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Abstract

Positional encoding plays a crucial role in transformers, significantly impact-
ing model performance and length generalization. Prior research has introduced
absolute positional encoding (APE) and relative positional encoding (RPE) to
distinguish token positions in given sequences. However, both APE and RPE
remain fixed after model training regardless of input data, limiting their adaptability
and flexibility. Hence, we expect that the desired positional encoding should be
data-adaptive and can be dynamically adjusted with the given attention. In this
paper, we propose a Data-Adaptive Positional Encoding (DAPE) method, which
dynamically and semantically adjusts based on input context and learned fixed
priors. Experimental validation on real-world datasets (Arxiv, Books3, and CHE)
demonstrates that DAPE enhances model performances in terms of trained length
and length generalization, where the improvements are statistically significant. The
model visualization suggests that our model can keep both local and anti-local
information. Finally, we successfully train the model on sequence length 128 and
achieve better performance at evaluation sequence length 8192, compared with
other static positional encoding methods, revealing the benefit of the adaptive
positional encoding method.

1 Introduction

Transformer-based models have shown state-of-the-art performances in many language processing
tasks, including translation [6], question-and-answer [82, 29, 3], and commonsense reasoning [65].
The transformer mainly consists of attention block, feed-forward block, and positional encoding.
Recent works [8] have proved that quadratic-cost attention from the softmax is necessary for better
performance, especially in long-context processing. The attention block was originally designed
by applying softmax to the key-query multiplication, which requires quadratic computational cost.
To address such challenges, some efficient transformers were proposed, including sliding window
transformers (e.g., Streaming LLMs [77]), linear transformers (e.g., Performer [17]), and sparse
transformers (e.g., Reformer and sparse Sinkhorn transformer [66, 25]), etc. However, some negative
results exist regarding efficient transformers’ performances [80].

It has been noticed recently that well-designed positional encoding significantly improves the model
performances, especially in the long-context tasks [33]. While transformer-based models exhibit
satisfying performances in tasks of consistent length and distribution, their effectiveness tends to
diminish sharply when the input length exceeds the training length, e.g., long document summariza-
tion, “needle in a haystack” search, and long text generation. To avoid the expensive computation in
training, the training length is usually preferred to be relatively small due to the quadratic cost of
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Example 1: Attention (Layer 11)
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Example 1: DAPE Bias (Layer 11)

Figure 1: Visualization of DAPE learned positional biases for the 8192th query position with key positions
between 1 and 8192, while the training length is 512. We notice that DAPE learns both local and anti-local
position patterns. The model is trained with Equation 2: (1) The Attention is XWQ(XWK)⊤; (2) The Kerple
bias is B; (3) The DAPE (with Kerple) bias is f(XWQ(XWK)⊤,B). More examples are shown in Appendix
I

softmax-based transformers. However, real-world applications often require processing longer input
sequences, posing a significant challenge. Therefore, there is a growing interest in evaluating model
performance by training on shorter sequences while testing on longer inputs. Standard transformers
may not distinguish the ordering of tokens without external assistance. In practice, they depend on
positional encoding to incorporate positional information, enabling the model to make meaningful
token predictions. Without these encodings, token generation would lack the necessary contextual
order, rendering the outputs nonsensical. The RoPE [62] positional encoding method demonstrated a
notable performance degradation, failing entirely when the input length is double that of the training
length [51, 10, 24]. A common characteristic among these positional encodings is their pre-defined
and static nature. Specifically, they are fixed across various tasks and models, which may lead
to their inability to adapt to varying input lengths and contexts effectively. To address this issue,
recent works have introduced Functional Interpolation for Relative Positional Encoding (FIRE) [41],
which utilizes a neural network to learn an implicit mapping from input positions to positional bias.
A functional approach to positional encoding that dynamically adjusts positional biases based on
semantic information (input context) allows the model to empower adaptability beyond the fixed
inductive bias as adopted in previous studies (such as RoPE [62] and Alibi [52]). Although FIRE
utilizes MLPs to learn positional embeddings, these embeddings remain fixed across different tasks
once the training is completed. Intuitively, the learned static positional encoding (such as Kerple
and FIRE) is an average optimal solution across all training samples. Consequently, while they
might be generally effective, they are inherently suboptimal for any specific instance. This static
nature limits their flexibility and applicability in various real-world scenarios that deviate from the
training context. In this paper, we introduce a data-adaptive positional encoding (DAPE) method,
inspired by the limitations of static PEs. DAPE dynamically adjusts the PE based on the semantic
information (e.g., the current attention value) a and the positional indicator b. The proposed PE is
represented by MLPs due to their universal approximatability, i.e., MLPs(a, b). We note that DAPE is
compatible with all additive relative PEs and offers advantages in terms of interpretability and ease of
implementation. The proposed DAPE incorporates both the semantic and the positional information,
making the PE adaptive with the input data. The adaptivity allows DAPE to overcome the inflexibility
and achieve relatively optimal performance for each individual instance by dynamically adjusting on
each specific input data. To the best of our knowledge, this is the first semantically dependent and
adaptive positional encoding method introduced in transformer architectures.

The paper is organized as follows. In Section 2, we review some related works on positional encoding
methods, including absolute and relative positional encodings as well as the potentially no positional
encoding in some transformer models. In Section 3, we introduce the proposed DAPE method
with implementation on multi-head attention and analysis on computational costs. We conduct
comprehensive experiments on DAPE, validating its effectiveness and performances on various
language tasks and datasets, as reported in Section 4. In Section 6, some concluding remarks and
potential future works are presented.

2 Related Works

No positional encoding. Haviv et al. [30] show that decoder-only Transformers with causal attention
masks can learn positional information even without any explicit positional encoding. Recently,
Kazemnejad et al. [33] proved the effectiveness of no positional encoding (NoPE) [71]. Although
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the NoPE can implicitly catch the positional information, it performs poorly compared with some
explicit positional encoding methods [41].

Absolute positional encoding. Vaswani et al. [69] proposed Absolute positional encoding (APE) to
endow transformers with positional information. In particular, in the first layer, a (learnable or fixed
sinusoidal) real-valued encoding [69, 35, 42, 70, 47] ei ∈ Rd is assigned to each position i, leading
to an APE matrix E = [e1, · · · , en]⊤, which will be added to the input sequence. Though simple
and straightforward, APE-based Transformers usually generalize poorly to longer sequences [52].

Relative positional encoding. Relative Positional Encoding (RPE) is another popular way to
encode positional information [58, 56, 52], One popular RPE method in large language models
is rotary positional encoding (RoPE) [62, 18, 67]. RoPE rotates the query and key vectors with
an angle proportional to their absolute positions before the dot product attention, which results in
attention being a function of the relative distance between the tokens, capturing the relative positional
information. Press et al. [52] and Kazemnejad et al. [33] found that RoPE-based language models
have poor length generalization. To address this, positional interpolation (PI) [11] is proposed to
extend the context window. Following the direction, there are LongLora [12], LongRope [24], YaRN
[51] and CLEX [10]. Another popular direction is additive positional encoding. For most of these
additive RPE methods, the computation of the (pre-softmax) attention logits can be unified using the
following formula:

ARPE(X) = XWQ(XWK)⊤ +B,

where the bias matrix B ∈ Rn×n is induced by the position encoding function b : N2 → R and the
(i, j)-th entry of B is defined as b(i, j). Different formulations and parameterizations of b lead to
various RPE variants. Several methodologies that facilitate arbitrary sequence lengths include T5’s
RPE [56], Alibi [52], Kerple [13], Sandwich [14], and FIRE [41]. Currently, additive RPE delivers
relatively robust performance in length extrapolation without necessitating additional operations.
Alibi constructs the bias matrix B utilizing prior knowledge, resulting in a basis matrix devoid of
learnable parameters [52]. Conversely, both Kerple [13] and Sandwich [14] incorporate two learnable
parameters to facilitate the learning of a bias matrix while retaining some elements of priors. FIRE
suggests adopting a learnable continuous function, such as MLPs, to convert input positions to biases
[41]. Observing these developments, it becomes evident that the next generation of bias matrices will
likely incorporate adaptivity and flexibility. Based on this insight, we propose our method DAPE, a
semantically adaptive method.

3 Method

In this section, we formally introduce DAPE (data-adaptive positional encoding), a new relative
positional encoding approach that further enhances transformer performance. Compared with previous
works on static positional encoding methods, DAPE adopts semantically adaptive positional bias
matrices depending on input context. We first demonstrate that most of the popular positional bias
matrices are fixed once the training is finished, independent of the input sequences. To address this
limitation, we then accordingly develop DAPE that captures the implicit relationships by MLPs and
adjusts the bias matrices based on input context. Furthermore, we discuss a variant of DAPE with
residual connections and its extensions to multi-head transformers.

3.1 Additive Relative Positional Encoding

For most additive RPE methods, the computation of pre-softmax attention logits can be unified under
the following formula:

ARPE(X) = XWQ(XWK)⊤ +B, (1)

where the bias matrix B ∈ Rn×n is induced by the position encoding function b : N2 → R and the
(i, j)-th entry of B is defined as b(i, j). Various formulations and parameterizations of b give rise to
different variants of RPE. Examples of additive RPE include: (1) Alibi: b(i, j) = −r|i − j|, with
the scaler r > 0 as a hyper-parameter; (2) Kerple: b(i, j) = −r1log(1 + r2|i − j|) with r1 and r2
are two learnable parameters; (3) FIRE: b(i, j) = fθ

(
ψ(i−j)

ψ(max{L,i})

)
, where the positional encoding

function fθ parameterized by θ is learned from data and ψ is a transformation function aimed at
assigning more model capacity to local positions.
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We observe from the formulation of those additive RPEs that they remain static once the training
process is completed and depend solely on the positions, regardless of the input context. This
inflexibility and lack of adaptivity can lead to performance degradation, especially in tasks involving
long-context generation and reasoning. Intuitively, the learned static RPEs are optimal on average
across all training samples. However, this means they are suboptimal when considering each
individual instance, as they cannot adapt to specific tasks. To address these challenges and enhance
model performance, it is essential to adopt an alternative approach using a semantically adaptive RPE
that depends on input context.

3.2 Data-Adaptive Positional Encoding

For simplicity, we first consider the single-head case and the extension to the multi-head transformer
will be discussed subsequently. The design of data-adaptive positional encodings in natural language
tasks is motivated by the need to capture the intricate relationships between tokens. Arora et al. [5]
reveals that associate recall accounts for most of the perplexity difference between transformer, RNN-
based, and convolution models. For example, we consider a consistent pairing that “Hakuna” is always
followed by “Matata” in a long paragraph. This pattern suggests a reduced reliance on positional
information in favor of enhancing token embedding similarity, thus allowing for ‘Hakuna’ to be
effectively linked with a preceding ‘Matata’. Similarly, in tasks involving long-context understanding
and search, semantic similarity should be prioritized in the attention mechanism rather than being
overshadowed by positional encodings, which can be less relevant over long distances. Consequently,
the transformer should preserve information without being influenced overly by positional distance.
Instead, a satisfactory PE should integrate both semantic and positional information. Therefore, a
semantically dependent positional encoding approach is preferable and expected to enhance model
performances. Here, we use the attention XWQ(XWK)⊤ to represent the semantic information
and positional bias matrices B (e.g., Alibi and FIRE) to capture positional details. Then the
context-adaptive PE is described by f(XWQ(XWK)⊤,B), where f(·) is an implicit function
that integrates both semantic and positional data into the desired positional encodings. Thus, the
pre-softmax attention logit incorporated with DAPE is formulated as

ADAPE(X) = XWQ(XWK)⊤ + f(XWQ(XWK)⊤,B). (2)

Here, f : RT×T × RT×T → RT×T is an element-wise function. In practice, we utilize a two-layer
LeakyReLU neural network to parameterize f(·) due to its universal approximability [36]. All
parameters are learned directly from the data during the training process. This architecture allows f(·)
to dynamically adjust positional embeddings based on the input context, ensuring that the encoding
method is both adaptive and dependent on the input data.

Different from FIRE, which also models the implicit positional encoding by MLPs, our approach
additionally integrates semantic information. This integration enables the adaptivity, flexibility, and
context-dependency of the positional encodings. Significantly, our method is compatible with most
additive RPE techniques, as these commonly involve positional bias matrices B that inherently contain
positional relations. Unlike previous RPEs, which rely solely on absolute positional differences, our
DAPE method, can be seen as utilizing multi-level positional bias matrices. Here, the bias matrices
dynamically adjust based on the input context, offering a more reasonable and responsive encoding
mechanism.

Expressiveness. Due to the universal approximability of (LeakyReLU) neural networks [36], f(·)
is capable of capturing complex relationships between the desired positional encoding and both
semantic and positional information. Regardless of the semantic component, when the relative
position i − j is used as input, DAPE can realize classical additive RPEs (e.g., Alibi and Kerple),
according to [41]. This demonstrates the versatility of DAPE in accommodating traditional encoding
schemes while also offering enhanced capabilities. There exists a fundamental trade-off between the
expressiveness and computational costs. Wider hidden layers lead to higher expressiveness but also
contribute to more computational costs. In practice, we find that two-layer neural networks with 32
hidden units per layer provide sufficient expressiveness to deliver satisfactory performance, balancing
complexity and efficiency effectively.

Discussion. We can also interpret the proposed method from an alternative perspective. In the standard
transformer architecture, the pre-softmax attention typically involves the key-query similarity and the
positional encoding by either addition (in the form of a+ b, e.g., Alibi and Kerple) or multiplication
(in the form of a ∗ b, e.g., RoPE). Here, we propose a unified approach by replacing them with
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learnable MLPs, i.e., MLP(a, b). This configuration allows the model to learn the desired relationship
between the pre-softmax attention, the key-query similarity and the positional encoding. It can also
be regarded as a new transformer architecture that empower the transformer with additional MLPs on
pre-softmax attentions.

A variant of DAPE with residual connections. It is well-known that deep neural networks may
suffer from gradient vanishing. To further enhance the practical performances, we introduce the
residual connection for positional information. Consequently, Equation 2 is modified as follows:

ADAPE(X) = XWQ(XWK)⊤ +B + f(XWQ(XWK)⊤,B). (3)

In this reformulation, f(·) acts as an adaptive correction term to the traditionally fixed RPE, dy-
namically adjusting the positional bias matrices B based on both semantic and positional inputs. In
Section 4, we empirically explore the impact of residual connections in DAPE. Our observations
reveal that for well-behaved bias matrices B, the DAPE model with residual connections, as specified
in Equation 3, is preferable. Conversely, if the bias matrix is underperforming but still conveys
positional information, the original implementation in Equation 2 is more effective.

Multi-head DAPE. In its simplest form, DAPE is considered for a single-head case as described
in Equation 2 and Equation 3. However, adopting a multi-head mechanism significantly enhances
model capabilities. To effectively combine both semantic and positional information, the DAPE in a
multi-head setup processes the key-query similarities and bias matrices from all heads. Specifically,
for an h-head layer, the function f(·) inputs a 2h-dimensional concatenation of key-query similarities
and positional biases. It then outputs h-dimensional vectors, where each element corresponds to the
DAPE for the respective head. We have shown the code implementation in Appendix J. Importantly,
semantic and positional information across different heads are processed simultaneously within the
same MLPs, rather than sequentially. This approach not only improves computational efficiencies
through parallel processing but also capitalizes on the richer semantic information available across all
heads. Compared to the key-query similarity derived from a single head, the comprehensive attention
from all heads yields more substantial semantic information.

Computational costs analysis. Here, we evaluate the additional computational costs introduced
by the DAPE method, compared with the classical positional encoding methods (e.g., Alibi and
Kerple). We consider a transformer model with h heads and assume a sequence length of N and all
hidden dimensions in the attention layer being d. Then the total computational cost for a standard
transformer equipped with classical PEs is O

(
hN2d+ hNd2

)
. When incorporating the proposed

DAPE, which employs two-layer MLPs with hidden dimension DDAPE, the additional computational
costs are O

(
hN2DDAPE

)
. If the hidden dimensions DDAPE ≪ d, the incremental computational cost

introduced by DAPE is not significant.

4 Experiment

Baselines. We evaluate the proposed DAPE against a range of established baselines, including
NoPE [33], RoPE [62], YaRN [51], Randomized RoPE [57, 31], T5’s Bias [56], Alibi [52], Ker-
ple [13], and FIRE [41]. For RoPE, the randomized positional encoding [57, 31] is applied to enhance
the model performance, extending the randomized length to four times that of the training length.

Datasets. Our analysis involves training language models on the Arxiv and Books3 datasets, which
are frequently used benchmarks for evaluating model performance [52, 13, 41, 24]. We start our
evaluation by comparing the last 256 tokens’ zero-shot perplexity across different input lengths.
Besides perplexity as evaluation metrics, we also employ the downstream datasets in randomized
positional encoding [57] to evaluate DAPE, where details are included in Appendix D.

Experiment settings. Initially, we compare DAPE with other baselines at training lengths of 128,
512, and 1024, with model size 125M decoder-only Transformers [9], whose configuration is shown
in Appendix B. Subsequently, we evaluate the performance of larger model size 350M, DAPE variants
and explore the impact of hidden dimension of MLPs DDAPE. We also examine the computational
efficiency of DAPE, focusing on processing times. Additionally, we provide visualizations of the
DAPE bias in the Appendix I. Finally, we also evaluate DAPE on algorithmic reasoning datasets via
accuracy metrics.
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Figure 2: Comparisons with baselines: performance with training lengths 128 and 512 on Arxiv and Books3
datasets.

4.1 Comparisons with Baselines

DAPE’s superior performance within training length and beyond training length, compared
to all baselines. As shown in Figure 2 and Table 5, DAPE consistently outperforms established
baselines such as RoPE, Alibi, and Kerple across various settings. Notably, DAPE-Kerple (the
positional information in DAPE comes from Kerple bias matrices) outstands in both short and long
training lengths (128 and 512), compared to previous RoPE, T5’s bias, and so on. It demonstrates
that the semantic adaptivity of DAPE significantly enhances its state-of-the-art performance against
all other static positional encoding methods.
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Figure 3: Results on the training length 1024.

The performance on longer training length
1024. As shown in Figure 3, the proposed
method consistently delivers state-of-the-art per-
formance for the training length of 1024. When
the evaluation extends to 2048, both DAPE-
Kerple and DAPE-FIRE achieve notable re-
sults, recording performances of 3.91 and 3.93
perplexity scores, respectively. Remarkably,
DAPE-FIRE behaves well at the longer eval-
uation length of 8192, achieving a performance
of 3.91 scores and surpassing Alibi’s score of
4.28. These findings reveal that DAPE sustains robust performance with a longer training length of
1024.

DAPE enhances intra-length performance, indicating that its lower perplexity may come
from thorough utilization of entire sentences but not disregarding long-distance information
(Also proved in Figure 1). Compared to Alibi, Kerple, and FIRE, the adapted versions DAPE-
Alibi, DAPE-Kerple, and DAPE-FIRE demonstrate consistently and significantly better intra-length
performance. With the growing sequence length, the Alibi tends to transition from full attention
to almost local attention, and this is why Alibi is worse than most baselines within training length
but better beyond training lengths. The results (as shown in Table 5) indicate that the superior intra-
length performance of DAPE is statistically significant, with a p-value less than 0.05. Therefore, the
consistent intra-length performances across various training lengths indicate that the lower perplexity
of DAPE results from effectively utilizing the entire sequence, rather than focusing on local parts and
neglecting long-distance information.
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DAPE significantly improves length extrapolation performance, compared to ALibi, Kerple,
and FIRE. DAPE-Kerple significantly surpasses competitors like vanilla Kerple when training and
evaluating at different lengths. On the Arxiv dataset trained at a length of 128, DAPE-Kerple achieves
a remarkably low perplexity of 5.00 at an evaluation length of 8192, in stark contrast to Kerple’s 31.93.
Similarly, on the Books3 dataset with a training length of 512, DAPE-Kerple records a perplexity of
17.88 at the same extended evaluation length, far outperforming Kerple’s 39.31. These results affirm
that DAPE, through its semantic adaptivity and flexibility, consistently enhances performance beyond
training lengths, eclipsing static positional encoding methods.

4.2 The Effect of Model Size
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Figure 4: The effect of model size: for the 350M model, the performance with training lengths 128 and 512 on
the Arxiv dataset.

DAPE enhances performance with increasing model sizes. As the model size grows (as shown
in Figure 4), DAPE consistently demonstrates an improvement in performance metrics. When the
model size is augmented from 125M to 350M, the perplexity at an evaluation sequence length of
8192 (with a training length of 512) for DAPE-Alibi shows a notable decrease from 3.82 to 3.57.
These numbers are appreciably smaller than those recorded for original Alibi, which decreases from
4.54 to 4.21 in perplexity, indicating a robust performance improvement. Additionally, DAPE-Kerple
significantly reduces the perplexity for Kerple, bringing it down from an initial 22.76 to an impressive
3.43. These results confirm that DAPE retains its efficacy and continues to perform well even as the
model size is increased, mainly due to the adoption of semantically adaptive PEs.

DAPE methods almost are ranked top-3 with large model size. With the incremental model size,
DAPE-FIRE begins to match, and nearly approach, the performance levels of Alibi. Initially, at a
model size of 125M and a training length of 512, DAPE-FIRE achieves a perplexity of 5.71 at an
evaluation sequence length of 8192, while Alibi stands at a perplexity of 4.54. However, as the model
size is increased to 350M, the performance gap significantly narrows. Specifically, DAPE-FIRE
outperforms Alibi regarding the perplexity scores when the evaluation length is smaller than 4096,
as the model size grows for evaluation. In conclusion, as shown in Figure 4, we observe that the
DAPE methods almost win the top-3 among all positional encoding methods. This trend underlines
the scalability and adaptability of DAPE, emphasizing its potential to handle more substantial
computation challenges.

4.3 Different Variants of DAPE

In this section, we evaluate the performance of DAPE across its various forms. Our analysis
focuses on DAPE-Kerple. Notably, as shown in Figure 5, all variants of DAPE surpass the baseline
performance of Kerple. The Addition_Residual variant of DAPE, while requiring less computational
effort, delivers relatively inferior results. As illustrated in Figure 5, concatenation methods (either
Concat or Concat_Residual) outperform the Addition_Residual approach, for both the training length
of 128 and 512. Furthermore, both Concat and Concat_Residual exhibit comparable performance
metrics. Specifically, at a training length of 128, Concat_Residual records a score of 5.00 and Concat
scores 5.03 at an evaluation length of 8192, whereas Add_Residual posts a 5.17 perplexity score.
With a training length of 512, Concat_Residual achieves a score of 3.70, and Concat scores 3.69 at
an evaluation length of 8192, compared to Add_Residual’s 3.75. Based on the current observation,
the different variants of DAPE show comparable performances, compared to baselines.
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Figure 5: Different variants of DAPE: the DAPE-Kerple performance under different variants. (1)
Add_Residual: XWQ(XWK)⊤ + B + f(XWQ(XWK)⊤ + B); (2) Concate: XWQ(XWK)⊤ +
f(XWQ(XWK)⊤,B); (3) Concate_Residual: XWQ(XWK)⊤ +B + f(XWQ(XWK)⊤,B).

4.4 The Effect of the Hidden Dimension DDAPE

Even small DDAPE can improve the performance. The experiments are conducted with Alibi and
DAPE-Alibi. As shown in Appendix Figure 6, when considering the training length 128 and DDAPE
is set as 4, the DAPE-Alibi achieves 8.25 at evaluation length 128 and 5.67 at length 8192, which
is better than Alibi’s 8.31 and 5.85. Whatever DDAPE is 4, 16 32, or 64, the performance is always
better than the original Alibi at all evaluation lengths. This suggests the effectiveness of DAPE, even
with smaller DDAPE.

The choice of DDAPE. Based on the experiment, overly small values of DDAPE can degrade per-
formance, although they still perform better than the baseline. Conversely, larger values of DDAPE
increase computational costs. The function f(·) is implemented as a two-layer MLP, where the input
dimension is either the head number or twice the head number, and the output dimension is the head
number. Therefore, we recommend setting the hidden dimension to the head number to prevent
information loss and ensure the capacity of f(·).

4.5 The Time Cost

Table 1: The time cost (millisecond) under different testing lengths, with DDAPE as 32 and default
batch size 1, with training length 512.

Method 350M Total Ratio 2.7B Total Ratio 6.7B Total Ratio
RoPE [62] 210.01 0.9366 472.63 1.1187 635.57 0.8858

T5’s bias [56] 355.16 1.5839 537.62 1.2725 808.85 1.1273

ALiBi [52] 172.60 0.7697 325.95 0.7715 596.77 0.8317

Kerple [13] 189.91 0.8469 370.32 0.8765 661.82 0.9224

FIRE [41] 248.13 1.1066 432.63 1.0240 797.68 1.1118

DAPE-Kerple 224.22 1.0000 422.48 1.0000 717.46 1.0000

Practical additional time cost. The additional training ratio will gradually decrease with
a larger model size, compared to baseline Kerple.. The cost of Feed-Forward Network is:
O(Nd2headd

2
hidden)=aNd

2
headd

2
hidden, where a is a constant, N is the sequence length, dhead

is the attention head number and dhidden is the dimension for attention calculation. The cost
of Attention: O(N2dheaddhidden)=bN2dheaddhidden, where b is a constant. The additional
cost of DAPE: O(N2dheaddDAPE)=cN2dheaddDAPE , where c is a constant. The cost ratio
is aNd2headd

2
hidden+bN

2dheaddhidden

aNd2headd
2
hidden+bN

2dheaddhidden+cN2dheaddDAPE
= adheadd

2
hidden+bNdhidden

adheadd2hidden+bNdhidden+cNdDAPE
. Therefore,

with the fixed sequence length and dDAPE , with the model becomes larger (with bigger dhead and
dhidden), the additional cost ratio of DAPE will greatly become smaller. Also, we have shown in
Figure 6 that dDAPE still works well with very small value, such as 4.
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Table 2: Train on length 40 with 200k steps, and test from lengths 41 to 500. The random accuracy is
50%, except for MODULAR ARITHMETIC (SIMPLE), CYCLE NAVIGATION, BUCKET SORT, SOLVE
EQUATION and MODULAR ARITHMETIC, where it is 20%. ††† denotes permutation-invariant tasks,
which are expected to be solved without positional information.

Randomized DAPE (Ours)
Level Task Learned sin / cos RoPE Relative [19] ALiBi Kerple FIRE Alibi Kerple FIRE

R

EVEN PAIRS 50.04 91.27 99.98 96.60 73.52 57.50 73.86 99.99 99.58 100
MODULAR ARITHMETIC (SIMPLE) 19.95 20.39 21.35 20.84 20.02 21.79 21.09 23.58 24.47 24.46
PARITY CHECK††† 50.14 50.52 50.05 50.09 50.09 50.07 50.97 50.30 50.07 50.04
CYCLE NAVIGATION††† 24.97 25.37 27.63 26.95 24.64 29.47 28.41 22.99 34.53 27.54

DCF

STACK MANIPULATION 59.92 65.92 61.49 64.73 66.42 66.93 69.33 68.18 72.04 70.90
REVERSE STRING 52.76 67.28 65.23 65.59 71.09 71.54 65.89 73.37 70.74 76.40
MODULAR ARITHMETIC 31.00 30.70 31.25 31.74 30.56 24.79 30.92 31.34 32.37 31.50
SOLVE EQUATION 20.00 19.97 21.85 22.93 19.92 21.15 22.06 20.03 22.49 22.42

CS

DUPLICATE STRING 52.77 65.44 64.97 67.66 65.13 66.72 69.03 70.84 72.95 72.71
MISSING DUPLICATE 50.38 49.78 63.37 72.34 74.21 79.06 79.27 83.41 87.57 89.17
ODDS FIRST 52.77 58.61 61.00 61.57 59.88 62.59 63.28 63.78 67.08 66.34
BINARY ADDITION 54.63 55.78 55.59 56.96 54.72 56.35 55.70 59.71 60.88 56.62
COMPUTE SQRT 50.47 51.11 51.88 51.63 50.63 51.11 50.80 51.64 51.33 52.46
BUCKET SORT††† 98.32 98.92 98.12 99.31 98.45 99.38 99.57 99.38 98.81 99.37

4.6 The Visualization of DAPE

In this subsection, we present the visualization of learned positional encoding biases from a DAPE-
Kerple model pretrained on Arxiv (training length is 512). We plot the learned positional encoding
bias for the query token at the 8192th position, for all the attention heads from selected layers in
Figure 1. We would like to highlight two features of DAPE. First, in different attention heads, the
bias matrix of DAPE learns both local and “anti-local” attention patterns that emphasize more on
far-away keys (just like FIRE), compared to a fixed local inductive bias (such as Kerple and Alibi).
Secondly, the bias matrix can be dynamically adjusted with different attention values, compared to
the static bias fixed for all attentions. We have shown more examples, including different layers and
different samples, in Appendix I.

4.7 Experiments on CHE Benchmark

Besides employing perplexity as an evaluation metric, we also evaluated DAPE on downstream Chom-
sky Hierarchy Evaluation Benchmark (CHE) [21] (need to utilize the whole sentence information to
generate correct answers) to further discuss its effects. The experimental setup follows randomized
positional encodings [57], detailed in Table 4, with the experiment setting shown in Appendix Section
D. Overall, FIRE outperforms Kerple in 9 out of 14 tasks, while Kerple outperforms Alibi in 11 out
of 14 tasks. This observation aligns with findings in [41], suggesting that the experiments in Table 2
are reliable and reflect the performance of positional encoding in downstream tasks.

DAPE works better on permutation-variant tasks. DAPE (with Kerple and FIRE) presented the
best performance in 10 out of 11 permutation-variant tasks (which require positional information),
achieving the second-best performance in the SOLVE EQUATION task. This underscores the efficacy
of DAPE with semantic adaptivity in handling permutation-variant challenges.

DAPE’s performance on permutation-invariant tasks. In tasks that are permutation-invariant,
where positional information is non-critical, DAPE demonstrated comparable performance. Notably,
DAPE-Alibi achieved scores of 50.30 on PARITY CHECK and 99.38 on BUCKET SORT tasks, com-
pared to the highest scores of 50.97 and 99.57, respectively, demonstrating competitive performances.

Comparative performance improvements. DAPE consistently enhanced performance across
various tasks, especially on permutation-variant tasks. Specifically, DAPE improved upon Alibi and
FIRE’s results in all 11 tested permutation-invariant tasks. Similarly, it outperformed Kerple in 10
of these tasks. These results highlight the effectiveness of DAPE over static positional encoding
methods like Alibi, Kerple, and FIRE, resulting from its dynamic adaptivity.
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5 Evaluation Protocol

In this work, we initially utilize the model to process the entire input sentence and subsequently
select the final 256 tokens for perplexity computation. This approach contrasts with a variety of
other studies, which employ methods that process the full sequence during perplexity calculations
[51, 31, 12, 24, 10, 41]. As a result, our reported baseline perplexity is comparatively higher than
the results presented in ALiBi [52], which adopt a non-overlapping evaluation strategy. This method
divides sequences longer than L into multiple segments of length L, thereby yielding lower perplexity
figures.

Though ALiBi [52] and Kerple all claim that they use non-overlapping evaluations, their reported
results are different. For example, in the ALiBi paper Table 2, the sinusoidal position encoding
perplexity increases from 20.05 (evaluation length 512) to 406.01 (evaluation length (evaluation
length 15512), while in Kerple paper Table 3 the sinusoidal position encoding perplexity from 33 to
30046. This may be caused by different evaluation protocols and training strategies.

Recommended Protocols. We strongly recommend that researchers process the entirety of the
sequence before selecting the last K tokens for the purpose of calculating perplexity. The rationale
behind processing the whole sentence is that it provides a comprehensive evaluation of the model’s
capability to handle long-context dependencies, thus offering a more accurate reflection of its
performance. Following this step, we advocate for the selection of the last K tokens to compute
perplexity, ensuring that the same number of tokens is used across different evaluation lengths, which
promotes consistency and comparability in the results.

Release this work’s code for future work. In light of this methodology, we have made our code
publicly available to other researchers in the field. This initiative aims to facilitate a standardized
comparison and evaluation of their respective methods, thereby advancing the collective understanding
of model performance in relation to perplexity calculations.

6 Conclusion

In this paper, we propose the data-adaptive positional encoding (DAPE) by incorporating both the
semantic and the positional information to improve the model performance. We show that the addi-
tional computation introduced by DAPE is not significant under proper choices of hyperparameters.
We conduct comprehensive experiments on Arxiv, Books3, and CHE to validate the effectiveness
of the proposed method, revealing that the adaptive PE method has advantages over static PEs. We
believe that the DAPE could benefit the whole community, especially on length generalization tasks.
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A Broader impacts

Positive societal impacts. We propose a method for length extrapolation, which will be helpful for
transformer-based models to process long context.

Negative societal impacts. This method may be abused for other potential long-context applica-
tions.

B Model Configuration

All experiments are conducted on 8 x A800 GPUs. The 125M model configuration is the following.

Table 3: Model Configurations.
125M 350M

Training sequence length 512 512
Batch size 32 × 8 32 × 8

Numer of iterations 50k 50k
Dropout prob. 0.0 0.0

Attention dropout prob. 0.0 0.0
Attention head 12 16

Feature dimension 768 1024
Layer number 12 24

Optimizer Adam Adam
Optimizer parameter betas [0.9, 0.95] [0.9, 0.95]

Learning rate 6e− 4 3e− 4
Precision float16 float16
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C Appendix: The Effect of the Hidden Dimension DDAPE
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Figure 6: The effect of DDAPE: the performance with training lengths 128 and 512 on the Arxiv dataset.
The experiments are conducted with Alibi and DAPE-Alibi.

D Experiments on Chomsky Hierarchy Evaluation Benchmark (CHE)

Following the framework established by [21, 57], we conduct evaluations of our DAPE on a suite
of tasks derived from the domain of formal language recognition. These tasks include modular
arithmetic, reversing and duplicating strings, binary operations and bucket sort. Based on the
Chomsky hierarchy [16], these tasks are categorized into distinct classes: Regular (R), Context-Free,
Context-Sensitive (CS), and Recursively Enumerable. Each class aligns with specific computational
models: Regular tasks are solvable using Finite-State Automata (FSA); Deterministic Context-Free
tasks can be addressed by an FSA equipped with a deterministic stack; and Context-Sensitive tasks
require an FSA complemented by access to a bounded tape.

Table 4: The example of different tasks. ††† denotes permutation-invariant tasks, which are expected
to be solved without positional information. More explanation of tasks can be found in [21].

Level Task Example Input Example Output

Regular

EVEN PAIRS aabba True
MODULAR ARITHMETIC (SIMPLE) 1 + 2− 4 4
PARITY CHECK††† aaabba True
CYCLE NAVIGATION††† 011210 2

DCF

STACK MANIPULATION abbaa POP PUSH a POP abba
REVERSE STRING aabba abbaa
MODULAR ARITHMETIC −(1− 2) · (4− 3 · (−2)) 0
SOLVE EQUATION −(x− 2) · (4− 3 · (−2)) 1

CS

DUPLICATE STRING abaab abaababaab
MISSING DUPLICATE 10011021 0
ODDS FIRST aaabaa aaaaba
BINARY ADDITION 10010 + 101 10111
COMPUTE SQRT 100010 110
BUCKET SORT††† 421302214 011222344

Problem Setting Building upon the framework proposed by Ruoss et al. (2023) [57], we utilize the
encoder-only configuration of the original sequence-to-sequence Transformer model, as delineated
by Vaswani et al. (2017) [69]. In scenarios that necessitate a multi-token output sequence y, such
as the task of string duplication, we extend the input sequence by appending |y| placeholder tokens.
Subsequently, we compute the entire Transformer output from this augmented sequence without
resorting to autoregressive sampling techniques. Training is conducted on sequences whose lengths
are uniformly distributed, sampled from U(1, N), with N set to 40. Evaluation is performed on
sequences that vary in length from N + 1 to M , where M equals 500. The implemented architecture
comprises 5 layers, 8 attention heads, and a feature dimension of 256. The dimension DDAPE is
established at 64, while the maximum randomized position L is set to 2048.
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E The Error Bar and Significance Value

Table 5: The perplexity performances on the Arxiv dataset when the training length is 512 and
running with three random seeds.

Method 512 1024 2048 4096 8192

RoPE mean 4.5755 45.1974 134.1615 222.3333 265.4545
std 0.0216 12.2241 21.8522 22.5955 20.3862

T5’s bias mean 4.5547 4.3730 12.1017 163.9289 595.0829
std 0.0204 0.0747 6.5327 136.8294 306.3671

Alibi mean 4.6146 4.5475 4.8693 5.0278 4.7679
std 0.0278 0.0990 0.1246 0.1845 0.2196

DAPE-Alibi mean 4.5262 4.1921 4.1068 4.1315 4.0013
std 0.0270 0.0653 0.0885 0.0617 0.2708

Kerple mean 4.5817 4.3504 5.4438 8.7511 13.3524
std 0.0252 0.0526 0.3187 1.1066 2.4109

DAPE-Kerple mean 4.5123 4.1716 4.0505 4.0033 3.8642
std 0.0251 0.0637 0.0973 0.0333 0.2342

FIRE mean 4.5741 4.6953 30.1164 165.5394 308.6173
std 0.0227 0.1125 4.4317 41.2065 78.4652

DAPE-FIRE mean 4.4879 4.1990 4.2826 4.7983 6.1623
std 0.0206 0.0619 0.0709 0.1701 0.9226

According to Table 5, the performances of different methods are evaluated based on perplexity
across various validation lengths ranging from 512 to 8192. The results indicate that DAPE-Alibi
consistently outperforms the Alibi method, DAPE-Kerple surpasses Kerple, and DAPE-FIRE shows
better performance than FIRE, all with p-values less than 0.05, suggesting significant improvements.

DAPE-Alibi demonstrates lower perplexity values compared to Alibi at all lengths, indicating more
effective learning and generalization. Similarly, DAPE-Kerple shows significant improvements over
Kerple, especially at larger lengths, where the gap in performance widens. The DAPE-FIRE method
also shows notable enhancements over the FIRE method, particularly at higher lengths where standard
FIRE struggles with increased perplexity.

Moreover, DAPE-Alibi, DAPE-Kerple, and DAPE-FIRE not only perform better than their respective
original methods but also show superiority over RoPE and T5’s bias across all validation lengths. This
suggests that the modifications implemented in DAPE versions provide a more robust and generalized
model, capable of maintaining lower perplexity and thus better performance on the Arxiv dataset.

In conclusion, the statistical analysis confirms that the proposed DAPE variations offer significant
improvements in perplexity performance, thereby validating their effectiveness in comparison to their
original counterparts and other baseline methods.

F Data-Adaptive Related Position Encoding Performance Comparison

Table 6: The performance comparison between data-related position encoding, with dataset Books3
and training length 128.

Method 128 256 512 1024 2048 4096 8192

Transformer-XL 31.57 28.49 26.07 26.98 27.90 32.76 41.12

CoPE 31.61 28.41 25.79 27.96 33.80 54.08 90.66

DAPE-Kerple 31.49 28.27 24.93 24.31 23.34 24.38 25.01
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According to the experiment, the transformer-xl achieves good performance on length extrapolation.
Therefore, this also suggests that the position encoding should interact with attention/query/key to
further improve the performance.

G Ablation Study on Bias Matrix

Table 7: Books Dataset Results: Train Length 512

512 1024 2048 4096 8192

QKT +B (baseline) 19.68 19.06 20.44 28.34 39.31

QKT +B + f(B) 19.64 18.83 18.49 20.62 23.49

QKT +B + f(QKT , B) 19.22 18.22 17.15 17.63 17.88

We further conduct an ablation study on the f , proving that f help enhance the bias matrix. DAPE
improves the bias matrix for Afinal, while the Afinal is used to calculate AfinalK. For the unseen
position, the B partially could handle it (FIRE changes the problem to interpolation), but is not
accurate enough so that DAPE helps enhance the bias matrix B via attention score. The experiment
suggests two points: 1) The DAPE f(QKT , B) is better than naive f(B), suggesting that the context-
adaptive is important. 2) The QKT +B + f(B) is better than QKT +B, suggesting that benefiting
from improving the expressiveness of the bias matrix.

H The result on 2.7B and 6.7B

Table 8: Model Size and Method Comparison with Training Length 512
Model Size Method 512 1024 2048 4096

2.7B RoPE 21.01 25.00 48.13 160.59
RPE 21.10 21.88 23.59 33.23
Alibi 21.23 22.17 22.91 23.22

Kerple 21.14 22.08 23.38 27.21
DAPE-Kerple 20.52 21.01 20.23 19.57

Table 9: Model Size and Method Comparison with Training Length 512
Model Size Method 512 1024 2048

6.7B RoPE 20.86 22.27 28.01
RPE 20.79 21.60 22.32
Alibi 20.79 21.63 22.45

Kerple 20.71 21.57 22.07
DAPE-Kerple 20.09 20.54 19.83

According to the result, we can find that the proposed DAPE still works well, whatever the model size
is 2.7B or 6.7B. With 2.7B model size, RoPE achieves 21.01 on evaluation length 512 and 160.50 on
evaluation 4096, while our DAPE-Kerple achieves 20.52 and 19.57 respectively. Also, DAPE-Kerple
achieves the best performance, whatever the model size is 2.7B or 6.7B from evaluation length 512 to
8192. This suggests that our proposed DAPE has great scalability.
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I DAPE Visualization

The model is trained with DAPE-Kerple on length 512.

I.1 Visualization on length 512
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Figure 7: Evaluation Length 512 Example 1: Part 1
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Figure 8: Evaluation Length 512 Example 1: Part 2
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Figure 9: Evaluation Length 512 Example 1: Part 3
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Figure 10: Evaluation Length 512 Example 2: Part 1
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Figure 11: Evaluation Length 512 Example 2: Part 2
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I.2 Visualization on length 2048
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Figure 12: Evaluation Length 2048 Example 1: Part 1
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Figure 13: Evaluation Length 2048 Example 1: Part 2
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Figure 14: Evaluation Length 2048 Example 1: Part 3
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Figure 15: Evaluation Length 2048 Example 2: Part 1
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Figure 16: Evaluation Length 2048 Example 2: Part 2
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I.3 Visualization on length 8192
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Figure 17: Evaluation Length 8192 Example 1: Part 1
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Figure 18: Evaluation Length 8192 Example 1: Part 2
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Figure 19: Evaluation Length 8192 Example 1: Part 3
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Figure 20: Evaluation Length 8192 Example 2: Part 1
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Figure 21: Evaluation Length 8192 Example 2: Part 2
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J Implementation

In this section, we present the implementation of the proposed DAPE module in PyTorch [49].

import t o r c h
import t o r c h . nn as nn

class DAPE( nn . Module ) :
def _ _ i n i t _ _ ( s e l f , head_number =12 , mlp_width =32) :

"""
DAPE attention bias module.

Args:
num_heads: number of attention heads.
mlp_width: Width of MLP.

"""
super (DAPE, s e l f ) . _ _ i n i t _ _ ( )

s e l f . mlp = nn . S e q u e n t i a l (
nn . L i n e a r (2* head_number , mlp_width ) ,
nn . LeaklyReLU ( ) ,
nn . L i n e a r ( mlp_width , num_heads )

)

def f o r w a r d ( s e l f , a t t e n t i o n : t o r c h . Tensor , b i a s : t o r c h . Tensor ) :
"""
Args:

attention: input sequence, which is q^T * k,
shape [bsz, num_heads , seq_len, seq_len]

bias: bias matrix, which can be generated by Alibi, Kerple
FIRE or other additive position encodings

shape [1,num_heads , seq_len, seq_len]

Returns:
attention with DAPE,
shape [bsz, num_heads , seq_len, seq_len]

"""
b i a s _ t i l e = r e p e a t ( b i a s , ’1 h T T -> b h T T’ , b= a t t e n t i o n . shape

[ 0 ] )

# C o n c a t e n a t e a t t e n t i o n and b i a s
a t t e n t i o n _ b i a s _ c o n c a t = t o r c h . c a t ( ( a t t e n t i o n , b i a s _ t i l e ) , dim =1)

# R e a r r a n g e t h e d i m e n s i o n s f o r MLP p r o c e s s i n g
a t t e n t i o n _ b i a s _ c o n c a t = r e a r r a n g e ( a t t e n t i o n _ b i a s _ c o n c a t , ’b h T

T -> b T T h’ )

# Apply t h e MLP
a t t e n t i o n _ b i a s _ c o n c a t = s e l f . mlp ( a t t e n t i o n _ b i a s _ c o n c a t )

# R e a r r a n g e back t o o r i g i n a l d i m e n s i o n s
a t t e n t i o n _ b i a s _ c o n c a t = r e a r r a n g e ( a t t e n t i o n _ b i a s _ c o n c a t , ’b T T

h -> b h T T’ )

return a t t e n t i o n + b i a s + a t t e n t i o n _ b i a s _ c o n c a t
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have stated the claim in Abstract and Introduction part (Section 1). We
also conduct extensive experiments in Experiment part (Section 4)
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The we discuss the limitation in the Time Cost part (Section 4.5) of Experiment.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer:[Yes]
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Justification: We have prove the expressiveness of our method in the Method part.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we have proved the implementation in Method (Section 3) part and model
configuration in Appendix Model Configuration.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have provided the pytorch implementation code in Appendix Section J.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided the experiment setting in the Experiment (Section 4) part.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In the paper, we report the mean perplexity values and standard variance Ap-
pendix Section E. Additionally, we also report that the proposed method shows statistically
significant improvements over other static PE methods (according to the p-value less than
0.05).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided the compute resources in the Time Cost part of Experiment
(Section 4) and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have followed the guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed it in the Broad Impact section, which is Appendix Section
A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we have cited the related works.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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