1, and then updated with the current input containing the latest value by
the action x̂s ⊗B(x̂s), as desired. We remark that such erasure operation is akin to the construction of the S6 layer for
solving the KEEP n-TH task in Cor. 2, in which we have Mamba approximate a Heaviside by tweaking ∆(xt), so to erase
information from all tokens before a given one. We also see that such selective erasure works consistently well for long
sequences when t→ ∞, since it preserves all other columns (except the j-th one) by setting ∆(us)[l] = 0 for l ̸= j, and
thereby satisfying the condition in Lem. 2 to avoid sensitivity decay.
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Finally, the SSM output is given by ys = hsCs = hsexs
, which retrieves the xs-th column of the state that stores the

token immediately after the latest previous occurrence of xs, i.e. ys =

[
exj(s)

exj(s)+1

]
. We then apply the output matrix

Woys = exj(s)+1
to obtain the target value, which completes the proof.
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D. Additional Experiment Details
D.1. Training Details

For all experiments, unless otherwise noted, we train with the Adam optimizer (Kingma & Ba, 2014), for 600 epochs
using an initial learning rate η = 0.03 and cosine annealing down to η = 1× 10−6. The training set is composed of 105

randomly generated samples with a fixed seed and the batch size is 16, which results in up to 3.75 · 106 gradient updates.
We perform early stopping if the validation loss reaches below 10−6 or if six hours have elapsed since the beginning of
training. The validation set and test sets have 103 and 105 samples respectively and are generated with the same function but
using different seeds. Reported accuracies are always obtained from the test set after the last epoch of training.

D.2. Task KEEP n-TH

In this section, we provide additional details and ablation of the KEEP n-TH task used for Sec. 4, with experimental set-up
and partial results reported in Tab. 1.

Model All the results in Tab. A.1 - Tab. A.4 use 1-layer models. The MAMBA and S4D models (with or without PE) are
simplified architectures, which consists of embedding layer, SSM layer, and output linear layer, without convolution nor
gating from the Mamba mixer block. The simplification is intended to investigate the role of the SSM layer alone (i.e. S6
versus S4D), without confounding factors from other components in the mixer block.

Experiment Set-up For each input sequence x = (x1, . . . , xT ), we draw xi
i.i.d∼ Unif({1, . . . , |V |}) randomly from a

vocabulary with size |V | = 128. The target output is the n-th token in the input sequence, i.e. yt = xn for n < t ≤ T . The
predicted output at time t = n, . . . , T are taken to compute (cross-entropy) loss for training, and accuracy for evaluation.

Discussion When equipped with PE, Mamba manages to achieve 100% accuracy on KEEP n-TH, regardless of sequence
length. This is thanks to its ability to dynamically adjust (via ∆(xt)) for how long the hidden state retains memory of the
target token (in position n = 5). On the other hand, S4D is lacking such ability, and already fails at the task for T = 20
(Tab. A.1 and A.2). Then again Transformers do not need to retain memory, as they can look back to the whole sequence at
each step, in light of their attention mechanism, and have no issue solving the task for any T . When removing PE from
Mamba, however (Tab. A.3 and A.4), the model loses its way to discriminate the specific token that must be retrieved, and
performance drops to that of S4D, as expected.

Table A.1: Ablation on KEEP n-TH: MAMBA+PE, S4D+PE, TRANSFORMERS with varying sequence length T = 10, 20,
embedding dimension d, and state size N .

T=10 T=20
acc. # epch. # prm. acc. # epch. # prm.

MAMBA
(+PE)

d=8, N=8 1.00 (0.00) 107 2.2k 1.00 (0.00) 37 2.2k
d=8, N=32 1.00 (0.00) 241 2.8k 1.00 (0.00) 39 2.8k
d=8, N=64 1.00 (0.00) 161 3.5k 1.00 (0.00) 47 3.5k
d=32, N=8 1.00 (0.00) 56 9.2k 1.00 (0.00) 15 9.2k
d=32, N=32 1.00 (0.00) 19 11.5k 1.00 (0.00) 14 11.5k
d=32, N=64 1.00 (0.00) 88 14.5k 1.00 (0.00) 19 14.5k
d=64, N=8 0.99 (0.00) 553 18.7k 0.99 (0.01) 208 18.7k
d=64, N=32 1.00 (0.00) 429 23.3k 1.00 (0.00) 12 23.3k
d=64, N=64 1.00 (0.00) 345 29.4k 1.00 (0.00) 12 29.4k

S4D
(+PE)

d=8, N=8 0.99 (0.00) 600 2.1k 0.43 (0.04) 600 2.1k
d=8, N=32 0.99 (0.00) 600 2.5k 0.46 (0.05) 600 2.5k
d=8, N=64 0.99 (0.00) 600 3.0k 0.43 (0.03) 600 3.0k
d=32, N=8 0.94 (0.00) 600 8.7k 0.72 (0.01) 600 8.7k
d=32, N=32 0.93 (0.01) 600 10.3k 0.72 (0.01) 600 10.3k
d=32, N=64 0.93 (0.01) 600 12.4k 0.73 (0.01) 600 12.4k
d=64, N=8 0.79 (0.00) 600 17.5k 0.14 (0.01) 600 17.5k
d=64, N=32 0.79 (0.00) 600 20.6k 0.14 (0.00) 600 20.6k
d=64, N=64 0.79 (0.00) 600 24.8k 0.14 (0.00) 600 24.8k

TRANS-
FORMER

l=1, d=16 1.00 (0.00) 16 5.8k 1.00 (0.00) 19 6.0k
l=1, d=32 1.00 (0.00) 12 15.1k 1.00 (0.00) 12 15.4k
l=1, d=64 1.00 (0.00) 10 42.3k 1.00 (0.00) 9 42.9k
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Table A.2: Ablation on KEEP n-TH: MAMBA+PE, S4D+PE, TRANSFORMERS with varying sequence length T = 30, 40, 50,
embedding dimension d, and state size N .

T=30 T=40 T=50
acc. # epch. # prm. acc. # epch. # prm. acc. # epch. # prm.

MAMBA
(+PE)

d=8, N=8 0.94 (0.04) 456 2.2k 0.85 (0.15) 325 2.2k 0.22 (0.15) 600 2.2k
d=8, N=32 1.00 (0.00) 285 2.8k 0.58 (0.37) 416 2.8k 0.28 (0.10) 600 2.8k
d=8, N=64 1.00 (0.00) 180 3.5k 0.59 (0.31) 420 3.5k 0.98 (0.02) 346 3.5k
d=32, N=8 1.00 (0.00) 20 9.2k 1.00 (0.00) 50 9.2k 1.00 (0.00) 241 9.2k
d=32, N=32 1.00 (0.00) 20 11.5k 1.00 (0.00) 21 11.5k 1.00 (0.00) 225 11.5k
d=32, N=64 1.00 (0.00) 19 14.5k 1.00 (0.00) 23 14.5k 1.00 (0.0) 130 14.5k
d=64, N=8 1.00 (0.00) 17 18.7k 1.00 (0.00) 164 18.7k 0.99 (0.00) 600 18.7k
d=64, N=32 1.00 (0.00) 24 23.3k 1.00 (0.00) 66 23.3k 0.99 (0.00) 600 23.3k
d=64, N=64 1.00 (0.00) 29 29.4k 1.00 (0.00) 226 29.4k 0.98 (0.01) 600 29.4k

S4D
(+PE)

d=8, N=8 0.14 (0.04) 600 2.1k 0.03 (0.00) 600 2.1k 0.03 (0.00) 600 2.1k
d=8, N=32 0.46 (0.05) 600 2.5k 0.15 (0.01) 600 2.5k 0.04 (0.01) 600 2.5k
d=8, N=64 0.43 (0.03) 600 3.0k 0.13 (0.02) 600 3.0k 0.04 (0.00) 600 3.0k
d=32, N=8 0.72 (0.01) 600 8.7k 0.09 (0.00) 600 8.7k 0.08 (0.00) 600 8.7k
d=32, N=32 0.72 (0.01) 600 10.3k 0.09 (0.00) 600 10.3k 0.09 (0.00) 600 10.3k
d=32, N=64 0.73 (0.01) 600 12.4k 0.09 (0.00) 600 12.4k 0.09 (0.00) 600 12.4k
d=64, N=8 0.14 (0.01) 600 17.5k 0.09 (0.00) 600 17.5k 0.09 (0.00) 600 17.5k
d=64, N=32 0.14 (0.00) 600 20.6k 0.10 (0.00) 600 20.6k 0.10 (0.00) 600 20.6k
d=64, N=64 0.14 (0.00) 600 24.8k 0.09 (0.00) 600 24.8k 0.09 (0.00) 600 24.8k

TRANS-
FORMER

l=1, d=16 1.00 (0.00) 16 5.8k 1.00 (0.00) 23 6.3k 1.00 (0.00) 17 6.4k
l=1, d=32 1.00 (0.00) 12 15.1k 1.00 (0.00) 12 16.0k 1.00 (0.00) 13 16.4k
l=1, d=64 1.00 (0.00) 9 42.3k 1.00 (0.00) 9 44.2k 1.00 (0.00) 9 44.9k

Table A.3: Ablation on KEEP n-TH: MAMBA and S4D with varying sequence length T = 10, 20, embedding dimension d,
and state size N .

T=10 T=20
acc. # epch. # prm. acc. # epch. # prm.

MAMBA

d=8, N=8 0.20 (0.01) 600 2.3k 0.05 (0.00) 600 2.3k
d=8, N=32 0.18 (0.03) 600 2.9k 0.05 (0.00) 600 2.9k
d=8, N=64 0.17 (0.02) 600 3.6k 0.05 (0.00) 600 3.6k
d=32, N=8 0.21 (0.01) 600 9.3k 0.10 (0.00) 600 9.3k
d=32, N=32 0.25 (0.03) 600 11.6k 0.11 (0.00) 600 11.6k
d=32, N=64 0.28 (0.03) 600 14.7k 0.11 (0.00) 600 14.7k
d=64, N=8 0.19 (0.00) 600 18.8k 0.11 (0.00) 600 18.8k
d=64, N=32 0.20 (0.00) 600 23.4k 0.11 (0.00) 600 23.4k
d=64, N=64 0.21 (0.00) 600 29.6k 0.11 (0.00) 600 29.6k

S4D

d=8, N=8 0.08 (0.00) 600 2.2k 0.04 (0.00) 600 2.2k
d=8, N=32 0.08 (0.00) 600 2.6k 0.04 (0.00) 600 2.6k
d=8, N=64 0.08 (0.00) 600 3.2k 0.04 (0.00) 600 3.2k
d=32, N=8 0.20 (0.00) 600 8.8k 0.10 (0.00) 600 8.8k
d=32, N=32 0.20 (0.00) 600 10.4k 0.10 (0.00) 600 10.4k
d=32, N=64 0.20 (0.00) 600 12.5k 0.10 (0.00) 600 12.5k
d=64, N=8 0.20 (0.00) 600 17.7k 0.11 (0.00) 600 17.7k
d=64, N=32 0.20 (0.00) 600 20.8k 0.11 (0.00) 600 20.8k
d=64, N=64 0.20 (0.00) 600 24.9k 0.11 (0.00) 600 24.9k
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Table A.4: Ablation on KEEP n-TH: MAMBA and S4D with varying sequence length T = 30, 40, 50, embedding dimension
d, and state size N .

T=30 T=40 T=50
acc. # epch. # prm. acc. # epch. # prm. acc. # epch. # prm.

MAMBA

d=8, N=8 0.04 (0.00) 600 2.3k 0.04 (0.00) 600 2.3k 0.03 (0.00) 600 2.3k
d=8, N=32 0.04 (0.00) 600 2.9k 0.04 (0.00) 600 2.9k 0.03 (0.00) 600 2.9k
d=8, N=64 0.04 (0.00) 600 3.6k 0.04 (0.00) 600 3.6k 0.03 (0.00) 600 3.6k
d=32, N=8 0.09 (0.00) 600 9.3k 0.09 (0.00) 600 9.3k 0.08 (0.00) 600 9.3k
d=32, N=32 0.09 (0.00) 600 11.6k 0.09 (0.00) 600 11.6k 0.08 (0.00) 600 11.6k
d=32, N=64 0.09 (0.00) 600 14.7k 0.09 (0.00) 600 14.7k 0.08 (0.00) 600 14.7k
d=64, N=8 0.09 (0.00) 600 18.8k 0.09 (0.00) 600 18.8k 0.09 (0.00) 600 18.8k
d=64, N=32 0.09 (0.00) 600 23.4k 0.09 (0.00) 600 23.4k 0.09 (0.00) 600 23.4k
d=64, N=64 0.09 (0.00) 600 29.6k 0.09 (0.00) 600 29.6k 0.09 (0.00) 600 29.6k

S4D

d=8, N=8 0.03 (0.00) 600 2.2k 0.03 (0.00) 600 2.2k 0.03 (0.00) 600 2.2k
d=8, N=32 0.03 (0.00) 600 2.6k 0.03 (0.00) 600 2.6k 0.03 (0.00) 600 2.6k
d=8, N=64 0.03 (0.00) 600 3.2k 0.03 (0.00) 600 3.2k 0.03 (0.00) 600 3.2k
d=32, N=8 0.08 (0.00) 600 8.8k 0.09 (0.00) 600 8.8k 0.09 (0.00) 600 8.8k
d=32, N=32 0.08 (0.00) 600 10.4k 0.09 (0.00) 600 10.4k 0.09 (0.00) 600 10.4k
d=32, N=64 0.08 (0.00) 600 12.5k 0.09 (0.00) 600 12.5k 0.09 (0.00) 600 12.5k
d=64, N=8 0.09 (0.00) 600 17.7k 0.09 (0.00) 600 17.7k 0.09 (0.00) 600 17.7k
d=64, N=32 0.09 (0.00) 600 20.8k 0.09 (0.00) 600 20.8k 0.09 (0.00) 600 20.8k
d=64, N=64 0.09 (0.00) 600 24.9k 0.09 (0.00) 600 24.9k 0.09 (0.00) 600 24.9k

32



Understanding Selectivity in Mamba

D.3. Task MQAR

Models All the results in Fig. A.2 use 1-layer models. The Mamba and Mamba-2 models explicitly disable the gating branch. This
simplification is intended to verify our constructions without gating in Thm. 2 and Thm. 3. The Mamba-S4D model retains the full Mamba
architecture, but only swapping the S6 layer with the S4D layer; not to be confused with the original S4D model proposed in (Gu et al.,
2022a).

Experiment Set-up We generate the data described in App. C.1 as follows. For each input sequence of the form

x = [k1, v1, . . . , kκ, vκ, . . . , | ki1 , . . . , ki2 ],

we draw the key token ki
i.i.d∼ Unif({1, . . . , κ}), and value token vj

i.i.d∼ Unif({1, . . . , |V |}). The target output sequence consists of
masked tokens except at the the query chunk where the input query is a key (e.g., at ki1 , ki2 in the example above). We compute loss
during training (and accuracy for evaluation) only at the query positions, informed from the target output sequence.

Discussion Here we expand on the results from Fig. 2 in the main text, by reporting the accuracy of Mamba, Mamba-2, and Mamba-S4D
trained on MQAR for varying model sizes. In Fig. A.2, we sweep over values of the value vocabulary size |V |, to show how our
theoretical bounds hold while varying this parameter. The bounds are still reasonably tight, and the observations drawn from Fig. 2 still
hold in this case. The extra caveat (which does not however invalidate our claim) is that by increasing |V | we are making the task more
difficult to solve, and our training procedure for the simplest Mamba-S4D fails to achieve satisfactory performance for the model sizes
considered. Notice also that, for Mamba-2, the simplest task κ = 4 can achieve 100% accuracy even below the theoretical curve proposed
in our theorems. This can be attributed to the following factors. On the one hand, our bounds rely on JL Lemma, which provides only
asymptotical behaviors which might not be verified in practice for κ so small. On the other hand, it is perfectly feasible that at this regime
the architecture can recover a more efficient solution than the one theorized.

Our bound 100% accuracy 99% accuracy <99% accuracy
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Figure A.2. Trained models accuracy on MQAR (best of 7 seeds) across κ, and d. For S4D N = 4, for Mamba N = 2 × κ, and for
Mamba2 N = 8× lnκ. T = 100 and |V | ∈ {256, 512} for all runs.

With Fig. A.3, we further complement our results by sweeping over values of the N state size parameter. We remind that, according to
Thm. 2 to 4, our theorized MQAR solutions require a value of at least N = 1, N = κ and N ∼ log κ for S4D, Mamba and Mamba-2,
respectively. Indeed, in Fig. A.3 we observe that varying N does not have a particular impact on the final accuracy of S4D. For Mamba,
on the other hand, we see that for N < κ the training procedure fails to recover an exact solution to MQAR. Similarly, for Mamba-2, no
solution is recovered for N < 4 log κ. These results further validate the tightness of our theoretical solutions.
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Our bound 100% accuracy 99% accuracy <99% accuracy
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Figure A.3. Trained models accuracy on MQAR (best of 7 seeds) across N , κ, and d. For Mamba and Mamba-2 |V | = 512, while for
S4D |V | = 256 (as it failed to reach satisfactory accuracy for larger |V |). T = 100 for all runs.
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D.4. Task INDUCTION HEADS

Model All the results in Fig. A.2 use 1-layer Mamba that explicitly disables the gating branch. This simplification is intended to verify
our constructions without gating in Lem. 3.

Experiment Set-up We generate the data described in App. C.2 as follows. The data generation requires four scalar parameters:
vocabulary size |V |, sequence length T > 2|V |+ 1, hard case probability p ∈ [0, 1], and special range ratio γ ∈ (0, 0.1]. We first draw
X ∼ Bernoulli(p): if X = 0, we sample from the standard setting, otherwise the hard setting. The standard setting generates the input

sequence x = (x1, . . . , xT ) by randomly drawing xi
i.i.d,∼ V = {1, . . . , |V |} for i = 1, . . . , T . The hard setting is intended to evaluate

the long-range memorization capability (i.e., placing repeated tokens at the beginning and the end of the sequence), which consists of the
following steps.

1. Randomly pick a special token v∗ ∈ V

2. Generate the input sequence by randomly drawing x = (x1, . . . , xT ) where xi
i.i.d,∼ V \ v∗ for i = 1, . . . , T

3. Randomly draw a position from r ∈ Unif({1, . . . , γT})

4. Place the special token v∗ at positions r, T − r.

In the experiments for Fig. 3, we use T = 100, |V | ∈ {5, 10, 20, 40}, p = 0.75, γ = 0.1. In Fig. A.4, we further ablate the choice of
state size N ∈ {|V |, 2|V |, 4|V |}.

Discussion We design the hard setting to better differentiate the capabilities from Mamba and our proposed Mamba-∆⊤. Specifically,
solving the standard setting of the INDUCTION HEADS task requires memorizing the latest previous occurrence, or forgetting the
earlier previous occurrences. Note that the input sequence generated from the standard setting consists of many repeated tokens (by the
requirement T > 2|V |+ 1), and the expected time for reappearance of any token is |V |. Thus, for small and medium-size |V |, Mamba
can solve for these cases by using the state matrix with negative eigenvalues to discount the remote past pairs, and thereby correctly output
the latest previous occurrence. However, solving the hard setting additionally requires the model to memorize long-range information due
to the special token (occurring at the beginning part and the end part of the sequence). We see that the Mamba solution with negative
eigenvalues is at odds with the long-range memorization, as shown in Lem. 1. On the other hand, Mamba-∆⊤ can satisfy both selective
forgetting and long-range memorization via the input-dependence state matrix that erases outdated information specific to the input key,
while retaining other information in the hidden state, as illustrated in the proof of Lem. 3 (see details in App. C.2).

Below we expand on the results in Sec. 5.2 by reporting a sweep on the hidden state size N for the models used in the INDUCTION
HEADS task experiments, complementing the findings shown in Fig. 3.

Our bound 100% accuracy 99% accuracy <99% accuracy
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Figure A.4. Trained models accuracy on INDUCTION HEADS task (best of 5 seeds), varying |V | and d, with N ∈ {|V |, 2|V |, 4|V |} (left,
middle, right). Mamba-∆⊤’s performance (outlined) is equal or better than Mamba’s (filled) and only hits 100% above the theoretical
bound from Lem. 3 (black).
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