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Abstract

Zero-shot recognition models require extensive training
data for generalization. However, in zero-shot 3D classifi-
cation, collecting 3D data and captions is costly and labor-
intensive, posing a significant barrier compared to 2D vi-
sion. Recent advances in generative models have achieved
unprecedented realism in synthetic data production, and
recent research shows the potential for using generated
data as training data. Here, naturally raising the ques-
tion: Can synthetic 3D data generated by generative mod-
els be used as expanding limited 3D datasets? In response,
we present a synthetic 3D dataset expansion method, Text-
guided Geometric Augmentation (TeGA). TeGA is tailored
for language-image-3D pretraining, which achieves SoTA
in zero-shot 3D classification, and uses a generative text-
to-3D model to enhance and extend limited 3D datasets.
Specifically, we automatically generate text-guided syn-
thetic 3D data and introduce a consistency filtering strategy
to discard noisy samples where semantics and geometric
shapes do not match with text. In the experiment to double
the original dataset size using TeGA, our approach demon-
strates improvements over the baselines, achieving zero-
shot performance gains of 3.0% on Objaverse-LVIS, 4.6%
on ScanObjectNN, and 8.7% on ModelNet40. These results
demonstrate that TeGA effectively bridges the 3D data gap,
enabling robust zero-shot 3D classification even with lim-
ited real training data.

1. Introduction
Zero-shot recognition models have made remarkable
progress leveraging paired image-text data. In particular,
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Figure 1. Our proposed TeGA (Text-guided Geometric Augmen-
tation) assigns text guidance and a generative text-to-3D model
for high-efficient dataset expansion which dramatically augments
limited real data. Although we employ existing methods (e.g.,
Point-E) and simple tricks within text prompting, the proposal per-
forms enough noteworthy results that 3D dataset with add syn-
thetic data with TeGA outperforms ShapeNet trained model on
e.g., Objaverse-LVIS, ModenNet-40 and ScanObjectNN under the
setting of zero-shot 3D classification.

CLIP [30] has shown the strong potential such models offer
for zero-shot open-vocabulary image classification. Highly
accurate zero-shot recognition models are increasingly ap-
plied in industrial applications too, such as robotics, manu-
facturing, and autonomous driving. Yet, this progress is so
far mostly limited to the 2D domain. We argue that multi-
modal representation learning that leverages not only im-
ages and text but also 3D data is critical for zero-shot 3d
classification tasks.

One of the reasons for the success of vision-language
models such as CLIP lies in the vast scale of training data
utilized. These range from 400 million [30] to several
billions of image-text pairs collected from the Web [34].
However, collecting 3D data is much more challenging and
costly due to the scarcity of high-quality 3D data on the



Web. This is because the primary approaches require cap-
turing 3D data in real-world environments with LiDAR or
manually creating CAD models. Consequently, zero-shot
recognition in 3D vision has lagged behind progress in 2D
vision, and the limited availability of 3D datasets remains a
bottleneck issue. To address this challenge, recent research
on zero-shot 3D classification mainly focuses on distilling
knowledge from a large-scale pre-trained visual language
model. However, despite these efforts, the knowledge dis-
tillation does not fundamentally fix the issue of the limited
availability of 3D data.

To this end, we propose to use recent text-to-3D gener-
ative models. These can produce highly realistic 3D syn-
thetic data that are almost indistinguishable from the train-
ing data [16, 20, 22, 26, 28]. This remarkable evolution of
the text-to-3D model simply begs the question: Can syn-
thetic 3D data generated from text-to-3D models be used as
expanding limited 3D training datasets?

This paper thus proposes a dataset expansion method
for zero-shot 3D recognition called Text-guided Geometric
Augmentation (TeGA). The proposed TeGA expands the
training language-image-3D dataset for models that per-
form knowledge distillation from visual language models
and enables reducing the costs associated with 3D data col-
lection and annotation. Specifically, we automatically gen-
erate synthetic 3D data and rendered images using an off-
the-shelf text-to-3D model (e.g., Point-E [26]) and use the
latent space of the generative model to generate diverse geo-
metric shapes with the same semantic content based on text
prompts. Furthermore, TeGA also introduces a consistency
filtering strategy to remove noisy data that does not match
the text prompt, i.e., misalignment between language, im-
ages, and 3D data.

To verify the effectiveness of TeGA, we train Mix-
Con3D [10] with ShapeNet and the synthetic dataset gen-
erated by TeGA and perform experiments on three repre-
sentative zero-shot 3D classification datasets, Objaverse-
LVIS [7], ScanObjectNN [38] and ModelNet40 [40] As
a result, we show that TeGA improves performance in
zero-shot 3D classification across three benchmark datasets.
Specifically, TeGA achieves 12.4% on Objaverse-LVIS,
51.1% on ModelNet40, 73.3% on ScanObjectNN, and as
shown in Figure 1. These results suggest that combining
real and synthetic data improves the generalisation of vi-
sual models. We also found that consistency filtering plays
important roles in learning. Our contributions in this paper
are as follows:

• We introduce TeGA, a method for dataset expansion
that leverages text-guided generative models to tackle the
problem of 3D data scarcity. TeGA enables us to auto-
matically generate synthetic language-image-3D data tai-
lored to specific semantics category of original 3D dataset
by introducing text-guided prompt and consistency filter-

ing.
• TeGA enhances zero-shot 3D classification by expand-

ing existing datasets with synthetic 3D data generated
from a generative model, addressing the challenges of
data scarcity in 3D vision tasks.

2. Related Work
Multi-Modal Representation Learning. In zero-shot 3D
classification, recent research has focused on multi-modal
learning with limited 3D data by distilling CLIP knowl-
edge [13, 14, 21, 29, 41] because CLIP possesses exten-
sive knowledge in vision-language tasks. For example,
MixCon3D [10] improved the performance of zero-shot 3D
classification by contrastive learning across the image-text-
point cloud using CLIP knowledge. In addition, ULIP-
2 [41] is a multimodal pre-training that automatically gen-
erates comprehensive language descriptions for 3D shapes
without manual annotation. These conventional methods
achieve high zero-shot performance on ModelNet40 [40],
ScanObjectNN [38], and Objaverse-LVIS [7]. However,
these methods basically focus only on improving training
methods, and there are limits to how much performance can
be improved with this approach alone. We believe it is es-
sential for the model and data sides to evolve together. This
paper thus explores the potential of synthetic dataset expan-
sion to achieve scalable geometric learning for zero-shot 3D
classification.
Text-to-3D Models. Recent text-to-image models have ex-
perienced rapid growth. Inspired by this, text-to-3D models
have also become a prominent area of research. Text-to-3D
models also face the challenge of limited 3D data, making it
difficult to generate open-vocabulary 3D data directly from
text. To address this, recent text-to-3D models employ a
strategy that leverages text-to-2D models or CLIP’s exten-
sive language and image knowledge. They first generate
images or image features and then lift these images to 3D
data [4, 20, 28, 37, 39]. For example, DreamFusion [28]
efficiently generates 3D data using CLIP’s knowledge and
NeRF’s gradient updates. In addition, Zero123-XL [22]
trains on the relatively large 3D dataset called Objaverse-
XL [8] and achieves highly accurate 3D generation. Re-
cently, it has also been applied to explicit 3D represen-
tations such as point clouds and meshes [16, 26]. Using
a text-to-image and image-to-point cloud pipeline, Point-
E [26] quickly generates point clouds that correspond to
text prompts. In this paper, we utilize text-to-3D models
for dataset expansion.
Generative Models as Data++. Recent generative mod-
els have evolved to generate realistic synthetic data that is
visually almost indistinguishable [25, 31, 32]. And then
the data generated from generative models can be thought
of as data for recognition models with controllability and
rich representation as data++ [15, 33]. It reduces the col-



lecting cost with real-world data while enabling the effi-
cient generation of meaningful synthetic datasets. For ex-
ample, StableRep [36] learns visual representations by in-
corporating synthetic images generated by Stable Diffu-
sion [31] into multi-positive contrastive learning. StableRep
is designed to learn images comprehensively across dif-
ferent views by treating multiple synthetic images of the
same input text prompt as positive samples. In addition,
SynCLR [35] performs contrastive learning using only syn-
thetic images and captions. Despite training without real
images, it performs equally well and better than traditional
self-supervised learning such as DINOv2 [27] and Open-
CLIP [5] in image classification and semantic segmentation.
These studies have shown that it is possible to build high
performance recognition models while training only syn-
thetic data and keeping data collection costs low by learning
visual representations. Inspired by these studies, we utilize
data generated by generative models for contrastive learn-
ing.

3. Problem Setting and Preliminary
Inspired by the effectiveness of synthetic data as training
data in 2D, we propose leveraging synthetic data as a so-
lution to the scarcity of 3D data by using it to augment
datasets. Specifically, we propose the method TeGA, that
utilizes generative text-to-3D models to create datasets for
language-image-3D pretraining. Therefore, in this section,
we introduce the proposed TeGA as a synthetic dataset ex-
pansion method, capable of learning rich geometric repre-
sentations to enhance zero-shot recognition model general-
ization. Finally, we outline the formulation of a language-
image-3D learning method, aiming to learn feature spaces
for embedding alignment across three different modalities.
Problem Setting. Zero-shot tasks generally demand large
datasets to generalize to unseen classes [30], yet, in zero-
shot 3D classification, the cost of collecting and annotating
3D data is a significant bottleneck and the performance of
the models remains low [10, 21, 42]. Recently, synthetic
dataset expansion has achieved notable performance im-
provements in several fields [15, 33]. Moreover, recent ap-
proaches in zero-shot 3D classification have demonstrated
that pretraining on language-image-3D data enables knowl-
edge distillation from models pretrained on other modal-
ities, thereby improving performance under limited data
conditions [13, 14, 21, 29, 41]. We consider these findings
critical for improving the accuracy of zero-shot 3D classifi-
cation. Hence, we present a multi-modal synthetic dataset
expansion method called TeGA that generates synthetic
language-image-3D data from text prompts using text-to-
3D models.

To frame the zero-shot 3D classification, we provide an
overview of the dataset setup. We begin by training a model
f(θ) to handle multiple types of visual inputs from a source

dataset Do = {(xI
i , x

T
i , x

P
i )}

no
i=1, which consists of image

(xI
i ), text (xT

i ), and 3D point cloud (xP
i ) modalities. The

goal of this task is to classify N semantic classes in a target
dataset Dt = {(xI

j , x
T
j , x

P
j )}

nt
j=1. Here, no and nt indicate

the number of samples, emphasizing the model’s ability to
generalize to previously unknown classes.

The core of dataset expansion lies in extending the
source dataset with a synthetic dataset, where Ds =
{(xI

k, x
T
k , x

P
k )}

ns

k=1, to enhance the model f(θ)’s ability to
generalize on unseen category shapes. The key to the task
is to design Ds to strengthen the adaptability of f(θ) to
new concepts. The construction of this extended dataset,
Do ∪ Ds, enriches the model’s ability to recognize unseen
category shapes.
Text-to-3D Models as Dataset Generator. Cognitive sci-
ence suggests that people use past experience to recognize
unfamiliar objects [1, 17]. For example, children use mem-
ories of other toys to imagine new ways to play with a new
toy. This is a fundamental insight for the use of genera-
tive models as training data. The use of synthetic data gen-
erated from generative models for zero-shot recognition is
very similar to the process by which humans recognize new
concepts of objects from previous knowledge. Recent ad-
vancements in text-to-3D models enable the generation of
realistic 3D synthetic data that is both rich and semantically
meaningful [4, 20, 26, 28]. Unlike traditional generative
models such as GANs [11] and VAEs [18], text-to-3D mod-
els accept direct text prompts, allowing for user-specified,
scenario-driven 3D shape generation. Therefore, this pa-
per aims to improve the generalization ability of the model
f(θ) by constructing a synthetic dataset through a text-to-
3D model for dataset expansion.

Inspired by the recent success of synthetic data train-
ing using generative models based on diffusion models, we
adopt a diffusion-based generative model as our text-to-3D
model. Generally, text-to-3D models based on diffusion
models can be simply represented as follows:

P = Gθ

(
T, ω

)
. (1)

where Gθ

(
·
)

represents the generator that inputs text T
and outputs a point cloud T , and ω represents the guidance
scale that is used to adjust how strongly the input text is re-
flected in the point cloud generation process. In this paper,
we utilize a generative text-to-3D model Gθ(·) as generat-
ing a point cloud xP

i from a text xT
i .

Language-Image-3D Contrastive Learning. The goal of
language-image-3D contrastive learning is to align the 3D
embeddings with the rich, pre-trained feature spaces of im-
ages and text to facilitate the classification of 3D data in-
cluding unseen classes. This facilitation enables language-
image-3D contrastive learning to mitigate the impact of
the 3D data scarcity problem. In fact, models leveraging
language-image-3D contrastive learning outperform mod-



Figure 2. A visualization of synthetic 3D data generated from
real 3D data and Point-E. Synthetic 3D data shows that it is more
difficult to generate detailed geometrical detail compared to real
data.

els trained with only text and 3D data in zero-shot 3D classi-
fication. Given the typically limited 3D datasets, a practical
approach is to leverage CLIP’s knowledge as a shared em-
bedding space. In this setup, we freeze CLIP’s image and
text encoders and align the 3D point cloud encoder to this
shared space using contrastive learning. For a triplet of im-
age, text, and point cloud (xI

i , x
T
i , x

P
i ), the contrastive ob-

jective maximizes similarity within the shared embedding
space as follows:

LAll = − 1

2N

N∑
i=1

∑
(A,B)∈S

(
log

exp(hA
i · hB

i /τ)∑
j exp(h

A
i · hB

j /τ)

+ log
exp(hB

i · hA
i /τ)∑

j exp(h
B
i · hA

j /τ)

)
(2)

where S = {(I, T ), (P, I), (P, T )} represents the pairs
across modalities; in other words, (I, T ) denotes the image-
text pair, (P, I) the point cloud-image pair, and (P, T ) the
point cloud-text pair. In addition, the normalized features
are defined as hA

i = gA(fA(x
A
i ))/∥gA(fA(xA

i ))∥, where
fA and gA denote the encoder and learnable projection head
for each modality A. Similarly, hB

j is defined for modality
B, with (A,B) ∈ S representing pairs across image, text,
and point cloud modalities. The temperature parameter τ is
a learnable parameter. It controls the strength of the penalty
for samples with high similarity. Through this contrastive
objective, we enable 3D shapes to align within CLIP’s em-
bedding space, facilitating a coherent language-image-3D
representation.

Figure 3. A visualization of consistency filtering. The upper
shows samples which passed filter; the lower shows samples which
filtered out. Our filtering can detect error cases while generation
process.

4. Proposed Method: TeGA

In this section, we introduce TeGA, expanding language-
image-3D datasets with high-quality synthetic 3D data gen-
erated from text-to-3D models.
Overview of TeGA. To tackle the problem of 3D data
scarcity in zero-shot 3D classification, the proposed method
automatically generates a synthetic dataset composing lan-
guage, image, and 3D modalities using a text-to-3D model.
In detail, to compose an expansion dataset, the proposed
method combines the desired text, the point cloud gener-
ated by the text-to-3D model, and the images rendered from
the generated point cloud. The proposed method can gen-
erate large amounts of data without requiring human data
collection or annotation and expand real datasets. However,
the generation process may err in some cases due to failure
to generate or render, meaning that the alignment between
each modality may not be accurate. This error may cause
the model to collapse during training. To address this prob-
lem, we introduce a consistency filtering strategy of TeGA
and the quality of the expanded dataset is improved by fil-
tering low-quality data.
Synthetic Dataset Construction. Our goal is to generate
a synthetic dataset Dt = {(xI

i , x0
T ′
i , xP ′

i )}no
i=1 consisting

of text xT
i , images xI′

i , and point clouds xP ′
i using the text

xT
i from the real dataset Ds = {(xI

i , x
T
i , x

P
i )}

ns
i=1 that also

comprises text xT
i , images xI

i , and point clouds xP
i . We

use Point-E [26] as the text-to-3D model of TeGA because
Point-E is suitable for generating large amounts of data due
to its ability to rapidly generate point clouds. Also, we
utilized only ShapeNet as the real dataset before applying
TeGA instead of several datasets because our goal is not to
outperform state-of-the-art methods but to serve as a train-
ing dataset expansion. ShapeNet is a dataset containing



Figure 4. The overview of consistency filtering process. The purpose of this process is to remove misaligned data that may introduce
model collapse during training. Specifically, rendered multi-view images are input into BLIP to generate captions. Then, the captions are
summarized to one caption by GPT-4. Finally, the quality of the generated data is evaluated by comparing the text used for generation with
the generated captions through two matching methods: word-level matching and concept-level matching.

52,470 point cloud samples across 55 classes.
We first generate a point cloud by inputting the category

names xT
i of the real dataset Ds as text prompts into Point-

E. The generation process is represented as follows:

xP ′
i = Gθ

(
xT
i , ω

)
(3)

We have the point clouds and text, so we render images
from the point clouds. However, without mesh information,
the rendered images may appear to lack accurate shape de-
tails. To address this, we perform meshing using the Ball
Pivoting Algorithm [2]. While various meshing techniques
exist, Point-E’s point clouds are not designed for meshing,
and, in our experience, using state-of-the-art meshing meth-
ods often leads to the collapse of the rendered 3D data.
Therefore, we adopted the older meshing technique, the
Ball Pivoting Algorithm. Then, images xI′

i are generated
by rendering the 3D data from 20 viewpoints. The view-
points are determined by rotating it clockwise in 18-degree
increments, with focal lengths dynamically determined by
the Open3D library. The processes of meshing and render-
ing are represented as follows:

xI′
i = R(M(xP ′

i )) (4)

where M(·) denotes meshing process and R(·) denotes ren-
dering process. The sets of inputted text xT

i , rendered im-
ages xI′

i , and generated point clouds xP ′
i that pass the con-

sistency filtering are adopted as the synthetic dataset Dt.
Figure 2 shows examples of synthetic and real 3D data

generated by Point-E. The real 3D data is a sample from
Objaverse-LVIS. Figure 2 shows that the synthetic 3D data
generated by Point-E outputs a 3D shape that matches the
input text. On the other hand, there are cases where even
the smallest details of the 3D shape are not generated ac-
curately. For example, the synthetic 3D data generated by

Point-E has difficulty in generating even the spokes of a bi-
cycle.
Consistency Filtering. Alignment across modalities is cru-
cial for language-image-3D pretraining. In our generation
process, alignment issues may occur at two stages: gener-
ating point clouds from text using Point-E and rendering
images from point clouds. Failures in point cloud genera-
tion often result from Point-E’s misinterpretation of the text.
Also, rendering failures occur when the point cloud is un-
suitable for meshing, such as when parts of the point cloud
are incomplete. Training a model with such misaligned data
could lead to a breakdown of modality alignment within the
model. To address this, we apply consistency filtering to
each generated data sample.

If alignment is maintained between the input text xT
i and

the final output image xI′
i in the data generation process, it

can be inferred that the intermediate output, the point cloud
xP ′
i , is also aligned. This ensures that the alignment of the

entire generated dataset is verified. Therefore, we evaluate
the alignment between the text and images. Based on exist-
ing evaluation methods for 3D data [12], our filtering com-
pares the integrated text generated from captions of multi-
view images with the input text using GPT-4 and algorithm-
based approaches. The process is shown in Figure 4.

For each synthetic data, we first select two images show-
ing the front and back of the 3D data among the generated
images during the dataset creation process. Next, we in-
put the two images into BLIP [19] to generate each caption.
To simplify, the generated captions for all viewpoints are
combined into one unified text yi using GPT-4. The com-
bined caption is then compared with the text used for gener-
ation and evaluates whether the synthetic data is aligned or
not. The evaluation is conducted using two metrics: a text-
based consistency metric and a semantic alignment metric.
For the text-based consistency metric, we then compute a



Table 1. Accuracy with and without filtering.

Filtering O-LVIS S-Object M40
Top1 Top1 Top1

w / o filtering 11.1 45.4 73.4
w / filtering 11.5 48.7 71.3

match score between this shared caption and the original
text query. Specifically, if the generated caption yi contains
the text xT

i , a score of 5 is assigned; if it does not, a score
of 1 is assigned.

stext(yi, x
T
i ) =

{
5, if xT

i ⊆ yi,

1, otherwise.
(5)

For the semantic alignment metric, inspired by the align-
ment evaluation in T3Bench [12], we use GPT-4 to evalu-
ate the semantic alignment of the generated caption relative
to the original prompt. Specifically, the common captions
and text prompts generated from the two images are used to
generate a five-point semantic-based similarity score using
GPT-4.

ssem
(
yi, x

T
i

)
= GPT4

(
yi, x

T
i

)
∈ {1, 2, 3, 4, 5}. (6)

For more information about the GPT-4 prompts, see Ap-
pendix ??.

The two calculated scores stext, ssem are summed to obtain
the final score s.

s
(
yi, x

T
i

)
= stext

(
yi, x

T
i

)
+ ssem

(
yi, x

T
i

)
(7)

If this score s
(
yi, x

T
i

)
exceeds the threshold δ, the data is

considered aligned and included in the dataset; otherwise,
it is discarded. We experimentally validated this threshold
δ during data generation with ShapeNet and finally set it to
3.5 for use in the dataset. Filtering with this threshold in
ShapeNet resulted in approximately half of the data being
filtered out. Figure 3 shows samples of our consistency fil-
tering. The filtered data has well-formed meshes, making
it visually easy to identify the objects. In contrast, the data
that failed the filtering process often has collapsed meshes
or represents unrecognizable objects.

5. Experiments
In this section, we evaluate the effectiveness of the proposed
TeGA in zero-shot 3D classification. Section 5.1 first in-
troduces our experimental setup, followed by Section 5.2,
which presents the results of the exploratory experiments.
Additionally, Section 5.3 discusses the main experimental
results in comparison with our baseline and previous zero-
shot 3D classification models. Finally, Section 5.4 analyzes
the key components of TeGA.

Table 2. Accuracy when varying Guidance scale.

Guidance scale O-LVIS S-Object M40
Top1 Top1 Top1

0.3 11.4 44.8 70.5
3.0 11.5 46.6 71.1
30 10.3 48.3 69.7

5.1. Experimental Setup
Training Dataset. Recent research has achieved high
performance in zero-shot 3D classification using a 3D
dataset that integrates four sources: ShapeNet [3], 3D-
FUTURE [9], ABO [6], and Objaverse [7]. However, our
main goal is not to outperform state-of-the-art methods, but
to test whether synthetic 3D data generated from text-to-3D
models can serve as a training dataset expansion. For this
reason, we use ShapeNet as a baseline in this paper.
Zero-Shot 3D Classification. Zero-shot 3D classification
is the task of classifying objects of unseen categories that
are not included in the training data. Following the ex-
perimental setup of MixCon3D, we use ModelNet40 [40],
ScanObjectNN [38], and Objaverse-LVIS [7] as evaluation
3D datasets. ModelNet40 is a CAD dataset containing
12,311 samples of 40 categories, including chairs and ta-
bles. ScanObjectNN is captured from real-world environ-
ments using RGBD sensors and contains 2,902 samples of
15 categories. Objaverse-LVIS is a relatively large dataset
with a collection of 1,156 categories, comprising a total of
46,206 samples.
Implementation Details. We used eight Nvidia H100
GPUs with a batch size of 1,024. Other settings followed
the default configurations of MixCon3D. We also employed
PointBERT as the point cloud encoder in MixCon3D. We
trained the model for 200 epochs with the AdamW opti-
mizer [23], a warmup epoch of 10, and a cosine learn-
ing rate decay schedule [24]. The base learning rate was
set to 1e-3, based on the linear learning rate scaling rule:
lr = base lr × batchsize/256. The Text Encoder and
the Image Encoder are frozen using OpenCLIP ViT-bigG-
14 [5], and, as in Liu et al. [21], simple layers are added
afterward to optimize the model. For dataset generation, we
used five Nvidia TITAN RTX GPUs. The generation pa-
rameters followed the default settings of Point-E: the output
point cloud size was 4,096, the guidance scale ω was set to
[3.0, 0.0], and 50 diffusion steps were performed to obtain
the final output.

5.2. Exploratory Experiments
This section analyzes the effect of key parameters in TeGA.
Specifically, we conducted two exploratory experiments:
(i) consistency filtering and (ii) guidance scale on Point-E.
For each exploratory experimental baseline, we evaluated
the performance of MixCon3D with a combined dataset of



Table 3. Comparison with zero-shot 3D classification performance on three representative benchmark datasets. Best scores at MixCon3D
are shown in underlined bold.

Method Training data
Objaverse-LVIS ScanObjectNN ModelNet40

Top1 Top1-C Top3 Top5 Top1 Top1-C Top3 Top5 Top1 Top1-C Top3 Top5

MixCon3D ShapeNet 9.4 5.7 16.7 20.4 46.5 41.6 67.9 79.6 64.6 60.3 83.0 87.1
MixCon3D (Ours) ShapeNet + TeGA 12.4 10.8 22.0 27.4 51.1 49.5 69.7 80.2 73.3 68.7 88.8 93.6

10,000 synthetic data samples and ShapeNet.

Consistency Filtering (see Table 1). The consistency fil-
tering of the proposed TeGA is an important process be-
cause it removes the unaligned data from the generated data
that adversely affects training. To verify the effectiveness
of TeGA, we conducted a comparative experiment under
two scenarios: one with consistency filtering applied and
one without it. For this experiment, we use two versions
of our synthetic dataset: one filtered by TeGA and one
unfiltered, and combine each with the ShapeNet dataset.
Then, these combined datasets are used for training. In
Table 1, we compare the Top1 accuracy with and without
consistency filtering on Objaverse-LVIS, ScanObjectNN,
and ModelNet40. The results show that the concatenated
dataset with consistency filtering outperforms the unfiltered
one by 0.4% points on Objaverse-LVIS and 3.3% points on
ScanObjectNN, while it decreases 2.1% points on Model-
Net40. These results indicate that the proposed consistency
filtering of TeGA provides effective synthetic training for
zero-shot 3D classification.

Effect of Guidance Scale of Point-E (see Table 2). The
guidance scale of Point-E is a critical parameter that con-
trols the fidelity of the 3D model to the input text prompt.
With a high guidance scale, the 3D model adheres more
closely to the text prompt, though this reduces the diversity
of geometric shapes. Conversely, a low guidance scale re-
sults in a 3D model that is less aligned with the text prompt
but exhibits greater geometric diversity. Referring to the
fact that the default guidance scale in Point-E is set to 3.0,
this experiment evaluates varying guidance scale in {0.3,
3.0, 30}.

In Table 1, we compare the Top1 accuracy with each
guidance scale on Objaverse-LVIS, ScanObjectNN, and
ModelNet40. Experimental results show that the guidance
scale of 3.0 gives the best performance. When the guidance
scale is set to 0.3, the generated point cloud is expected to
have minimal reliance on the input text, leading to weaker
alignment between modalities. Conversely, at a guidance
scale of 30, the point cloud strongly reflects the input text;
however, since all samples are generated using the same
text, this likely results in a loss of diversity. This trade-off
between alignment and diversity suggests that the highest
accuracy is achieved with the standard guidance scale of
3.0.

Table 4. Ablation studies of the balance of real and synthetic data.
We denote the replacement ratio of ShapeNet with synthetic data
as Point-E (PE) / ShapeNet (SN)-%.

PE/SN-% O-LVIS S-Object M40
Top1 Top1 Top1

0 9.01 50.3 63.7

25 9.47 47.4 67.7
50 8.93 43.8 67.6

100 0.3 14.0 9.4

5.3. Comparison with Conventional Methods
In Table 3, we compare the zero-shot 3D classification
results of MixCon3D. One model is trained with both
ShapeNet and the synthetic dataset generated by TeGA,
and the other is solely trained with ShapeNet. We gener-
ate a synthetic dataset with the same number of samples
as ShapeNet. As a result, our proposed method effectively
doubles the amount of training data compared to the original
ShapeNet. Table 3 shows that our approach outperforms the
baseline MixCon3D, which was trained solely on the origi-
nal ShapeNet, across all benchmark datasets and evaluation
metrics. Specifically, our method demonstrates substantial
improvements, achieving gains of 3.0% on Objaverse-LVIS,
4.4% on ScanObjectNN, and 8.8% on ModelNet40 in zero-
shot performance. These results clearly demonstrate that
TeGA is an effective method for dataset expansion in zero-
shot 3D classification, even when using synthetic 3D data.
Furthermore, the ability to scale the dataset while maintain-
ing or improving model performance opens up new possi-
bilities for addressing data scarcity in 3D vision tasks.

5.4. Ablation Studies
This section analyzes the factors that contribute to per-
formance improvements in dataset expansion using TeGA.
Specifically, we investigate (i) the mixing ratio of synthetic
3D data and (ii) the scalability of synthetic 3D data.
Mixing ratio of synthetic 3D data (see Table 4 and Fig-
ure 5). In this experiment, we investigate whether syn-
thetic data can serve as a substitute for real data. While
keeping the total number of samples the same as the orig-
inal ShapeNet, we replace a portion of the real data with
synthetic data generated by TeGA. Table 4 presents the
Top1 performance in zero-shot 3D classification with vary-
ing proportions of synthetic 3D data. Surprisingly, it shows
that the best performance is achieved when 25% of the orig-
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Figure 5. Confusion matrics when varying PE/SP. When the proportion of real data decreases, the model’s predictions increasingly skew
towards desk and display, leading to an overall deterioration in prediction accuracy.

Table 5. Ablation studies of varying scale of synthetic data.

Scaling O-LVIS S-Object M40
Top1 Top1 Top1

×0.1 11.1 48.2 71.0
×1 11.2 47.1 73.4
×2 12.1 45.1 73.8

inal ShapeNet is replaced with synthetic 3D data, with a per-
formance improvement over using ShapeNet alone. How-
ever, as the proportion of synthetic 3D data increases be-
yond 25%, performance gradually deteriorates; when only
synthetic data is used, training fails and classification per-
formance significantly drops. This decline is likely due to
the learning strategy of MixCon3D, which extracts knowl-
edge from CLIP models, making it difficult for the model to
learn from the synthetic 3D data generated by Point-E due
to domain gaps.

We also analyze why the model fails to learn when
trained solely on synthetic data. In this experiment, we con-
struct a mixture matrix at PE / SN = {0, 25, 100}, where
real 3D data is progressively replaced by synthetic 3D data,
to examine how the model misclassifies. As shown in Fig-
ure 4, for PE / SN = {0, 25, 100}, the categories predicted
by the model exhibit similar trends. However, when PE/SN
= 100, i.e., when the model is trained on synthetic 3D data,
the predicted labels are biased towards desk or display.
Scalability of synthetic 3D data. In this experiment, we
examine how scaling the amount of synthetic data added
to ShapeNet influences the performance of MixCon3D.
Specifically, we assess performance changes when Point-
E generated data is scaled to 0.1x, 1x and 2x the original
ShapeNet data. The scaling is based on ShapeNet’s default
dataset size of 53,470. Table 5 presents the Top1 perfor-
mance with varying the amount of generated data. It shows
that scaling plays a critical role in MixCon3D’s training
and that synthetic data effectively contributes to this scal-
ing. According to these results, accuracy improves with

the addition of scaled synthetic data for Objaverse-LVIS
and ModelNet40. In contrast, the accuracy decreases with
scaling for ScanObjectNN. This decline is likely due to
ScanObjectNN’s scores being more sensitive to noise.

6. Conclusion
To fix the problem of 3D data scarcity in zero-shot 3D
classification, we propose TeGA (Text-guided Geometric
Augmentation), a language-image-3D dataset expansion
method with high-quality synthetic 3D data. TeGA plays a
significant role in the expansion of existing datasets. To fur-
ther enhance the quality of 3D data, we apply consistency
filtering to remove unaligned data that could negatively im-
pact training. In practice, by combining the generated syn-
thetic data with existing 3D datasets, we demonstrated im-
proved performance in zero-shot 3D classification. Based
on these results, we believe text-to-3D models have the po-
tential to alleviate challenges associated with 3D data col-
lection and, when leveraged for data expansion, can support
the development of generalizable vision models for 3D vi-
sion.
Limitations. In this paper, we adopted Point-E as a text-to-
3D model. However, Point-E is a generative model trained
on data that is not open to the public. Since it is difficult to
generate out-of-distribution data not included in the train-
ing dataset, our framework heavily relies on the genera-
tive model. Additionally, when incorporating synthetic 3D
data generated by Point-E into the training dataset, there is
concern that societal biases or other unintended elements
may be inadvertently introduced. It is recommended to take
these risks into account and incorporate the findings from
this study into the model improvement process.
Acknowledgements. This work was supported by the AIST
policy-based budget project “R&D on Generative AI Foun-
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