Zero-shot Cross-Linguistic Learning of Event Semantics

Anonymous ACL submission

Abstract

Typologically diverse languages offer systems of lexical and grammatical aspect that allow speakers to focus on facets of event structure in ways that comport with the specific communicative setting and discourse constraints they face. In this paper, we look specifically at captions of images across Arabic, Chinese, Farsi, German, Russian, and Turkish and describe a computational model for predicting lexical aspects. Despite the heterogeneity of these languages, and the salient invocation of distinctive linguistic resources across their caption corpora, speakers of these languages show surprising similarities in the ways they frame image content. We leverage this observation for zero-shot cross-lingual learning and show that lexical aspects can be predicted for a given language despite not having observed any annotated data for this language at all.

1 Introduction

Tense and aspect rank among the most ubiquitous, problematic, and theoretically vexed features of natural language meaning (Hamm and Bott, 2018). Systems of tense and aspect differ considerably—but also often quite subtly—across languages. Tense and aspect have received extensive study across cognitive science; see Hamm and Bott (2018). Nevertheless, from a computational point of view, it has been extremely challenging to gain empirical traction on key questions about them: how can we build models that ground speakers’ choices of tense and aspect in real-world information? how can we build models that link speakers’ choices of tense and aspect to their communicative goals and the discourse context? how can we build models that recognize tense and aspect? This is particularly challenging because we might have to work with small annotated datasets. The data scarcity issue renders the need for effective cross-lingual transfer strategies: how can one exploit abundant labeled data from resource-rich languages to make predictions in low resource languages?

In this work, we leverage image descriptions to offer new insights into these questions. We adapt the crowdsourcing methodology used to collect English caption corpora such as MSCOCO and Flickr (Young et al., 2014; Lin et al., 2014) to create comparable corpora of Arabic, Chinese, Farsi, German, Russian, and Turkish image captions. We extend the methodology of Alikhani and Stone (2019) to get a synoptic view of tense, lexical aspect, and grammatical aspect in image descriptions in these diverse languages.

Finally, we study the extent to which verb aspect can be predicted from distributional semantic representations across different languages when the model was never exposed to any data of the target language during training, essentially performing zero-shot cross-lingual transfer. We consider predicting lexical aspect at the phrase level an important prerequisite for modelling fine grained entailment relations, such as inferring consequent states (Moens and Steedman, 1988). For example, this is important for keeping knowledge bases up-to-date by inferring that the consequence of Microsoft having acquired GitHub, is that now, Microsoft owns GitHub.

Our results show that the grammatical structure of each language impacts how caption information is presented. Figure 1 shows how the corpus manifests differences and similarities across languages that align with their grammatical structures. Throughout our data, we find, as in Figure 1, that captions report directly visible events, focusing on what’s currently in progress rather than how those events must have begun or will culminate. Yet they do so with different grammatical categories across languages: the progressive aspect of Arabic; the unmarked present of German; or the aspectual marker of the imperfective verbs of Chinese describing an
event as in progress.

2 Related Work

Linguists and computational linguists have largely focused on aspectuality as it has been used in unimodal communication. Caselli and Quochi (2007) showed how aspectual information plays a crucial role in computational semantic and discourse analyses. Pustejovsky et al. (2010) described how aspect must be considered for event annotations and Baiamonte et al. (2016) incorporated lexical aspect in the study of the rhetorical structure of text. Kober et al. (2020) presented a supervised model for studying aspectuality in unimodal scenarios only in English. In this work however, we focus on image captions that enable us to better understand how humans describe images. We also explore for the first time the potential of zero-shot models for learning lexical aspect across languages and genre.

The field of automatic image description saw an explosive growth with the release of the Flickr30K and MSCOCO datasets (Vinyals et al., 2015). Fewer works however, have studied how humans produce image descriptions (Bernardi et al., 2016; Li et al., 2019). For example, van Miltenburg et al. (2018a) studied the correlations between eye-gaze patterns and image descriptions in Dutch. Jas and Parikh (2015) investigated the possibility of predicting image specificity from eye-tracking data and van Miltenburg et al. (2018b) discussed linguistics differences between written and spoken image descriptions. In this work we continue this effort by offering the first comparative study of verb use in image description corpora that we have put together in six different languages. Alikhani et al. (2020); McCloud (1993); Cohn (2013); Cumming et al. (2017) proposed that the intended contributions and inferences in multimodal discourse can be characterized as coherence relations. Our analyses and computational experiments explore the extent to which different grammatical-based distinctions correlate with discourse goals and contextual constraints and how these findings generalize across languages.

3 Data Collection and Annotation

Given a set of images, subjects were requested to describe the images using the guideline that was used for collecting data for MSCOCO (Lin et al., 2014). The instructions were translated to six target languages. For the Chinese instructions, we reduced the character limits from 100 to 20 since the average letter per word for English is 4.5. Generally, a concept that can be described in one word in English can also be described in one or two characters in Chinese. The original guideline in English as well as the translations can be found in the attached supplementary material.

We recruited participants through Amazon Mechanical Turk and Upwork. All subjects agreed to a consent form and were compensated at an estimated rate of USD 20 an hour. We collected captions for 500 unique images (one caption per image in each of the languages that we study in this paper) that were randomly sampled from MSCOCO for each language. The results of our power analysis suggest that with this sample size, we are able detect effects sizes as small as 0.1650 in different distributions of lexical aspect with a significance

https://www.upwork.com/
We performed an analysis of our data to study the Turkish have in common? What are some of the

To compare captions and text in a different uni-

considered as verbs as well, following the analysis

and the captions are performed using the detailed

We limited the 200 Chinese Wikipedia sentences
to 20 characters in length. The word segmenta-

and part-of-speech tagging are performed using

Traditional Chinese to Simplified Chinese character set conversion was done using zhconv.2

The Farsi image captions and the Wikipedia sen-
tences were automatically parsed using Hazm library. For German, we used UDPipe (Straka and

and we have analysed the Russian morphological patterns by pymorphy2 (Korobov,

For Turkish, the morphological analysis

of all the verb phrases in the Wikipedia sentences

and the captions are performed using the detailed

analysis in (Oflazer et al., 1994). While separating

noun phrases from verb phrases, stative noun-verbs

of existence (“var” instead of “var olmak”) were

considered as verbs as well, following the analysis

by (Çakmak, 2013).

The data is annotated by expert annotators for language specific characteris-
tics of verbs such as tense, grammatical and lexical aspect and the Cohen Kappa inter-rater agree-
ments (Cantor, 1996) are substantial ($\kappa > 0.8$) inter-annotator agreement across the languages.

Annotation Effort. The data is annotated by expert annotators for language specific characteris-
tics of verbs such as tense, grammatical and lexical aspect and the Cohen Kappa inter-rater agree-
ments (Cantor, 1996) are substantial ($\kappa > 0.8$) inter-annotator agreement across the languages.

3.1 Methods

To compare captions and text in a different uni-
modal genre, we randomly selected 200 sentences
across all languages from Wikipedia and annot-
ated their lexical aspect. For Arabic, we used
MADAMIRA (Pasha et al., 2014) to analyze the
image captions which are written in Modern Standard Arabic.

We limited the 200 Chinese Wikipedia sentences
to 20 characters in length. The word segmenta-
tion and part-of-speech tagging are performed using
Jieba Python Chinese word segmentation mod-
ule (Sun, 2012). Traditional Chinese to Simplified
Chinese character set conversion was done using zhconv.2

The Farsi image captions and the Wikipedia sen-
tences were automatically parsed using Hazm li-
brary. For German, we used UDPipe (Straka and

Straková, 2017) and we have analysed the Russian morphological patterns by pymorphy2 (Korobov,

2015). For Turkish, the morphological analysis

of all the verb phrases in the Wikipedia sentences

and the captions are performed using the detailed

analysis in (Oflazer et al., 1994). While separating

noun phrases from verb phrases, stative noun-verbs

of existence (“var” instead of “var olmak”) were

considered as verbs as well, following the analysis

by (Çakmak, 2013).

4 Data Analysis

We performed an analysis of our data to study the
following questions: What do image descriptions
in Arabic, Chinese, Farsi, German, Russian and
Turkish have in common? What are some of the
language-specific properties? What opportunities
do these languages provide for describing the con-
tent of images? In what follows, we first describe
similarities across languages. Next we discuss lan-
guages specific properties related to tense and as-
pect.

In general, captions are less diverse as opposed
to Wikipedia verb phrases in terms of their verbs

vocabulary across the six languages. Table 1 shows
the accumulative percentage of top K verbs for the six languages for Wikipedia and image captions.
Moreover, captions are shorter on average than their Wikipedia counterparts as shown in

Wikipedia sentences and captions have different distributions of tense, grammatical aspect and lexical aspect across all languages ($p < 0.01$, $\chi > 12.5$).

When it comes to Arabic, atelic verbs dominate the verbs used in Arabic captions. However, the stative verbs dominate the verbs used in Wikipedia sentences. Moreover, present imperfective verbs make 99% and present perfective verbs make 1% of 85 inflected verbs across all Arabic captions. However, this is drastically different in our baseline. Across 200 full Arabic Wikipedia sentences and out of 180 inflected verbs, present perfective and present imperfective make 49.5% and 2% respectively. Whereas, past perfective and past imperfective make 44.6% and 4% respectively.

This largely agrees with what we analyzed for
other languages. In the Chinese data, 56% of Chi-
inese caption verbs are imperfective whereas the majori-
ty (70%) of the Chinese Wikipedia descriptions
are stative. Chinese Wikipedia sentences also have very few atelic descriptions (1.8%) whereas
Chinese captions are populated with atelic descriptions. Chinese does not have tense, but we anno-
tated the sentences both in captions and Wikipedia
to learn about the number of sentences that present
some kind of cues to refer to an event in the past
i.e. adverb. In Wikipedia, 26% of sentences refer
to events in past but this number decreases to less
than 1% in captions.

For Farsi, atelic events make up to 72% of Farsi
captions and 17% of Farsi Wikipedia. As in Arabic
and Chinese, we observed a major difference in
distributions of grammatical aspect and tense in
Farsi Wikipedia and Farsi captions. Farsi captions
are populated with simple and imperfective present
verbs.

German captions also follow the general trend
with 96% of verbs in caption exhibiting imper-
factive aspect, in comparison to only 57% in
Wikipedia. Furthermore, none of the German cap-
tions was in past tense, which is contrary to the balanced 53 : 47, past : non-past, split for the
Wikipedia sentences. Atelic verbs dominate the Aktionsart distribution of the captions dataset, mak-
ing up 55% of all verb occurrences, whereas only
16% of verbs are atelic in the Wikipedia sample. The trend is reversed for telic verb occurrences, which make up only 4% in the captions dataset, but 43% in the Wikipedia sample. Interestingly, the proportion of stative verbs is roughly equal in captions and Wikipedia.

The Russian data also hold with these general trends: all captions are imperfective, whereas only 50% of Wikipedia sentences are. This distribution is even more extreme in Russian than in other languages partially because of a unique property of the Russian aspectual and tense system: only verbs that refer to past or future events in Russian can be perfective. In the captions, 99% of verbs refer to present events and therefore are required to be imperfective. This also is borne out the telicity of Russian captions: 49% of captions are atelic, 30% are stative, and only 22% are telic. By contrast, only 21% of Wikipedia data is atelic, while 56% are stative, and only 22% are telic. As discussed in Section 4.1 below, this reflects a correlation between perfectivity and telicity in Russian.

Telicity of the Turkish data follows a similar distribution to the other languages, with a key difference in the statistics of stative verbs. Both Wikipedia sentences and captions have higher count of stative verbs compared to other languages. 56% of Wikipedia verbs and 63% of caption verbs are stative in Turkish. This is caused by the inherent copula usage and preference of stative and timeless tenses such as the “geniş zaman”. Atelic verb percentage in captions (30.4%) is considerably smaller to that of stative verbs (63.8%). There is a drastic difference between the number of telic verbs with a 32.4% in Wikipedia phrases compared to 5.8% in captions.

<table>
<thead>
<tr>
<th>Arabic</th>
<th>Chinese</th>
<th>Farsi</th>
<th>German</th>
<th>Russian</th>
<th>Turkish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiki</td>
<td>Capt.</td>
<td>Wiki</td>
<td>Capt.</td>
<td>Wiki</td>
<td>Capt.</td>
</tr>
<tr>
<td>Top 10</td>
<td>0.262</td>
<td>0.688</td>
<td>0.264</td>
<td>0.367</td>
<td>0.364</td>
</tr>
<tr>
<td>Top 30</td>
<td>0.485</td>
<td>0.937</td>
<td>0.396</td>
<td>0.589</td>
<td>0.466</td>
</tr>
<tr>
<td>Top 100</td>
<td>0.832</td>
<td>–</td>
<td>0.650</td>
<td>0.911</td>
<td>0.545</td>
</tr>
</tbody>
</table>

Table 1: Captions show a limited distribution of verbs in comparison with Wikipedia. Verb use in Chinese and Turkish captions dataset are more diverse than in Farsi and Arabic caption datasets.

4.1 Language-Specific Observations

Arabic. Arabic has a rich morphological system (Habash, 2010). Moreover, verbs in Arabic have three grammatical aspects: perfective, imperfective, and imperative. The perfective aspect indicates that actions described are completed as opposed to the imperfective aspect which does not specify any such information. Whereas the imperative aspect is the command form of the verb.

Similar to German and Russian, non-past imperfective verbs were dominant across the captions in Arabic as opposed to Chinese, Farsi, and Turkish. Furthermore and as shown in Table 2, 72.2% of Arabic captions were atelic, and this is the highest atelic percentage for captions across all languages. Whereas, 8.9% of the Arabic Wikipedia sentences were atelic, which constitutes the lowest atelic percentage for Wikipedia sentences across all other languages. This highlights an interesting evidence of the morphological richness in Arabic and how verbs can inflect for mood and aspect.

Chinese. Chinese is an equipollent-framed language (E-framed language), due to its prominent feature – serial verb construction (Slobin, 2004). For example, 走进 (walk into) and 走出 (walk out of) are treated as two different verbs. This phenomenon greatly enlarged the vocabulary of Chinese verbs perceived by POS taggers and parsers. We believe this is an important reason why Chinese verbs look so diverse and the distribution among atelic, telic and stative looks rather imbalanced. Having the base verb character and adding on aspectual particles changes the telicity. Given the nature of Wikipedia text, it is observed that in table 2 only 1.8% are atelic and more than 69.8% are stative, while in image captions more than 56% are atelic.

Since Chinese does not have the grammatical category of tense, the concept denoted by tense in other languages is indicated by content words like adverbs of time or it is simply implied by context. For example, the verb for “do” is 做 (zuo), which is used to describe all past, present, and future events. Since the verb remains the same, temporal reference is instead indicated by the time expressions (Lin, 2006), for example:

(1) 昨天 我做了 批萨。
Yesterday I do PFV pizza.
Yesterday I made pizza.

Farsi. In the Farsi caption dataset four verbs make up to around 50% of the verbs: *to be* (بودن \(bodan\)), *to play* (بازی کردن \(baazi kardon\), and *to look* (نگاه کردن \(nagah kardon\)).

Table 1 shows difference in verbs distributions across languages. The data regarding the distribution of caption verbs in English are reported by (Alikhani and Stone, 2019). Chinese captions are much more diverse and the difference is statistically significant \(p < 0.05, \chi^2 = 14.4\).

Farsi verbs are either simple or compound. Any lexical unit which contains only a verbal root is a simple verb (e.g. verbal root: رفتن \(reften\) ‘to go’). The lexical unit which contain either a prefix plus a verbal root, or a nominal plus either a regular verbal root or an auxiliary verb are compound verbs. Related to this is the phenomenon of incorporation, defined by (Spencer, 1991) as the situation in which “a word forms a kind of compound with its direct object, or adverbial modifiers while retaining its original syntactic function.”

59.3% of Farsi Caption verbs are compound and 88.2% of the compound verbs are constructed with کردن \(kardon\) (to do) and شدن \(shoden\) (to be). Wikipedia on the other hand includes only 12.1% compound verbs. Majidi (2011) conjectured that کردن \(kardon\) (to do) and شدن \(shoden\) (to be) are used when the speaker wants to highlight the meaning of the noun even more in comparison with cases where nouns are accompanied with داشتن \(dasten\) (to take) or داشتن \(dasten\) (to have). For example, نگاه کردن \(nagah kardon\) (literally Do a look) is the fourth most frequent verb in captions.

However, the majority (97%) of the compound verbs in captions are constructed with nouns.

Megerdoomian (2002) hypothesized that the aspectual properties depend on the interaction between the non-verbal and the light verb and that the choice of light verb affects argument structure. For instance, to form the transitive version of an intransitive predicate, Farsi speakers replace the light verb by its causative form. All of the intransitive compound verbs in our corpus are atelic.

German. German speakers predominantly used the present simple — rather than the present progressive — to describe atelic activities, where we found that only \(\approx 7\%\) of atelic captions have been described in the present progressive. For example, sentences (1)-(2) below show two captions where the ongoing activity is described in the present simple in German, however in English, the present progressive would be used. In English, the use of the present simple has a strong futurate reading, which is substantially weaker in German. Thus we attribute the frequent use of the present simple in German to it being less aspectually ambiguous.

(1) Zwei Männer spielen Wii im Wohnzimmer.
Two men are playing on a Wii in the living room.

(2) Ein Mann und eine Frau fahren Ski.
A man and a woman are skiing.

We furthermore found that German speakers have frequently omitted the verb altogether if an imaged depicted some form of still life. These sentences exhibit stative lexical aspect, and typically, verbs such as “stand”, “lie” or a form of “to be” would have been the correct verb as sentences (3)-(4) below demonstrate, where we have added a plausible verb in square brackets.

A train [is standing] next to a loading bay.

A pepperoni pizza [is lying] in a pan next to a beer.

Russian. A distinction between imperfective and perfective aspect must be marked on all Russian verbs. This contrasts with languages (e.g., Spanish) where aspect is only marked explicitly in a subset of the verbal system, such as within the past tense. Aspect marking in Russian is often done by means of affixation: a default-imperfective stem becomes

<table>
<thead>
<tr>
<th>Arabic</th>
<th>Chinese</th>
<th>Farsi</th>
<th>German</th>
<th>Russian</th>
<th>Turkish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiki</td>
<td>Capt.</td>
<td>Wiki</td>
<td>Capt.</td>
<td>Wiki</td>
<td>Capt.</td>
</tr>
<tr>
<td>Atelic</td>
<td>0.089</td>
<td>0.722</td>
<td>0.018</td>
<td>0.561</td>
<td>0.171</td>
</tr>
<tr>
<td>Telic</td>
<td>0.371</td>
<td>0.010</td>
<td>0.285</td>
<td>0.063</td>
<td>0.470</td>
</tr>
<tr>
<td>Stative</td>
<td>0.540</td>
<td>0.268</td>
<td>0.698</td>
<td>0.377</td>
<td>0.357</td>
</tr>
</tbody>
</table>

Table 2: Captions include more atelic descriptions in comparison with Wikipedia across languages.
perfective with the addition of a prefix (e.g. *pisat*’ > *napisat*’ ‘to write’ (Laleko, 2008)). Perfective
aspect expresses a view of an event “in its entirety” (Comrie, 1976), including its end point, meaning
that perfectivity and telicity are highly correlated. For example, the use of the perfective *napisat*’ ‘to
write’ implies the completion of a finite amount of writing, whether or not the speaker chooses to
include an explicit direct object indicating what is being written. There is disagreement in the literature
on whether all perfective verbs in Russian are
telic or if the perfectivity is merely correlated with
telicity (Guéron, 2008; Filip, 2004). However, the
fact that all verbs must be explicitly marked as ei-
ther perfective or imperfective, combined with the
fact that telicity is at least positively correlated with
perfectivity, may lead to more verbs in the Russian
being labelled as telic. In fact, we do find that when
compared with languages such as English, where verbs may remain under-specified for aspect and
therefore for telicity, the Russian captions contain
significantly more telic verbs.

Turkish. Lexical aspects of verbs in Turkish cap-
tions differ from other languages in terms of choice
of the sentence structure and the diversity of Turk-
ish tenses, with the presence of copula. These
intricacies are analyzed using the work of (Aksan
and Aksan, 2006) and (Aksan, 2003). It can be
observed that Turkish-speakers tend to choose a
specific sentence structure while describing pic-
tures.

Captions are populated with noun phrases con-
sisting of a verbal adjective, a subject and an im-

cise noun-verb (“var”). The most important aspect
about determining lexical aspect in Turkish is the
plurality of tenses. A considerably different tense
distinguishes that is visible between the Turkish im-
age captions and Wikipedia sentences is the pro-
gressive aspect. 59.7% of caption verbs are pro-
gressive while only 0.9% of Wikipedia verbs are
progressive. This aspect is used extensively in cap-
tions due to its close relation with any action verb
that is being done.

5 Computational Experiments

Our analysis across six different languages in Section 4 has revealed that humans predominantly
make use of atelic lexical aspect in order to describe
the content of an image. However, we have also
shown that the way lexical aspect is represented
can vary substantially across different languages.
We therefore investigate whether it is possible to
predict aspect with the same methodology across
all languages in our study.

For our experiments, we rely on distributional
semantic representations which is motivated by
the fact that they are readily available in numer-
ous languages, and that they, contrary to manu-
ally constructed lexicons such as VerbNet (Schuler
and Palmer, 2005) or LCS (Dorr and Olsen, 1997),
scale well with growing amounts of data and across
different languages.

5.1 Aspectual Classification

We treat the prediction of verb aspect as a super-
vised classification task and experiment with pre-
trained fastText (Grave et al., 2018) embeddings3
and multilingual BERT (Devlin et al., 2019) as in-
put, and the aspectual classes state, telic, atelic as
targets. For fastText we average the word embed-
dings to create a single vector representation, and
for multilingual BERT we use its [CLS] token
for classification. We use the Logistic Regression
classifier from scikit-learn (Pedregosa et al., 2011)
with default hyperparameter settings.

Mono-lingual. For the mono-lingual experi-
ments, we evaluate our method on the annotated
captions and Wikipedia sentences, however we de-
cided to drop the telic class from the captions data,
and the atelic class from the Wikipedia sentences,
as they occur very infrequently in either respective

3https://fasttext.cc/docs/en/
pretrained-vectors.html
Table 3: Mono-lingual F1-scores per label across all languages with using fastText embeddings (top) and multilingual BERT embeddings (bottom).

<table>
<thead>
<tr>
<th>Label</th>
<th>fastText</th>
<th>mBERT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arabic</td>
<td>Chinese</td>
</tr>
<tr>
<td>Atelic</td>
<td>0.95</td>
<td>0.97</td>
</tr>
<tr>
<td>Telic</td>
<td>0.48</td>
<td>0.00</td>
</tr>
<tr>
<td>State</td>
<td>0.84</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>Arabic</td>
<td>Chinese</td>
</tr>
<tr>
<td></td>
<td>Capt. Wiki</td>
<td>Capt. Wiki</td>
</tr>
<tr>
<td>Atelic</td>
<td>0.50</td>
<td>0.80</td>
</tr>
<tr>
<td>Telic</td>
<td>0.64</td>
<td>0.92</td>
</tr>
<tr>
<td>State</td>
<td>0.88</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Figure 2: Performance comparison between zero-shot cross-lingual (darker shades) learning and a mono-lingual (lighter shades) setup. Remarkably, even without any target language data, our simple zero-shot setup is competitive with using mono-lingual data and even surpasses it in some cases.

corpus. We are focused on establishing whether aspect can be predicted from distributional representations across languages in principle and did not want to obfuscate the problem of predicting aspect with the problem of dealing with a highly skewed class distribution. We perform stratified 10-fold cross-validation on our annotated datasets and report a micro-averaged F1-Score on the basis of accumulating the number of true positives, false positive, and false negatives across all cross-validation runs (Forman and Scholz, 2010).

Table 3 shows that with the exception of Chinese, our simple method of predicting aspect from averaged embeddings works astonishingly well across languages, achieving F1-scores in the mid-80s to mid-90s. Distributional representations appear to capture enough information for making fine-grained semantic distinctions — a very important result for further work on multilingual semantic inference around consequence and causation.

Zero-Shot Cross-lingual. For the zero-shot cross-lingual experiment we use the aligned fastText embeddings and the same multilingual BERT model as in the mono-lingual experiments.\(^4\) We perform a zero-shot learning on the basis of a leave-one-language-out evaluation. This means that we train our simple Logistic Regression classifier on the data of five languages and evaluate performance on the sixth one. The model was never exposed to any data of the target language during training, thereby performing zero-shot cross-lingual transfer. This assesses how much information can be leveraged cross-lingually, which has potential further applications for transfer learning and data augmentation.

As for the mono-lingual experiments we drop the telic class from the captions data, and the atelic class from the Wikipedia data. Figure 2 compares mono-lingual with zero-shot cross-lingual performance, showing that our simple setup yields remarkably strong results, that in some cases even outperform the mono-lingual setup. Our results

\(^4\)https://fasttext.cc/docs/en/aligned-vectors.html
indicate that a considerable amount of aspectual information can be transferred and induced cross-lingually, providing a very promising avenue for future work.

Figure 3 shows a zero-shot cross-lingual ablation, using multilingual BERT on the captions data. Surprisingly often, adding Turkish data causes a drop in performance after observing an increase in adding other languages to the training data.

Interestingly, performance monotonically increases when expanding the training data from Farsi, to Russian, Arabic and Chinese — even surpassing performance with mono-lingual data for predicting an atelic event, but then suddenly suffers a dramatic drop when adding Turkish data (Figure 3) in shows the complete ablation overview).

6 Conclusion

By analyzing verb usage in image–caption corpora in Arabic, Chinese, Farsi, German, Russian and Turkish we find that people describe visible eventualities as continuing and indefinite in temporal extent. We show that distributional semantic can reliably predict aspectual classes across languages, and achieves remarkable performance even in zero-shot cross-lingual experiments.

Our study has also revealed that these qualitative properties and grammatical differences reflect the discourse constraints in play when subjects write captions for images and that these findings are generalizable across languages. Further theoretical and computational studies are required for refining theories of verb meaning in situated language use.

We plan on making our code and data publicly available.

References

