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Abstract

Zero-shot recognition models require extensive training001
data for generalization. However, in zero-shot 3D classifi-002
cation, collecting 3D data and captions is costly and labor-003
intensive, posing a significant barrier compared to 2D vi-004
sion. Recent advances in generative models have achieved005
unprecedented realism in synthetic data production, and006
recent research shows the potential for using generated007
data as training data. Here, naturally raising the ques-008
tion: Can synthetic 3D data generated by generative mod-009
els be used as expanding limited 3D datasets? In response,010
we present a synthetic 3D dataset expansion method, Text-011
guided Geometric Augmentation (TeGA). TeGA is tailored012
for language-image-3D pretraining, which achieves SoTA013
in zero-shot 3D classification, and uses a generative text-014
to-3D model to enhance and extend limited 3D datasets.015
Specifically, we automatically generate text-guided syn-016
thetic 3D data and introduce a consistency filtering strategy017
to discard noisy samples where semantics and geometric018
shapes do not match with text. In the experiment to double019
the original dataset size using TeGA, our approach demon-020
strates improvements over the baselines, achieving zero-021
shot performance gains of 3.0% on Objaverse-LVIS, 4.6%022
on ScanObjectNN, and 8.7% on ModelNet40. These results023
demonstrate that TeGA effectively bridges the 3D data gap,024
enabling robust zero-shot 3D classification even with lim-025
ited real training data and paving the way for zero-shot 3D026
vision applications.027

1. Introduction028

Zero-shot recognition models have made remarkable029
progress leveraging paired image-text data. In particular,030
CLIP [30] has shown the strong potential such models offer031
for zero-shot open-vocabulary image classification. Highly032
accurate zero-shot recognition models are increasingly ap-033
plied in industrial applications too, such as robotics, manu-034
facturing, and autonomous driving. Yet, this progress is so035
far mostly limited to the 2D domain. We argue that multi-036
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Figure 1. Our proposed TeGA (Text-guided Geometric Augmen-
tation) assigns text guidance and a generative text-to-3D model
for high-efficient dataset expansion which dramatically augments
limited real data. Although we employ existing methods (e.g.,
Point-E) and simple tricks within text prompting, the proposal per-
forms enough noteworthy results that 3D dataset with add syn-
thetic data with TeGA outperforms ShapeNet trained model on
e.g., Objaverse-LVIS, ModenNet-40 and ScanObjectNN under the
setting of zero-shot 3D classification.

modal representation learning that leverages not only im- 037
ages and text but also 3D data is critical for zero-shot 3D 038
classification tasks. 039

One of the reasons for the success of vision-language 040
models such as CLIP lies in the vast scale of training data 041
utilized. These range from 400 million [30] to several 042
billions of image-text pairs collected from the Web [34]. 043
However, collecting 3D data is much more challenging and 044
costly due to the scarcity of high-quality 3D data on the 045
Web. This is because the primary approaches require cap- 046
turing 3D data in real-world environments with LiDAR or 047
manually creating CAD models. Consequently, zero-shot 048
recognition in 3D vision has lagged behind progress in 2D 049
vision, and the limited availability of 3D datasets remains a 050
bottleneck issue. To address this challenge, recent research 051
on zero-shot 3D classification mainly focuses on distilling 052
knowledge from a large-scale pre-trained visual language 053
model. However, despite these efforts, the knowledge dis- 054
tillation does not fundamentally fix the issue of the limited 055
availability of 3D data. 056

To this end, we propose to use recent text-to-3D gener- 057
ative models. These can produce highly realistic 3D syn- 058
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thetic data that are almost indistinguishable from the train-059
ing data [16, 20, 22, 26, 28]. This remarkable evolution of060
the text-to-3D model simply begs the question: Can syn-061
thetic 3D data generated from text-to-3D models be used as062
expanding limited 3D training datasets?063

This paper thus proposes a dataset expansion method064
for zero-shot 3D recognition called Text-guided Geometric065
Augmentation (TeGA). The proposed TeGA expands the066
training language-image-3D dataset for models that per-067
form knowledge distillation from visual language models068
and enables reducing the costs associated with 3D data col-069
lection and annotation. Specifically, we automatically gen-070
erate synthetic 3D data and rendered images using an off-071
the-shelf text-to-3D model (e.g., Point-E [26]) and use the072
latent space of the generative model to generate diverse geo-073
metric shapes with the same semantic content based on text074
prompts. Furthermore, TeGA also introduces a consistency075
filtering strategy to remove noisy data that does not match076
the text prompt, i.e., misalignment between language, im-077
ages, and 3D data.078

To verify the effectiveness of TeGA, we train Mix-079
Con3D [10] with ShapeNet and the synthetic dataset gen-080
erated by TeGA and perform experiments on three repre-081
sentative zero-shot 3D classification datasets, Objaverse-082
LVIS [7], ScanObjectNN [38] and ModelNet40 [40] As083
a result, we show that TeGA improves performance in084
zero-shot 3D classification across three benchmark datasets.085
Specifically, TeGA achieves 12.4% on Objaverse-LVIS,086
51.1% on ModelNet40, 73.3% on ScanObjectNN, and as087
shown in Figure 1. These results suggest that combining088
real and synthetic data improves the generalisation of vi-089
sual models. We also found that consistency filtering plays090
important roles in learning. Our contributions in this paper091
are as follows:092

• We introduce TeGA, a method for dataset expansion093
that leverages text-guided generative models to tackle the094
problem of 3D data scarcity. TeGA enables us to auto-095
matically generate synthetic language-image-3D data tai-096
lored to specific semantics category of original 3D dataset097
by introducing text-guided prompt and consistency filter-098
ing.099

• TeGA enhances zero-shot 3D classification by expand-100
ing existing datasets with synthetic 3D data generated101
from a generative model, addressing the challenges of102
data scarcity in 3D vision tasks.103

2. Related Work104

Multi-Modal Representation Learning. In zero-shot 3D105
classification, recent research has focused on multi-modal106
learning with limited 3D data by distilling CLIP knowl-107
edge [13, 14, 21, 29, 41] because CLIP possesses exten-108
sive knowledge in vision-language tasks. For example,109
MixCon3D [10] improved the performance of zero-shot 3D110

classification by contrastive learning across the image-text- 111
point cloud using CLIP knowledge. In addition, ULIP- 112
2 [41] is a multimodal pre-training that automatically gen- 113
erates comprehensive language descriptions for 3D shapes 114
without manual annotation. These conventional methods 115
achieve high zero-shot performance on ModelNet40 [40], 116
ScanObjectNN [38], and Objaverse-LVIS [7]. However, 117
these methods basically focus only on improving training 118
methods, and there are limits to how much performance can 119
be improved with this approach alone. We believe it is es- 120
sential for the model and data sides to evolve together. This 121
paper thus explores the potential of synthetic dataset expan- 122
sion to achieve scalable geometric learning for zero-shot 3D 123
classification. 124

Text-to-3D Models. Recent text-to-image models have ex- 125
perienced rapid growth. Inspired by this, text-to-3D models 126
have also become a prominent area of research. Text-to-3D 127
models also face the challenge of limited 3D data, making it 128
difficult to generate open-vocabulary 3D data directly from 129
text. To address this, recent text-to-3D models employ a 130
strategy that leverages text-to-2D models or CLIP’s exten- 131
sive language and image knowledge. They first generate 132
images or image features and then lift these images to 3D 133
data [4, 20, 28, 37, 39]. For example, DreamFusion [28] 134
efficiently generates 3D data using CLIP’s knowledge and 135
NeRF’s gradient updates. In addition, Zero123-XL [22] 136
trains on the relatively large 3D dataset called Objaverse- 137
XL [8] and achieves highly accurate 3D generation. Re- 138
cently, it has also been applied to explicit 3D represen- 139
tations such as point clouds and meshes [16, 26]. Using 140
a text-to-image and image-to-point cloud pipeline, Point- 141
E [26] quickly generates point clouds that correspond to 142
text prompts. In this paper, we utilize text-to-3D models 143
for dataset expansion. 144

Generative Models as Data++. Recent generative mod- 145
els have evolved to generate realistic synthetic data that is 146
visually almost indistinguishable [25, 31, 32]. And then 147
the data generated from generative models can be thought 148
of as data for recognition models with controllability and 149
rich representation as data++ [15, 33]. It reduces the col- 150
lecting cost with real-world data while enabling the effi- 151
cient generation of meaningful synthetic datasets. For ex- 152
ample, StableRep [36] learns visual representations by in- 153
corporating synthetic images generated by Stable Diffu- 154
sion [31] into multi-positive contrastive learning. StableRep 155
is designed to learn images comprehensively across dif- 156
ferent views by treating multiple synthetic images of the 157
same input text prompt as positive samples. In addition, 158
SynCLR [35] performs contrastive learning using only syn- 159
thetic images and captions. Despite training without real 160
images, it performs equally well and better than traditional 161
self-supervised learning such as DINOv2 [27] and Open- 162
CLIP [5] in image classification and semantic segmentation. 163
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These studies have shown that it is possible to build high164
performance recognition models while training only syn-165
thetic data and keeping data collection costs low by learning166
visual representations. Inspired by these studies, we utilize167
data generated by generative models for contrastive learn-168
ing.169

3. Problem Setting and Preliminary170

Inspired by the effectiveness of synthetic data as training171
data in 2D, we propose leveraging synthetic data as a so-172
lution to the scarcity of 3D data by using it to augment173
datasets. Specifically, we propose the method TeGA that174
utilizes generative text-to-3D models to create datasets for175
language-image-3D pretraining. Therefore, in this section,176
we introduce the proposed TeGA as a synthetic dataset ex-177
pansion method, capable of learning rich geometric repre-178
sentations to enhance zero-shot recognition model general-179
ization. Finally, we outline the formulation of a language-180
image-3D learning method, aiming to learn feature spaces181
for embedding alignment across three different modalities.182
Problem Setting. Zero-shot tasks generally demand large183
datasets to generalize to unseen classes [30], yet, in zero-184
shot 3D classification, the cost of collecting and annotating185
3D data is a significant bottleneck and the performance of186
the models remains low [10, 21, 43]. Recently, synthetic187
dataset expansion has achieved notable performance im-188
provements in several fields [15, 33]. Moreover, recent ap-189
proaches in zero-shot 3D classification have demonstrated190
that pretraining on language-image-3D data enables knowl-191
edge distillation from models pretrained on other modal-192
ities, thereby improving performance under limited data193
conditions [13, 14, 21, 29, 41]. We consider these findings194
critical for improving the accuracy of zero-shot 3D classifi-195
cation. Hence, we present a multi-modal synthetic dataset196
expansion method called TeGA that generates synthetic197
language-image-3D data from text prompts using text-to-198
3D models.199

To frame the zero-shot 3D classification, we provide an200
overview of the dataset setup. We begin by training a model201
f(θ) to handle multiple types of visual inputs from a source202
dataset Do = {(xI

i , x
T
i , x

P
i )}

no
i=1, which consists of image203

(xI
i ), text (xT

i ), and 3D point cloud (xP
i ) modalities. The204

goal of this task is to classify N semantic classes in a target205
dataset Dt = {(xI

j , x
T
j , x

P
j )}

nt
j=1. Here, no and nt indicate206

the number of samples, emphasizing the model’s ability to207
generalize to previously unknown classes.208

The core of dataset expansion lies in extending the209
source dataset with a synthetic dataset, where Ds =210
{(xI

k, x
T
k , x

P
k )}

ns

k=1, to enhance the model f(θ)’s ability to211
generalize on unseen category shapes. The key to the task212
is to design Ds to strengthen the adaptability of f(θ) to213
new concepts. The construction of this extended dataset,214
Do ∪ Ds, enriches the model’s ability to recognize unseen215

Figure 2. A visualization of synthetic 3D data generated from
real 3D data and Point-E. Synthetic 3D data shows that it is more
difficult to generate detailed geometrical detail compared to real
data.

category shapes. 216

Text-to-3D Models as Dataset Generator. Cognitive sci- 217
ence suggests that people use past experience to recognize 218
unfamiliar objects [1, 17]. For example, children use mem- 219
ories of other toys to imagine new ways to play with a new 220
toy. This is a fundamental insight for the use of genera- 221
tive models as training data. The use of synthetic data gen- 222
erated from generative models for zero-shot recognition is 223
very similar to the process by which humans recognize new 224
concepts of objects from previous knowledge. Recent ad- 225
vancements in text-to-3D models enable the generation of 226
realistic 3D synthetic data that is both rich and semantically 227
meaningful [4, 20, 26, 28]. Unlike traditional generative 228
models such as GANs [11] and VAEs [18], text-to-3D mod- 229
els accept direct text prompts, allowing for user-specified, 230
scenario-driven 3D shape generation. Therefore, this pa- 231
per aims to improve the generalization ability of the model 232
f(θ) by constructing a synthetic dataset through a text-to- 233
3D model for dataset expansion. 234

Inspired by the recent success of synthetic data train- 235
ing using generative models based on diffusion models, we 236
adopt a diffusion-based generative model as our text-to-3D 237
model. Generally, text-to-3D models based on diffusion 238
models can be simply represented as follows: 239

P = Gθ

(
T, ω

)
. (1) 240

where Gθ

(
·
)

represents the generator that inputs text T 241
and outputs a point cloud T , and ω represents the guidance 242
scale that is used to adjust how strongly the input text is re- 243
flected in the point cloud generation process. In this paper, 244
we utilize a generative text-to-3D model Gθ(·) as generat- 245
ing a point cloud xP

i from a text xT
i . 246

Language-Image-3D Contrastive Learning. Language- 247
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Image-3D contrastive learning is performed by aligning the248
features zP produced by the 3D encoder EP with the fea-249
tures zT and zI extracted by the pretrained CLIP text en-250
coder ET and image encoder EI , respectively, via con-251
trastive learning. Through this process, EP becomes ca-252
pable of extracting representations that are consistent with253
CLIP’s latent space, thereby substantially improving zero-254
shot performance. Moreover, because this method leverages255
alignment with CLIP’s existing latent space—rather than256
constructing a text-aligned space de novo—it reduces the257
extent of 3D training data required. For a triplet of image,258
text, and point cloud (xI

i , x
T
i , x

P
i ), the contrastive objective259

maximizes similarity within the shared embedding space as260
follows:261

LA→B =

N∑
i=1

log
exp

(
exp

(
zAi , z

B
j )

)
/τ

)
∑N

j=1 exp
(
exp

(
zAi , z

B
j )

)
/τ

) , (2)262

LB→A =

N∑
i=1

log
exp

(
exp

(
zBi , zAj )

)
/τ

)
∑N

j=1 exp
(
exp

(
zBi , zAj )

)
/τ

) , (3)263

LAll = − 1

2N

N∑
i=1

∑
(A,B)∈S

(
LA→B + LB→A

)
, (4)264

where S = {(I, T ), (P, I), (P, T )} represents the pairs265
across modalities; in other words, (I, T ) denotes the image-266
text pair, (P, I) the point cloud-image pair, and (P, T ) the267
point cloud-text pair. In addition, the normalized features268
are defined as zAi = gA(fA(x

A
i ))/∥gA(fA(xA

i ))∥, where269
fA and gA denote the encoder and learnable projection head270
for each modality A. Similarly, zBj is defined for modality271
B, with (A,B) ∈ S representing pairs across image, text,272
and point cloud modalities. The temperature parameter τ is273
a learnable parameter. It controls the strength of the penalty274
for samples with high similarity. Through this contrastive275
objective, we enable 3D shapes to align within CLIP’s em-276
bedding space, facilitating a coherent language-image-3D277
representation.278

4. Proposed Method: TeGA279

In this section, we introduce TeGA, expanding language-280
image-3D datasets with high-quality synthetic 3D data gen-281
erated from text-to-3D models.282
Overview of TeGA. To tackle the problem of 3D data283
scarcity in zero-shot 3D classification, the proposed method284
automatically generates a synthetic dataset composing lan-285
guage, image, and 3D modalities using a text-to-3D model.286
In detail, to compose an expansion dataset, the proposed287

Figure 3. A visualization of consistency filtering. The upper
shows samples which passed filter; the lower shows samples which
filtered out. Our filtering can detect error cases while generation
process.

method combines the desired text, the point cloud gener- 288
ated by the text-to-3D model, and the images rendered from 289
the generated point cloud. The proposed method can gen- 290
erate large amounts of data without requiring human data 291
collection or annotation and expand real datasets. However, 292
the generation process may err in some cases due to failure 293
to generate or render, meaning that the alignment between 294
each modality may not be accurate. This error may cause 295
the model to collapse during training. To address this prob- 296
lem, we introduce a consistency filtering strategy of TeGA, 297
and the quality of the expanded dataset is improved by fil- 298
tering low-quality data. 299
Synthetic Dataset Construction. Our goal is to generate 300
a synthetic dataset Dt = {(xI

i , x
T ′
i , xP ′

i )}no
i=1 consisting of 301

text xT
i , images xI′

i , and point clouds xP ′
i using the text 302

xT
i from the real dataset Ds = {(xI

i , x
T
i , x

P
i )}

ns
i=1 that also 303

comprises text xT
i , images xI

i , and point clouds xP
i . We 304

use Point-E [26] as the text-to-3D model of TeGA because 305
Point-E is suitable for generating large amounts of data due 306
to its ability to rapidly generate point clouds. Also, we uti- 307
lized ShapeNet [3] as the real dataset before applying TeGA 308
instead of several datasets because our goal is not to out- 309
perform state-of-the-art methods but to serve as a training 310
dataset expansion. ShapeNet is a dataset containing 52,470 311
point cloud samples across 55 classes. 312

We first generate a point cloud by inputting the category 313
names xT

i of the real dataset Ds as text prompts into Point- 314
E. The generation process is represented as follows: 315

xP ′
i = Gθ

(
xT
i , ω

)
(5) 316

We get the point clouds and text, then we render images 317
from the point clouds. However, without mesh information, 318
the rendered images may appear to lack accurate shape de- 319
tails. To address this, we perform meshing using the Ball 320
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Figure 4. The overview of consistency filtering process. The purpose of this process is to remove misaligned data that may introduce
model collapse during training. Specifically, rendered multi-view images are input into BLIP to generate captions. Then, the captions are
summarized to one caption by GPT-4. Finally, the quality of the generated data is evaluated by comparing the text used for generation with
the generated captions through two matching methods: word-level matching and concept-level matching.

Pivoting Algorithm [2]. While various meshing techniques321
exist, Point-E’s point clouds are not designed for meshing,322
and, in our experience, using state-of-the-art meshing meth-323
ods often leads to the collapse of the rendered 3D data.324
Therefore, we adopted the older meshing technique, the325
Ball Pivoting Algorithm. Then, images xI′

i are generated326
by rendering the 3D data from 20 viewpoints. The view-327
points are determined by rotating it clockwise in 18-degree328
increments, with focal lengths dynamically determined by329
the Open3D library. The processes of meshing and render-330
ing are represented as follows:331

xI′
i = R(M(xP ′

i )) (6)332

where M(·) denotes the meshing process and R(·) denotes333
the rendering process. The sets of inputted text xT

i , ren-334
dered images xI′

i , and generated point clouds xP ′
i that pass335

the consistency filtering are adopted as the synthetic dataset336
Dt.337

Figure 2 shows examples of synthetic and real 3D data338
generated by Point-E. The real 3D data is a sample from339
Objaverse-LVIS. Figure 2 shows that the synthetic 3D data340
generated by Point-E outputs a 3D shape that matches the341
input text. On the other hand, there are cases where even342
the smallest details of the 3D shape are not generated ac-343
curately. For example, the synthetic 3D data generated by344
Point-E has difficulty in generating even the spokes of a bi-345
cycle.346
Consistency Filtering. Alignment across modalities is cru-347
cial for language-image-3D pretraining. In our generation348
process, alignment issues may occur at two stages: gener-349
ating point clouds from text using Point-E and rendering350
images from point clouds. Failures in point cloud genera-351
tion often result from Point-E’s misinterpretation of the text.352
Also, rendering failures occur when the point cloud is un-353
suitable for meshing, such as when parts of the point cloud354

are incomplete. Training a model with such misaligned data 355
could lead to a breakdown of modality alignment within the 356
model. To address this, we apply consistency filtering to 357
each generated data sample. 358

If alignment is maintained between the input text xT
i and 359

the final output image xI′
i in the data generation process, it 360

can be inferred that the intermediate output, the point cloud 361
xP ′
i , is also aligned. This ensures that the alignment of the 362

entire generated dataset is verified. Therefore, we evaluate 363
the alignment between the text and images. Based on exist- 364
ing evaluation methods for 3D data [12], our filtering com- 365
pares the integrated text generated from captions of multi- 366
view images with the input text using GPT-4 and algorithm- 367
based approaches. The process is shown in Figure 4. 368

For each synthetic data, we first select two images show- 369
ing the front and back of the 3D data among the generated 370
images during the dataset creation process. Next, we in- 371
put the two images into BLIP [19] to generate each caption. 372
To simplify, the generated captions for all viewpoints are 373
combined into one unified text yi using GPT-4. The com- 374
bined caption is then compared with the text used for gener- 375
ation and evaluates whether the synthetic data is aligned or 376
not. The evaluation is conducted using two metrics: a text- 377
based consistency metric and a semantic alignment metric. 378
For the text-based consistency metric, we then compute a 379
match score between this shared caption and the original 380
text query. Specifically, if the generated caption yi contains 381
the text xT

i , a score of 5 is assigned; if it does not, a score 382
of 1 is assigned. 383

stext(yi, x
T
i ) =

{
5, if xT

i ⊆ yi,

1, otherwise.
(7) 384

For the semantic alignment metric, inspired by the align- 385
ment evaluation in T3Bench [12], we use GPT-4 to evalu- 386
ate the semantic alignment of the generated caption relative 387
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Table 1. Accuracy with and without filtering.

Filtering O-LVIS S-Object M40
Top1 Top1 Top1

w / o filtering 11.1 45.4 73.4
w / filtering 11.5 48.7 71.3

to the original prompt. Specifically, the common captions388
and text prompts generated from the two images are used to389
generate a five-point semantic-based similarity score using390
GPT-4.391

ssem
(
yi, x

T
i

)
= GPT4

(
yi, x

T
i

)
∈ {1, 2, 3, 4, 5}. (8)392

The two calculated scores stext, ssem are summed to obtain393
the final score s.394

s
(
yi, x

T
i

)
= stext

(
yi, x

T
i

)
+ ssem

(
yi, x

T
i

)
(9)395

If this score s
(
yi, x

T
i

)
exceeds the threshold δ, the data is396

considered aligned and included in the dataset; otherwise,397
it is discarded. We experimentally validated this threshold398
δ during data generation with ShapeNet and finally set it to399
3.5 for use in the dataset. Filtering with this threshold in400
ShapeNet resulted in approximately half of the data being401
filtered out. Figure 3 shows samples of our consistency fil-402
tering. The filtered data has well-formed meshes, making403
it visually easy to identify the objects. In contrast, the data404
that failed the filtering process often has collapsed meshes405
or represents unrecognizable objects.406

5. Experiments407

In this section, we evaluate the effectiveness of the proposed408
TeGA in zero-shot 3D classification. Section 5.1 first in-409
troduces our experimental setup, followed by Section 5.2,410
which presents the results of the exploratory experiments.411
Additionally, Section 5.3 discusses the main experimental412
results in comparison with our baseline and previous zero-413
shot 3D classification models. Finally, Section 5.4 analyzes414
the key components of TeGA.415

5.1. Experimental Setup416

Training Dataset. Recent research has achieved high417
performance in zero-shot 3D classification using a 3D418
dataset that integrates four sources: ShapeNet [3], 3D-419
FUTURE [9], ABO [6], and Objaverse [7]. However, our420
main goal is not to outperform state-of-the-art methods, but421
to test whether synthetic 3D data generated from text-to-3D422
models can serve as a training dataset expansion. For this423
reason, we use ShapeNet as a baseline in this paper.424
Zero-Shot 3D Classification. Zero-shot 3D classification425
is the task of classifying objects of unseen categories that426
are not included in the training data. Following the ex-427
perimental setup of MixCon3D, we use ModelNet40 [40],428

Table 2. Accuracy when varying Guidance scale.

Guidance scale O-LVIS S-Object M40
Top1 Top1 Top1

0.3 11.4 44.8 70.5
3.0 11.5 46.6 71.1
30 10.3 48.3 69.7

ScanObjectNN [38], and Objaverse-LVIS [7] as evaluation 429
3D datasets. ModelNet40 [40] is a dataset of 40 categories 430
of 3D CAD data with 9, 843 training data and 2.5k test 431
data. ScanObjectNN [38] is a dataset created by scanning 432
15 categories of real-world data, with 2, 902 data points. 433
Objaverse-LVIS [7] is a dataset created by collecting 1, 156 434
categories of human-created 3D data from the Internet, with 435
46, 832 data. 436
Implementation Details. For dataset generation, we use 437
five NVIDIA TITAN RTX GPUs. The generation parame- 438
ters follow the default settings of Point-E: the output point 439
cloud size is 4,096, the guidance scale ω is set to [3.0, 0.0], 440
and 50 diffusion steps are performed to obtain the final out- 441
put. Also, to maintain class distribution consistency be- 442
tween synthetic and real data, the size of each class in the 443
synthetic dataset is set to match the corresponding class size 444
in the original ShapeNet dataset. 445

For training, we use eight NVIDIA H100 GPUs with a 446
batch size of 128 per GPU. Other settings follow the default 447
configurations of MixCon3D. In detail, we train the model 448
for 200 epochs with the AdamW optimizer [23], a warmup 449
epoch of 10, and a cosine learning rate decay schedule [24]. 450
The base learning rate is set to 1e-3, based on the linear 451
learning rate scaling rule: lr = base lr × batchsize/256. 452
The Text Encoder and the Image Encoder are frozen using 453
OpenCLIP ViT-bigG-14 [5], and, as in Liu et al. [21], sim- 454
ple layers are added afterward to optimize the model. As 455
the point cloud encoder, we employ PointBERT [42] like 456
MixCon3D. 457

5.2. Exploratory Experiments 458

This section analyzes the effect of key parameters in TeGA. 459
Specifically, we conducted two exploratory experiments: 460
(i) consistency filtering and (ii) guidance scale on Point-E. 461
For each exploratory experimental baseline, we evaluated 462
the performance of MixCon3D with a combined dataset of 463
10,000 synthetic data samples and ShapeNet. 464
Consistency Filtering (see Table 1). The consistency fil- 465
tering of the proposed TeGA is an important process be- 466
cause it removes the unaligned data from the generated data 467
that adversely affects training. To verify the effectiveness 468
of TeGA, we conducted a comparative experiment under 469
two scenarios: one with consistency filtering applied and 470
one without it. For this experiment, we use two versions 471
of our synthetic dataset: one filtered by TeGA and one 472
unfiltered, and combine each with the ShapeNet dataset. 473
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Table 3. Comparison with zero-shot 3D classification performance on three representative benchmark datasets. Best scores at MixCon3D
are shown in underlined bold.

Method Training data
Objaverse-LVIS ScanObjectNN ModelNet40

Top1 Top1-C Top3 Top5 Top1 Top1-C Top3 Top5 Top1 Top1-C Top3 Top5

MixCon3D ShapeNet 9.4 5.7 16.7 20.4 46.5 41.6 67.9 79.6 64.6 60.3 83.0 87.1
MixCon3D (Ours) ShapeNet + TeGA 12.4 10.8 22.0 27.4 51.1 49.5 69.7 80.2 73.3 68.7 88.8 93.6

Then, these combined datasets are used for training. In474
Table 1, we compare the Top1 accuracy with and without475
consistency filtering on Objaverse-LVIS, ScanObjectNN,476
and ModelNet40. The results show that the concatenated477
dataset with consistency filtering outperforms the unfiltered478
one by 0.4% points on Objaverse-LVIS and 3.3% points on479
ScanObjectNN, while it decreases 2.1% points on Model-480
Net40. These results indicate that the proposed consistency481
filtering of TeGA provides effective synthetic training for482
zero-shot 3D classification.483

Effect of Guidance Scale of Point-E (see Table 2). The484
guidance scale of Point-E is a critical parameter that con-485
trols the fidelity of the 3D model to the input text prompt.486
With a high guidance scale, the 3D model adheres more487
closely to the text prompt, though this reduces the diversity488
of geometric shapes. Conversely, a low guidance scale re-489
sults in a 3D model that is less aligned with the text prompt490
but exhibits greater geometric diversity. Referring to the491
fact that the default guidance scale in Point-E is set to 3.0,492
this experiment evaluates varying guidance scale in {0.3,493
3.0, 30}.494

In Table 1, we compare the Top1 accuracy with each495
guidance scale on Objaverse-LVIS, ScanObjectNN, and496
ModelNet40. Experimental results show that the guidance497
scale of 3.0 gives the best performance. When the guidance498
scale is set to 0.3, the generated point cloud is expected to499
have minimal reliance on the input text, leading to weaker500
alignment between modalities. Conversely, at a guidance501
scale of 30, the point cloud strongly reflects the input text;502
however, since all samples are generated using the same503
text, this likely results in a loss of diversity. This trade-off504
between alignment and diversity suggests that the highest505
accuracy is achieved with the standard guidance scale of506
3.0. These findings indicate that 3D data generation must507
closely adhere to the given prompt, and that maintaining a508
certain degree of variability in the generated data is benefi-509
cial.510

5.3. Comparison with Conventional Methods511

In Table 3, we compare the zero-shot 3D classification512
results of MixCon3D. One model is trained with both513
ShapeNet and the synthetic dataset generated by TeGA,514
and the other is solely trained with ShapeNet. We gen-515
erate a synthetic dataset with the same number of sam-516
ples as ShapeNet. As a result, our proposed method ef-517

Table 4. Ablation studies of the balance of real and synthetic data.
We denote the replacement ratio of ShapeNet with synthetic data
as Point-E (PE) / ShapeNet (SN)-%.

PE/SN-% O-LVIS S-Object M40
Top1 Top1 Top1

0 9.01 50.3 63.7

25 9.47 47.4 67.7
50 8.93 43.8 67.6

100 0.3 14.0 9.4

fectively doubles the amount of training data compared 518
to the original ShapeNet. Our approach outperforms the 519
baseline MixCon3D, which is trained solely on the origi- 520
nal ShapeNet, across all benchmark datasets and evaluation 521
metrics. Specifically, our method demonstrates substantial 522
improvements, achieving gains of 3.0% on Objaverse-LVIS, 523
4.4% on ScanObjectNN, and 8.8% on ModelNet40 in zero- 524
shot performance. These results clearly demonstrate that 525
TeGA is an effective method for dataset expansion in zero- 526
shot 3D classification, even when using synthetic 3D data. 527
Furthermore, the ability to scale the dataset while maintain- 528
ing or improving model performance opens up new possi- 529
bilities for addressing data scarcity in 3D vision tasks. 530

5.4. Ablation Studies 531

This section analyzes the factors that contribute to per- 532
formance improvements in dataset expansion using TeGA. 533
Specifically, we investigate (i) the mixing ratio of synthetic 534
3D data and (ii) the scalability of synthetic 3D data. 535

Mixing ratio of synthetic 3D data (see Table 4 and Fig- 536
ure 5). In this experiment, we investigate whether syn- 537
thetic data can serve as a substitute for real data. While 538
keeping the total number of samples the same as the orig- 539
inal ShapeNet, we replace a portion of the real data with 540
synthetic data generated by TeGA. Table 4 presents the 541
Top1 performance in zero-shot 3D classification with vary- 542
ing proportions of synthetic 3D data. Surprisingly, it shows 543
that the best performance is achieved when 25% of the orig- 544
inal ShapeNet is replaced with synthetic 3D data, with a per- 545
formance improvement over using ShapeNet alone. How- 546
ever, as the proportion of synthetic 3D data increases be- 547
yond 25%, performance gradually deteriorates; when only 548
synthetic data is used, training fails and classification per- 549
formance significantly drops. This decline is likely due to 550
the learning strategy of MixCon3D, which extracts knowl- 551
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Figure 5. Confusion matrics when varying PE/SP. When the proportion of real data decreases, the model’s predictions increasingly skew
towards desk and display, leading to an overall deterioration in prediction accuracy.

Table 5. Ablation studies of varying scale of synthetic data.

Scaling O-LVIS S-Object M40
Top1 Top1 Top1

×0.1 11.1 48.2 71.0
×1 11.2 47.1 73.4
×2 12.1 45.1 73.8

edge from CLIP models, making it difficult for the model to552
learn from the synthetic 3D data generated by Point-E due553
to domain gaps.554

We also analyze why the model fails to learn when555
trained solely on synthetic data. In this experiment, we con-556
struct a mixture matrix at PE / SN = {0, 25, 100}, where real557
3D data is progressively replaced by synthetic 3D data, to558
examine how the model misclassifies. As shown in Figure559
4, for PE / SN = {0, 25, 100}, the categories predicted by560
the model exhibit similar trends. However, when PE/SN =561
100, i.e., when the model is trained on synthetic 3D data, the562
predicted labels are biased towards desk or display. These563
findings suggest that conducting language-image-3D pre-564
training solely using data generated by TeGA is challeng-565
ing. Consistent with other research [36], it appears that syn-566
thetic data produced by TeGA may introduce a domain gap,567
which in turn complicates the learning process.568

Scalability of synthetic 3D data. In this experiment, we569
examine how scaling the amount of synthetic data added570
to ShapeNet influences the performance of MixCon3D.571
Specifically, we assess performance changes when Point-572
E generated data is scaled to 0.1x, 1x and 2x the original573
ShapeNet data. The scaling is based on ShapeNet’s default574
dataset size of 53,470. Table 5 presents the Top1 perfor-575
mance with varying the amount of generated data. It shows576
that scaling plays a critical role in MixCon3D’s training577
and that synthetic data effectively contributes to this scal-578
ing. According to these results, accuracy improves with the579
addition of scaled synthetic data for Objaverse-LVIS and580
ModelNet40. In contrast, the accuracy decreases with scal-581

ing for ScanObjectNN. This decline may be attributed to the 582
fact that the ScanObjectNN dataset is constructed by scan- 583
ning actual physical objects, resulting in a larger domain 584
gap relative to synthetic data. In contrast, other datasets are 585
artificially generated and thus align more closely with syn- 586
thetic modalities, suggesting that the domain gap is substan- 587
tially smaller for those datasets than for ScanObjectNN. 588

6. Conclusion 589

To fix the problem of 3D data scarcity in zero-shot 3D 590
classification, we propose TeGA (Text-guided Geometric 591
Augmentation), a language-image-3D dataset expansion 592
method with high-quality synthetic 3D data. TeGA plays a 593
significant role in the expansion of existing datasets. To fur- 594
ther enhance the quality of 3D data, we apply consistency 595
filtering to remove unaligned data that could negatively im- 596
pact training. In practice, by combining the generated syn- 597
thetic data with existing 3D datasets, we demonstrated im- 598
proved performance in zero-shot 3D classification. Based 599
on these results, we believe text-to-3D models have the po- 600
tential to alleviate challenges associated with 3D data col- 601
lection and, when leveraged for data expansion, can support 602
the development of generalizable vision models for 3D vi- 603
sion. 604
Limitations. In this paper, we adopted Point-E as a text-to- 605
3D model. However, Point-E is a generative model trained 606
on data that is not open to the public. Since it is difficult to 607
generate out-of-distribution data not included in the train- 608
ing dataset, our framework heavily relies on the generative 609
model. Therefore, we plan to focus on improving the text- 610
to-3D model in the future. Additionally, when incorporat- 611
ing synthetic 3D data generated by Point-E into the training 612
dataset, there is concern that societal biases or other unin- 613
tended elements may be inadvertently introduced. It is rec- 614
ommended to take these risks into account and incorporate 615
the findings from this study into the model improvement 616
process. 617
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