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Abstract

In many retrieval systems the original high dimensional data (e.g., images)
is mapped to a lower dimensional feature through a learned embedding
model. The task of retrieving the most similar data from a gallery set to a
given query data is performed through a similarity comparison on features.
When the embedding model is updated, it might produce features that are
not comparable/compatible with features already in the gallery computed
with the old model. Subsequently, all features in the gallery need to be
re-computed using the new embedding model – a computationally expensive
process called backfilling. Recently, compatible representation learning
methods have been proposed to avoid backfilling. Despite their relative
success, there is an inherent trade-off between the new model performance
and its compatibility with the old model. In this work, we introduce FastFill:
a compatible model update process using feature alignment and policy
based partial backfilling to promptly elevate retrieval performance. We
show that previous backfilling strategies suffer from decreased performance
and demonstrate the importance of both the training objective and the
ordering in online partial backfilling. We propose a new training method for
feature alignment between old and new embedding models using uncertainty
estimation. Compared to previous works, we obtain significantly improved
backfilling results on a variety of datasets: mAP on ImageNet (+4.4%),
Places-365 (+2.7%), and VGG-Face2 (+1.3%). Further, we demonstrate
that when updating a biased model with FastFill, the minority subgroup
accuracy gap promptly vanishes with a small fraction of partial backfilling.1

1 Introduction

Retrieval problems have become increasingly popular for many real-life applications such
as face recognition, voice recognition, image localization, and object identification. In an
image retrieval setup, we have a large set of images called the gallery set with predicted
labels and a set of unknown query images. The aim of image retrieval is to match query
images to related images in the gallery set, ideally of the same class/identity. In practice, we
use low-dimensional feature vectors generated by a learned embedding model instead of the
original high dimensional images to perform retrieval.
When we get access to more or better training data, model architectures, or training regimes
we want to update the embedding model to improve the performance of the downstream
retrieval task. However, different neural networks rarely learn to generate compatible features
even when they have been trained on the same dataset, with the same optimization method,
and have the same architecture (Li et al., 2015). Hence, computing the query features with a
new embedding model, whilst keeping the old gallery features, leads to poor retrieval results
due to incompatibility of old and new embedding models (Shen et al., 2020).
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Figure 1: Left: Old and new features for a binary fruits vs. animals classification setup.
Old and new features are somewhat compatible, but have a few mismatches shown by red
crosses (top). We can improve retrieval performance by backfilling some of the old features to
higher quality new features in a specific order (bottom). In a partial backfilling scenario the
accuracy improvement depends on the order of backfilling. Right: Retrieval performance for
ImageNet as a function of time when updating the embedding model with different backfilling
strategies. A backfilling curve reaching the new model performance faster is better.

The vanilla solution is to replace the features in the gallery set that have been generated by
the old model with features from the new model. This computationally expensive process
is called backfilling. In practice, we carry out backfilling offline: we carry on using the old
gallery features and the old model for queries whilst computing new gallery features with
the new model in the background (see Figure 1-right). We only use the new gallery features
once we’ve finished updating the entire set. However, for large scale systems this process is
computationally expensive and can take months. In many real world systems, the cost of
backfilling is a blocker for model updates, despite the availability of a more accurate model.
This has led rise to the study of compatible representation learning. Shen et al. (2020);
Budnik & Avrithis (2021); Zhang et al. (2021); Ramanujan et al. (2022); Hu et al. (2022);
Zhao et al. (2022); Duggal et al. (2021) all proposed methods to update the embedding
model to achieve better performance whilst still being compatible with features generated
by the old model (see Figure 1-left-top). Despite relative success, compatibility learning
is not perfect: performing retrieval with a mixture of old and new features achieves lower
accuracies than when we replace all the old features with new ones. In this work, we focus
on closing this performance gap. Further, some previous methods degrade the new model
performance when trying to make it more compatible with the old model (Shen et al., 2020;
Hu et al., 2022) or requiring availability of side-information, extra features from a separate
self-supervised model, (Ramanujan et al., 2022) (which may not be available for an existing
system). We relax both constraints in this work.
To benefit from the more accurate embedding model sooner and cheaper, we can backfill
some or all of the images in an online continuous fashion: We run downstream retrieval tasks
on a partially backfilled gallery set where part of the features are computed with the old
model, and part of them with the new model (see Figure 1-left-bottom).
In practice, we can consider two scenarios: 1) we will backfill the entire gallery set with a
random order in an extended period of time and want to maximize the average performance
during the backfilling process (see Figure 1-right); 2) we have a fixed partial backfilling
budget and want to reach optimal retrieval performance after backfilling the allowed number
of images (e.g., we can backfill only 10% of the gallery). In both cases, we want to reach the
highest possible performance by backfilling the fewest images possible. We demonstrate that
the training objective as well as the order by which we backfill images are both crucial. In
fact, if we use training losses proposed in the literature and choose a random ordering we
may even reduce performance before we see an improvement (see FCT-Random in Figure 2a)
due to the occurrence of ‘negative flips’ (Zhang et al., 2021) - images that where classified
correctly when using the old model but are misclassified when using the new one.
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In this work, we propose FastFill: an efficient compatible representation learning and online
backfilling method resulting in prompt retrieval accuracy boosts as shown in Figure 1-right.
In FastFill, we learn a computationally efficient holistic transformation to align feature
vectors from the old model embedding space to that of new model. The new model is
trained independently without sacrificing its performance for compatibility. We propose
a new training loss that contains point-to-point and point-to-cluster objectives. We train
the transformation model with the proposed loss using uncertainty estimation and obtain
significantly improved partial backfilling performance compared to previous works.
We summarize our main contribution as below:

• We propose FastFill, a new compatible training method with improved retrieval
performance at all levels of partial backfilling compared to previous works.

• FastFill uses a novel training objective and a new policy to order samples to be
backfilled which we show to be critical for improved performance.

• We demonstrate the application of FastFill to update biased embedding models with
minimum compute, crucial to efficiently fix large-scale biased retrieval systems.

• On a variety of datasets we demonstrate FastFill obtains state-of-the-art results:
mAP on ImageNet (+4.4%), Places-365 (+2.7%), and VGG-Face2 (+1.3%).

2 Problem setup

Image Retrieval In an image retrieval system, we have a set of images called the gallery
set G with predicted labels, which can be separated into k different classes or clusters. At
inference time, we further have a query set Q. For each image in the query set we aim to
retrieve an image from the gallery set of the same class. In an embedding based retrieval
system, we replace the original D-dimensional data (3 × h × w for images) in the gallery
and query sets with features generated by a trained embedding model φ : RD 7→ Rd, where
d� D. The model φ is trained on images x ∈ D, a disjoint dataset from both G and Q. For
a query image xq ∈ Q, the retrieval algorithm returns image xi from the gallery satisfying:

(single-model retrieval) xi = arg min
xj∈G

D(φ(xj), φ(xq)), (1)

for some distance function D (e.g., l2 or cosine distance). In this setup we only need to
compute the features φ(x) of the gallery set once and store them for future queries. We then
no longer need to be able to access the original images of the gallery. As d� D, replacing
the images with their features greatly reduces the memory and computational requirement to
maintain the gallery and perform retrieval, crucial for private on-device retrieval. Depending
on the context, by gallery we may refer to the original images or the corresponding features.

Learning Compatible Representations. For real world applications, we aim to update
the embedding model every few months to improve its accuracy 1) to adapt to changes in
the world, e.g., supporting people with face mask for a face recognition system, 2) on under-
represented subgroups, e.g., new ethnicity, new lighting condition, different data capture
sensors, by adding more data to the training set, or 3) by using enhanced architecture and
training optimization. We denote the old and new embedding models by φold and φnew
and the training datasets of the two models by Dold and Dnew, respectively. After a model
update, for every new query image we use φnew to compute the feature, and hence the
retrieval task turns in to:

(cross-model retrieval) xi = arg min
xj∈G

D(φold(xj), φnew(xq)). (2)

3 Related Work

As Li et al. (2015) realised, different models do not always generate compatible features,
even when they are trained on the same dataset. This observation has motivated the rise of
the relatively new literature on model compatibility: given a weaker old model φold we aim
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to train a new model φnew that has better retrieval performance, as in (1), whilst still is
compatible with the old model, as in (2). This way we can improve performance, without
having to wait months and incur large computational cost to backfill the gallery. Shen
et al. (2020) introduced Backwards Compatible Training (BCT). They add an influence loss
term to the new model objective that runs the old model linear classifier on the features
generated by the new model to encourage compatibility. Budnik & Avrithis (2021) train a
new model by formulating backward-compatible regularization as a contrastive loss. Zhang
et al. (2021) proposed a Regression-Alleviating Compatible Training (RACT) method that
adds a regularization term to the contrastive loss in order to reduce negative flips: these are
images that the old model classified correctly but the new model gets wrong. Ramanujan et al.
(2022) proposed the Forward Compatible Training (FCT) method that trains an independent
new model first and subsequently trains a transformation function which maps features
from old model embedding space to that of the new model. Moreover, the transformation
requires some side-information about each data point as input. Iscen et al. (2020), Wang
et al. (2020) and Su et al. (2022) also approach the model compatibility problem by learning
maps between old and new model embedding spaces. Note that, as discussed in Ramanujan
et al. (2022) the cost of applying the transformation is negligible compared to running the
embedding model on images (hence, the instant jump in performance in Figure 1-right).

Learning Compatible Predictions. A related line of research focuses on learning
compatible predictions (as opposed to compatible features). For the classification task,
Srivastava et al. (2020) show that changing the random seed can lead to high prediction
incompatibility even when the rest of the learning setup stays constant. Moreover, they
observed incompatible points do not always have low confidence scores. Oesterling & Sapiro
(2021) aim to achieve better prediction compatible models by ensuring that the new model
training loss is smaller than the old model loss on all training samples. Träuble et al. (2021)
consider the problem of assigning labels to a large unlabelled dataset. In particular, they
focus on how to determine which points to re-classify when given a new model and how
to proceed if the old and new predictions differ from each other. Similar to compatible
representation learning, various works in the literature focus on positive-congruent training
which aims to reduce the number of negative flips in the prediction setting. Yan et al. (2021)
achieve this by focal distillation which puts a greater emphasis on samples that the old model
classifies correctly. Zhao et al. (2022) argue that most negative flips are caused by logits
with large margins and thus try to reduce large logit displacement.

Continual Learning (CL) and Knowledge Distillation (KD). Other less relevant
areas of research that focus on learning across domains and tasks include CL and KD. CL
(Parisi et al., 2019; Li & Hoiem, 2017; Zenke et al., 2017) is related to compatible learning
as it also aims to train a new model that should keep the knowledge acquired by the old one.
However, in the continual learning setup the new model is dealing with a new task, whereas
here the task (image retrieval) is fixed. Also, in CL the two models never interact as they
are not employed together: as soon as the new model is trained we discard the old one.
In KD (Hinton et al., 2015; Gou et al., 2021) we also train a new model (the student) that
inherits some of the capabilities of an old model (the teacher). However, there are two main
differences to model compatibility setup. Firstly, in KD the teacher model is often a larger
and stronger model than the student, reverse of the setup in model compatibility. Further,
the teacher and the student are never used together in practice. Therefore, the features of
the two models do not need to be compatible in the KD setting. Zhang et al. (2021) show
that neither CL methods nor KD ones are able to achieve good retrieval performance in the
model update setting as the features of the old and new models are not compatible.

4 Method

4.1 Feature alignment

Some previous works aim to achieve model compatibility when training the new model, by
directly enforcing new features to be aligned to the existing old model features (Shen et al.,
2020; Budnik & Avrithis, 2021; Zhang et al., 2021). However, this often greatly reduces the
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single model retrieval performance defined in Eq. (1) for the new model, as they suffer from
the inherent trade-off between maximizing the new model performance and at the same
time its compatibility to the weaker old model. Other works have thus proposed learning
a separate mapping from old model embedding space to new model embedding space to
align their features (Wang et al., 2020; Meng et al., 2021; Ramanujan et al., 2022). Wang
et al. (2020) and Meng et al. (2021) both still modify the training of the new model which is
undesirable because it can limit the performance gain of the new model and is intrusive and
complicated for practitioners. Ramanujan et al. (2022) train the new model and alignment
map independently, but to achieve better alignment rely on existence of side-information (an
extra feature generated by an unsupervised model computed for each data point). This is also
undesirable because is not applicable to an already existing system without side-information
available. We provide results in the presence of such side-information in the Appendix B.2.
Here, as a baseline we consider the same feature alignment as in Ramanujan et al. (2022),
but without side-information: we learn a map hθ : Rd → Rd from old model feature space to
new model feature space modeled by an MLP architecture with parameters θ. Hence, for
cross-model retrieval we use hθ(φold(xj)) instead of φold(xj) in Eq. (2).

4.2 FastFill

Despite relative success, all previous methods have limitations and fail to reach full-
compatibility: in each case cross-model retrieval defined in Eq. (2) has significantly worse
performance than single-model retrieval defined in Eq. (1) with the new model. In order
to bridge this gap, (partial) backfilling is required: continuously move from cross model
retrieval to single model retrieval by updating the old gallery features with the new model.
That is to replace transformed old features hθ(φold(xi)) with new features φnew(xi) for some
or all images in the gallery set (xi ∈ G) (Figure 1); To this end, we propose our new method
FastFill, which includes two main contributions: firstly, we change the backfilling curve
behaviour for a random policy by modifying the alignment model training and secondly, we
introduce a better policy that produces the order of samples to update, therefore results in
promptly closing the gap between cross-model and single-model retrieval.
We propose a training loss for the alignment map h to have both high retrieval performance
at no backfilling (the instant jump after model update in Figure 1-right) and good backfilling
curve, ensuring that we close the gap with new model performance promptly. To achieve
this, we include objectives to encourage point-to-point and point-to-cluster alignments.
The first part of our training loss is the pairwise squared distance between the new features
and the transformed old features: Ll2(x;hθ, φold, φnew) = ‖φnew(x) − hθ(φold(x))‖22 for
x ∈ Dnew. This is the loss used by FCT (Ramanujan et al., 2022). Further, given φold
and the new model classifier head, κnew, that the new model has been trained on, we use
a discriminative loss that runs κnew on the transformed features: Ldisc(x, y;hθ, φold, κnew)
where (x, y) ∈ Dnew is a pair of (image, label). Ldisc is the same discriminative loss
that new model is trained on: in our experiments it is the Cross Entropy loss with Label
Smoothing (Szegedy et al., 2016) for ImageNet-1k and Places-365 datasets, and the ArcFace
loss (Deng et al., 2019) for VGGFace2 dataset. This loss can be thought of as the reverse of
the influence loss in BCT (Shen et al., 2020) but with one major advantage. Unlike BCT,
we do not require old and new models to have been trained on the same classes as we are
using the new model classifier head rather than the old one. Our proposed alignment loss is
a combination of the two losses:

Ll2+disc(hθ;φold, φnew, κnew,x, y) = Ll2 + Ldisc. (3)

Ll2 achieves pairwise compatibility, aligning each transformed old feature with the corre-
sponding new feature. However, in practice we cannot obtain a perfect alignment on unseen
data in the query and gallery sets. With Ll2 we encourage to reduce the magnitude of
pair-wise alignment error φnew(xi)− hθ(φold(xi)), but the direction of error is free. Ldisc

encourages the error vectors to be oriented towards the same-class clusters of the new model
(given by κnew) and away from wrong clusters. Hence, we avoid proximity of a cluster of
transformed old features to a wrong cluster of new features – the mechanism responsible of
slow improvements in backfilling.
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We now focus on coming up with good ordering to backfill the images in the gallery set
(replacing hθ(φold(xi))’s with φnew(xi)’s). Finding the optimal ordering for backfilling is
a hard combinatorial problem and infeasible. We first look at a heuristically good (but
cheating) ordering: backfill the worst gallery features first. As minimizing the alignment
loss (3) leads to good transformation function, we use it as a way to measure the quality
of the gallery features: we compute the training loss (3) for each image in the gallery set
and sort the images in decreasing order. In other words, we backfill the gallery images with
the highest loss first as they are probably not very compatible with the new model. We call
this method FastFill-Cheating. We show in Figure 2a that using FastFill-Cheating results in
significantly better backfilling curve than when we backfill using a random ordering.
Unfortunately, we cannot use this backfilling method in practice for images in the gallery as
we do not have access to φnew(xi) until we have backfilled the ith image. Instead, we aim to
estimate this ordering borrowing ideas from Bayesian Deep Learning. When the training
objective is Ll2 , we can model the alignment error by a multivariate Gaussian distribution
with σI covariance matrix2, and reduce the negative log likelihood during training. This is
similar to the method proposed by Kendall & Gal (2017). Given the old and new models,
we train a model ψϑ : Rd 7→ R parameterized by ϑ that takes the old model feature h(φold)
as input and estimate logσ2. We can then jointly train hθ and ψϑ by minimizing:

Ex∼Dnew

[
‖hθ(φold(x))− φnew(x)‖22

σ2
+

1

λ
logσ2

]
, (4)

where logσ2 = ψϑ(φold(x)), and λ is a hyper-parameter function of d. Now, we extend this
formulation for our multi-objective training in (3). We follow the approximation in Kendall
et al. (2018) for uncertainty estimation in a multi-task setup where the model has both a
discrete and continuous output. Further, we assume the same covariance parameter, σ2, for
both of our regression and discriminative objectives (Ll2 and Ldisc). Hence, we can replace
Ll2 in (4) with Ll2+disc and get the full FastFill training loss:

L(hθ, ψϑ;φold, φnew, κnewDnew) = E(x,y)∼Dnew

[
Ll2+disc

σ2
+

1

λ
logσ2

]
. (5)

In practice, we use a shared backbone for hθ and ψϑ, therefore the overhead is minimal.
Please see Appendix A.2 for details of architecture, hyper-parameters, and training setup.
In Figure 2b we show that the predicted σ2

i by ψϑ trained with (5) is a good approximation
of Ll2+disc(xi) for xi ∈ G. In particular, the ordering implied by Ll2+disc and σ are close.
In Figure 2c we show the order of each xi in the gallery when sorted by Ll2+disc(xi) is
well correlated with its order when sorted by σ2

i : The Kendall-Tau correlation between two
orderings is 0.67 on the ImageNet test set. In FastFill, we backfill xi’s with the ordering
implied by their predicted σ2

i ’s (from high to low values).
Finally, in Figure 2a we show that FastFill obtains similar backfilling curve as the cheating
setup using the ordering implied by cheaply computed σ2

i ’s. Also note that, FastFill even
with a random ordering obtains significant improvement compared to our baseline (FCT with
random ordering) due to superiority of our proposed alignment loss. In Section 6 we further
demonstrate the importance of our proposed training objective and backfilling ordering.

5 Experiments

We now analyse the performance of our method by comparing it against different baselines on
a variety of datasets. We first describe the metrics we use to evaluate and compare different
compatibility and backfilling methods.

5.1 Evaluation Metrics

Compatibility Metrics Similar to previous model compatibility works we mainly use
following two metrics to evaluate the performance and compatibility of models. The Cumu-
lative Matching Characteristics (CMC) evaluates the top-k retrieval accuracy. We compute

2We also considered an arbitrary diagonal covariance matrix instead of a scaled identity matrix,
and observed no significant improvement.
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(a) (b) (c)

Figure 2: a) Backfilling results for different training objectives and backfilling orderings
evaluated on the ImageNet-1k dataset. The FastFill training objective, defined in Eqn. (5),
compared to our baseline method (FCT) obtains significantly improved mAP over the course
of backfilling when a random ordering is used. The performance is further improved when
using the ordering implied by the predicted uncertainties σ2

i . We also compare against
FastFill-Cheating, in which the ordering is obtained by computing the training loss (3) on
gallery images (hence a cheating setup), and show comparable performance. b) We show
that the predicted logσ2

i , the output of ψϑ on gallery images, and logLl2+disc(xi) are well
correlated. c) We sort xi once by σ2

i and once by Ll2+disc(xi) to get two orderings. Here,
for each xi we plot its order in the first ordering vs its order in the second ordering, and
observe great correlation (Kendall-Tau correlation=0.67).

the distance between a single query feature and every single gallery features. We then return
the k gallery features with the smallest distance. If at least one of the k returned gallery
images has the same label as the query we consider the retrieval to be successful. We also
compute the mean Average Precision (mAP) score, which calculates the area under the
precision-recall curve over recall values between 0.0 and 1.0.
Given a metric M (either top-k CMC or mAP), a gallery set G, and query set Q we denote
the retrieval performance by M(G,Q). After a model update, we use φnew to compute
features for the query set and φold to compute those for the gallery set. Similar to previous
works, for retrieval metrics, we use the full validation/test set of each dataset as both the
query set and gallery set. When we perform a query with an image, we remove it from the
gallery set to avoid a trivial match.

Backfilling Metrics In partial backfilling we replace some of the old features, here
h(φold(xi))), from the gallery with new features, φnew(xi). In order to evaluate the retrieval
performance for a partially backfilled gallery we introduce the following notation: given
an ordering π : xπ1

, . . . ,xπn
of the images in the gallery set and a backfilling fraction

α ∈ [0, 1], we define Gπ,α to be the partially backfilled gallery set. We use the new model to
compute features for xi ∈ π[: nα] and the old model for the remaining images, that is for all
xi ∈ π[nα :], using numpy array notation, where nα = bαnc and n is the size of gallery.
Given a metric M , to compare different backfilling and model update strategies during the
entire course of model update, we propose the following averaged quantity:

M̃(G,Q, π) = Eα∼[0,1]M(Gπ,α,Q) (6)
M can be any retrieval metric such as top-k CMC or mAP as defined above. The backfilling
metric M̃ corresponds to the area under the backfilling curve for evaluation with M .

5.2 Backfilling Experiments

We now analyse our method by comparing it to three baselines: BCT, RACT, and FCT.
For BCT and FCT we used the official implementation provided by the authors. We re-
implemented RACT and optimized over the hyper-parameters as the code was not publicly
available at the time of writing. We ran all experiments five times with different random
seeds and report the averaged results. We use the l2 distance for image retrieval.
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Table 1: ImageNet-1k

Method t̃op1 m̃AP
BCT 58.92 37.02
RACT∗ 60.91 39.47
FCT 62.80 40.47
FastFill 66.49 44.84

Table 2: VGGFace2

Method t̃op1 m̃AP
RACT∗ 91.04 45.65
FCT 95.87 70.26
FastFill 96.35 71.57

Table 3: Places-365

Method t̃op1 m̃AP
BCT 33.3 15.15
FCT 35.73 16.81
FastFill 38.32 19.48

Figure 3: Backfilling results on ImageNet-1k (top), VGGFace2 (middle), and Places-365
(bottom). We use new model features for the query set. For the gallery set we start off using
(transformed) old features and incrementally replace them with new features.

ImageNet-1k. We compare FastFill against BCT, RACT, and FCT, three state-of-the-art
methods. For RACT we use entropy-backfilling; since BCT and FCT do not offer a policy for
backfilling we use random orders. FastFill outperforms all three methods by over 3.5% for
C̃MC-top1 and over 4% for m̃AP (Figure 3, Table 1). Compared to BCT and RACT, FastFill
performs significantly better for 0% backfilling (+10%) due to the transformation function.
Furthermore, the sigma-based ordering significantly outperforms the random orderings and
the cross-entropy one from RACT. We show in Appendix D that FastFill both increases the
number of positive flips and decreases the negative flips compared to FCT.

VGGFace2. We show results on the VGGFace2 dataset in Table 2 and Figure 3. FastFill
improves the baselines as well as an ablation that combines entropy-based backfilling with
the FastFill transformation by 0.5% C̃MC-top1 and 1.3% m̃AP. The absolute improvement
is relatively small as the gap between 0% and 100% backfilling is not very large, as the
transformation already achieves high compatibility.

Places-365. We run experiments on the Places-365 dataset. The results are summarized
in Table 3 and Figure 3. FastFill beats FCT with random backfilling by about 2.7% for both
metrics. We further report CMC-top5 results in Appendix B.3 for all three datasets.

5.3 Updating biased models

Embedding models can be biased toward certain sub-groups in their input domain, a
crucial problem in image retrieval. For example, in face recognition tasks the model
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can be biased toward a certain ethnicity, gender, or face attribute. It is often due to a
class-imbalanced training dataset. Here, we show FastFill can fix model biases efficiently
without requiring expensive full backfilling. We train a biased old model on the VGGFace2-
Gender-550 dataset that consists of 50 female and 500 males classes. The old model
performs significantly better on males identities (90.6%) in the test set than females (68.7%).

Figure 4

We train a new model on a larger gender-balanced
dataset that consists of 2183 female and 2183 male
identities. The new model still has a small bias towards
male classes (98.3% vs 97.1%). Applying the feature
alignment trained with FastFill alleviates some of the
biases reducing the accuracy gap between genders to
9.4%. As we show in Figure 4, with only 25% back-
filling FastFill reaches the same accuracy gap between
genders as the new model, whereas random backfilling
using FCT requires backfilling the entire gallery set to
reduce the bias to the level of the new model. FastFill
prioritizes backfilling instances corresponding to female
identities which results in a fast reduction in the gender
gap compared to previous methods (see Appendix F).

6 Ablation study

Here, we perform an ablation study to highlight the different components of our method
(Figure 5). We first compare the effect of different training losses (Ll2 , Ldisc, Ll2+disc

with and without uncertainty) when using random backfilling orderings. We show that
Ll2+disc greatly improves the backfilling curve. Training with uncertainty has little effect on
random backfilling. We also show that using σ for the backfilling ordering greatly improves
performance. We conclude that FastFill (training with Ll2+disc and uncertainty) obtains the
best results for both random and σ-based orderings. We show in Appendices C.3 and C.4
that FastFill is particularly strong when we encounter new classes at inference time as the
relative confidence (used in RACT) between samples from new classes are not as informative.

7 Conclusion

Figure 5: Ablation Study on Ima-
geNet: We compare the effect of dif-
ferent training losses and backfilling
orderings on the backfilling curves.
We report m̃AP in the parentheses in
the legend.

Model compatibility is a crucial problem in many
large-scale retrieval systems and a common blocker to
update embedding models. In this work, we propose
FastFill: an online model update strategy to efficiently
close the accuracy gap of previous model compatibility
works.
The key idea in FastFill is to perform partial backfill-
ing: using a new model we recompute a small fraction
of the images from a large gallery set. To make the
partial backfilling process efficient we propose a new
training objective for the alignment model which maps
the old model features to those of the new model, and
an ordering of the gallery images to perform backfill-
ing. To obtain the ordering we train the alignment
model using uncertainty estimation and use predicted
uncertainties to order the images in the gallery set.
We demonstrate superior performance compared to
previous works on several datasets. More importantly,
we show that using FastFill a biased old model can
be efficiently fixed without requiring full backfilling.
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8 ETHICS STATEMENT

We believe that FastFill can have a positive impact in real-world applications by reducing
the cost associated with model update, and hence enable frequent model updates.
Machine learning based models are often not completely unbiased and require regular updates
when we become aware of a certain limitation and/or bias. As shown in the paper, when we
have a new model with fewer biases than an existing model, FastFill can reach the fairness
level of the new model more quickly and cheaply. This can motivate frequent model updates
to address limitations associated with under represented groups.
As with many machine learning applications, especially ones used for facial recognition,
FastFill can be misused. Facial recognition software can be used in many unethical settings,
so improving their performance can have significant downsides as well as upsides.

9 Limitations

Our proposed method does not provide a mechanism to decide what percentage of backfilling
is sufficient to enable early stopping. Knowing how much backfilling is sufficient would result
in saving additional computation.
In some real world applications, the image representations can be used in a more sophisticated
fashion by the downstream task than the nearest neighbour based retrieval considered in this
work. For instance, representations can be input to another trained model. Therefore, when
we update from old to new, we also need to retrain the downstream model so it is compatible
with new feature space. This is not a limitation of FastFill in particular, however, in general
a limitation of transformation based update methods.
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1. Appendix A describes the experimental set-up for our experiments in the main paper.
We detail the dataset set-up (A.1) as well as the training set-up (A.2) used in the
main paper.

2. Appendix B reports further experimental results including: experiments focusing on
architectural changes (B.1) an analysis of FastFill and FCT performance when using
side-information (B.2), and top-5 retrieval results for the main experiments (B.3).

3. Appendix C focuses on further ablation studies. We first extend the ablation carried
out in the main paper on ImageNet-1k (C.1), before focusing on the Places-365
dataset (C.2). We then demonstrate one of the main strengths of our method
when encountering new previously unseen classes during inference; we first show
this on ImageNet (C.3) before focuses on a further ablation study, that combines
entropy/confidence based backfilling with FastFill and FCT on VGGFace2 (C.4).

4. Appendix D includes a detailed analysis of positive and negative flips through the
backfilling curve for different methods.

5. Appendix E includes a more detailed analysis of the correlation of the σ2 computed
by our method with various loss functions.

6. Appendix F contains a more detailed analysis on which classes get backfilled first on
the VGGFace2-Gender dataset.

A Experimental Set-Up

A.1 Dataset Set-Up

ImageNet-1k (21). ImageNet-1k is a large-scale image recognition dataset and the most
used subset of ImageNet [ILSVRC]. It was used in the ILSVRC 2012 image recognition
challenge. The dataset contains 1000 object classes and a total of 1,281,167 training images
and 50,000 validation images. The training dataset is relatively balanced with about 1.2k
images per class. The validation set has the same classes as the training set and exactly 500
images per class.
We use a subset of ImageNet-1k consisting of the first 500 classes to train the old model; we
refer to this as ImageNet-500. We note that the first half of ImageNet-1k contains easier
classes than the second half.

Places-365 (32). Places-365 is a large-scale scene recognition dataset that spans 365
classes and contains 1.8 million training images and 36,500 validation ones. The training set
contains between 3068 and 5000 images per category and the validation set has exactly 100
images per class. We use the first 182 classes of the training set to create a smaller subset;
we refer to it as Places-182.

VGGFace2 (2). VGGFace2 is a large-scale facial recognition dataset. Its training dataset
is made up of 8631 classes, each representing a different person, and a total of 3.14 million
images. The test set contains 170,000 images corresponding to 500 identities, different to
the ones present in the training set. The training set is slightly unbalanced with an average
of 362.6, a minimum of 57, and a maximum of 843 images per class. The test set contains
exactly 500 images per class. During test time, we compute a random but fixed subsample
of 50 images per class in the test set.
The dataset also has a list of attributes for a small number of images in the training dataset.
We know the gender of 30,000 images corresponding to 5300 different identities. We create a
training and validation set of images for which we know the gender as follows: we disregard
all the images in the training set with an unknown gender. We randomly sample 250 female
identities and 250 male ones to form the new validation set. As there are more male than
female classes remaining, we sample a subset of the remaining male identities to create a
balanced training dataset (2183 female and male classes each with about 800,000 images
for either (exact numbers depend on the random seed)). We refer to this new subset as
VGGFace2-Gender. We now create an unbalanced subset by sampling 500 male identities
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and 50 female identities from the training set, we name it VGGFace2-Gender-550. We use
this dataset to train a biased old model.

A.2 Training Set-Up

ImageNet-1k. We train two ResNet50 models (7): the old model (φold) on ImageNet-
500, and the new model (φnew), on ImageNet-1k. We set the embedding dimension of
both models to 128. We train both models using the hyper-parameters in ResNetV1.5
Nvidia (17) (SGD optimizer, epochs=100, batchsize=1024, learning rate=1.024, weight
decay=3.0517578125 ∗ 10−5, momentum=0.875, cosine learning rate decay with 5 epochs
of linear warmup). For our method, we jointly train a transformation model h, and an
uncertainty predictor ψ on ImageNet-1k using the objective function defined above (5).
We use the same architecture for the MLP architecture for the transformation function
h as (20) and the same learning set-up (Adam Kingma & Ba (13), epochs=80, learning
rate=5 ∗ 10−4, cosine learning rate decay with 5 epochs of linear warm-up, freeze of the
BatchNorm layers after 40 epochs). For the uncertainty estimator ψ, we simply use a linear
layer from the transformed embeddings space to output a single real value. For FCT, we
train their transformation without side-information exactly as described in their paper and
their official code base (https://github.com/apple/ml-fct). For BCT we train a new
model using the official code implementation (https://github.com/YantaoShen/openBCT)
and hyper-parameters mentioned in the paper. However, we set the embedding dimension to
128 to be directly comparable to the other three models. For RACT, we re-implement the
method based on the information provided in the paper as there is no official code release.
We set the hyper-parameters (λ = 1 and τ = 0.5) as defined in the paper and optimize over
the learning rate to get optimal performance. We compare the learning rate schedule used
in RACT with the one used in ResNet50V1.5 Nvidia (17). optimizing over the learning rate
for each (we try learning rates in powers of ten in [1e-5, 1]).
For the retrieval experiments we set both the gallery and query sets to be the validation set
of ImageNet-1k. For BCT and FCT we use random backfilling, as neither paper include a
backfilling ordering. For RACT we try both random backfilling and entropy backfilling and
pick the better one.

Places-365. We use a similar setup to ImageNet experiments: we train two ResNet50
models with an embedding size of 512: the old model on Places-182 and the new one on
Places-365. We use the Places-365 validation dataset for retrieval evaluation.

VGGFace2. For the VGGFace2 dataset we train a smaller ResNet18 model on VGGFace2-
863 and a larger ResNet50 one on VGGFace2-8631. Unlike for the other two datasets we use
the ArcFace objective (4) to train the two models and the transformation. We use a margin
of 0.5 and a scale of 64 as proposed by (4). We use the same learning rate schedule as for
ImageNet. Unlike for the other two datasets we normalize the features.
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B Further Experimental Results

B.1 Architectural Change Experiments

We analyse how FastFill compares to existing methods when the old and new models have
different architectures. We run ImageNet experiments where the old model is a ResNet-18,
and the new model a ResNet-50. Both are trained on the same full ImageNet-1k training set.
As before, we repeat the experiments with 5 random seeds and illustrate the results in Table
4 and Figure 6. The overall trends are the same as the other setups in the original paper.
FastFill significantly outperforms all baselines.

Table 4: ImageNet-1k Experiments on architectural
changes: The old model is a ResNet-18 and the new
model a ResNet-50.

Method t̃op1 m̃AP
Old model 54.04 26.41
FastFill 67.77 45.94
FCT 64.91 43.43
RACT 64.80 42.04
BCT 59.26 36.56

Figure 6: We run experiments on ImageNet to investigate the performance of an architecture
change. The old model is a ResNet-18 and the new model a ResNet-50; both are trained on
ImageNet-1k.
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B.2 Side-Information Experiments

Figure 7: We add side-information to the transformation function trained with either FastFill
(blue) or FCT (orange). FastFill outperforms FCT on all three metrics: CMC-top1 (left),
CMC-top5 (middle), and mAP (right).

We now train both the FCT transformation model (h) as well as the FastFill transformation
and uncertainty models (h and ψ) with side-information. For the side-information model we
train a ResNet50 model on ImageNet-500 with SimCLR (3). Otherwise, we use the same
set-up as for the main paper ImageNet experiments. We show in Figure 7 that both methods
get a performance boost with side-information. But FastFill still significantly outperforms
FCT on three different metrics: C̃MC-top1 (67.81% vs 64.72%), C̃MC-top5 (84.23% vs
82.35%), and m̃AP (46.23% vs 42.55%).

B.3 CMC-top5

We run experiments using the CMC-top5 retrieval metric. As shown Figure 8 FastFill
outperforms all baselines on ImageNet-1k (+2.8%), VGGFace2 (0.1%), and Places-365
(+2.1%) when using CMC-top5 to evaluate retrieval performance.

(a) (b) (c)

Figure 8: We run experiments using the CMC-top5 retrieval metric on (a) ImageNet-1k, (b)
VGGFace2, and (c) Places-365.
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C Further Ablation Studies

C.1 Ablation on ImageNet-1k

We elaborate from the ablation study provided in the main paper in section 6 in Figure 9
and Table 5 adding the CMC-top1 metric. In particular we show that when training with
Ldisc with or without uncertainty we get poor compatibility performance at 0% backfilling
and throughout the backfilling (when measured using mAP). However, adding it to Ll2 to
get Ll2+disc improves results for both random and σ2 based backfilling for both mAP and
CMC-top1.

Table 5: Ablation Study: We compare the effect of
different training losses and backfilling orderings on the
backfilling curves.

Method t̃op1 m̃AP
(Ll2)-random 62.80 40.47
(Ldisc)-random 65.51 39.45
(Ll2+disc)-random 65.06 41.95
(Ll2+uncert.)-random 62.58 40.08
(Ll2+disc+uncert.)-random 64.51 42.05
(Ll2+uncert.)-sigma 65.76 43.61
(Ldisc+uncert.)-sigma 55.21 27.59
(Ll2+disc+uncert.)-sigma 66.49 44.84

Figure 9: Ablation Study: We compare the effect of different training losses and
backfilling orderings on the backfilling curves.
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C.2 Ablation on Places-365

We provide an ablation study in Figure 10 and Table 6 on the Places-365 dataset. The
conclusion is similar to the ImageNet ablation where FastFill improves its ablations using
alternative uncertainty measures and significantly improves previous work FCT.

Table 6: Ablation Study on Places-365: We compare the effect of different
training losses and backfilling orderings on the backfilling curves.

Method Transforma-
tion

Uncertainty
Estimation

t̃op1 m̃AP

Old Model 7 7 29.57 11.39
FCT 3 7 37.73 16.81
FastFill 3 Bayesian 38.32 19.48
FastFill-Ablation 3 Entropy 38.12 18.6

Figure 10: Ablation Study on Places-365: We compare the effect of different training
losses and backfilling orderings on the backfilling curves.
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C.3 Ablation on ImageNet-250 to ImageNet-500

We provide a further ablation study that compares different evaluation set-ups focusing
on different backfilling orderings provide by different uncertainty estimations. We run
experiments where the same classes are used during training and evaluation as well as
experiments where we evaluate the compatibility on previously unseen classes. The results
are illustrated in Figure 11 and Table 7. In every case we train the old model on ImageNet-250
and the new model on ImageNet-500. For the first set of experiments ([500: ]) we use the
first 500 classes for both the query and gallery. This is the same train-test classes setup.
For the second experiment ([500:]) we use the second 500 classes for both query and gallery.
This is the disjoint train-test classes setup. And finally we use all 1000 classes for both
query and gallery ([:1000]). This is a setup where half of the train-test classes overlap.
The below results show that Bayesian estimation (FastFill) brings further improved accuracy
in the presence of new classes. For example, compared to its ablations, FastFill obtains
+1% top-1 improvement when evaluated on the first 500 classes [:500], but gets +2.7% top-1
improvement when evaluated on the second 500 classes [500:] that are unseen during training.
Further, when evaluated on unseen classes, ablations of FastFill with logits-based uncertainty
estimation gets results close to no uncertainty estimation at all as in FCT.
We note that for most real-world image retrieval tasks (as for instance facial recognition,
or zero-shot retrieval) the test-time samples (for gallery and query sets) are coming from
new classes that were not present at training-time. Using a training time classification head
to measure uncertainty as in RACT (30) is a major limitation in practice since the relative
confidence or entropy between the samples from new classes tend to be not as informative.
In contrast, our proposed uncertainty estimation method based on feature alignment is
explicitly designed to be class agnostic and works well on previously unseen classes. This is
one of our method’s main contributions and novelties.

Table 7: Ablation Study on ImageNet: We compare the effect of different training
losses and backfilling orderings on the backfilling curves. The old model is trained on
ImageNet-250 and the new one on ImageNet-500.

Method Trans-
forma-
tion

Uncertainty
Estimation t̃op1

[: 500]
t̃op1
[500 :]

t̃op1
[: 1000]

m̃AP
[: 500]

m̃AP
[500 :]

m̃AP
[: 1000]

Old Model 7 7 50.7 12.41 29.32 29.13 2.47 14.9
FastFill 3 Bayesian 75.27 17.9 43.0 53.88 4.68 26.44
FastFill-ablation 3 Entropy 74.26 15.22 40.78 53.48 4.13 25.74
FastFill-ablation 3 Margin Conf. 74.21 15.17 40.66 53.21 4.01 25.56
FastFill-ablation 3 Least Conf. 74.28 15.18 40.74 53.38 4.07 25.65
FCT 3 7 71.15 14.94 38.77 48.61 3.7 23.4
RACT 7 Entropy 66.88 13.65 36.65 41.6 3.3 20.4
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Figure 11: Ablation Study on ImageNet: We compare the effect of different training
losses and backfilling orderings on the backfilling curves. Top: [500: ] Use the first 500
classes for both query and gallery. This is the same train-test classes setup. Middle:
[500:] Use the second 500 classes for both query and gallery. This is the disjoint train-test
classes setup. Bottom: [:1000] Use all 1000 classes for both query and gallery. This is
a setup where half of the train-test classes overlap. These results show that FastFill is
particularly strong when we encounter new previously unseen classes during inference
time as is common in many real life retrieval settings
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C.4 Ablation on VGGFace2

We run experiments on VGGFace2 using confidence and entropy based backfilling (as
proposed by Zhang et al. (30)) on top of our proposed loss for feature alignment and the
FCT baseline. We illustrate the results in Figure 12.
We observe that entropy/confidence based ablation on top of FastFill and baseline FCT are
quite close to random backfilling whereas our proposed uncertainty estimation significantly
improves them. Moreover, FastFill variants utilize a transformation function from old to
new feature space that leads to significantly improved model update accuracies compared to
RACT which directly enforce compatibility between new and old models (more than 5% on
top-1 and 25% on mAP metrics).
We note that the uncertainty estimation measures proposed in Zhang et al. (30) (confidence
and entropy) are intuitive and simple to use, but rely on the training time classification head.
For most real-world image retrieval tasks (e.g. face recognition, or zero-shot retrieval) the
test-time samples (for gallery and query sets) are coming from different classes to those seen
during training-time. Using the training-time classification head to measure uncertainty as
in Zhang et al. (30) is a major limitation in practice since the relative confidence/entropy
between the samples from new classes tend to be not informative. In contrast, our proposed
uncertainty estimation method based on feature alignment is explicitly designed to be class
agnostic and works well on previously unseen classes. This is one of our method’s main
contributions/novelties.

(a) (b)

(c) (d)

Figure 12: We run experiments on VGGFace2 using confidence and entropy based backfilling
(as proposed by Zhang et al. (30)) on top of our proposed loss for feature alignment and the
FCT baseline. We compare different methods using the CMC-top1 (a, b) and mAP (c, d)
metrics, respectively. In (b) and (d) we further compare against RACT.
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D Positive and Negative Flips Analysis

We analyse the positive and negative flips for FastFill and FCT. A negative flip is an image
that gets classified correctly for cross-model retrieval with 0% but gets misclassified when
using α ∈ (0, 1] amount of backfilling. Conversely a positive flip is an image that originally
gets misclassified but then labelled correctly for some amount of (partial) backfilling. The
retrieval performance at a certain backfilling point is a function of the original cross-model
retrieval performance at 0% backfilling and plus the number of positive minus the negative
flips. We show FastFill outperforms FCT by both increasing the number of positive flips with
limited backfilling whilst also causing fewer negative flips throughout the entire backfilling
curve. We note that even though at 100% backfilling both FCT and FastFill use the same
model, the number of flips doesn’t match as it also depends on the cross model performance
at 0% backfilling, which is different for the two methods.

(a) (b)

Figure 13: Positive and Negative Flip Analysis on ImageNet. We compare FastFill (blue and
orange) and FCT (green and red) on ImageNet using (a) CMC-top1 and (b) top-5 retrieval,
respectively. The aim is to maximize the number of positive flips (orange and red), whilst
minimizing the number of negative ones (blue and green) with as little backfilling as possible.
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E Sigma Analysis

Further to the analysis done in the main paper above, we show how well σ2 correlates
with different loss functions (Ll2+disc(xi), Ll2(xi), and Ldisc(xi)) and the orderings that
they induce. Our prediction σ2 most closely correlates with Ll2+disc(xi) (the two orderings
have a Kendall-Tau correlation of 0.67) which is unsurprising as it is trained to predict this
loss. However, it still predicts both Ll2(xi) (Kendall-Tau correlation of 0.65) and Ldisc(xi)
(Kendall-Tau correlation of 0.63) well.
When we train our uncertainty estimator to predict Ll2(xi), the correlation with the or-
dering induced by Ll2(xi) (Kendall-Tau=0.73) increases but at the same time it correlates
significantly less strongly with the order based on Ldisc(xi) (Kendall-Tau=0.56).
When we train with Ldisc(xi), we still get a relative strong correlation with the ordering
induced by Ldisc(xi) (Kendall-Tau=0.62), but much less so with the Ll2(xi) order (Kendall-
Tau=0.34).

(a) (b) (c)

(d) (e) (f)

Figure 14: a, b, c) We show that the predicted logσ2
i , the output of ψϑ on gallery images,

and logLl2+disc(xi), logLl2(xi), and logLdisc(xi), respectively, are are well correlated. c)
We sort xi once by σ2

i and once by Ll2+disc(xi), Ll2(xi), and Ldisc(xi), respectively, to get
two sets of orderings. Here, for each xi we plot its order in the first ordering vs its order in
the second ordering, and observe great correlation (Kendall-Tau correlation=0.67 (0.65, and
0.63 respectively)).
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F Backfilling Order Analysis - VGGFace2-Gender

We now analyse which types of classes are backfilled first using our FastFill method on the
VGGFace2-Gender dataset. We group the classes into a minority (female) and majority
group (male). As seen in Figure 15 FastFill prioritizes the minority class for early backfilling
which explains the behaviour seen in Section 5.3 in the main paper.

(a) (b)

Figure 15: We compare the backfilling order of the minority (female) and majority (male)
classes using (a) FastFill, and (b) FCT-Random. FastFill prioritizes the minority group
and backfills the female gallery images first. As a results, FastFill achieves the new model
accuracy gap after only ∼ 25% of backfilling.
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