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Figure 1. VIDMP3. We present a novel video editing technique that can perform challenging video editing tasks guided by pose and
position priors. We introduce a MOTIONGUIDE module that learns a generalized motion representation from correspondence and depth
maps. We inject the features of this module to the “Value”s of the temporal self-attention layer of a T2V initialized with a T2I model.
During inference, we use the correspondence and depth maps of the source video to generate a novel motion-preserved video. VIDMP3
enables the generation of challenging edits, including A⃝ Cross-Domain editing, where objects with vastly different semantic meanings can
be generated, B⃝ Structure editing, where structure of the object can be changed significantly, and C⃝ adaptation to various T2V editing
tasks such as personalized editing.

Abstract

001
Motion-preserved video editing is crucial for creators,002

particularly in scenarios that demand flexibility in both the003
structure and semantics of swapped objects. Despite its po-004
tential, this area remains underexplored. Existing diffusion-005
based editing methods excel in structure-preserving tasks,006
using dense guidance signals to ensure content integrity.007
While some recent methods attempt to address structure-008
variable editing, they often suffer from issues such as tem-009
poral inconsistency, subject identity drift, and the need for010
human intervention. To address these challenges, we intro-011
duce VIDMP3, a novel approach that leverages pose and012
position priors to learn a generalized motion representation013
from source videos. Our method enables the generation of014
new videos that maintain the original motion while allow-015
ing for structural and semantic flexibility. Both qualitative016
and quantitative evaluations demonstrate the superiority of017
our approach over existing methods.018

1. Introduction 019

The strong generation capabilities of text-to-image (T2I) 020
diffusion models have encouraged the adoption of these 021
models for video generation and editing tasks, owing to 022
the simple architectural changes required over T2I mod- 023
els to enable them to generate videos. Inclusion of tem- 024
poral self-attention layers and inflating 2D convolutions to 025
pseudo 3D convolutions facilitates the generation of videos 026
conditioned on text. While some approaches train text- 027
to-video (T2V) models on large-scale text-video paired 028
datasets [4, 17, 18, 39, 54], others explore a more data- 029
efficient technique. These methods [14, 40, 44, 50] train 030
a T2V model on a single video and use the learned pri- 031
ors to generate novel videos using edited text prompts. 032
T2I models have also been used for zero-shot video edit- 033
ing [6, 8, 11, 29, 36] by utilizing structure from a specific 034
source video. 035

Generative video editing is a task of remarkable interest 036
to creators which enables them to create novel videos which 037
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can borrow information from a captured real video. One of038
the most important and under-explored sub-areas is where039
only motion is preserved from a source video and mimicked040
to generated a new video. This is the most general use-041
case of generative video editing, whereby the motion of the042
subject in the source video is preserved but structure, ap-043
pearance, and semantics remain modifiable. Apart from the044
clear benefits of reducing costs and time for video creators,045
this serves an important case where a creator would want to046
imitate the motion of a real subject and transfer it to sub-047
jects that might be hard to capture following that specific048
motion e.g., imaginary concepts following the motion in a049
real video.050

In a data efficient setting where we want to use only051
a single source video to generate an edited novel video,052
changing the structure and domain of the subject has been a053
challenging task. Zero-shot video editing techniques heav-054
ily rely on the structure of the source video, and are thus055
unable to deviate much from the source concept. One-056
shot tuning techniques have shown sufficient promise, but057
struggle with either shape leakage, quality issues, or fail in058
cases of cross-domain editing. This can be attributed to un-059
constrained optimization over the source video [44] or too060
sparse external control [14].061

We embark on learning a generalized motion represen-062
tation that distentangles spatial properties of subjects from063
their motion. Motion of subjects is perceived by humans064
as the combination of their position in a 3D space and their065
internal pose. Thus, we choose to inject an external rep-066
resentation learned from pose and position priors to guide067
the T2I diffusion model. We hypothesize that motion can068
be represented as a combination of spatial correspondence069
maps, depth maps and 2D positional encodings. The corre-070
spondence maps provide signals for the internal pose vari-071
ation of a subject over video frames, while the depth maps072
and positional encoding signify the 3D positions of the sub-073
ject in each frame. We introduce a novel MOTIONGUIDE074
module which utilizes these maps to learn a generalized075
representation of motion. First, we show a proof of con-076
cept where MOTIONGUIDE can be used to learn the 3D tra-077
jectory and rotations of a simple moving cube. We show078
that the learned module is invariant to shape changes of079
the object but sensitive to motion changes. This shows080
that this module can be effectively used to induce motion-081
preservation with variations in shape when appropriately082
injected into a T2V diffusion model initialized with a T2I083
model. We present VIDMP3 where we inject the spatially084
pooled features of MOTIONGUIDE into the “Value”s of the085
temporal self-attention layers of the T2V model. Essen-086
tially, this allows the model to understand added context087
in frame-to-frame correspondence, thus boosting temporal088
consistency. We show that VIDMP3 robustly edits subjects089
with significant structure and semantic shift from the sub-090

ject in the source video. We also scale our method to Stable- 091
Diffusion-XL [34], which has not been explored previously 092
for video editing. We show that we are able to generate 093
more diverse concepts with VIDMP3 SD-XL. In summary, 094
our contributions are as follows: 095
• A MOTIONGUIDE module that learns generalized motion 096

representations from pose and position priors 097
• VIDMP3, which utilizes the MOTIONGUIDE module to 098

inject external guidance to the “Value”s of the temporal 099
self-attention module 100

• Adaptation to various T2I diffusion models including 101
scaling to SD-XL. 102

2. Related Work 103

Diffusion models have been extensively explored for video 104
editing due to their strong generation capability and abil- 105
ity to conform to various kinds of conditions. Previous 106
video editing techniques can be classified into two gen- 107
eral categories: 1) Structure-preserved Video Editing, and 108
2) Motion-preserved Video Editing. We discuss prior work 109
in these two domains in detail below. 110

2.1. Structure-preserved Video Editing 111

These techniques aim to edit the video while preserv- 112
ing structural information from the original video by re- 113
lying on various cues such as depth, edge, optical flow, 114
or attention map information. Gen-1 [9], Ground-a- 115
video [20], and RAVE [22] utilize depth maps for guid- 116
ance, while CCEdit [10], ControlVideo [52], and MAsk- 117
INT [30] extend to the use of various controls including 118
depth, boundary, and line drawing. MoCa [46], Rerender A 119
Video [48], and FlowVid [27] use optical flow as guidance. 120
VideoP2P [29], FateZero [36], Vid2Vid-Zero [43], and 121
Edit-A-Video [38] inject attention map information from 122
the original video while denoising the edited video. Token- 123
Flow [11], COVE [42] and DreamMotion [21] use dense 124
spatial correspondences among frames to ensure consis- 125
tency. VidTome [26] develops a method that uses any of the 126
above discussed types of guidance techniques. Codef [32], 127
VidEdit [8], and StableVideo [6] learn a canonical represen- 128
tation of the video. Editing this representation allows high 129
temporal consistency, but restricts changes in low-level fea- 130
tures. In contrast to these methods, VIDMP3 allows signif- 131
icant structural and semantic changes in the subject of the 132
given source video. 133

2.2. Motion-preserved Video Editing 134

These methods aim to extract the motion from the source 135
video while allowing significant structural changes in the 136
edited video generated with the same motion. 137

One-shot tuning. Tune-a-video [44] attaches a mo- 138
tion module to a pre-trained T2I model, and introduces 139
sparse causal self-attention which uses features from other 140
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frames to compute self-attention on each frame. Tune-A-141
Video overfits the motion module to a single video, which142
is then used to generate novel videos at test-time. We find143
that Tune-a-Video suffers from severe structure leakage and144
temporal inconsistency, due to unconstrained training of the145
motion module on the input video.146

VideoSwap [14] alleviates structure leakage by injecting147
keypoint correspondence information and keeping the mo-148
tion module frozen. However, VideoSwap requires human149
effort in selecting or editing the keypoint positions. For150
cases which require significant size changes, VideoSwap151
creates a Layered Neural Atlas [24] of the video, in which152
the user is required to make desired edits. Training this153
LNA is significantly time consuming. Additionally, as a re-154
sult of using keypoint correspondence, VideoSwap is inef-155
fective at swapping semantically different objects. By con-156
trast, VIDMP3 is able to swap objects with considerable157
structure and semantic variation, due to injecting a general-158
ized representation of external pose and position guidance.159
Most importantly, VIDMP3 relies neither on human effort160
nor the time-intensive LNA creation process.161

SAVE [40] aims to disentangle the structure and mo-162
tion of a subject by using a motion prompt that focuses163
on moving areas, but suffers from temporal inconsisten-164
cies due to leakage in areas surrounding the moving object,165
as evidenced in their results. CAMEL [50] injects motion166
prompts into the temporal attention module, which is then167
learned from the video. By contrast, our method uses ex-168
ternal pose and position guidance to learn a more consistent169
representation of motion.170

Emu-Video [12] attaches an image editing and video171
generation adapter over a pre-trained T2I model, which is172
then tuned on a dataset of several videos. VIDMP3 instead173
extracts various kinds of information from a single video to174
generate a novel edited video.175

Pose-guided video editing. 2D/3D pose-guided video176
editing has been explored specifically for humans and177
human-like entities in Follow-Your-Pose [31], Dream-178
Pose [23], DeCo [53], MagicPose [7], MagicAnimate [45],179
AnimateAnyone [19], EVA [49], and DynVideo-E [28].180
VIDMP3 instead explores pose-guided editing in a more181
general context with pose being represented using corre-182
spondence maps. This representation allows us to generate183
subjects which are highly semantically and structurally dif-184
ferent from the subject in the source video, while accurately185
following the motion of the source video.186

Propagation from first frame editing. AnyV2V [25]187
and I2VEdit [33] use a separate model for editing the first188
frame of the video and then propagate the edit to the other189
frames. While these methods can significantly change the190
structure of the subject, they are limited by the image-191
editing technique they utilize. AnyV2V suffers from se-192
vere temporal inconsistencies when modeling videos with193
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Figure 2. Toy experiment on learning shape-invariant motion.
We trained our MOTIONGUIDE module on the original video and
tested it on videos with 1) shape changes, and 2) motion changes.
We show the frames for each video to the left. From the graph at
the right, it may be observed that the MOTIONGUIDE module is
invariant to shape change but sensitive to motion change.

significant motion (see Appendix). VIDMP3 instead learns 194
the motion representation from the source video and jointly 195
models it across frames. 196

3. Method 197

The motion of any object can be represented as a combi- 198
nation of pose and position in 3D space. Given a video 199
XN = [x1, x2 . . . xN ] of N frames, we wish to learn only 200
the motion of the subject in the video. We want to build a 201
generalized representation of motion using the 3D pose 202
and position of an object. This representation enables us to 203
swap objects with significantly different shapes or seman- 204
tics. We hypothesize that motion can be extracted only us- 205
ing the dense correspondences within frames CN and the 206
depth maps per frame DN , without using the frames of the 207
video XN . CN is useful for representing the 2D position 208
and pose of the object, while DN represents the 3D po- 209
sition. First, we present a proof of concept, whereby we 210
introduce a MOTIONGUIDE module to learn motion using 211
CN and DN , and show that the learned representation of 212
the module is invariant to shape changes but sensitive to 213
changes in motion. Next, we formally describe how the rep- 214
resentations of this MOTIONGUIDE module can be injected 215
into a diffusion model to edit videos. 216

3.1. Representing motion with pose and position 217

We design a MOTIONGUIDE module ϕm that takes as in- 218
put dense correspondence maps CN and depth maps DN 219
of the subject of interest in a video. We present the design 220
of this lightweight module in the Appendix. Essentially, the 221
module processes CN ⊙ DN with convolution layers, then 222
concatenates a positional encoding P to each frame. After 223
another convolution, we average pool in the spatial dimen- 224
sions and divide by α to form a single-dimensional vector 225
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a brown bulldog on roller blades riding down a road in the countryside


a tiger sitting on the ground eating something in its hands
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Figure 3. Comparison with prior art on motion-preserved video editing. We consider the challenging cases of A⃝ Cross-Domain Edit
– “silver jeep” −→ “bulldog on roller blades”, and B⃝ Structure Edit – “monkey”−→ “tiger”. It may be observed that in the case of cross-
domain editing, all baselines suffer from severe temporal inconsistencies of the subject. For the case of structure editing, Tune-A-Video
produces a highly saturated video with the head pose not correctly following the pose of the input video. Similarly, FateZero also models
incorrect head pose (see second row of B⃝). For VideoSwap we notice that the tiger has a similar humped shape like the monkey (notice
the yellow circled areas), due to the keypoint correspondences being very sparse and spatially constrained signal. The sparsity of this
signal results in the orientation of the face being inaccurate, resulting in a wrong head pose of the tiger in the middle row. By comparison,
VIDMP3 generates temporally consistent results following the input pose while making necessary changes faithful to the new concept.

for each frame MN,d , where α is the ratio of pixels occu-226
pied by the object in the frame to the total number of pixels227
in the frame. This is then processed by a final linear layer.228
The pooling is crucial to our method as it prevents shape and229
size leakage. The positional encoding P provides informa-230
tion on the 2D location of the values in CN ⊙DN , making231
the representation sensitive to the average 2D position, even232
after spatial pooling.233

3.2. Toy experiment234

For proof of concept, we designed a toy experiment where235
the MOTIONGUIDE module ϕm was attached with a final236

linear layer to predict the 3D trajectory and rotations of an 237
object. We rendered a video of a cube following a specific 238
trajectory and rotations TN,6. The 6 values correspond to 239
positions in xyz and rotations in xyz. The cube is rendered 240
with different gradient colors on its faces to mimic corre- 241
spondence maps. We treated the rendered frames of the 242
cube as correspondence maps CN and found depth maps of 243
each frame, denoted as DN . We trained ϕm on this single 244
video of the cube to predict T̂N,6 by optimizing: 245

min
ϕm

∥TN,6 − ϕm(CN ,DN )∥2 . (1) 246

Given this trained MOTIONGUIDE module ϕm, we used 247
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Video Frames Correspondence Maps Segmented Depth Maps Correspondence  Depth⊙

Figure 4. Visualization of correspondence and depth maps. For
two frames of the video of “a dog looking out the window of a car”,
we show the corresponding correspondence and depth maps we
obtain from off-the-shelf models. The depth segmented using the
correspondence map is multiplied with the correspondence map
(right-most column) and provided as input to MOTIONGUIDE.

it to infer on 1) C1
N , D1

N of a positive sample where the248
shape of the cube was changed, but followed the same mo-249
tion, and 2) C2

N , D2
N of a negative sample where the orig-250

inal cube followed a different motion. We present frames of251
the original video, and the test videos along with prediction252
loss in Fig. 2. It may be observed that the training loss and253
loss of the positive sample follow a similar reducing trend,254
while that of the negative sample diverges. This shows 1)255
that motion can be predicted reasonably using correspon-256
dence and depth maps, 2) the learned representation is in-257
variant to shape change, and 3) the learned representation is258
sensitive to motion changes.259

3.3. VIDMP3260

VIDMP3, depicted in Fig. 1, utilizes the MOTIONGUIDE261
module formulated in the previous section to learn motion262
from a source video XN , to generate a new video having263
the same motion. We fine-tuned our model on the single264
source video XN . We followed the paradigm of Tune-A-265
Video [44], where motion modules are inserted into a pre-266
trained T2I diffusion model. The motion module consists267
of temporal self-attention layers which are computed as:268

Attention(Q,K,V) = softmax
(
QK⊤
√
d

)
V, (2)269

Q = WQzi,j , K = WKzi,j , V = WVzi,j , (3)270

where zi,j is the latent representation of the video at a spa-271
tial location (i, j) before the temporal self-attention. We in-272
ject the output of our MOTIONGUIDE module into the val-273
ues of the temporal self-attentions such that:274

V = WV(zi,j + λϕm(CN ,DN )), (4)275

where λ is a weighting factor. We chose to inject the exter-276
nal features into the values, to add extra context to the loca-277
tions the self-attention focuses on. We used the pre-trained278
weights of the motion module from AnimateDiff [15].279

We updated the spatial self-attention to the sparse causal280
variant of Tune-A-Video, where for a specific frame the at-281
tention is calculated using the first and previous frame of282

the video. Unlike Tune-A-Video which suffers from severe 283
shape leakage because of over-fitting the full motion mod- 284
ules on the source video, we chose to keep the motion mod- 285
ule frozen and inject motion only using the external adapter 286
MOTIONGUIDE module. This enables us to learn a repre- 287
sentation space of pure motion disentangled from appear- 288
ance. We trained this modified network by optimizing: 289

min
ϕm,ϕu

Ez0,t,ϵ

[
∥ϵ− ϵθ(zt; t, y, ϕm(CN ,DN )∥2

]
, (5) 290

where t represents the time-step, zt the latents diffused at 291
time t, y the prompt for the source video, and ϵθ repre- 292
sents the denoising diffusion model. We optimized only 293
over ϕm and ϕu. ϕu represents other trainable parameters, 294
namely WQ of the spatial self- and cross-attention layers, 295
and WV of the motion modules. Finally, after training, we 296
used the inverted latents of the source video to sample a 297
new video with an edited prompt, while using CN and DN 298
of the source video. We show that this simple formulation 299
is highly robust and quite general, enabling us to generate 300
subjects that are significantly different in shape and seman- 301
tics as compared to the subject in the original video. 302

4. Experiments 303

Datasets. We used the same set of 30 videos provided 304
by VideoSwap which were selected from Shutterstock and 305
DAVIS [35]. The videos are divided into three categories 306
– human, animal, and object – where each category com- 307
prises of 10 videos. For each source video we used three 308
predefined concepts and three customized concepts, result- 309
ing in a total of 180 edited videos. Unlike VideoSwap, our 310
customized concepts involve significant semantic changes. 311

Implementation Details. We used Stable Diffusion 1.5 312
as the foundation model for baseline comparisons and also 313
extended our method to use SDXL for generating more di- 314
verse concepts. For the SD-1.5 architecture, we primarily 315
use Chilloutmix [3] pre-trained weights, except for 1) style 316
editing where we used the original SD-1.5 weights, or 2) 317
personalized editing tasks. We used the pre-trained motion 318
modules of AnimateDiff [15] for the temporal self-attention 319
layers. We uniformly sampled frames at a sampling rate of 320
4 at their original resolution from the input video to fine- 321
tune the models. All experiments were conducted on Nvidia 322
A100 (40GB) and H100 GPUs. We used Adam with a 323
learning rate of 5e−4 when optimizing the fine-tuning stage 324
over 100 iterations. We set the MOTIONGUIDE weighting 325
factor λ to a value of 0.1 for videos with higher ranges of 326
motion and 0.05 for videos with lower ranges of motion. 327
The weights of the final linear layer of the MOTIONGUIDE 328
module are zero-initialized when training so that the out- 329
put of the MOTIONGUIDE module is zero for the first itera- 330
tion. We also disabled the bias of the convolution layers of 331
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“a black swan with a red beak swimming in a river near a wall and bushes”

“a paper boat swimming in a river near a wall and bushes”

“a silver jeep driving down a curvy road in the countryside”

“a tall cloth-ghost floating down a curvy with the New York City skyline in background in a dark snowy night”

Figure 5. Scaling VIDMP3 to SDXL. As a novel initiative, we scaled up the T2V model to utilize SDXL as the foundation model. We
show that we can model more diverse concepts using this setup, owing to the stronger generation capabilities of SDXL.

the MOTIONGUIDE, since we are overfitting on one video332
without the need to have any regularization.333

To compute spatial correspondence maps, we used the334
implementation of SD-Dino [51], which utlizes the inter-335
nal deep features of Dino [5] and Stable Diffusion [37] for336
this task. For classes not present in the COCO dataset e.g.337
“monkey”, we used the off-the-shelf figure-ground segmen-338
tation tool RMBG-1.4 [2]. We found correspondence maps339
for each frame using the first frame as reference. Depth340
maps were found using DepthAnythingV2 [47], which are341
then segmented to only contain the subject aided by the ob-342
tained correspondence maps. Finally we multiplied the cor-343
respondence and segmented depth maps to form the input344
to MOTIONGUIDE. We show examples of the computed345
correspondence and depth maps for a video in Fig. 4.346

Baselines. We qualitatively and quantitatively compared347
our model to Tune-A-Video [44], VideoSwap [14], and348
FateZero [36]. We found these baselines to be the most349
relevant ones delivering the strongest results for motion-350
preserved editing tasks using a single video for training.1351
We show in the Appendix that first-frame editing methods352
like AnyV2V struggle to capture considerable levels of mo-353
tion and are highly dependent on the quality of the first354
frame generated by their image editing method.355

1CAMEL [50] is a related work but does not provide sufficient results,
and omits dependencies required to run their code in their repository.

5. Results 356

Here we showcase some of the various capabilities of 357
VIDMP3, comparison to baselines, adaptability of our 358
model to various video editing tasks, scaling to SDXL, ab- 359
lations over the components of our method, and discuss im- 360
plementation choices. 361

Cross-domain Edit. The most important contribution of 362
VIDMP3 lies in the challenging case of Cross-domain Edit- 363
ing, where previous methods suffer. In this case, we show 364
that the subject in the source video can be swapped with 365
a semantically different subject in the edited video, while 366
correctly preserving motion. In Fig. 3 we show the instance 367
“silver jeep” → “bulldog on roller blades,” where VIDMP3 368
can generate a video where the motion is preserved and the 369
subject is temporally consistent. We attribute these results 370
to the external strong motion signal we inject, which al- 371
lows the model to understand a general sense of position 372
and pose. We present additional results in the Appendix. 373

Structure Edit. Previous methods have shown good per- 374
formance for the case of structure editing, while keeping 375
the edited subject in the same domain, e.g., “silver jeep” 376
→ “Porsche.” This case is much simpler as compared to 377
cross-domain editing, due to the internal semantic under- 378
standing of the diffusion model. We show the case of “mon- 379
key” → “tiger” in Fig. 3, where the edited tiger generated by 380
VIDMP3 follows the exact same head and hand motion as 381

6



ICCV
#6

ICCV
#6

ICCV 2025 Submission #6. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

the monkey, allowing freedom for the different body shapes382
of the tiger as compared to the monkey. We present addi-383
tional results for structure editing in the Appendix.384

Comparison to baselines. For the two previously de-385
scribed cases of Cross-Domain Edit and Structure Edit,386
we compared to the previous methods, Tune-A-Video,387
VideoSwap and FateZero. For fair comparison, we initial-388
ized all baselines with the same pre-trained T2I weights [3]389
as ours. Tune-A-Video and FateZero don’t explicitly pro-390
vide any external guidance to the model, which lead to391
high temporal inconsistencies in the case of Cross-Domain392
Editing, where the pre-trained T2I model is not confident393
in its outputs owing to semantic changes of the object to394
be edited with respect to the source object. On the other395
hand, VideoSwap uses explict keypoint correspondences396
and guides the model to change the object, but it fails when397
the semantic meanings do not remain relevant (e.g.: “silver398
jeep” → “brown bulldog”). VideoSwap requires human ef-399
fort in marking the positions of 2D keypoints that should400
be tracked in the video. It also involves significant time401
and human effort to manually edit the position of the key-402
points for the target video when there are significant shape403
changes. Tune-A-Video generates saturated videos on both404
Cross-Domain and Structure Editing, possibly due to over-405
fitting the entire motion module on the source video. This406
is not true for either VideoSwap or VIDMP3, as all or most407
parts of the motion module are kept frozen while learning408
an external adapter that has a fixed input. For the case of409
Structure Editing, it may be observed that VideoSwap gen-410
erated the tiger to be in a bent posture like the monkey, be-411
cause fitting to the keypoint correspondence signal was too412
constrictive. None of the baselines were able to follow the413
head pose of the monkey accurately as can be observed es-414
pecially in the second and third row of the generated videos415
of all baselines in Fig. 3 B⃝.416

By contrast, VIDMP3 generates temporally consistent417
videos in both cases while preserving motion from the418
source video. This is achieved by computing a pose and419
position representative value for each frame, using dense420
correspondence and depth maps to learn generalized repre-421
sentation of motion. During inference, these representations422
help guide motion in the generated videos, and allowing the423
text-to-image model more room to explore appearances.424

Adaptability of VIDMP3. Since VIDMP3 is based on425
an existing T2I model, it can be effectively applied to tasks426
other than subject swapping. We show results of using427
VIDMP3 for 1) background change, 2) style change, and428
3) personalization. For personalization, we attempted both429
per-subject personalization, as well as using pre-trained T2I430
models that are personalized on more general concepts,431

such as Anything-v4.0 [1]. We refer the readers to the Ap- 432
pendix for qualitative results of these tasks. 433

Scaling VIDMP3 to SDXL. We also studied scaling to 434
StableDiffusion-XL which is a stronger T2I model that is 435
able to represent more diverse concepts. We use AnimateD- 436
iff’s SDXL motion module, and found that it less effectively 437
models motion than the motion module of the SD-1.5 ver- 438
sion. Thus, we identify the specific parameters of the mo- 439
tion module that contribute to shape leakage and kept them 440
frozen. More specifically, we found that the feed-forward 441
layers of temporal self-attention blocks contribute to the 442
highest leakage. We trained the other parameters namely, 443
WQ, WK, and WV and projection matrices of the tem- 444
poral self-attention modules, in addition to the parameters 445
that we kept trainable in the SD-1.5 version. This enabled 446
our model to better learn motion while still avoiding leak- 447
age. We present results of using SDXL within VIDMP3 in 448
Fig. 5. We show generated concepts that we were not able 449
to represent consistently using SD-1.5 VIDMP3, such as a 450
“paper boat” and a “cloth-ghost”. We provide additional 451
results generated by VIDMP3 SDXL in the Appendix. 452

Ablations. We conducted ablations over various compo- 453
nents of our method and implementation choices. Fig. 6 454
depicts the effect of using only correspondence maps, only 455
depth maps, or concatenated depth and correspondence 456
maps as input to MOTIONGUIDE. We also show the ef- 457
fect of disabling the MOTIONGUIDE. For all these cases, 458
we find that the motion is modeled incorrectly, with a much 459
subdued range and incorrect orientations per frame. 460

Evaluation. We quantitatively compared our method 461
against previous SOTA models using both automatic and 462
human evaluations. We provide a detailed discussion of the 463
evaluation settings in the Appendix. We conducted a volun- 464
tary, controlled laboratory human study to gather opinions 465
expressive of 1) Subject Identity, 2) Motion Alignment, 3) 466
Temporal Consistency, and 4) Overall Preference for video 467
subject swapping. The results of this evaluation, shown in 468
Fig. 7, indicate a clear preference for our method. 469

Time Cost Analysis We recorded the time required to run 470
each component of VIDMP3 to edit a 16 frame video clip 471
on an Nvidia A100 GPU. This includes 1) Preprocessing: 472
which involves computing the correspondence and depth 473
maps. The correspondence map computation required ap- 474
proximately 4s per frame, or 64 seconds over 16 frames. 475
The depth map computation required approximately 2s per 476
frame, or 32 seconds over 16 frames. The preprocessing 477
step used about 100 seconds overall. 2) Training: where 478
the MOTIONGUIDE module was trained over 100 iterations 479
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Source VideoNo MOTIONGUIDE MOTIONGUIDE - only corr. MOTIONGUIDE - only depth MOTIONGUIDE - corr. depth cat. VIDMP3

fram
es

Figure 6. Ablation over various components of our method. For the case of “car” → “bike”, we see that all other implementations
including disabling MOTIONGUIDE, providing different inputs to MOTIONGUIDE such as only correspondence maps, only depth maps
or concatenation of depth and correspondence maps, results in incorrect and lower range of motion. VIDMP3 uses MOTIONGUIDE with
multiplied correspondence and depth maps as input and imitates the motion the subject in the source video correctly.
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VIDMP3 VideoSwap FateZero Tune-A-Video

Figure 7. Human opinions on 1) Subject Identity, 2) Motion
Alignment, 3) Temporal Consistency, and 4) Overall Preference,
averaged over 10 participants and 180 edited videos.

which expended about 3 minutes of compute time. And,480
lastly 3) Editing: when we generated the edited video using481
inverted noise from the source video. The DDIM inversion482
process of 50 steps required about 30 seconds. The back-483
ward process to generate the edited video consumed about484
30 seconds as well, resulting in a total of 60 seconds. Over-485
all, the complete process, from preprocessing to generating486
the final edited video required about 6-7 minutes.487

6. Limitations and Discussions488

There can be multiple choices of features that could repre-489
sent the pose and position of subjects, and that can be in-490
jected externally to a diffusion model to guide motion, e.g.491
injecting Diffusion Correspondence (DIFT [41]) features.492
However, our choice of 2D correspondence and depth maps493
is highly efficient since it only requires three channels of494
input, and is also a cleaner signal of explicit motion with-495
out any leakage of extra information. While VIDMP3 can496
generate subjects with significant structural and semantic497
differences relative to the source video, we cannot explic-498
itly control the size of the subject. For example, in the case499
of “black swan” → “paper boat” in Fig. 5, observe that the500
generated paper boat is large and of a similar size as the501
swan. Additionaly, our method is dependant on the quality502

of correspondence and depth maps obtained. However, for 503
all of our evaluation videos, we find that the off-the-shelf 504
methods for obtaining these maps perform well. Scaling 505
video editing to multiple subjects has been studied in previ- 506
ous work, but has not been explored here. For such scenar- 507
ios, one approach would be to generate separate correspon- 508
dence maps for each of the various subjects of interest, and 509
inject each using separate MOTIONGUIDE modules. We 510
leave this direction of research for future work. 511

7. Conclusion 512

We presented VIDMP3, a novel video editing technique 513
based on T2I models, which utilizes pose and position pri- 514
ors to generate motion-preserved videos based on a source 515
video. We introduce the MOTIONGUIDE module, which 516
learns generalized motion representations from spatial cor- 517
respondence and depth maps. These representations are 518
injected into the temporal self-attention layers of a T2V 519
model initialized from a T2I model, thus forming VIDMP3. 520
We evaluated VIDMP3 on challenging video editing tasks: 521
1) Cross-Domain Editing, and 2) Structure Editing. We 522
observed that VIDMP3 can generate objects with signif- 523
icant structural and semantic changes relative to the sub- 524
ject in the source video, while maintaining temporal con- 525
sistency. We show qualitatively and quantitatively that our 526
method improves over previous strong baselines on the task 527
of motion-preserved video editing. Additionally, we scaled 528
our method to use SDXL as the base T2I model, which is 529
a novel effort in the area of video editing. We explored 530
the adaptibility of our method on various video editing 531
tasks, including personalized editing, background editing, 532
and style editing. Despite its potential to enhance creative 533
workflows, motion-preserved video editing without rigid 534
structural constraints remains a relatively under-explored 535
domain. VIDMP3 addresses this gap by introducing a novel 536
approach that maintains temporal coherence while allowing 537
flexible content modification, laying the groundwork for fu- 538
ture research and developments in this area. 539
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VIDMP3: Video Editing by Representing Motion with Pose and Position Priors
Supplementary Material

8. Adaptability of VIDMP3789

Personalization. VIDMP3 supports customized or per-790
sonalized concepts through additive methods such as ED-791
LoRA [13]. In Fig. 8, we present edited videos generated792
using VIDMP3 with pre-trained customizations provided793
by [14]. During model optimization on the source video,794
the LoRA layers were not attached; they were utilized only795
during inference on the saved model. The degree of cus-796
tomization can be adjusted using the LoRA blend weight797
parameter.798

In Fig. 9, we present editing results generated using799
VIDMP3 with the Anything-v4.0 personalized model as800
the foundation model. This model specializes in producing801
anime-style images.802

Background and Style Editing We also explore back-803
ground and style edits, with the results shown in Fig. 10,804
illustrating background edit in the second row and style ed-805
its in the fourth row.806

Latent Blending. Our proposed method is robust 807
enough to incorporate plug-and-play features such as latent 808
blending as used in VideoSwap. Latent blending facilitates 809
subject swapping while preserving the background region 810
in the edited video to remain identical to the source video. 811
The core concept relies on latents maintaining spatial corre- 812
lations within pixels. During the diffusion process, at each 813
step, the spatial values representing the background in the 814
predicted latents are replaced with the corresponding spa- 815
tial values from the source video latents, obtained during 816
the inversion process. Results in Fig. 8, Fig. 11, and Fig. 12 817
utilize latent blending to preserve the background. 818

9. Additional results 819

We provide additional results of 1) Cross-Domain Editing, 820
2) Structure Editing, and 3) scaling to SDXL in Figs. 11, 821
12, and 13, respectively. We also provide some video re- 822
sults in the supplementary zip file. 823
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Figure 8. Personalization. Using pre-trained ED-LoRA concepts during inference, we generated the illustrated frames featuring person-
alized subjects: a concept car (top) and the character Thanos (bottom).
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Figure 9. Theme Personalization Edited video frames rendered in anime style using Anything-v4.0 as the foundation model in VIDMP3.
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Figure 10. Background and Style Edit. Results of background modification (top) and style modification (bottom) using SD-v1.5 as the
foundation model in VIDMP3.
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10. First Frame Editing method824

We show results of the first frame edit propagation method825
AnyV2V for the case of swapping “silver jeep” to a novel826
car whose image has been provided. We use AnyDoor to827
edit the first frame of the video (as AnyV2V suggests), and828
then provide this to AnyV2V for video editing. Firstly,829
we note that the editing quality of AnyDoor is subpar and830
also requires human effort in masking regions. However,831
it should be noted that the quality of AnyDoor is better832
for editing than the prompt-based method InstructPix2Pix833
which is another option employed by AnyV2V for first834
frame editing. Secondly, we notice that the identity of the835

car changes drastically over frames finally becoming gray, 836
which shows that AnyV2V cannot handle pose changes of 837
objects. For comparison with VIDMP3 for this case, please 838
refer to the first row of Fig. 8. 839

11. MOTIONGUIDE Architecture 840

We utilize the correspondence map Cn and segmented 841
depth map Dn as inputs to the MOTIONGUIDE module. To 842
reduce computational complexity, these inputs are scaled 843
down using the same scaling factor applied by the VAE en- 844
coder in most T2I models. The first convolutional layer 845
then expands the input from three channels to 64 channels. 846
The second convolutional layer operates on a 128-channel 847

frames

“armored <ironman1> <ironman2> flying above the clouds in the sky”

“a airplane flying above the clouds in the sky”

“an elk standing and turning its head in a field”

“a crane machine standing and turning its head in a field”
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Figure 11. Cross-Domain Edit. Examples of cross-domain edits where an animate object is replaced with an inanimate object (top: “elk”
→ “crane machine”) and an inanimate object is replaced with an animate object (bottom: “airplane” → “Ironman”).

Method Structure Cross-Domain
Image-Text Image-Image Image-Text Image-Image

Tune-A-Video 25.64 97.74 25.57 95.01
FateZero 25.55 97.39 24.25 94.60
VideoSwap 26.70 97.71 27.19 95.13
VidMP3 26.74 97.58 30.75 97.94

Table 1. Quantitative evaluation with CLIP ViT-L/14@336px.
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frames

“a dog sitting on the side of a car window looking out the window”

“an elk standing and turning its head in a field”

“a lion standing and turning its head in a field”
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“a raccoon sitting on the side of a car window looking out the window”

Figure 12. Structure Edit. Examples of structural editing, while keeping the edited subject in the same domain.

input, formed by concatenating the positional encoding P848
with the output of the previous convolutional layer, produc-849
ing an output of 256 channels. Finally, a linear layer trans-850
forms this 256-channel activation into the desired number851
of channels, making it suitable for integration with the at-852
tention layer’s values. Figure 15 illustrates the architecture853
of the MOTIONGUIDE module.854

12. Evaluation855

We evaluate VIDMP3 and previous methods using the same856
videos as described in Sec.4 Datasets. 180 edited results857
from each video editing method are compared in both auto-858
matic and human evaluation settings as described below.859

Automatic Evaluation.860

We utilized CLIP-Score [16] as an automatic evaluation861
metric to quantitatively assess all video editing methods.862
To compute the video-text alignment score for a test video,863
we averaged the image-text alignment scores across all its864
frames. Subsequently, the video-text alignment scores of all865
test videos were averaged to derive the overall video-text866
alignment score for each method.867

As a preliminary analysis of temporal consistency in868
a test video, we calculate the image-to-image alignment869

score for every alternate frame pair and average these scores 870
across all frames to determine the video’s temporal consis- 871
tency. The temporal consistency scores of all test videos are 872
then averaged to compute the overall temporal consistency 873
score for each method. 874

The results of the automatic evaluation, categorized into 875
(1) Structure Editing and (2) Cross-Domain Editing, are 876
summarized in Table 1. For structure editing, VIDMP3 877
achieves performance comparable to previous methods. 878
However, for cross-domain editing, VIDMP3 demonstrates 879
significantly superior performance. 880

Human Evaluation. We conducted a controlled lab- 881
oratory study to evaluate different methods based on the 882
following criteria: (1) Subject Identity, (2) Motion Align- 883
ment, (3) Temporal Consistency, and (4) Overall Prefer- 884
ence. Preference-based feedback was collected for all 180 885
edits from 10 participants, with each participant providing 886
ratings for all edits, resulting in a total of 180 ratings per 887
participant. While a larger sample size of feedback per edit 888
is generally preferred, the task of identifying issues in the 889
edited results is relatively straightforward, making 10 par- 890
ticipants a reasonably sufficient number for this study. The 891
human evaluation results shown in Fig. 7 of the main paper 892
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frames

“a silver jeep driving down a curvy road in the countryside”

“a black swan with a red beak swimming in a river near a wall and bushes”
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“a pink tote bag swimming in a river near a wall and bushes”

“a brown rugby ball rolling down a curvy road in the countryside”

Figure 13. More SDXL Results. Additional examples of novel concepts generated using SDXL as the foundation model in VIDMP3.

First frame Editing 
(AnyDoor)

AnyV2V

Figure 14. Results of AnyV2V on subject swapping. We observe that AnyV2V cannot handle pose changes in the subject. Additionally,
it relies on the image editing quality of the first frame which is of poor quality and also requires human effort. Compare to Fig.8 which
shows our results for the same edit.
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Figure 15. MOTIONGUIDE Architecture.

clearly indicate a strong preference for our method.893
For each editing concept, the rating interface displays the894

source video, source prompt, edit prompt, and the edited895
videos generated by all methods under comparison. For896
personalized video editing, the interface also includes the897
reference images utilized for ED-LORA-based personaliza-898
tion.899

6


	Introduction
	Related Work
	Structure-preserved Video Editing
	Motion-preserved Video Editing

	Method
	Representing motion with pose and position
	Toy experiment
	VidMP3

	Experiments
	Results
	Limitations and Discussions
	Conclusion
	Adaptability of VidMP3
	Additional results
	First Frame Editing method
	MotionGuide Architecture
	Evaluation

