
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PARTIALLY CONDITIONED PATCH PARALLELISM FOR
ACCELERATED DIFFUSION MODEL INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have exhibited exciting capabilities in generating images and are
also very promising for video creation. However, the inference speed of diffusion
models is limited by the slow sampling process, restricting its use cases. The se-
quential denoising steps required for generating a single sample could take tens or
hundreds of iterations and thus have become a significant bottleneck. This limita-
tion is more salient for applications that are interactive in nature or require small
latency. To address this challenge, we propose Partially Conditioned Patch Par-
allelism (PCPP) to accelerate the inference of high-resolution diffusion models.
Using the fact that the difference between the images in adjacent diffusion steps
is nearly zero, Patch Parallelism (PP) leverages multiple GPUs communicating
asynchronously to compute patches of an image in multiple computing devices
based on the entire image (all patches) in the previous diffusion step. PCPP de-
velops PP to reduce computation in inference by conditioning only on parts of the
neighboring patches in each diffusion step, which also decreases communication
among computing devices. As a result, PCPP decreases the communication cost
by around 70% compared to DistriFusion (the state of the art implementation of
PP) and achieves 2.36 ∼ 8.02× inference speed-up using 4 ∼ 8 GPUs compared
to 2.32 ∼ 6.71× achieved by DistriFusion depending on the computing device
configuration and resolution of generation at the cost of a possible decrease in
image quality. PCPP demonstrates the potential to strike a favorable trade-off,
enabling high-quality image generation with substantially reduced latency.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2020; Dhariwal & Nichol, 2021) are very successful
in modeling and generating unstructured data, such as images, molecular structures (Huang et al.,
2022), and three-dimensional (3D) models (Qian et al., 2023). In recent years, with the release of
the latent diffusion model (Rombach et al., 2021), its variants (Ho, 2022; Saharia et al., 2022) have
become the center of attention in both academia and industry. Doing a diffusion process in the latent
space, in which dimensionality can be much smaller than the image space, requires significantly
lesser computation to train a diffusion model and make inferences with it than in the image space.
Despite the wide adoption and application of diffusion models, its sequential denoising process of
hundreds or thousands of steps bottlenecks the inference speed and introduces non-trivial latency for
interactive use cases. This challenge becomes more prevalent when the resolution of the generated
images increases.

Two types of methods have been proposed to accelerate the inference of diffusion models: decreas-
ing the number of steps required for the denoising diffusion process and increasing the computing
speed of diffusion steps. The most adapted diffusion models - Denoising Diffusion Probabilistic
Models (DDPMs) (Ho et al., 2020) can take thousands of denoising steps to generate an image.
Various works were introduced to decrease the denoising steps required but often at the cost of the
quality of generation, such as Denoising Diffusion Implicit Models (DDIMs) (Song et al., 2020)
and DPM-Solvers (Lu et al., 2022a;b). Other works were introduced to decrease the computation
needed for each diffusion step, such as Spatially Sparse Inference (SSI) (Li et al., 2022) and Q-
Diffusion (Li et al., 2023), also trading quality for speed. With the growing interest in fast inference
for diffusion models, in addition to accelerating the diffusion process on a single device, researchers
began to study making inferences parallelly to generate a single image utilizing multiple devices.
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ParaDiGMS (Shih et al., 2023) computes multiple diffusion steps in parallel while Patch Parallelism
(PP) (Li et al., 2024) separates an image into patches and does diffusion on each patch in a dedicated
device. Li et al. (2024) introduced DistriFusion, the current state-of-the-art diffusion model infer-
ence acceleration method leveraging multiple devices, which implements PP using asynchronous
communication among devices.

In this paper, we empirically show that the denoising step of every patch of an image does not
necessarily need to be conditioned on the entire feature map in the previous step. This allows
the communication in DistriFusion to be optimized and further decreases the computation required
for every diffusion step during inference. Our method Partially Conditioned Patch Parallelsim
(PCPP) thus reduces latency compared to PP by reducing the amount of computation performed in
the denoising step. As a result, PCPP decreases the communication cost by around 70% compared
to DistriFusion and achieves 2.36 ∼ 8.02× inference speed-up using 4 ∼ 8 GPUs compared to
2.32 ∼ 6.71× achieved by DistriFusion depending on the computing device configuration and
resolution of generation.

2 BACKGROUND

2.1 DIFFUSION MODEL

Diffusion models, or diffusion probabilistic models (DPMs), are latent variable models defined by
Markov chains. This stochastic model predicts the probability of a sequence of possible events
occurring based on the previous event (Ho et al., 2020). The Markov chain is first trained through a
forward diffusion process, during which noise is added to the sample using variational inference to
control the strength of the Gaussian noise (Song et al., 2020). Subsequently, the forward diffusion
process is reversed, denoising the sample at each timestep until the final image is generated (Li
et al., 2023). This denoising step can be achieved through either a noise prediction model, which
attempts to predict the next noise components, or data prediction models, which predict the original
data based on the noise at each timestep (Lu et al., 2022b). Currently, noise prediction models that
utilize the U-Net (Ronneberger et al., 2015) architecture are typically used in practice for diffusion
models with attention modules (Vaswani et al., 2017) in transformers (Li et al., 2023). Let the
noise prediction model be ϵθ. The process begins with a Gaussian noise sample xT ∼ N (0, I) and
iteratively denoises it for T steps to obtain the final image x0. At each step t, the noisy image xt is
fed into the model ϵθ along with the timestep t and an optional condition c (such as text), to predict
the noise component ϵt = ϵθ(xt, t, c). The image xt−1 at the next timestep is then calculated using
ϵt. The latency bottleneck often happens during the forward passes through the U-Net.

For conditional sampling with diffusion models, guided sampling is a popular technique for saving
sampling time by reducing the retraining steps of the network. It supports two guided sampling
methods for the conditional noise prediction model ϵ̂θ(xt, t, c). The first method is classifier guid-
ance, which uses a pretrained classifier to define the conditional noise prediction model on the
variable guidance scale. The second method is classifier-free guidance, where the unconditional and
conditional noise prediction models share the same model, combining the score estimates instead of
relying on a specified classifier (Lu et al., 2022b). Our focus lies on the generative denoising process
that utilizes the U-Net structured noise prediction models with classifier-free guidance.

2.2 PATCH PARALLELISM

One approach to designing parallelism for diffusion models is Patch Parallelism (PP), where a single
image is divided into patches and distributed across multiple GPUs for individual and parallel com-
putations. In the naive approach to PP, i.e. with no communication between the patches, each device
essentially creates its own full image. When brought together, these individual images form the final
composite image (Li et al., 2024). To create one cohesive image using PP, synchronous communica-
tion can be employed to obtain intermediate activations between patches at each step. This approach
is similar to domain parallelism, where devices communicate by exchanging halo regions at their
boundaries during forward and backward convolution passes, synchronizing between communica-
tion and computation phases. However, when dealing with smaller tensors, this approach may incur
significant communication overhead, which can mitigate the speedups gained from parallelizing the
process (Jin et al., 2018). To address this issue for single image generation across multiple devices,
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Figure 1: Example of images generated using Partially Conditioned Patch Parallelism (PCPP) with
varying partial value. The images are generated with 4 GPUs using PCPP. Due to the use of
classifier-free guidance, 2 GPUs are used in the denoising process to generate pixels directly. The
image is separated into upper and lower patches computed by dedicated GPUs parallelly. To provide
a clear comparison, warm-up synchronization steps are not applied, i.e., the computation of patches
is separated at the very first step. The blue/green region refers to the activation used to compute the
upper/lower region. The activation can consist of fresh activation of the local patch and partial stale
activation from the last step of the neighbor patch, depending on the partial value used.

communication needs to be introduced between patches while ensuring that no extra synchronization
costs are incurred in the overall processing time. This concept is explored in DistriFusion, which
introduces a hidden communication element to PP (Li et al., 2024).

DistriFusion uses one synchronous communication to facilitate patch interaction, followed by asyn-
chronous communication at each subsequent denoising step, where the slightly outdated activations
from the previous step are reused to hide the communication overhead within the computation. Ad-
ditionally, the process and image quality is optimized using classifier-free guidance, dividing the
devices into two batches: one for performing additional computations instead of creating an extra
classifier, and the other for actual image computation. Due to batch splitting, the number of devices
available for each image generation is limited, as only half of the devices are utilized for generating
pixels (Li et al., 2024). As such, experiments conducted on 8 GPUs would equate to distributing the
image patches across 4 GPUs. To extend DistriFusion, we delve deeper into the modules involved in
each denoising step. We identify and experiment with areas that can be further parallelized through
the use of partial activations and optimized communication, leading to the development of PCPP.

3 METHOD

In this section, we introduce our PCPP for parallelizing the inference of diffusion models using
multiple devices asynchronously by point-to-point communication. The key idea is to partition the
image horizontally into n non-overlapping patches and process each patch conditioned on only itself
and the parts of its neighboring patches (from the previous step) on separate devices. This approach
is based on the hypothesis that generating image patches does not always necessitate dependency
on all other patches; instead, satisfactory results can be achieved by relying solely on neighboring
patches. An illustration of image generation using PCPP is presented in Figure 1. To implement
PCPP, we redesign the asynchronous communication in DistriFusion and adjust the input for every
self-attention module in the U-Net (Ronneberger et al., 2015) to reduce computation. Section 3.2
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explains how collective communication is optimized to point-to-point communication with neigh-
boring patches, while Section 3.3 illustrates the adjustments made to the self-attention mechanism.

3.1 FORMULATION

Let xt ∈ RH×W×C denote the image at diffusion timestep t, where H , W , and C are the height,
width, and number of channels, respectively. We divide xt horizontally into n non-overlapping
patches {x(i)

t }ni=1, with each patch x
(i)
t ∈ Rh×W×C , where h = H/n. Let ϵθ(·) represent the noise

prediction model parameterized by θ, and c be the conditioning information (e.g., a text prompt). We
use s ≥ 1 as the guidance scale for classifier-free guidance. We introduce a partial value p ∈ [0, 1]
representing the percentage of the neighboring patch used in the context.

Patch update with parts of a stale neighboring context. At each timestep t, we update each patch
x
(i)
t by incorporating its own state and a partial portion of the neighboring patches from the previous

timestep xt+1. Specifically, for patch (i), we define its neighboring context N (i)
t (p) as:

N (i)
t (p) =


{

upper ph of x(i+1)
t+1

}
, if i = 1{

lower ph of x(i−1)
t+1 , upper ph of x(i+1)

t+1

}
, if 1 < i < n{

lower ph of x(i−1)
t+1

}
, if i = n

(1)

Here, upper ph of x(i+1)
t+1 denotes the top ph pixels (height) of the neighboring patch x

(i+1)
t+1 , and

lower ph of x(i−1)
t+1 denotes the bottom ph pixels of the neighboring patch x

(i−1)
t+1 .

Adjusted noise prediction. For each patch x
(i)
t , we compute the adjusted noise prediction

ϵ̂θ(x
(i)
t ,N (i)

t (p), t, c) using classifier-free guidance:

ϵ̂θ(x
(i)
t ,N (i)

t (p), t, c) = ϵθ(x
(i)
t ,N (i)

t (p), t)+s
(
ϵθ(x

(i)
t ,N (i)

t (p), t, c)− ϵθ(x
(i)
t ,N (i)

t (p), t)
)

(2)

where ϵθ(x
(i)
t ,N (i)

t (p), t) is the unconditional noise prediction, incorporating the partial neighbor-
ing context, and ϵθ(x

(i)
t ,N (i)

t (p), t, c) is the conditional noise prediction.

Reverse diffusion step. Using the adjusted noise prediction, we compute the mean
µθ(x

(i)
t ,N (i)

t (p), t) for the reverse diffusion process:

µθ(x
(i)
t ,N (i)

t (p), t) =
1

√
αt

(
x
(i)
t − βt√

1− ᾱt
ϵ̂θ(x

(i)
t ,N (i)

t (p), t, c)

)
(3)

where αt and βt are the noise schedule parameters, and ᾱt =
∏t

s=1 αs.

The updated patch x
(i)
t−1 is then obtained by:

x
(i)
t−1 = µθ(x

(i)
t ,N (i)

t (p), t) + σtz, z ∼ N (0, I) (4)

3.2 COMMUNICATION WITH ONLY NEIGHBORING PATCHES

In DistriFusion, each denoising step t includes forward passes through L layers in the U-Net. At
each step, it first splits the input xt into n patches x(1)

t , . . . , x
(n)
t . For each layer l and device i, when

the input activation patches A(i)
l,t are received, two processes execute asynchronously: (1) On device

i, the activation patches A
(i)
l,t are reintegrated into the previous step’s stale activations Al,t+1, and

then processed by the sparse operator Fl (which may be linear, convolutional, or an attention layer)
to carry out the necessary computations, and (2) Simultaneously, an AllGather operation collects
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...

...A0,9 A1,9 A2,9 A3,10 AL,10

Layer 3 at time step 9 

Computation

Complete async recv of
A2,9 from rank 1 and 3
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Figure 2: Partially Conditioned Patch Parallelism (PCPP) asynchronous communication design.
This diagram captures the computation and recv buffer state at t = 9 and layer 3 for device rank 2
prior to executing the self-attention computations. The device is confirming the completion of async
recv of the previous layer’s activation from its adjacent rank; once this is completed, A2,10 in the
recv buffer from rank 1 will be overwritten by A2,9 for subsequent use at time step t = 8. In the
meantime, it initiates an (async send) of its own activation A3,9 to its neighboring rank, concurrent
with the self-attention computation. As described in Section 3.3, the input to the self-attention
computation is A(2)

2,9 and the two neighboring stale activations from last step A
(1)
3,10 and A

(3)
3,10.

A
(i)
l,t from all devices to assemble the complete activation Al,t required for the subsequent denoising

step t− 1.

In PCPP, we replaced AllGather with asynchronous point-to-point Send and Receive. Figure 2
provides a visualization of our proposed communication design during the diffusion inference phase.
Specifically, each device maintains up to two receive buffers (recv buffer) for activations from its two
neighboring ranks, each of size L. After the initial warm-up steps where we perform synchronous
AllGather, the two recv buffer will be constantly overwritten by the newly received activations from
its neighboring ranks. For each layer l, device i and time step t, when the input activation patches
A

(i)
l,t are received, we perform the following steps. Firstly, wait for the asynchronous send and

receive of A(i)
l−1,t to complete so that they will be saved into recv buffer (while they are not used in

this step, they will be used in the next time step t − 1). Secondly, initiate an asynchronous send of
its incoming activation A

(i)
l,t to its neighbors i− 1 and i+ 1. Lastly, compute attention as described

in Section 3.3 using A
(i)
l,t and the two neighboring stale activations from last step A

(i−1)
l,t+1 and A

(i+1)
l,t+1 ,

which can be directly loaded from the two recv buffer. The communication overhead of the second
step is hidden under the computation latency of the last step, as shown in the close-up illustration in
Figure 2. The total communication cost is also greatly reduced due to the replacement of collective
communication with point-to-point communication.

3.3 PARTIALLY CONDITIONED ATTENTION

In DistriFusion, the input to attention layers are the complete activations of the entire image assem-
bled using stale activations from all other devices and the on-device activation as output from the
previous module. In detail, the input hidden state is multiplied with matrices W q,W k,W v to create
query, key, and value tensors. Then, the key and value tensors are expanded to include stale keys and

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Scaled Dot Product Attentionheads

Local
Patch Neighboring

Patch 1

Neighboring
Patch 2

Figure 3: Overview of partially conditioned attention. The local patch receives partial QNP s and
KNP s from the neighboring patches. The size of partial keys and values is determined by the
parameter partial, whose effect is shown in Figure 1. K and V are then assembled using QLP ,
QNP s and KLP , KNP s respectively, instead of using all the patches from the entire image. LP
means local patch, NP means neighboring patch. Black arrows refer to data transfer on the local
device, and blue arrows refer to communication between patches on different devices.

values from the last step from other devices by AllGather. We hypothesize that to generate patches
that are cohesive in parallel, only neighboring context (pixels) is needed instead of the entire feature
map. We test to use only a portion of the neighboring patches to generate patches in denoising steps
as defined in equation (1). With this hypothesis, we propose partially conditioned attention to com-
puting muti-head scaled dot product attention based on keys and values that consist of local context
and partial neighboring context as shown in Figure 3.

Figure 1 shows how the quality of the generated image changes with different partial values p, i.e.,
the fraction of neighboring context used in the computation of key and value. In the case of using
two GPUs to generate an image (and another two GPUs for classifier-free guidance (Ho, 2022)), if
partial is set to 0, i.e., no neighboring context is considered when generating upper patch and lower
patch in parallel, the resulting image contains two sub-images with a clear distinction between them
as shown in the left-most image in Figure 1. Therefore, the computation of attention in a patch needs
to be conditioned on at least a fraction of its neighboring patches to ensure a smooth connection
between patches. From Figure 1, we notice that partial ≥ 0.3 guarantees to generate a cohesive
image when 2 GPUs are used. The tuning of partial for different numbers of GPUs used is further
discussed in later sections.

Out of the three types of layers in the U-Net—Attention, Convolution, and Group Norm—we de-
cided to enable PCPP for self-attention only, since it involves the largest amount of data to be sent
and received from other devices, as shown later in Table 2. For Group Norm, Li et al. (2024) showed
that synchronization is critical for group norms to be statically useful for good generation quality.
This is especially true when a large number of devices are used as group norms computed solely on
on-device activations, which are insufficient for precise approximation. Hence, we used the same
approach in DistriFusion instead of point-to-point communication with only the neighboring devices
for computing group norms. Lastly, since the convolution layer only accounted for a small percent-
age of the overall communication cost and only share the boundary pixels with other devices, we
decided to leave the AllGather function for it as it is.

4 EXPERIMENTS

We used the NCCL (NVIDIA Collective Communications Library) as the backend for the
torch.distributed library to implement PCPP. In particular, we used batch isend irecv
for point-to-point communication among neighboring patches. Compared with individual isend

6
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Table 1: Communication cost breakdown for three different resolutions on 8 A100s. The total buffer
size is the sum of Group Norm, Conv2d, and Attn components, representing the number of bytes to
send to other devices during one forward pass of the entire U-Net. Compared to the method used in
DistriFusion, our method PCPP reduces the communication cost by around 70%.

Method 1024× 1024 2048× 2048 3840× 3840

Total Buffer Size 0.218G 0.855G 2.98G
Group Norm 0.006M 0.006M 0.006M
Conv2d 0.008G 0.016G 0.031G
Attn 0.21G 0.839G 2.949G

Total Communication Amount
DistriFusion 1.526G 5.985G 20.86G
Ours 0.476G 1.79G 6.115G

and irecv, this helps avoid potential deadlocks and simplifies the bookkeeping and management
of the asynchronous requests in our code. A detailed description of our parallel implementation
is included in Appendix A. For the parallel inference, we used Stable Diffusion XL (Podell et al.,
2024) with a 50-step DDIM sampler, classifier-free guidance applied with guidance scale s of 5, and
CUDA Graph to reduce launch overhead. All experiments were conducted on 2 compute nodes, each
containing 4 NVIDIA A100 40GB GPUs, except for generating images of resolution 3840 × 3840
on 1 NVIDIA A100 80GB GPU.

To evaluate PCPP, we use the 2014 HuggingFace version of the Microsoft COCO (Common Ob-
jects in Context dataset). The COCO caption dataset consists of human-generated captions for the
dataset images (Chen et al., 2015). For our experiments, we utilize a portion of the HuggingFace
COCO data, from which we sample a subset of 1K images with the caption for each from the vali-
dation set. We compare the communication cost, image quality, and generation latency of our PCPP
implementation to the results obtained using DistriFusion.

Communication cost. In PCPP, nearly all communication happens in the self-attention, group-
norm, and convolution layers of the U-Net. To measure the total communication amount, we use
the total number of bytes sent and received by all the devices. First, we calculated the total amount
of bytes needed to send to other devices for all three layers. For the AllGather operation in Patch
Parallelism (PP), assuming the use of ring AllGather, the amount is calculated as bs × (n− 1)× 2,
where bs is the send buffer size, n is the number of devices, and 2 is the 2 bytes for FP16 precision.
For the isend irecv operations in PCPP, the communication amount is bs × 2 × 2, where each
device sends to at most 2 neighbors. Note that since we have only implemented the PCPP for the
self-attention layer, we would keep the calculation for the other layers the same as in the Patch
Parallelism approach.

Image quality. Following previous works (Li et al., 2020; 2024), we employ standard evaluation
metrics, namely Peak Signal-to-Noise Ratio (PSNR), Learned Perceptual Image Patch Similarity
(LPIPS), and Fréchet Inception Distance (FID). PSNR quantifies the difference between the nu-
merical image representations of the benchmarked method outputs and the original diffusion model
outputs, where higher values indicate better quality matching the original image. LPIPS assesses
perceptual similarity between the two image outputs, with lower scores indicating greater perceptual
similarity (Zhang et al., 2018). Finally, the FID score measures distributional differences between
the two outputs, particularly evaluating the diversity and realism of the images, where lower scores
indicate better results (Heusel et al., 2017).

Latency. The latency is calculated as the average of 20 inferences on the same prompts. Before the
measurement, there are 3 iterations of warm-up on the whole denoising process. The measurements
are obtained with CUDAGraph enabled to optimize some kernel launching overhead.
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Table 2: Quantitative evaluation of image quality by 50-step DDIM sampler (Song et al., 2020).
Four warm-up steps are used at the beginning, i.e., synchronizing the compute on the first four
diffusion steps. w/ G.T. indicates that the metrics are calculated using the ground-truth images from
the COCO dataset, while w/ Orig. indicates calculations using the original model’s samples on a
single device. For PSNR, the w/ Orig. setting is reported.

#Devices Method PSNR (↑) LPIPS (↓) FID (↓)

w/ Orig. w/ G.T. w/ Orig. w/ G.T.

1 Original – – 0.796 – 65.3

4 DistriFusion 31.9 0.146 0.797 20.8 65.5
4 Ours 29.2 0.352 0.800 38.4 65.2

8 DistriFusion 31.1 0.181 0.798 24.1 65.6
8 Ours 28.8 0.403 0.805 42.2 64.8

5 RESULTS

5.1 LATENCY

5.02 s by 1 device

23.7 s by 1 device

140 s by 1 device

Figure 4: Inference latency for generating one image with
50-step DDIM sampler (Song et al., 2020) by resolution and
device configuration. Our method sets the partial value for
partially conditioned attention to 0.3 for 4 devices and 0.8
for 8 devices. The red numbers show the speed-up achieved
compared to inference on 1 device.

Since the communication is hidden
by the computation in every mod-
ule, as shown in Figure 2, the la-
tency is determined by the computa-
tion speed. By using different par-
tial values for partially conditioned
attention, we reduce the input size to
the scaled dot product attention and
thus speed up the computation. This
effect is more salient when the res-
olution is higher, as shown in Fig-
ure 4. When the resolution is low, the
decrease in computation is not obvi-
ous. However, when the resolution is
high, the decrease in latency is more
promising. Note that different partial
for partially conditioned attention is
used for 4 devices and 8 devices to
ensure the quality of the image gen-
erated. When more devices are used,
the height of every patch decreases,
resulting in less context contained in
a patch. We hypothesize that for a
large number of devices, more than
the immediately neighboring patches are required for the partially conditioned attention to consider
enough context.

5.2 COMMUNICATION COST

The results for communication cost are presented in Table 1. We followed the approach described in
Section 4, which is not identical to the calculation in DistriFusion (Li et al., 2024). For consistency,
we recalculated the total communication amount for DistriFusion. As expected, the point-to-point
communication overhead of PCPP is significantly reduced compared to the collective communica-
tion in PP, achieving an average of about 70% reduction in communication amount. The majority of
the savings come from the self-attention layer, which dominates the communication overhead.
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Figure 5: Visual comparison of sample images generated by three prompts that work relatively well
with PCPP. More examples are available in Appendix B.

5.3 GENERATION QUALITY

As shown in Table 2, the images generated using our method PCPP generally achieved lower results
than DistriFusion. This difference is an expected trade-off resulting from our communication strat-
egy. By employing point-to-point communication with only neighboring patches, the inference pro-
cess inherently loses access to a significant amount of contextual information from non-neighboring
regions. Nevertheless, PCPP achieved reasonably close PSNR scores compared with DistriFusion,
indicating comparable reconstruction quality and noise level. In terms of LPIPS and FID, PCPP
performed worse than DistriFusion, meaning that images generated using PCPP deviate more from
those generated using one device than DistriFusion.

In addition to numerical evaluations, we visually compared sample images generated by our PCPP
method, the original image generated by one device, and the images generated by DistriFusion. As
reflected in the metrics, a sizable portion of the generated images by PCPP has distortions and ir-
rational parts. This suggests that having only part or all neighboring patches may not generate a
coherent image for all prompts. In Figure 5, we show three prompts that work reasonably well with
PCPP. In the elephant example, the images generated by PCPP are visually indistinguishable from
those produced by DistriFusion, suggesting that our method can achieve comparable image quality
for certain prompts. However, in the cat example, there are noticeable differences between the PCPP
and DistriFusion outputs when 8 devices are used, although the PCPP-generated images still main-
tain high fidelity and coherence. In the bird example, the image generated by PCPP with 8 devices
is more similar to that generated by one device in terms of bird color. This shows the randomness in
the diffusion process, even with the same random seed. This discrepancy in the quality of generated
images suggests that partial attention, which is important for the diffusion process, may not always
come from the immediate neighboring parts. More comparisons are available in Appendix B.

6 DISCUSSION

In this research, we propose Partially Conditioned Patch Parallelism (PCPP) to accelerate the infer-
ence of high-resolution diffusion models leveraging multiple computing devices. Trading generation
quality for speed, we achieve better speed-up than DistriFusion - the state-of-the-art implementation
of Patch Parallelism (PP) - with less computation and communication. As a result, PCPP decreases
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the communication cost by around 70% compared to DistriFusion and achieves 2.36 ∼ 8.02× infer-
ence speed-up using 4 ∼ 8 GPUs compared to 2.32 ∼ 6.71× achieved by DistriFusion depending
on the computing device configuration and resolution of generation at the cost of a decrease in image
quality. PCPP demonstrates the potential to strike a favorable trade-off, enabling high-quality image
generation with substantially reduced latency.

Limitation and future directions. The experiments conducted are restricted by the computing
resources available. As a result, a maximum of 8 GPUs and a highest resolution of 3840× 3840 are
used. The impact of having more GPUs, i.e., more patches, on the quality of generation by PCPP
has thus not been studied. We hypothesize that for a larger number of GPUs, the context needed
for the generation of a patch may extend beyond immediate neighboring patches, corresponding to a
partial value larger than 1. The key insight from this research - reducing collective communication to
point-to-point communication with neighboring patches - provides an interesting perspective on the
trade-off between inference efficiency and generation quality in diffusion models. During parallel
inference, how much and what context does the model really need, and how fresh should those stale
activations from the previous denoising step be to achieve similar image quality? These questions
deeply about diffusion may be further studied in future research. The inconsistent quality of images
generated by partially conditioned attention on parts of neighboring patches suggests that a more
involved selection of relevant context is needed as a direction for future research. Furthermore, due
to the scope of this research, the effect of PCPP on popular optimization and inference methods
for diffusion models, such as ControlNet (Zhang et al., 2023) and LoRA (Hu et al., 2021), is left
for future discussion. Previous studies in image generation by diffusion model following a patch-
like approach for memory optimization in a single device (Yang et al., 2024; Ding et al., 2024)
may also be integrated with PCPP to improve the generation quality while taking advantage of the
asynchronous point-to-point communication.

Another potential limitation of this research (and accelerating inference with multiple computing
devices in general) is that requiring multiple GPU devices for a single-image generation might seem
like an inefficient use of resources. However, we believe this approach has potential use cases in spe-
cific areas, such as high-resolution image editing applications that demand high responsiveness. In a
traditional single-device setup, generating a high-resolution image could take more than 2 minutes.
In contrast, by leveraging PCPP, we can complete the same task in under 15 seconds without any
significant decrease in image quality, as shown in Section 5. This significant reduction in latency can
be particularly valuable in interactive applications where users expect near-instant feedback, such as
real-time image editing tools.

Ethics statement. PCPP does not intend to alter the image generated and its meaning. The gen-
erated content is primarily determined by the diffusion model and the prompts given, with possible
distortions introduced by the parallelizing computing approach. Therefore, the ethical practice of
using generation service accelerated by PCPP is ensured by the design of the diffusion model and
restrictions on the prompts as input, not as a part of PCPP.

PCPP can be applied to accelerate the generation of images by diffusion models leveraging multiple
resources. Compared to the previous state of the art approach, PCPP reduces computation and
communication for the same inference, thus contributing to energy saving for image generation.
The speed-up might be helpful for many applications requiring a timely response given a prompt.
In addition, PCPP might also be applied to diffusion models that generate data structures other than
images. We wish PCPP can be a useful tool for researchers, designers, and users of diffusion models.

Reproducibility statement. We provided a detailed description of the method and its implemen-
tation in Section 3. In addition, more implementation details are described in Appendix A. In
Section 4, we included the computing device, dataset, and evaluation metrics for reproducing the
experiments. We also plan to release the code and scripts necessary to reproduce our results.
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A PARALLEL IMPLEMENTATION

Design Choice on Synchronization. In our current implementation, for any device i, we explicitly
wait for the asynchronous operations of layer l at step t to complete at the beginning of layer l+1 at
the same step t, even if we won’t be using them until the layer l at the next denoising step t−1. One
might wonder why we don’t call the .wait()method when the activations are actually needed. We
have considered this initially. However, the NCCL (NVIDIA Collective Communications Library)
backend does not support tags in the isend and irecv operations. This means that if we allow
isend and irecv operations of multiple layers to be in-flight at the same time, the receiving
device won’t be able to identify which tensors are from which layers. As such, we decided to call
the .wait() operation a bit earlier, so that it guarantees that at any given time, only one group of
asynchronous send and receive operations between any two devices are in-flight. This ensures that
the receiving device can properly match the incoming tensors to the correct layers.

Avoiding Potential Deadlocks. Since one device can simultaneously fire up to two pairs of
isend and irecv calls to its two neighbors, if we were to issue these operations individually,
there are risks of deadlocks when the order of isend and irecv does not match each other. To
address this issue, we decided to use torch.distributed.batch isend irecv, where we
can issue all the send and receive operations for a given step in a single call, and the library handles
the coordination and matching of the tensors on the receiving side. This not only avoids the potential
for errors or mismatches, but also simplifies the bookkeeping and management of the asynchronous
requests in our code. Instead of maintaining a separate list of isend and irecv requests for each
layer, we can work with a single batch isend irecv request object, which makes the logic
more concise.

Batched Communication of Layer Activations. One potential future work is to explore
accumulating the activations for a few continuous layers before initiating the communica-
tion. In our current implementation, we send the activations for each layer individually using
dist.batch isend irecv as soon as they are ready, as described in Section 3.2. However,
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we could potentially optimize this by accumulating the activations for a couple of layers before trig-
gering the communication. This would allow us to send a batch of activations for multiple layers at
once, rather than sending them one layer at a time. This would reduce the overall communication
overhead by amortizing the costs of setting up and tearing down the communication across mul-
tiple layers. Additionally, sending larger batches of activations may allow the underlying NCCL
communication libraries to optimize the transfers more effectively.

B GENERATION RESULTS

Figure 6: Prompt: a black and white bird with red eyes sitting on a tree branch. The style of the
generated image using PCPP changes from a realistic image to a painting.

Figure 7: Prompt: A box of donuts of different colors and varieties. The image generated using
PCPP is almost identical to the image generated using DistriFusion.

Figure 8: Prompt: A boy covered up with his blanket holding the television remote. The image
generated using PCPP slightly deviates from the original in terms of the TV background and the
direction the boy is facing.

Figure 9: Prompt: The toilet is near the door in the bathroom. The image generated using PCPP has
a slightly distorted rendering of the bathroom ceiling and floor.

13


	Introduction
	Background
	Diffusion model
	Patch parallelism

	Method
	Formulation
	Communication with only neighboring patches
	Partially conditioned attention

	Experiments
	Results
	Latency
	Communication cost
	Generation quality

	Discussion
	Parallel Implementation
	Generation Results

