
Optimizing the Collaboration Structure in Cross-Silo Federated Learning

Wenxuan Bao 1 Haohan Wang 1 Jun Wu 1 Jingrui He 1

Abstract
In federated learning (FL), multiple clients collab-
orate to train machine learning models together
while keeping their data decentralized. Through
utilizing more training data, FL suffers from the
potential negative transfer problem: the global FL
model may even perform worse than the models
trained with local data only. In this paper, we
propose FEDCOLLAB, a novel FL framework that
alleviates negative transfer by clustering clients
into non-overlapping coalitions based on their dis-
tribution distances and data quantities. As a result,
each client only collaborates with the clients hav-
ing similar data distributions, and tends to collab-
orate with more clients when it has less data. We
evaluate our framework with a variety of datasets,
models, and types of non-IIDness. Our results
demonstrate that FEDCOLLAB effectively miti-
gates negative transfer across a wide range of
FL algorithms and consistently outperforms other
clustered FL algorithms.

1. Introduction
Federated learning (FL) is a distributed learning system
where multiple clients collaborate to train a machine learn-
ing model under the orchestration of the central server, while
keeping their data decentralized (McMahan et al., 2017). We
focus on cross-silo FL, where clients are organizations with
data that differ in their distributions and quantities (Caldas
et al., 2018). For example, the clients can be hospitals with
varying patient types and numbers (e.g., children’s hospitals,
trauma centers). Although cross-silo FL clients can train
local models with their own data locally (local training),
they participate in FL for a model trained with more data,
which potentially performs better than local models.

Traditionally, global FL (GFL) (McMahan et al., 2017;
Wang et al., 2020b; Li et al., 2020a) trains a single global
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Figure 1. Effects of distribution distance and data quantity. When
two clients have large distribution distance or large quantities, the
local model performs better than global model.

model for all clients that minimizes a weighted average of
local losses. It is a natural solution when clients have in-
dependent and identically distributed (IID) data. However,
when clients have non-IID data, GFL may suffer from the
negative transfer problem: the global model performs even
worse than the local models (Zhang et al., 2021). The neg-
ative transfer problem also plagues many personalized FL
(PFL) algorithms (Fallah et al., 2020; Dinh et al., 2020; Li
et al., 2021). Although these algorithms allow each client to
train a personalized model with parameters different from
the global model, the regularization of the global model
still prevents personalized models from achieving better
performance than local models.

One way to avoid negative transfer is clustered FL (CFL)
(Sattler et al., 2021; Long et al., 2022; Ghosh et al., 2019).
CFL groups clients with similar data distribution into coali-
tions, and trains FL models within each coalition. As a
result, each client only collaborates with other clients in
the same coalition. By changing the collaboration struc-
ture, CFL can alleviate negative transfer with almost no
additional computation and communication costs.

A natural follow-up question would be what determines
the best collaboration structure. We summarize two key
factors for characterizing client collaboration: distribution
distance and data quantity. We start with a simple 2-client
scenario, studying whether the global model or the local
model has higher accuracy. As shown in Figure 1, when
two clients have small distribution distance and small quan-
tity, the global model has higher accuracy, which is a sce-
nario suitable for GFLs. When the distribution distance
between two clients increases (Figure 1(a)), the local model
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performs better than the global model, showing that distribu-
tion distance influences the optimal collaboration structure.
Meanwhile, it is often ignored that the data quantity also
influences the optimal collaboration structure: given the
same distribution distance, when the data quantity increases
(Figure 1(b)), the local model also performs better than the
global model. In other words, clients with more data are
more “picky” in the choice of collaborators.

Previous CFL algorithms (Ghosh et al., 2020; Long et al.,
2022; Sattler et al., 2021) generate clusters mainly based on
loss values or parameter/gradient similarities, which have
the following drawbacks. First, they ignore the influence
of quantities, and group clients together, even when these
clients have large quantities and prefer local training. Sec-
ond, most CFL algorithms rely on indirect information of
distribution distance, which does not recover the real dis-
tribution distance given the high complexity of neural net-
works (e.g., nonlinearity and permutation invariance). Fi-
nally, most CFL algorithms optimize the model parameters
and collaboration structure simultaneously. Thus, they rein-
force the current collaboration structure and fall into local
optima easily, resulting in sub-optimal model performance.

In this paper, we propose FEDCOLLAB to optimize for a
better collaboration structure. First, we derive a theoretical
error bound for each client in the FL system. The error
bound consists of three terms: an irreducible minimal error
term related to the model and data noise, a generalization
error term depending on data quantities, and a dataset shift
term depending on pairwise distribution distance between
clients. By minimizing the error bounds, FEDCOLLAB
solves for the optimal collaboration structure with aware-
ness of both quantities and distribution distances. Second,
to better estimate pairwise distribution distances without
violating the privacy constraint of FL, we use a light-weight
client discriminator between each pair of clients to predict
which client the labeled data comes from, and train the dis-
criminator within the FL framework. Third, we design an
efficient optimization method to minimize the error bound.
It requires no model training and solves the collaboration in
seconds. Finally, we run FL algorithms within each coali-
tion we identify. Since the model training and collaboration
structure optimization are disentangled, FEDCOLLAB can
be seamlessly integrated with any GFL or PFL algorithms.

Contributions We summarize our contributions below.

• We derive error bounds for FL clients and summarize
two key factors that affect the model performance for
each client: data quantity and distribution distance.
(Section 3)

• We propose FEDCOLLAB to solve for the best collab-
oration structure, including a distribution difference
estimator and an efficient optimizer. (Section 4)

• We empirically test our algorithm with a wide range of
datasets, models, and types of non-IIDness. FEDCOL-
LAB enhances a variety of FL algorithms by providing
better collaboration structures, and outperforms exist-
ing CFL algorithms in accuracy. (Section 5)

2. Related Works
Global Federated Learning Global federated learning
(GFL) aims to train a single global model for private clients,
by assuming that all the clients follow the same data dis-
tribution. Typically, FedAvg (McMahan et al., 2017) is
proposed to minimize a weighted average of local client
objectives (e.g., empirical risks). More recently, many ef-
forts (Li et al., 2020a; Karimireddy et al., 2020) have been
made to speed up the convergence of FL on top of FedAvg.
Another related line of works (Mohri et al., 2019; Li et al.,
2020b) is performance fairness aware federated learning,
which encourages a uniform distribution of accuracy among
clients. However, it is revealed (Zhang et al., 2021) that
under severe data heterogeneity among clients, these GFL
algorithms suffer from negative transfer with undesirable
performance on local clients.

Personalized Federated Learning In recent years, per-
sonalized federated learning has been proposed to deal with
statistical data heterogeneity among clients. We roughly
group them into two categories: coarse-grained and fine-
grained. For coarse-grained PFL (Fallah et al., 2020; Dinh
et al., 2020; Li et al., 2021), each client can further optimize
a global model (trained with the union of local datasets) with
its own data. This kind of PFL algorithm cannot choose
which clients to collaborate with, and suffer from negative
transfer when the client’s own data distribution is distinct
from the population. For fine-grained PFL (Smith et al.,
2017), clients can directly collaborate with some of the
other clients. However, most of the fine-grained PFL algo-
rithms significantly change the communication protocol of
FL or introduce additional communication and computation
costs (Smith et al., 2017; Zhang et al., 2021).

Clustered Federated Learning Similar to our algorithm,
clustered federated learning partitions clients into clusters.
For example, IFCA (Ghosh et al., 2020) initializes multi-
ple models and lets each client choose one based on the
training loss; FeSEM (Long et al., 2022) lets each client
choose a cluster with similar weights; and CFL (Sattler et al.,
2021) iteratively bipartition the clients based on their cosine
similarity of gradients. However, all these methods only
consider distribution distances and ignore the importance of
data quantities, which also play a key role in collaboration
performance. To the best of our knowledge, (Donahue &
Kleinberg, 2021) is the only work that considers the quantity
in the optimization of the collaboration structure. However,
it is limited to linear models with analytical solutions, and
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only considers a simplified non-IID setting.

3. Analysis of Client Error Bound
In this section, we derive a theoretical error bound to under-
stand how data quantity and distribution distance affect the
model performance for each client.

3.1. Setup

We consider a FL system with N clients connected to a
central server. Each client i ∈ {1, · · · , N} has a dataset
D̂i = {(x(i)

k ,y
(i)
k )}mi

k=1 with mi samples drawn from its
underlying true data distribution Di, where x

(i)
k ∈ X

is the feature and y
(i)
k ∈ Y is the label. We denote

m =
∑N

i=1 mi as the total quantity of samples and β =
[β1, · · · , βN ] = [m1

m , · · · , mN

m ] as the client quantity dis-
tribution. Given a machine learning model (hypothesis) h
and risk function ℓ, client i’s local expected risk is given by
ϵi(h) = E(x,y)∈Di

ℓ(h(x),y), and its local empirical risk

is given by ϵ̂i(h) = 1
mi

∑mi

k=1 ℓ(h(x
(i)
k ),y

(i)
k ). The goal

of each client i ∈ {1, · · · , N} is to find a model h within
the hypothesis space H that minimizes its local expected
risk, which we denote as h∗

i = argminh∈H ϵi(h). However,
clients can only optimize their models with their finite sam-
ples D̂1, · · · , D̂N . There are several representative options:
local training, global FL (GFL), and clustered FL (CFL).

Local Training In local training, each client trains its own
model individually without sharing information with other
clients. Each local model minimizes the local empirical risk
ĥi = argminh∈H ϵ̂i(h). Despite its simplicity, local train-
ing can only utilize each client’s local data, which impedes
the generalization performance of local models.

GFL FL provides a way for each client to utilize other
clients’ data to enhance the model, without directly exchang-
ing raw data. In typical global FL algorithms (McMahan
et al., 2017; Li et al., 2020a; Wang et al., 2020b), clients
globally train a model to minimize an average of local em-
pirical risks weighted by each client’s data quantity, i.e.,
ĥβ = argminh∈H

∑N
i=1 βiϵ̂i(h). When all clients have

the same underlying distribution D1 = · · · = DN , GFL
enlarges the “training set” with IID data, which improves
the model generalization performance from a theoretical per-
spective. However, when clients have different distributions,
the global model significantly degrades, and even performs
worse than local training (Zhang et al., 2021), which we
refer to as the negative transfer problem.

CFL More generally, the CFL framework partitions clients
into non-overlapping coalitions and allows each client to
train models only with clients in the same coalition. Clients
in the same coalition share the same model, while clients in
different coalitions have different model parameters. For a

client i in coalition C, it trains a model with all other clients
in C to minimize a weighted average of local empirical risks
weighted by αi = [αi1, · · ·αiN ]:

ĥαi = argmin
h∈H

N∑
j=1

αij ϵ̂j(h) (1)

where αij =
βj ·I{j∈C}∑

k∈C βk
(I is the indicator function). By

finding a good collaboration structure, CFL groups clients
with similar distributions into the same coalition, so they
can enjoy better generalization without suffering a lot of
negative transfer. Notice that the objective (1) subsumes
both local training and GFL, by setting αi as a one-hot
vector (i.e., αii = 1 and αij = 0 for j ̸= i) and αi = β.

Given various collaboration options above, a natural ques-
tion rises: which collaboration structure is optimal for client
i, i.e., having the lowest local expected risk ϵi(h)? Since
there are at least 2N−1 different coalitions for client i, it
is prohibitively expensive to enumerate every option and
pick the best model. Instead, in the next part, we derive a
theoretical error bound for each client to estimate the error
without training machine learning models practically.

3.2. Theoretical Error Bound

Before deriving the generalization error bound for FL, we
first introduce two concepts: quantity-aware function and
distribution difference.

Definition 3.1 (Quantity-aware function). For a given hy-
pothesis spaceH, combination weights αi, quantity distri-
bution β, total quantity m, for any δ ∈ (0, 1), with prob-
ability at least 1 − δ (over the choice of the samples), a
quantity-aware function ϕ|H|(αi,β,m, δ) satisfies that for
all h ∈ H,

|ϵ̂αi
(h)− ϵαi

(h)| ≤ ϕ|H|(αi,β,m, δ) (2)

The quantity-aware function can be quantified with tradi-
tional generalization error bounds, including VC dimension
(Ben-David et al., 2010) and weighted Rademacher com-
plexity (Liu et al., 2015) (see Appendix A.1). For example,
when using VC dimension d to quantify the complexity of
hypothesis spaceH, we have

ϕ|H|(αi,β,m, δ)

=

√√√√√
 N∑

j=1

α2
ij

βj

(
2d log(2m+ 2) + log(4/δ)

m

) (3)

Definition 3.2 (Distribution difference). For a given hypoth-
esis spaceH, the distribution difference satisfies that for any
two distributions Di,Dj , the following holds for all h ∈ H,

|ϵi(h)− ϵj(h)| ≤ D(Di,Dj) (4)
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Distribution difference can also be quantified with a variety
of distribution distances, including H∆H-distance (Ben-
David et al., 2010) and C-divergence (Mohri & Medina,
2012; Wu & He, 2020). When using C-divergence, we have

D(Di,Dj) = max
h∈H
|ϵi(h)− ϵj(h)| (5)

Theorem 3.3. Let ĥαi
be the empirical risk minimizer de-

fined in Eq. (1) and h∗
i be client i’s expected risk minimizer.

For any δ ∈ (0, 1
2 ), with probability at least 1 − 2δ, the

following holds

ϵi(ĥαi
) ≤ ϵi(h

∗
i ) + 2ϕ|H|(αi,β,m, δ)

+ 2
∑
j ̸=i

αijD(Di,Dj)
(6)

where ϵi(h∗
i ) = minh∈H ϵi(h) is the minimal local expected

risk that cannot be optimized given the distribution Di and
the hypothesis spaceH.

Theorem 3.3 reveals that when we form a coalition for
client i to minimize its local expected risk ϵi(ĥαi

), both
quantity information (β,m) and distribution difference
{D(Di,Dj)}i,j should be considered. To better understand
how Theorem 3.3 can guide the clustering of clients, we
consider two special cases in Corollary 3.4 below.

Corollary 3.4. When using VC-dimension bound (3) as the
quantity aware function, the following results hold.

• If D(Di,Dj) = 0,∀i, j, GFL minimizes the error
bound of Theorem 3.3 with αij = βj ,∀j.

• If minj ̸=i D(Di,Dj) >

√
2d log(2m+2)+log(4/δ)

√
m

2mi
,

local training minimizes the error bound of Theorem
3.3 with αii = 1 and αij = 0,∀j ̸= i.

Corollary 3.4 matches with our observation in FL. GFL is
most powerful when clients have the same data distribution.
However, with large distribution distance and data quantity,
local training becomes a better option. More generally,
Corollary 3.5 shows that clients with more data are more

“picky” in the choice of collaborators. When a client i has
mi samples, it will only choose collaborators from clients
with distribution difference smaller than or equal to Dthr,
which decreases with the increase of mi.

Corollary 3.5. When using VC-dimension bound (3) as
the quantity aware function, for a client i with mi sam-
ples, if its coalition C minimizes the error bound of The-
orem 3.3, then C does not include any clients with dis-
tribution distance D(Di,Dj) > Dthr, where Dthr =√

2d log(2m+2)+log(4/δ)
√
m

2mi
.

In the next section, we design a framework using the error
bound to guide the clustering of FL clients.

Quantity distribution 𝜷

Distribution distances 𝑫#

Step 1: Estimate pairwise 
distribution distances

Step 2: Optimize the 
collaboration structure

Coalition 1

Coalition 2

Coalition 3
(local training)

Step 3: FL within 
each coalition

Figure 2. An overview of FEDCOLLAB

4. Proposed Methods
In this section, we present our method FEDCOLLAB to op-
timize the collaboration structure under the guidance of
Theorem 3.3. We transform the error bound in Theorem
3.3 to an optimization objective, estimate client distribution
differences without violating the privacy constraints, and
design an efficient algorithm to optimize the collaboration
structure with the awareness of both data quantity and dis-
tribution difference. Figure 2 provides an overview of our
proposed method.

4.1. FEDCOLLAB Objective

We first transform the error bound to a practical optimiza-
tion objective. We remove the non-optimizable ϵi(h

∗
i ), and

replace the quantity-aware term ϕ|H|(αi,β,m, δ) and the
pair-wise distribution difference D(Di,Dj) with empirical
estimations. Finally, we combine error bounds for each
client together to form a global objective for clustering.

Quantifying the Quantity-Aware Function The quantity-
aware function ϕ|H|(αi,β,m, δ) indicates the influence
of data quantity. However, it is related to the complex-
ity of hypothesis space H, which can be hard to esti-
mate accurately for neural networks. Inspired by ear-
lier works on the model-complexity-based generalization
bounds (Cao et al., 2019; Sagawa et al., 2020; Mohri
& Medina, 2012), we treat the model capacity constant
C =

√
2d log(2m+ 2) + log(4/δ) as a hyperparameter to

tune. This gives the empirical quantity-aware function:

ϕ̂(αi,β,m,C) =
C√
m
·

√√√√ N∑
j=1

α2
ij

βj
(7)

Notice that β and m can be directly calculated with the
quantities reported by each client directly.

Quantifying the Distribution Differences In Theorem
3.3, the distribution difference D(Di,Dj) is defined on two
clients’ underlying distributions Di,Dj , which is typically
not available in practice. Previous CFL algorithms (Sattler
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et al., 2021; Long et al., 2022) usually rely on the simi-
larity of parameters/gradients, which indirectly reflect the
distribution difference of clients. These methods are less
accurate in the estimation of distribution distance, due to
the non-convexity and permutation invariance of neural net-
works (Wang et al., 2020a). For example, even when we
train two neural networks on two identical datasets, the pa-
rameters of two networks can vary significantly due to the
differences in parameter initialization, the randomness of
data loading, etc.

In domain adaptation, when estimating the distribution dis-
tance between two domains (distributions), a common prac-
tice is to train a domain discriminator (Ben-David et al.,
2010) to predict which domain a randomly drawn sample
is from. However, traditional domain adaptation requires
putting data from two domains together, which violates the
privacy constraints of FL. Therefore, we design an algo-
rithm to estimate pairwise distribution difference between
two clients without sharing their data. Notice that different
from domain adaptation, our goal is to estimate the distribu-
tion difference, rather than aligning two distributions.

In particular, we use the C-divergence to quantify the distri-
bution differences, i.e.,

D(Di,Dj) = max
h∈H
|ϵi(h)− ϵj(h)| =

max
h∈H

∣∣E(x,y)∈Di
ℓ(h(x),y)− E(x,y)∈Dj

ℓ(h(x),y)
∣∣ (8)

where ℓ is the 0-1 loss. We can further rewrite f(x,y) =
ℓ(h(x),y) as a mapping X × Y → {0, 1}. With detailed
derivation provided in Appendix A.3, the equation above
can be transformed as

max
f∈F

∣∣∣∣ Pr
(x,y)∈Di

[f(x,y) = 1] + Pr
(x,y)∈Dj

[f(x,y) = 0]− 1

∣∣∣∣
= max

f∈F
|2 · BalAcc(f, {Di, 1} ∪ {Dj , 0})− 1|

The equation above shows that we can train a client dis-
criminator f ∈ F to predict 1, 0 on client i, j, respectively.
The estimated distance is a simple function of the balanced
accuracy (BalAcc) of the discriminator. Intuitively, when
two distributions are distinctly different, a classifier will
discriminate two distributions with BalAcc ≈ 100%, thus
the distance ≈ 1. Meanwhile, when two distributions are
similar, the classifier cannot outperform random guessing,
which results in BalAcc ≈ 50% and thus the distance ≈ 0.

Notice that while our FL model takes features x as input and
predicts label, the client discriminator takes feature-label
pairs (x,y) as input and predicts sample origin. By taking
feature-label pairs as input, the estimated C-divergence can
capture a wide range of distribution shifts, including fea-
ture shift (different P (x)), label shift (different P (y)), and
concept shift (different P (y|x)). In practice, we instantiate

Algorithm 1 Training client discriminator

input Clients i, j with local datasets D̂i, D̂j , mtrain,w
0
S , T

output Distribution distance estimation D̂ij

1: Train-valid split: D̂i = D̂train
i ∪ D̂valid

i , D̂j = D̂train
j ∪

D̂valid
j with |D̂train

i | = |D̂train
j | = mtrain

2: for communication round t = 1, · · · , T do
3: Server sends wt−1

S to two clients
4: for client k ∈ {i, j} in parallel do
5: Let client index c = 1, 0 for client i, j, respectively
6: wt

k ← LocalUpdate(wt−1
S , {D̂train

i , c})
7: Client sends wt

k to server
8: end for
9: wt

S ← 1
2 (w

t
i +wt

j)
10: end for
11: D̂ij ← 2 · BalAcc(fwT

S
, {Dvalid

i , 1} ∪ {Dvalid
j , 0})− 1

the client discriminator f with a 2-layer neural network fw
with parameters w, and train the client discriminator within
FL framework, with pseudo-code in Algorithm 1. By using
light-weight client discriminator, estimating pairwise distri-
bution differences is much more efficient than training FL
models. We quantify and compare their computation and
communication complexities in Appendix B.4.

Combining Error Bounds from All Clients Finally, we
combine the error bounds of all clients to form the fol-
lowing objective function. Given a collaboration structure
{C1, · · · , CK} with K non-overlapping coalitions, where
K is an indeterminate number of coalitions, clients from
the same coalition have the same collaboration vector αi

as defined in Eq. (1) since they share the same global
model. Here we define the collaboration matrix A =
[α⊤

1 , · · · ,α⊤
N ]⊤ as follows.

Aij = αij =

{
βj∑

l∈Ck
βl
, if i ∈ Ck, j ∈ Ck,∃k

0, otherwise
(9)

Then, the FEDCOLLAB objective can be formulated as

L(A,β,m, D̂) =

N∑
i=1

 C√
m

√√√√ N∑
j=1

α2
ij

βj
+

N∑
j=1

αijD̂ij


=

C√
m

N∑
i=1

∥αi∥2diag(β)−1 +A⊙ D̂

(10)

where ⊙ is the element-wise product. In the next part,
we propose an efficient optimizer to find a collaboration
structure that minimizes the objective above.

4.2. FEDCOLLAB Optimizer

Note that optimizing collaboration structure involves not
only determining the objective but also how to optimize it.
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Algorithm 2 FEDCOLLAB optimizer

input β,m, D̂
output Coalition assignment p(·)

1: Initialize p(i) = i for all clients (local training)
2: while not converged do
3: for client index k in a permutation of [1, · · · , N ] do
4: Evaluate the objective of Eq. (10) with the new col-

laboration structure after setting p(k) = 1, · · · , N
5: Update p(k) to the coalition with lowest value of

Eq. (10)
6: end for
7: end while

For example, while the objective is concise, constraints on
A in Eq. (9) make optimization challenging: the range of
A is discrete, and thus gradient descent cannot be directly
used.

Therefore, we propose an efficient algorithm to solve the
problem in discrete space. We optimize the coalition assign-
ment p(·) which maps the client index to a coalition index
(e.g., p(1) = 2 means assigning client 1 to coalition 2). We
initialize the coalition assignment with local training, i.e.,
p(i) = i,∀i, and iteratively assign clients to a new coalition
that can further minimize the FEDCOLLAB objective in Eq
(10). Algorithm 2 gives the pseudo-code of the optimizer.

The optimizer guarantees to converge to local optimum,
since the objective function has finite values and strictly de-
creases in each iteration. In practice, since greedy methods
generally do not guarantee the global optimum, we re-run
Algorithm 2 multiple times with different random seeds
to further refine the collaboration structure. Different from
most CFL algorithms (Ghosh et al., 2020; Long et al., 2022),
where re-optimizing the collaboration structure requires re-
training FL models and introduces large computation and
communication costs, the collaboration optimization pro-
cess of FEDCOLLAB is purely on the server and does not
require training any ML model. As a result, our optimizer
is very efficient and only takes a few seconds to run.

4.3. Training FL Models

After solving the collaboration structure, FEDCOLLAB fixes
the collaboration and trains FL models within each coali-
tion separately. Notice that since the collaboration structure
and the FL model are optimized independently, FEDCOL-
LAB can be seamlessly integrated with any GFL or PFL
algorithms in this stage.

4.4. New Training Clients

An additional advantage of FEDCOLLAB is that while typi-
cal cross-silo FL systems (Karimireddy et al., 2020; Smith
et al., 2017) are expensive to allow new clients to join after

the training of FL models, our FEDCOLLAB framework
allows new clients to join a cross-silo FL system without
the need for re-clustering and re-training all FL models.
In particular, FEDCOLLAB assigns new clients to existing
coalitions that minimize the objective in Eq. (10) by es-
timating the distribution distance between the new client
and existing clients, thus requiring only one coalition to
fine-tune or re-train the FL model for each new client.

5. Experiments
In this section, we design experiments to answer the follow-
ing research questions:

• RQ1: Can FEDCOLLAB alleviate negative transfer for
both GFL and PFL?

• RQ2: Can FEDCOLLAB provide better collaboration
structures than previous CFL algorithms?

• RQ3 (hyperparameter): How do the choices of hyper-
parameter C affect FEDCOLLAB?

• RQ4 (ablation study): How do different components
contribute to the effectiveness of FEDCOLLAB?

• RQ5: Can FEDCOLLAB utilize new training clients?
(see Appendix B.2)

• RQ6 (convergence): Does FEDCOLLAB optimizer con-
verge efficiently and effectively? (see Appendix B.3)

5.1. Setup

Models and Datasets We evaluate our framework on three
models and datasets: we train a 3-layer MLP for Fashion-
MNIST (Xiao et al., 2017), a 5-layer CNN for CIFAR-10
(Krizhevsky, 2009), and an ImageNet pre-trained ResNet-18
(He et al., 2016) for CIFAR-100 (with 20 coarse labels). We
simulate three typical scenarios of non-IIDness (Kairouz
et al., 2021) on three datasets respectively, to show that our
algorithm can handle a wide range of non-IIDness. For all
scenarios, we simulate 20 clients with four types.

• Label shift (Ma et al., 2022). Each client has a differ-
ent label distribution. Figure 3 visualizes the label and
quantity distribution for each client. Different from
Dirichlet partition (Hsu et al., 2019), where the distri-
bution distance between any two clients has the same
expectation, we create multiple levels of distribution
distances. For example, client 0’s label distribution is
most close to clients 1-4, less close to clients 5-9, and
very distinct to clients 10-19.

• Feature shift (Ghosh et al., 2020). Each client’s im-
age is rotated for a given angle: +25◦, −25◦, +155◦,
−155◦ for clients 0-4, 5-9, 10-14, and 15-19, respec-
tively. Multiple levels of distribution distances also
exist in this scenario: client 0’s images have 0◦ angle
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Table 1. Alleviating negative transfer of base GFL and PFL algorithms with different models, datasets, and types of non-IIDness, where
we report the mean and standard deviation for each evaluation metric in percentage (%) after five runs.

Method Label Shift (FashionMNIST) Feature Shift (CIFAR-10) Concept Shift (CIFAR-100)
Acc ↑ IPR ↑ RSD ↓ Acc ↑ IPR ↑ RSD ↓ Acc ↑ IPR ↑ RSD ↓

Local Train 86.05 (0.28) - - 38.65 (0.44) - - 29.82 (0.56) - -

FedAvg 46.64 (0.12) 46.00 (2.24) 41.03 (0.24) 44.31 (0.98) 86.00 (4.18) 4.62 (0.58) 26.62 (0.12) 50.00 (0.00) 11.54 (0.45)

+FEDCOLLAB 92.45 (0.07) 100.00 (0.00) 5.99 (0.41) 52.61 (0.60) 100.00 (0.00) 3.30 (0.63) 40.94 (0.22) 100.00 (0.00) 2.78 (0.30)

FedProx 46.70 (0.08) 45.00 (5.00) 41.09 (0.29) 44.45 (0.58) 87.00 (4.47) 4.74 (0.56) 26.78 (0.14) 50.00 (0.00) 11.66 (0.36)

+FEDCOLLAB 92.39 (0.15) 100.00 (0.00) 6.02 (0.37) 52.73 (0.64) 100.00 (0.00) 3.16 (0.61) 40.99 (0.17) 100.00 (0.00) 2.79 (0.34)

FedNova 75.92 (1.14) 45.00 (3.54) 12.38 (1.25) 46.98 (0.57) 99.00 (2.24) 3.42 (0.22) 26.46 (0.13) 50.00 (0.00) 10.57 (0.32)

+FEDCOLLAB 92.47 (0.13) 100.00 (0.00) 5.97 (0.39) 52.72 (0.57) 100.00 (0.00) 3.18 (0.63) 40.92 (0.36) 100.00 (0.00) 2.75 (0.43)

Finetune 67.32 (3.17) 48.00 (2.74) 22.97 (2.82) 44.17 (0.99) 82.00 (2.74) 5.14 (0.32) 33.30 (4.79) 50.00 (0.00) 13.95 (0.57)

+FEDCOLLAB 92.57 (0.15) 99.00 (2.24) 6.07 (0.30) 51.53 (0.61) 100.00 (0.00) 2.92 (0.46) 40.94 (2.36) 100.00 (0.00) 2.54 (0.30)

Per-FedAvg 51.13 (4.10) 49.00 (2.24) 37.35 (4.15) 43.78 (0.69) 83.00 (9.08) 4.74 (0.65) 27.39 (0.24) 50.00 (0.00) 12.24 (0.46)

+FEDCOLLAB 92.16 (0.25) 97.00 (6.71) 6.00 (0.25) 52.64 (0.45) 100.00 (0.00) 3.03 (0.30) 41.04 (0.26) 100.00 (0.00) 2.85 (0.49)

pFedMe 55.31 (3.45) 47.00 (4.47) 33.71 (3.11) 39.74 (0.85) 60.00 (12.25) 4.81 (0.74) 27.04 (0.39) 48.00 (2.74) 10.39 (0.47)

+FEDCOLLAB 92.18 (0.43) 99.00 (2.24) 6.40 (0.81) 47.20 (1.29) 97.00 (2.74) 3.02 (0.30) 37.47 (0.31) 100.00 (0.00) 3.04 (0.23)

Ditto 68.73 (1.40) 48.00 (2.74) 20.29 (2.06) 47.04 (0.30) 97.00 (2.74) 3.85 (0.35) 32.50 (0.40) 50.00 (0.00) 12.22 (0.36)

+FEDCOLLAB 92.55 (0.08) 99.00 (2.24) 6.11 (0.30) 50.97 (0.75) 99.00 (2.24) 3.38 (1.55) 40.33 (0.33) 100.00 (0.00) 2.16 (0.30)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Clients
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1
2
3
4
5
6
7
8
9
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Label Distribution

Quantity
2
4
300
600

Figure 3. Label and quantity distributions for label shift scenario.

difference from client 1-4, 50◦ from client 5-9, 130◦

from client 10-14, and 180◦ from client 15-19.

• Concept shift (Sattler et al., 2021). Each client’s label
indices are permuted with the order given in Figure
4. Similar multiple levels of distribution distances are
constructed: client 0 has all labels aligned with clients
1-4, 14 labels aligned with clients 5-9, and no label
aligned with clients 10-19.

To simulate quantity shift while remaining explainability, we
let clients 0-9 be “large” clients with more data, and clients
10-19 be “small” clients with less data. As a result, the
large clients are more picky, and perform the best when they
only collaborate with the same type of client (e.g., client 0
performs the best within a coalition of 0-4). However, small
clients will prefer larger coalitions (e.g., client 10 performs
the best within a coalition of 10-19).

Metrics To comprehensively evaluate the FL algorithms,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Labels

0-4
5-9

10-14
15-19

C
lie

nt
s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
5 4 3 2 1 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
14 15 16 17 18 19 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Label Permutation

Figure 4. Label permutation for concept shift scenario.

besides the accuracy score (Acc), we use incentivized partic-
ipation rate (IPR) (Cho et al., 2022) to evaluate how many
clients get accuracy gains compared to local training, and
reward standard deviation (RSD) to evaluate the fairness of
accuracy gains. Both metrics are defined with local model
ĥlocal
i and FL model ĥFL

i .

IPR =
1

N

N∑
i=1

I{acc(ĥFL
i )− acc(ĥlocal

i ) > 0} (11)

RSD = SD({acc(ĥFL
i )− acc(ĥlocal

i )}Ni=1) (12)

where SD is the standard deviation. In an ideal FL system,
all clients can get similar accuracy gains, which indicates a
large IPR and small RSD.

For all three datasets, we use a light-weight two-layer MLP
as the client discriminator to estimate pairwise distribution
distances. For CIFAR-10/CIFAR-100, we use an ImageNet
pre-trained ResNet-18 to encode the raw image to 512 di-
mensions as a pre-processing step, before feeding it into the
client discriminator. Notice that since the parameters of the
ResNet-18 encoder is not trained or transmitted, it does not
introduce any additional communication cost.
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Table 2. Comparison with Clustered FL

Method Label Shift (FashionMNIST) Feature Shift (CIFAR-10) Concept Shift (CIFAR-100)
Acc ↑ IPR ↑ RSD ↓ Acc ↑ IPR ↑ RSD ↓ Acc ↑ IPR ↑ RSD ↓

IFCA 91.49 (0.61) 95.00 (5.00) 5.62 (0.54) 49.78 (1.01) 100.00 (0.00) 3.13 (0.52) 30.74 (4.46) 60.00 (22.36) 11.28 (5.04)

FedCluster 92.07 (0.47) 95.00 (7.07) 6.14 (0.49) 44.86 (1.90) 79.00 (17.10) 5.64 (1.81) 29.23 (2.18) 62.00 (12.55) 9.55 (0.69)

FeSEM 56.79 (6.71) 45.00 (11.18) 36.12 (2.08) 42.73 (0.37) 82.00 (5.70) 4.10 (0.62) 31.92 (3.12) 72.00 (12.55) 9.81 (1.77)

KMeans 69.30 (0.81) 72.00 (2.74) 35.87 (1.22) 48.61 (1.15) 96.00 (4.18) 4.54 (0.74) 34.24 (3.01) 85.00 (13.69) 6.47 (3.06)

FEDCOLLAB 92.45 (0.07) 100.00 (0.00) 5.99 (0.41) 52.61 (0.60) 100.00 (0.00) 3.30 (0.63) 40.94 (0.22) 100.00 (0.00) 2.78 (0.30)

5.2. Alleviating Negative Transfer (RQ1)

We first show that while GFL and PFL algorithms suffer
from negative transfer, after integrated with FEDCOLLAB,
their negative transfer can be alleviated. We consider a wide
range of SOTA GFL and PFL algorithms. For GFL, besides
FedAvg (McMahan et al., 2017), we also compare to Fed-
Prox (Li et al., 2020a) (for better stability to non-IIDness)
and FedNova (Wang et al., 2020b) (for more consistent ob-
jective under quantity shift). For PFL, we include Finetune
(where each client locally finetunes the FedAvg model),
a meta-learning-based method Per-FedAvg (Fallah et al.,
2020), a regularization-based method pFedMe (Dinh et al.,
2020), and a fair-and-robust method Ditto (Li et al., 2021).

We report the results in Table 1. Across datasets, models and
types of non-IIDness, our proposed FEDCOLLAB strongly
enhances the performance of all seven base FL algorithms in
terms of accuracy, IPR and fairness (RSD). In the label shift
and concept shift scenarios, all the base GFL and PFL algo-
rithms strongly suffer from negative transfer: more than half
of the clients (mostly the small clients) receive a FL model
worse than local model. Although PFLs introduce accuracy
gain compared to FedAvg, they do not solve the negative
transfer problem since small clients still do not benefit from
FL. However, when combined with our FEDCOLLAB, all
base FL algorithms can reach a near 100% IPR with much
better accuracy and reward fairness.

In the feature shift scenarios, since rotation is a mild kind
of non-IIDness also used for data augmentation, base FL
algorithms suffer less from negative transfer compared to
the other two scenarios: all the base FL algorithms get
accuracy gain in average. Our FEDCOLLAB framework can
further boost these FL algorithms to the next level, also
reach a near 100% IPR with significantly better accuracy
and reward fairness.

It is also interesting to notice that after combining with our
FEDCOLLAB framework, four PFL algorithms have limited
or no accuracy gain compared to GFL algorithms. This en-
lightens us that “who to collaborate” may be more important
than “how to collaborate”, and should be considered first.

FeSEM KMeans FedCluster FedCollab

Figure 5. Client distance matrices on CIFAR-10 with feature shift.

5.3. Comparison to other CFL Algorithms (RQ2)

In this part, we compare our FEDCOLLAB algorithm (com-
bined with FedAvg) to baseline CFL algorithms, including
one loss-based algorithm IFCA (Ghosh et al., 2020), one
gradient-based algorithm FedCluster (Sattler et al., 2021),
and two parameter-based algorithms FeSEM (Long et al.,
2022) and KMeans (Ghosh et al., 2019). We report the re-
sults in Table 2. Across all scenarios, FEDCOLLAB has the
highest accuracy and IPR, with RSD among the lowest. Be-
sides numerical results, we further study why FEDCOLLAB
has better performance than baseline CFL methods.

Quantity Awareness While FEDCOLLAB explicitly uses
the quantity distribution β during collaboration optimiza-
tion, all four baseline CFL algorithms cannot utilize the
quantity information. For example, IFCA uses training
losses to choose the model (cluster), which is not sensitive
to the quantities. Therefore, it usually results in two clusters:
0-9 and 10-19, without further splitting the “large” clients.

Distribution Distances Apart from the quantity awareness,
our FEDCOLLAB framework estimates high-quality distri-
bution distances. Notice that FeSEM and KMeans rely on
the distance between model parameters, while FedCluster
relies on gradient similarity matrix S. We visualize the dis-
tance matrix of FEDCOLLAB and these baselines in Figure
5 (for FedCluster we show 1− S). It can be seen that the
distance matrix of FeSEM is highly random depending on
the initialization. KMeans gives some meaningful estima-
tions, but the distance between two clients with the same
underlying distribution is still high. While FedCluster gives
the best estimation among baselines, the estimated distribu-
tion distance of FEDCOLLAB clearly reveals the multi-level
distribution distances we construct.
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{[0-19]}

{[0..4],[5..9],
[10..19]}

{[0..4],[5..9],
[10,11,13],[12,14..19]}

{[0,2,3],[1,4],[5,6,7],[8],[9],
[10,11,13],[12,14..19]}Local Train

Figure 6. Effects of C on FashionMNIST with label shift.

Besides the performance, we also point out that while
IFCA, FedCluster and FeSEM perform clustering during
FL, KMeans and FEDCOLLAB perform clustering before
FL. We compare these two types of CFL in Appendix B.5.

5.4. Effects of Hyperparameter (RQ3)

Our algorithm has a hyperparameter C that balances gener-
alization error and dataset shift. We study the effect of C
with results shown in Figure 6. When C = 6, 8, 10, FED-
COLLAB gives the same collaboration structure with the
highest accuracy. When we decrease C, the solved collab-
oration structure changes from coarse to fine, and finally
to local training when C = 0. On the other hand, when C
goes to infinity, the solved collaboration structure changes
to global training, which suffers from negative transfer.

5.5. Ablation Study (RQ4)

In this part, we show that both distribution distances and
quantity contribute to the optimization of collaboration struc-
ture. To this end, we consider two variants of FEDCOLLAB.
With dataset untouched, “ignore quantities” replaces the real
quantity distribution β with a uniform vector 1

N 1, while “ig-
nore distances” replaces the non-diagonal elements in the
estimated distribution distance matrix D̂ with their average.

Table 3 summarizes the results of the ablation study. When
ignoring distances, we observe that FEDCOLLAB assigns
clients with no overlapping labels to the same coalition,
which results in worse performance. When ignoring quanti-
ties, we observe that FEDCOLLAB forms multiple coalitions
for small clients, instead of a large coalition for clients 10-
19. Therefore, small clients get smaller performance gains
compared to the original FEDCOLLAB.

Table 3. Ablation study on FashionMNIST with label shift

Method Acc ↑ IPR ↑ RSD ↓
FEDCOLLAB 92.45 (0.07) 100.00 (0.00) 5.99 (0.41)

Ignore quantities 90.31 (0.11) 94.00 (5.48) 4.30 (0.46)

Ignore distances 67.79 (0.89) 19.00 (4.18) 18.97 (0.83)

6. Conclusion
We present FEDCOLLAB, a CFL framework that alleviates
negative transfer in FL. Inspired by our derived general-
ization error bound for FL clients, FEDCOLLAB utilizes
both quantity and distribution distance information to opti-
mize the collaboration structure among clients. Extensive
experiments demonstrate that FEDCOLLAB can boost the
accuracy, incentivized participation rate and fairness of a
wide range of GFL and PFL algorithms and a variety of non-
IIDness. Moreover, FEDCOLLAB significantly outperforms
state-of-the-art clustered FL algorithms in optimizing the
collaboration structure among clients.
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R., Qi, H., Ramage, D., Raskar, R., Raykova, M., Song,
D., Song, W., Stich, S. U., Sun, Z., Suresh, A. T., Tramèr,
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A. Proofs
A.1. Proof of Theorem 3.3

In this part, we give the proof of Theorem 3.3. We first formally define the quantity-aware function ϕ|H|(αi,β,m, δ) in
Definition 3.1 and the distribution difference term D(Di,Dj) in Definition 3.2

A.1.1. QUANTITY-AWARE FUNCTION

Definition 3.1 (Quantity-aware function). For a given hypothesis space H, fixed combination weights αi, quantity
distribution β, total quantity m, for any δ ∈ (0, 1), with probability at least 1 − δ (over the choice of the samples), the
following holds for all h ∈ H,

|ϵ̂αi
(h)− ϵαi

(h)| ≤ ϕ|H|(αi,β,m, δ) (13)

Remark A.1. Definition 3.1 is an abstract form of the difference between ϵαi
(h), the expected loss on the mixture population

distribution
∑N

j=1 αijDj , and ϵ̂αi
(h), the empirical risk on finite samples drawn from the mixture empirical distribution∑N

j=1 αijD̂j . It can be instantiated with traditional generalization error bounds. In the main text we give an example with
VC dimension (Ben-David et al., 2010):

ϕVC
|H|(αi,β,m, δ) =

√√√√√
 N∑

j=1

α2
ij

βj

(
2d log(2m+ 2) + log(4/δ)

m

)
(14)

Another choice is using weighted Rademacher complexity (Liu et al., 2015), which gives a similar form of the bound.

ϕRad
|H|(αi,β,m, δ) = R̂αi(H) + 3

√
m

2

(
max

1≤j≤N

αij

mi

)2

log

(
2

δ

)
(15)

where

R̂αi
(H) = Eσ∈{±1}m sup

h∈H
2

N∑
j=1

αij

mj

mi∑
k=1

σj,kℓ(h(x
(j)
k ),y

(j)
k ) (16)

It can be transformed into a similar form. Denote R̂j(H) = Eσj∈{±1}mj suph∈H 2
∑mi

k=1 σj,kℓ(h(x
(j)
k ),y

(j)
k ) be the

empirical Rademacher complexity of client j with order O( 1√
mj

) (Shalev-Shwartz & Ben-David, 2014), we have

R̂αi(H) ≤
N∑
j=1

αijR̂j(H) ≤

√√√√N

N∑
j=1

α2
ij(R̂j(H))2 ≤

√√√√N

N∑
j=1

α2
ij ·

(
C
√
mj

)2

=

√√√√√
 N∑

j=1

α2
ij

βj

 · NC2

m
, ∃C > 0

(17)

A.1.2. DISTRIBUTION DIFFERENCES

Definition 3.2 (Distribution differences). For a given hypothesis spaceH, two distributions Di,Dj , the following holds for
all h ∈ H,

|ϵi(h)− ϵj(h)| ≤ D(Di,Dj) (18)

Remark A.2. Definition 3.2 also can be instantiated with different distribution distances. In the main text we focus on
C-divergence (Mohri & Medina, 2012; Wu & He, 2020), which utilizes both feature and label information.

DC(Di,Dj) = max
h∈H
|ϵi(h)− ϵj(h)| (19)
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Another common choice is usingH∆H-distance (Ben-David et al., 2010). DenoteXi,Xj as the marginal feature distributions
of Di,Dj , respectively,

DH∆H(Di,Dj) =
1

2
dH∆H(Xi,Xj) + λij (20)

where λij = minh∈H(ϵi(h)+ ϵj(h)) is assumed to be small and dH∆H(Xi,Xj) can be estimated with a client discriminator
using only feature as input.

A.1.3. ERROR UPPER BOUND

Lemma A.3 (Error decomposition). For all h ∈ H, denote ϵαi(h) =
∑N

j=1 αijϵαj (h),

|ϵi(h)− ϵαi(h)| =

∣∣∣∣∣∣
N∑
j=1

αijϵi(h)−
N∑
j=1

αijϵj(h)

∣∣∣∣∣∣
≤

∑
j ̸=i

αij |ϵi(h)− ϵj(h)|

≤
∑
j ̸=i

αijD(Di,Dj) (Definition 3.2)

Theorem 3.3. Let ĥαi
be the empirical risk minimizer defined in Eq. (1) and h∗

i be client i’s expected risk minimizer. For
any δ ∈ (0, 1

2 ), with probability at least 1− 2δ, the following holds

ϵi(ĥαi
) ≤ ϵi(h

∗
i ) + 2ϕ|H|(αi,β,m, δ) + 2

∑
j ̸=i

αijD(Di,Dj) (21)

Proof.

ϵi(ĥαi
) ≤ ϵαi

(ĥαi
) +

∣∣∣ϵαi
(ĥαi

)− ϵi(ĥαi
)
∣∣∣

≤ ϵαi(ĥαi) +
∑
j ̸=i

αijD(Di,Dj) (Lemma A.3)

≤ ϵ̂αi
(ĥαi

) +
∣∣∣ϵαi

(ĥαi
)− ϵ̂αi

(ĥαi
)
∣∣∣+∑

j ̸=i

αijD(Di,Dj)

≤ ϵ̂αi
(ĥαi

) + ϕ|H|(αi,β,m, δ) +
∑
j ̸=i

αijD(Di,Dj) (Definition 3.1, hold with probability 1− δ)

≤ ϵ̂αi
(h∗

i ) + ϕ|H|(αi,β,m, δ) +
∑
j ̸=i

αijD(Di,Dj) (Empirical Minimizer)

≤ ϵαi
(h∗

i ) + |ϵαi
(h∗

i )− ϵ̂αi
(h∗

i )|+ ϕ|H|(αi,β,m, δ) +
∑
j ̸=i

αijD(Di,Dj)

≤ ϵαi
(h∗

i ) + 2ϕ|H|(αi,β,m, δ) +
∑
j ̸=i

αijD(Di,Dj) (Definition 3.1, hold with probability 1− δ)

≤ ϵi(h
∗
i ) + |ϵi(h∗

i )− ϵαi
(h∗

i )|+ 2ϕ|H|(αi,β,m, δ) +
∑
j ̸=i

αijD(Di,Dj)

≤ ϵi(h
∗
i ) + 2ϕ|H|(αi,β,m, δ) + 2

∑
j ̸=i

αijD(Di,Dj) (Lemma A.3)

Notice that we use the generalization error bound twice, so the bound holds with probability at least 1 − 2δ instead of
1− δ.
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A.2. Proof of Corollaries 3.4 and 3.5

A.2.1. PROOF OF COROLLARY 3.4(1)

Corollary 3.4 (1). When using VC-dimension bound (14) as the quantity aware function, if D(Di,Dj) = 0,∀i, j, GFL
minimizes the error bound with αij = βj ,∀j.

Proof. In the first case, D(Di,Dj) = 0. Let Q =
√

2d log(2m+2)+log(4/δ)
m . Then

f(αi) = 2ϕ|H|(αi,β,m, δ) = 2Q

√√√√ N∑
j=1

α2
ij

βj

= 2Q

√√√√ N∑
j=1

(αij − βj)2

βj
+ 1

= 2Q
√

χ2 (αi||β) + 1

which achieves the minimum at αi = β.

A.2.2. PROOF OF COROLLARY 3.5 AND 3.4(2)

Corollary 3.5. When using VC-dimension bound (14) as the quantity aware function, for a client i with mi samples, if
its coalition C minimizes the error bound of Theorem 3.3, then C does not include any clients with distribution distance

D(Di,Dj) > Dthr, where Dthr =

√
2d log(2m+2)+log(4/δ)

√
m

2mi
.

Proof. For the coalition C, if there is at least one client j ∈ C with D(Di,Dj) > Dthr > 0, we show that there exists a
different coalition C− = {k ∈ C : D(Di,Dk) ≤ Dthr} with strictly smaller error bound.

We denote C+ = {k ∈ C, k ̸= i : D(Di,Dk) > Dthr} as the clients in the coalition with distribution differences strictly
larger than Dthr, and C− = {k ∈ C, k ̸= i : D(Di,Dk) ≤ Dthr} ∪ {i} as the clients in the coalition with distribution
differences smaller than or equal to Dthr (including client i itself). Notice that

• C = C+ ∪ C−,

• C− ⫋ C, C+ ̸= ∅, and

• i ∈ C−.

Therefore, C− is a different coalition for client i. Next, we prove that coalition C− has a strictly smaller error bound than C.
For clarity, we denote mC =

∑
j∈C mj and µ =

√
2d log(2m+ 2) + log(4/δ). We first quantify the error bound for C.

error bound(C) = ϵi(h
∗
i ) + 2µ

√√√√ 1

m

∑
j ̸=i

α2
ij

βj
+ 2

∑
j ̸=i

αijD(Di,Dj)

= ϵi(h
∗
i ) + 2µ

√√√√√ 1

m

∑
j∈C

(
βj∑

k∈C βk

)2

βj
+ 2

∑
j∈C−{i}

βj∑
k∈C βk

D(Di,Dj)

= ϵi(h
∗
i ) + 2µ

√
1

m

∑
j∈C

βj(∑
k∈C βk

)2 + 2
∑

j∈C−{i}

βj∑
k∈C−{i} βk

D(Di,Dj)

= ϵi(h
∗
i ) + 2µ

√
1∑

j∈C mj
+ 2

∑
j∈C−{i}

mj∑
k∈C mk

D(Di,Dj)

= ϵi(h
∗
i ) + 2µ

√
1

mC
+ 2

∑
j∈C−{i}

mj

mC
D(Di,Dj)
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We can quantify the error bound for C− through the same steps. Then we can compare two error bounds.

error bound(C)− error bound(C−)

=

2µ

√
1

mC
+ 2

∑
j∈C−{i}

mj

mC
D(Di,Dj)

−
2µ

√
1

mC−
+ 2

∑
j∈C−−{i}

mj

mC−
D(Di,Dj)


= −2µ

(√
1

mC−
−
√

1

mC

)
+ 2

 ∑
j∈C−{i}

mj

mC
D(Di,Dj)−

∑
j∈C−−{i}

mj

mC−
D(Di,Dj)


In the first term, √

1

mC−
−

√
1

mC
=

1
mC−

− 1
mC√

1
mC−

+
√

1
mC

<

1
mC−

− 1
mC√

1
m +

√
1
m

=

√
m

2

(
1

mC−
− 1

mC

)
In the second term, ∑

j∈C−{i}

mj

mC
D(Di,Dj)−

∑
j∈C−−{i}

mj

mC−
D(Di,Dj)

=
∑

j∈C−−{i}

(
mj

mC
− mj

mC−

)
D(Di,Dj) +

∑
j∈C+

mj

mC
D(Di,Dj)

>
∑

j∈C−−{i}

(
mj

mC
− mj

mC−

)
Dthr +

∑
j∈C+

mj

mC
Dthr

=

 ∑
j∈C−{i}

mj

mC
−

∑
j∈C−−{i}

mj

m−
C

Dthr

=

(
1

m−
C
− 1

mC

)
miDthr

Put them together, we have

error bound(C)− error bound(C−) > −2µ
√
m

2

(
1

mC−
− 1

mC

)
+ 2

(
1

m−
C
− 1

mC

)
miDthr

=

(
1

mC−
− 1

mC

)(
2miDthr − µ

√
m
)

= 0

Therefore, the coalition C− has a strictly smaller error bound than C.

Corollary 3.4 (2). When using VC-dimension bound (14) as the quantity aware function, if minj ̸=i D(Di,Dj) >√
2d log(2m+2)+log(4/δ)

√
m

2mi
, where d is the VC-dimension of the hypothesis space, local training minimizes the error

bound with αii = 1 and αij = 0,∀j ̸= i.

Proof. It is a special case for Corollary 3.5. Since ∀i ̸= j,D(Di,Dj) >

√
2d log(2m+2)+log(4/δ)

√
m

2mi
, each client’s coalition

should only include itself, which results in local training.
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A.3. Derivation of Client Discriminator

D(Di,Dj) = max
h∈H
|ϵi(h)− ϵ(h)|

= max
h∈H

∣∣E(x,y)∈Di
ℓ(h(x),y)− E(x,y)∈Dj

ℓ(h(x),y)
∣∣

= max
f∈F

∣∣E(x,y)∈Di
f(x,y)− E(x,y)∈Dj

f(x,y)
∣∣

= max
f∈F

∣∣∣∣ Pr
(x,y)∈Di

[f(x,y) = 1]− Pr
(x,y)∈Dj

[f(x,y) = 1]

∣∣∣∣
= max

f∈F

∣∣∣∣ Pr
(x,y)∈Di

[f(x,y) = 1] + Pr
(x,y)∈Dj

[f(x,y) = 0]− 1

∣∣∣∣
= max

f∈F
|2 · BalAcc(f, {Di, 1} ∪ {Dj , 0})− 1|

where

BalAcc(f, {Di, 1} ∪ {Dj , 0}) =
1

2

(
Pr

(x,y)∈Di

[f(x,y) = 1] + Pr
(x,y)∈Dj

[f(x,y) = 0]

)
is the balanced accuracy.
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B. Additional Experiments
B.1. Setup

Here we provide more information on our experimental settings. Table 4 show the statistics of training/testing samples in
three scenarios we consider. Notice that the testing data is NOT used during collaboration structure optimization or FL
model training.

Table 4. Number of training / testing samples on each client

Client Label Shift (FashionMNIST) Feature Shift (CIFAR-10) Concept Shift (CIFAR-100)

“Large” (0-9) 2,100 / 350 2,500 / 500 2,500 / 500
“Small” (10-19) 14 / 350 340 / 500 120 / 500

We run C = 6, 8, 10 on all three settings, and report the best result. Finally, we choose C = 10 for MNIST and CIFAR-10
experiments, and C = 8 for CIFAR-100 experiments.

Our code is available at https://github.com/baowenxuan/FedCollab.

B.2. New Training Clients (RQ5)

In this part, we study whether new training clients can contribute to the FL system with a collaboration structure solved by
FEDCOLLAB. We initialize a FedAvg system with 19 clients, leaving client 0 out. Client 0 operates local training in the first
200 rounds, and joins the FL system after 200 rounds (when FL models nearly converge). We use FEDCOLLAB to decide
which coalition it should join. As shown in Figure 7, client 0 (“new”) receives a FL model with higher accuracy than the
local model. Meanwhile, clients in the updated coalition (“clustered”) also benefit from the new training client since the FL
model has additional performance gain after the new client 0 joins the training.

0 50 100 150 200 250 300 350 400
Round

0.450
0.475
0.500
0.525
0.550
0.575
0.600
0.625
0.650

Ac
c

Client(s)
clustered
new

Figure 7. Utilizing new training clients on CIFAR-10 with feature shift

B.3. Convergence of FEDCOLLAB solver (RQ6)

Algorithm 2 is theoretically guaranteed to converge. In this part, we further study how many iterations it needs to converge,
and whether it falls into local optima. Figure 8 visualizes the result of convergence. We re-run the FEDCOLLAB solver
100 times with different random seeds, and plot all trajectories indicating how the FEDCOLLAB loss changes w.r.t. inner
iterations (line 3-6 in Algorithm 2). Notice that the FEDCOLLAB loss is evaluated for N = 20 times in each inner iteration.

All the random runs converge within the first 60 inner iterations, while stopping within the first 80 inner iterations (since it
requires one additional outer iteration to confirm convergence). Since the evaluation of FEDCOLLAB loss is very efficient, it
only takes around 100ms to run Algorithm 2 once.

We also notice that a single run of Algorithm 2 cannot guarantee the optimal solution. In many runs, FEDCOLLAB solver
converges to a sub-optimal solution, which gives a collaboration structure of [[0..4], [5..9], [10..14], [15..19]]. Therefore, we
use multiple random runs to refine the collaboration structure.
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Figure 8. Convergence of Algorithm 2 on CIFAR-10

B.4. Computation and Communication Complexity

During the clustering step, FEDCOLLAB trains N(N−1)
2 client discriminators for N clients, introducing O(N2) complexity.

The complexity of FEDCOLLAB has the same order as many cross-silo FL algorithms, including MOCHA (Smith et al., 2017),
FedFOMO (Zhang et al., 2021), and PACFL (Vahidian et al., 2022), which all model pairwise relationship among clients.
Meanwhile, the training of client discriminators can be conducted in parallel: each client can train N − 1 discriminators in
parallel with other clients.

Table 5. Comparison of computation and communication complexities (CIFAR-100 experiment)

Model MACs Params

Client discriminator (MLP) 104,600 105,001
FL model (ResNet-18) 37,220,352 11,181,642

In the paper, to reduce the computation and communication constraints, we use a lightweight 2-layer MLP as the client
discriminator, which is very efficient compared to the FL model (ResNet-18). We numerically evaluate their computation
and communication complexities in the CIFAR-100 experiment.

• For computation cost, we count the number of multiply-add cumulations (MACs) for the forward pass of a single data
point.

• For communication cost, we count the number of parameters (Params).

As shown in Table 5, the MACs and Params for client discriminator are negligible compared to the FL model. Considering
that each client needs to train N − 1 = 19 client discriminators in total, our clustering step still only introduces ∼ 5.3%
additional computation cost and ∼ 17.8% additional communication cost for each client.

B.5. Discussion of Clustering During or before FL

Compared to clustering during FL, clustering before FL has the following advantages.

• Clustering before FL is more stable and efficient. IFCA and FeSEM conduct clustering during FL. Their clustering
results are influenced by the random initialization, and can easily converge to suboptima. To jump out of local optima,
IFCA must conduct the whole FL training for multiple times, which is very inefficient. In comparison, FEDCOLLAB
does not rely on any random initialization of the collaboration structure, and can refine the collaboration structure
within only a few seconds.

• Clustering before FL is more flexible. For clustering before FL, the clustering and FL phases are disentangled, which
allows them to be seamlessly integrated with any GFL or PFL algorithms. Meanwhile, the convergence of clustering
during FL algorithms may depend on specific FL algorithm.
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• Clustering before FL saves communication cost for outliers. For outlier clients that have significantly different
distribution from all other clients, FEDCOLLAB allows them to form self-clusters, and they do not need to participate
in the FL phase anymore (see blue cluster in Figure 2). It saves communication cost for these outlier clients and the
server. It also prevents other clients from being negatively affected by outlier clients.

For disadvantages, clustering before FL requires each client’s data set to be stable. In other words, the same client data set
is used for clustering and FL. If the data sets for clustering and FL have different distributions or quantities, the optimal
collaboration during clustering may not also be optimal for FL. However, this requirement is automatically satisfied for
clustering during FL.
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