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Figure 1. VIDMP3. We present a novel video editing technique that can perform challenging video editing tasks guided by pose and
position priors. We introduce a MOTIONGUIDE module that learns a generalized motion representation from correspondence and depth
maps. We inject the features of this module to the “Value”s of the temporal self-attention layer of a T2V initialized with a T2I model.
During inference, we use the correspondence and depth maps of the source video to generate a novel motion-preserved video. VIDMP3
enables the generation of challenging edits, including @ Cross-Domain editing, where objects with vastly different semantic meanings can
be generated, ® Structure editing, where structure of the object can be changed significantly, and © adaptation to various T2V editing

tasks such as personalized editing.

Abstract

Motion-preserved video editing is crucial for creators,
particularly in scenarios that demand flexibility in both the
structure and semantics of swapped objects. Despite its po-
tential, this area remains underexplored. Existing diffusion-
based editing methods excel in structure-preserving tasks,
using dense guidance signals to ensure content integrity.
While some recent methods attempt to address structure-
variable editing, they often suffer from issues such as tem-
poral inconsistency, subject identity drift, and the need for
human intervention. To address these challenges, we intro-
duce VIDMP3, a novel approach that leverages pose and
position priors to learn a generalized motion representation
from source videos. Our method enables the generation of
new videos that maintain the original motion while allow-
ing for structural and semantic flexibility. Both qualitative
and quantitative evaluations demonstrate the superiority of
our approach over existing methods.

1. Introduction

The strong generation capabilities of text-to-image (T2I)
diffusion models have encouraged the adoption of these
models for video generation and editing tasks, owing to
the simple architectural changes required over T2I mod-
els to enable them to generate videos. Inclusion of tem-
poral self-attention layers and inflating 2D convolutions to
pseudo 3D convolutions facilitates the generation of videos
conditioned on text. While some approaches train text-
to-video (T2V) models on large-scale text-video paired
datasets [4, 17, 18, 39, 54], others explore a more data-
efficient technique. These methods [14, 40, 44, 50] train
a T2V model on a single video and use the learned pri-
ors to generate novel videos using edited text prompts.
T2I models have also been used for zero-shot video edit-
ing [6, 8, 11, 29, 36] by utilizing structure from a specific
source video.

Generative video editing is a task of remarkable interest
to creators which enables them to create novel videos which
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can borrow information from a captured real video. One of
the most important and under-explored sub-areas is where
only motion is preserved from a source video and mimicked
to generated a new video. This is the most general use-
case of generative video editing, whereby the motion of the
subject in the source video is preserved but structure, ap-
pearance, and semantics remain modifiable. Apart from the
clear benefits of reducing costs and time for video creators,
this serves an important case where a creator would want to
imitate the motion of a real subject and transfer it to sub-
jects that might be hard to capture following that specific
motion e.g., imaginary concepts following the motion in a
real video.

In a data efficient setting where we want to use only
a single source video to generate an edited novel video,
changing the structure and domain of the subject has been a
challenging task. Zero-shot video editing techniques heav-
ily rely on the structure of the source video, and are thus
unable to deviate much from the source concept. One-
shot tuning techniques have shown sufficient promise, but
struggle with either shape leakage, quality issues, or fail in
cases of cross-domain editing. This can be attributed to un-
constrained optimization over the source video [44] or too
sparse external control [14].

We embark on learning a generalized motion represen-
tation that distentangles spatial properties of subjects from
their motion. Motion of subjects is perceived by humans
as the combination of their position in a 3D space and their
internal pose. Thus, we choose to inject an external rep-
resentation learned from pose and position priors to guide
the T2I diffusion model. We hypothesize that motion can
be represented as a combination of spatial correspondence
maps, depth maps and 2D positional encodings. The corre-
spondence maps provide signals for the internal pose vari-
ation of a subject over video frames, while the depth maps
and positional encoding signify the 3D positions of the sub-
ject in each frame. We introduce a novel MOTIONGUIDE
module which utilizes these maps to learn a generalized
representation of motion. First, we show a proof of con-
cept where MOTIONGUIDE can be used to learn the 3D tra-
jectory and rotations of a simple moving cube. We show
that the learned module is invariant to shape changes of
the object but sensitive to motion changes. This shows
that this module can be effectively used to induce motion-
preservation with variations in shape when appropriately
injected into a T2V diffusion model initialized with a T2I
model. We present VIDMP3 where we inject the spatially
pooled features of MOTIONGUIDE into the “Value”s of the
temporal self-attention layers of the T2V model. Essen-
tially, this allows the model to understand added context
in frame-to-frame correspondence, thus boosting temporal
consistency. We show that VIDMP3 robustly edits subjects
with significant structure and semantic shift from the sub-

ject in the source video. We also scale our method to Stable-

Diffusion-XL [34], which has not been explored previously

for video editing. We show that we are able to generate

more diverse concepts with VIDMP3 SD-XL. In summary,

our contributions are as follows:

* A MOTIONGUIDE module that learns generalized motion
representations from pose and position priors

* VIDMP3, which utilizes the MOTIONGUIDE module to
inject external guidance to the “Value”s of the temporal
self-attention module

* Adaptation to various T2I diffusion models including
scaling to SD-XL.

2. Related Work

Diffusion models have been extensively explored for video
editing due to their strong generation capability and abil-
ity to conform to various kinds of conditions. Previous
video editing techniques can be classified into two gen-
eral categories: 1) Structure-preserved Video Editing, and
2) Motion-preserved Video Editing. We discuss prior work
in these two domains in detail below.

2.1. Structure-preserved Video Editing

These techniques aim to edit the video while preserv-
ing structural information from the original video by re-
lying on various cues such as depth, edge, optical flow,
or attention map information. Gen-1 [9], Ground-a-
video [20], and RAVE [22] utilize depth maps for guid-
ance, while CCEdit [10], ControlVideo [52], and MAsk-
INT [30] extend to the use of various controls including
depth, boundary, and line drawing. MoCa [46], Rerender A
Video [48], and FlowVid [27] use optical flow as guidance.
VideoP2P [29], FateZero [36], Vid2Vid-Zero [43], and
Edit-A-Video [38] inject attention map information from
the original video while denoising the edited video. Token-
Flow [11], COVE [42] and DreamMotion [21] use dense
spatial correspondences among frames to ensure consis-
tency. VidTome [26] develops a method that uses any of the
above discussed types of guidance techniques. Codef [32],
VidEdit [8], and StableVideo [6] learn a canonical represen-
tation of the video. Editing this representation allows high
temporal consistency, but restricts changes in low-level fea-
tures. In contrast to these methods, VIDMP3 allows signif-
icant structural and semantic changes in the subject of the
given source video.

2.2. Motion-preserved Video Editing

These methods aim to extract the motion from the source
video while allowing significant structural changes in the
edited video generated with the same motion.

One-shot tuning. Tune-a-video [44] attaches a mo-
tion module to a pre-trained T2I model, and introduces
sparse causal self-attention which uses features from other
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frames to compute self-attention on each frame. Tune-A-
Video overfits the motion module to a single video, which
is then used to generate novel videos at test-time. We find
that Tune-a-Video suffers from severe structure leakage and
temporal inconsistency, due to unconstrained training of the
motion module on the input video.

VideoSwap [14] alleviates structure leakage by injecting
keypoint correspondence information and keeping the mo-
tion module frozen. However, VideoSwap requires human
effort in selecting or editing the keypoint positions. For
cases which require significant size changes, VideoSwap
creates a Layered Neural Atlas [24] of the video, in which
the user is required to make desired edits. Training this
LNA is significantly time consuming. Additionally, as a re-
sult of using keypoint correspondence, VideoSwap is inef-
fective at swapping semantically different objects. By con-
trast, VIDMP3 is able to swap objects with considerable
structure and semantic variation, due to injecting a general-
ized representation of external pose and position guidance.
Most importantly, VIDMP3 relies neither on human effort
nor the time-intensive LNA creation process.

SAVE [40] aims to disentangle the structure and mo-
tion of a subject by using a motion prompt that focuses
on moving areas, but suffers from temporal inconsisten-
cies due to leakage in areas surrounding the moving object,
as evidenced in their results. CAMEL [50] injects motion
prompts into the temporal attention module, which is then
learned from the video. By contrast, our method uses ex-
ternal pose and position guidance to learn a more consistent
representation of motion.

Emu-Video [12] attaches an image editing and video
generation adapter over a pre-trained T2I model, which is
then tuned on a dataset of several videos. VIDMP3 instead
extracts various kinds of information from a single video to
generate a novel edited video.

Pose-guided video editing. 2D/3D pose-guided video
editing has been explored specifically for humans and
human-like entities in Follow-Your-Pose [31], Dream-
Pose [23], DeCo [53], MagicPose [7], MagicAnimate [45],
AnimateAnyone [19], EVA [49], and DynVideo-E [28].
VIDMP3 instead explores pose-guided editing in a more
general context with pose being represented using corre-
spondence maps. This representation allows us to generate
subjects which are highly semantically and structurally dif-
ferent from the subject in the source video, while accurately
following the motion of the source video.

Propagation from first frame editing. AnyV2V [25]
and I2VEdit [33] use a separate model for editing the first
frame of the video and then propagate the edit to the other
frames. While these methods can significantly change the
structure of the subject, they are limited by the image-
editing technique they utilize. AnyV2V suffers from se-
vere temporal inconsistencies when modeling videos with
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Figure 2. Toy experiment on learning shape-invariant motion.
We trained our MOTIONGUIDE module on the original video and
tested it on videos with 1) shape changes, and 2) motion changes.
We show the frames for each video to the left. From the graph at
the right, it may be observed that the MOTIONGUIDE module is
invariant to shape change but sensitive to motion change.

significant motion (see Appendix). VIDMP3 instead learns
the motion representation from the source video and jointly
models it across frames.

3. Method

The motion of any object can be represented as a combi-
nation of pose and position in 3D space. Given a video
Xy = [z1,22...2N] of N frames, we wish to learn only
the motion of the subject in the video. We want to build a
generalized representation of motion using the 3D pose
and position of an object. This representation enables us to
swap objects with significantly different shapes or seman-
tics. We hypothesize that motion can be extracted only us-
ing the dense correspondences within frames Cp and the
depth maps per frame D py, without using the frames of the
video X . Cy is useful for representing the 2D position
and pose of the object, while Dy represents the 3D po-
sition. First, we present a proof of concept, whereby we
introduce a MOTIONGUIDE module to learn motion using
Cy and Dy, and show that the learned representation of
the module is invariant to shape changes but sensitive to
changes in motion. Next, we formally describe how the rep-
resentations of this MOTIONGUIDE module can be injected
into a diffusion model to edit videos.

3.1. Representing motion with pose and position

We design a MOTIONGUIDE module ¢,, that takes as in-
put dense correspondence maps Cp and depth maps Dy
of the subject of interest in a video. We present the design
of this lightweight module in the Appendix. Essentially, the
module processes Cy © Dy with convolution layers, then
concatenates a positional encoding P to each frame. After
another convolution, we average pool in the spatial dimen-
sions and divide by « to form a single-dimensional vector
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_Tune-A-Video

frames
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PR A
a tiger sitting on the ground eating something in its hands

Figure 3. Comparison with prior art on motion-preserved video editing. We consider the challenging cases of @ Cross-Domain Edit
— “silver jeep” — “bulldog on roller blades”, and B Structure Edit — “monkey”— “tiger”. It may be observed that in the case of cross-
domain editing, all baselines suffer from severe temporal inconsistencies of the subject. For the case of structure editing, Tune-A-Video
produces a highly saturated video with the head pose not correctly following the pose of the input video. Similarly, FateZero also models
incorrect head pose (see second row of ®). For VideoSwap we notice that the tiger has a similar humped shape like the monkey (notice
the yellow circled areas), due to the keypoint correspondences being very sparse and spatially constrained signal. The sparsity of this
signal results in the orientation of the face being inaccurate, resulting in a wrong head pose of the tiger in the middle row. By comparison,
VIDMP3 generates temporally consistent results following the input pose while making necessary changes faithful to the new concept.

for each frame M 4 , where « is the ratio of pixels occu-
pied by the object in the frame to the total number of pixels
in the frame. This is then processed by a final linear layer.
The pooling is crucial to our method as it prevents shape and
size leakage. The positional encoding P provides informa-
tion on the 2D location of the values in Cy ® Dy, making
the representation sensitive to the average 2D position, even
after spatial pooling.

3.2. Toy experiment

For proof of concept, we designed a toy experiment where
the MOTIONGUIDE module ¢,,, was attached with a final

linear layer to predict the 3D trajectory and rotations of an
object. We rendered a video of a cube following a specific
trajectory and rotations T 6. The 6 values correspond to
positions in xyz and rotations in xyz. The cube is rendered
with different gradient colors on its faces to mimic corre-
spondence maps. We treated the rendered frames of the
cube as correspondence maps Cy and found depth maps of
each frame, denoted as D . We trained ¢,,, on this single
video of the cube to predict T N,6 by optimizing:

rginHTN,e — ¢m(Cn, D). (1)

Given this trained MOTIONGUIDE module ¢,,,, we used
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Figure 4. Visualization of correspondence and depth maps. For
two frames of the video of “a dog looking out the window of a car”,
we show the corresponding correspondence and depth maps we
obtain from off-the-shelf models. The depth segmented using the
correspondence map is multiplied with the correspondence map
(right-most column) and provided as input to MOTIONGUIDE.

it to infer on 1) C'y, D!y of a positive sample where the
shape of the cube was changed, but followed the same mo-
tion, and 2) C? 5y, D2 of a negative sample where the orig-
inal cube followed a different motion. We present frames of
the original video, and the test videos along with prediction
loss in Fig. 2. It may be observed that the training loss and
loss of the positive sample follow a similar reducing trend,
while that of the negative sample diverges. This shows 1)
that motion can be predicted reasonably using correspon-
dence and depth maps, 2) the learned representation is in-
variant to shape change, and 3) the learned representation is
sensitive to motion changes.

3.3. VIbMP3

VIDMP3, depicted in Fig. 1, utilizes the MOTIONGUIDE
module formulated in the previous section to learn motion
from a source video X, to generate a new video having
the same motion. We fine-tuned our model on the single
source video X . We followed the paradigm of Tune-A-
Video [44], where motion modules are inserted into a pre-
trained T2I diffusion model. The motion module consists
of temporal self-attention layers which are computed as:

KT
Q Ja > VvV, 2
V=WVYz, @3

Attention(Q, K, V) = softmax <

K
Q=WQz; K=WFKz
where z; ; is the latent representation of the video at a spa-
tial location (%, j) before the temporal self-attention. We in-
ject the output of our MOTIONGUIDE module into the val-
ues of the temporal self-attentions such that:

V =WVY(z;; + Apn(Cn,Dy)), 4)

where )\ is a weighting factor. We chose to inject the exter-
nal features into the values, to add extra context to the loca-
tions the self-attention focuses on. We used the pre-trained
weights of the motion module from AnimateDiff [15].

We updated the spatial self-attention to the sparse causal
variant of Tune-A-Video, where for a specific frame the at-
tention is calculated using the first and previous frame of

the video. Unlike Tune-A-Video which suffers from severe
shape leakage because of over-fitting the full motion mod-
ules on the source video, we chose to keep the motion mod-
ule frozen and inject motion only using the external adapter
MOTIONGUIDE module. This enables us to learn a repre-
sentation space of pure motion disentangled from appear-
ance. We trained this modified network by optimizing:

min Bz, e [l —€o(2658y, 6m(Cn. DN’ (5)
where ¢ represents the time-step, z; the latents diffused at
time ¢, y the prompt for the source video, and €y repre-
sents the denoising diffusion model. We optimized only
over ¢,,, and ¢,,. ¢, represents other trainable parameters,
namely W of the spatial self- and cross-attention layers,
and WV of the motion modules. Finally, after training, we
used the inverted latents of the source video to sample a
new video with an edited prompt, while using Cx and Dy
of the source video. We show that this simple formulation
is highly robust and quite general, enabling us to generate
subjects that are significantly different in shape and seman-
tics as compared to the subject in the original video.

4. Experiments

Datasets. We used the same set of 30 videos provided
by VideoSwap which were selected from Shutterstock and
DAVIS [35]. The videos are divided into three categories
— human, animal, and object — where each category com-
prises of 10 videos. For each source video we used three
predefined concepts and three customized concepts, result-
ing in a total of 180 edited videos. Unlike VideoSwap, our
customized concepts involve significant semantic changes.

Implementation Details. We used Stable Diffusion 1.5
as the foundation model for baseline comparisons and also
extended our method to use SDXL for generating more di-
verse concepts. For the SD-1.5 architecture, we primarily
use Chilloutmix [3] pre-trained weights, except for 1) style
editing where we used the original SD-1.5 weights, or 2)
personalized editing tasks. We used the pre-trained motion
modules of AnimateDiff [15] for the temporal self-attention
layers. We uniformly sampled frames at a sampling rate of
4 at their original resolution from the input video to fine-
tune the models. All experiments were conducted on Nvidia
A100 (40GB) and H100 GPUs. We used Adam with a
learning rate of 5e~* when optimizing the fine-tuning stage
over 100 iterations. We set the MOTIONGUIDE weighting
factor A to a value of 0.1 for videos with higher ranges of
motion and 0.05 for videos with lower ranges of motion.
The weights of the final linear layer of the MOTIONGUIDE
module are zero-initialized when training so that the out-
put of the MOTIONGUIDE module is zero for the first itera-
tion. We also disabled the bias of the convolution layers of
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‘a black swan with a red beak swimming in a river near a wall and bushes’l

Source Video

Edited Video

Source Video

Edited Video

vi

Figure 5. Scaling VIDMP3 to SDXL. As a novel initiative, we scaled up the T2V model to utilize SDXL as the foundation model. We
show that we can model more diverse concepts using this setup, owing to the stronger generation capabilities of SDXL.

the MOTIONGUIDE, since we are overfitting on one video
without the need to have any regularization.

To compute spatial correspondence maps, we used the
implementation of SD-Dino [51], which utlizes the inter-
nal deep features of Dino [5] and Stable Diffusion [37] for
this task. For classes not present in the COCO dataset e.g.
“monkey”’, we used the off-the-shelf figure-ground segmen-
tation tool RMBG-1.4 [2]. We found correspondence maps
for each frame using the first frame as reference. Depth
maps were found using DepthAnythingV2 [47], which are
then segmented to only contain the subject aided by the ob-
tained correspondence maps. Finally we multiplied the cor-
respondence and segmented depth maps to form the input
to MOTIONGUIDE. We show examples of the computed
correspondence and depth maps for a video in Fig. 4.

Baselines. We qualitatively and quantitatively compared
our model to Tune-A-Video [44], VideoSwap [14], and
FateZero [36]. We found these baselines to be the most
relevant ones delivering the strongest results for motion-
preserved editing tasks using a single video for training.'
We show in the Appendix that first-frame editing methods
like AnyV2V struggle to capture considerable levels of mo-
tion and are highly dependent on the quality of the first
frame generated by their image editing method.

ICAMEL [50] is a related work but does not provide sufficient results,
and omits dependencies required to run their code in their repository.

5. Results

Here we showcase some of the various capabilities of
VIDMP3, comparison to baselines, adaptability of our
model to various video editing tasks, scaling to SDXL, ab-
lations over the components of our method, and discuss im-
plementation choices.

Cross-domain Edit. The most important contribution of
VIDMP3 lies in the challenging case of Cross-domain Edit-
ing, where previous methods suffer. In this case, we show
that the subject in the source video can be swapped with
a semantically different subject in the edited video, while
correctly preserving motion. In Fig. 3 we show the instance
“silver jeep” — “bulldog on roller blades,” where VIDMP3
can generate a video where the motion is preserved and the
subject is temporally consistent. We attribute these results
to the external strong motion signal we inject, which al-
lows the model to understand a general sense of position
and pose. We present additional results in the Appendix.

Structure Edit. Previous methods have shown good per-
formance for the case of structure editing, while keeping
the edited subject in the same domain, e.g., “silver jeep”
— “Porsche.” This case is much simpler as compared to
cross-domain editing, due to the internal semantic under-
standing of the diffusion model. We show the case of “mon-
key” — “tiger” in Fig. 3, where the edited tiger generated by
VIDMP3 follows the exact same head and hand motion as
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the monkey, allowing freedom for the different body shapes
of the tiger as compared to the monkey. We present addi-
tional results for structure editing in the Appendix.

Comparison to baselines. For the two previously de-
scribed cases of Cross-Domain Edit and Structure Edit,
we compared to the previous methods, Tune-A-Video,
VideoSwap and FateZero. For fair comparison, we initial-
ized all baselines with the same pre-trained T2I weights [3]
as ours. Tune-A-Video and FateZero don’t explicitly pro-
vide any external guidance to the model, which lead to
high temporal inconsistencies in the case of Cross-Domain
Editing, where the pre-trained T2I model is not confident
in its outputs owing to semantic changes of the object to
be edited with respect to the source object. On the other
hand, VideoSwap uses explict keypoint correspondences
and guides the model to change the object, but it fails when
the semantic meanings do not remain relevant (e.g.: “silver
jeep” — “brown bulldog”). VideoSwap requires human ef-
fort in marking the positions of 2D keypoints that should
be tracked in the video. It also involves significant time
and human effort to manually edit the position of the key-
points for the target video when there are significant shape
changes. Tune-A-Video generates saturated videos on both
Cross-Domain and Structure Editing, possibly due to over-
fitting the entire motion module on the source video. This
is not true for either VideoSwap or VIDMP3, as all or most
parts of the motion module are kept frozen while learning
an external adapter that has a fixed input. For the case of
Structure Editing, it may be observed that VideoSwap gen-
erated the tiger to be in a bent posture like the monkey, be-
cause fitting to the keypoint correspondence signal was too
constrictive. None of the baselines were able to follow the
head pose of the monkey accurately as can be observed es-
pecially in the second and third row of the generated videos
of all baselines in Fig. 3 B.

By contrast, VIDMP3 generates temporally consistent
videos in both cases while preserving motion from the
source video. This is achieved by computing a pose and
position representative value for each frame, using dense
correspondence and depth maps to learn generalized repre-
sentation of motion. During inference, these representations
help guide motion in the generated videos, and allowing the
text-to-image model more room to explore appearances.

Adaptability of VIDMP3. Since VIDMP3 is based on
an existing T2I model, it can be effectively applied to tasks
other than subject swapping. We show results of using
VIDMP3 for 1) background change, 2) style change, and
3) personalization. For personalization, we attempted both
per-subject personalization, as well as using pre-trained T2I
models that are personalized on more general concepts,

such as Anything-v4.0 [1]. We refer the readers to the Ap-
pendix for qualitative results of these tasks.

Scaling VIDMP3 to SDXL. We also studied scaling to
StableDiffusion-XL which is a stronger T2I model that is
able to represent more diverse concepts. We use AnimateD-
iff’s SDXL motion module, and found that it less effectively
models motion than the motion module of the SD-1.5 ver-
sion. Thus, we identify the specific parameters of the mo-
tion module that contribute to shape leakage and kept them
frozen. More specifically, we found that the feed-forward
layers of temporal self-attention blocks contribute to the
highest leakage. We trained the other parameters namely,
WQ, WK and WV and projection matrices of the tem-
poral self-attention modules, in addition to the parameters
that we kept trainable in the SD-1.5 version. This enabled
our model to better learn motion while still avoiding leak-
age. We present results of using SDXL within VIDMP3 in
Fig. 5. We show generated concepts that we were not able
to represent consistently using SD-1.5 VIDMP3, such as a
“paper boat” and a ‘“cloth-ghost”. We provide additional
results generated by VIDMP3 SDXL in the Appendix.

Ablations. We conducted ablations over various compo-
nents of our method and implementation choices. Fig. 6
depicts the effect of using only correspondence maps, only
depth maps, or concatenated depth and correspondence
maps as input to MOTIONGUIDE. We also show the ef-
fect of disabling the MOTIONGUIDE. For all these cases,
we find that the motion is modeled incorrectly, with a much
subdued range and incorrect orientations per frame.

Evaluation. We quantitatively compared our method
against previous SOTA models using both automatic and
human evaluations. We provide a detailed discussion of the
evaluation settings in the Appendix. We conducted a volun-
tary, controlled laboratory human study to gather opinions
expressive of 1) Subject Identity, 2) Motion Alignment, 3)
Temporal Consistency, and 4) Overall Preference for video
subject swapping. The results of this evaluation, shown in
Fig. 7, indicate a clear preference for our method.

Time Cost Analysis We recorded the time required to run
each component of VIDMP3 to edit a 16 frame video clip
on an Nvidia A100 GPU. This includes 1) Preprocessing:
which involves computing the correspondence and depth
maps. The correspondence map computation required ap-
proximately 4s per frame, or 64 seconds over 16 frames.
The depth map computation required approximately 2s per
frame, or 32 seconds over 16 frames. The preprocessing
step used about 100 seconds overall. 2) Training: where
the MOTIONGUIDE module was trained over 100 iterations
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Source Video

sowely

Figure 6. Ablation over various components of our method. For the case of “car” — “bike”, we see that all other implementations
including disabling MOTIONGUIDE, providing different inputs to MOTIONGUIDE such as only correspondence maps, only depth maps
or concatenation of depth and correspondence maps, results in incorrect and lower range of motion. VIDMP3 uses MOTIONGUIDE with
multiplied correspondence and depth maps as input and imitates the motion the subject in the source video correctly.

54%
32%

Overall Preference 8%
i
Temporal Consistency 5%
.

Motion Alignment 7%
o

Subject Identity 'ﬁ/%
o

57%
30%

50%
33%

61%
32%

VIDMP3 VideoSwap mFateZero mTune-A-Video
Figure 7. Human opinions on 1) Subject Identity, 2) Motion
Alignment, 3) Temporal Consistency, and 4) Overall Preference,
averaged over 10 participants and 180 edited videos.

which expended about 3 minutes of compute time. And,
lastly 3) Editing: when we generated the edited video using
inverted noise from the source video. The DDIM inversion
process of 50 steps required about 30 seconds. The back-
ward process to generate the edited video consumed about
30 seconds as well, resulting in a total of 60 seconds. Over-
all, the complete process, from preprocessing to generating
the final edited video required about 6-7 minutes.

6. Limitations and Discussions

There can be multiple choices of features that could repre-
sent the pose and position of subjects, and that can be in-
jected externally to a diffusion model to guide motion, e.g.
injecting Diffusion Correspondence (DIFT [41]) features.
However, our choice of 2D correspondence and depth maps
is highly efficient since it only requires three channels of
input, and is also a cleaner signal of explicit motion with-
out any leakage of extra information. While VIDMP3 can
generate subjects with significant structural and semantic
differences relative to the source video, we cannot explic-
itly control the size of the subject. For example, in the case
of “black swan” — “paper boat” in Fig. 5, observe that the
generated paper boat is large and of a similar size as the
swan. Additionaly, our method is dependant on the quality

of correspondence and depth maps obtained. However, for
all of our evaluation videos, we find that the off-the-shelf
methods for obtaining these maps perform well. Scaling
video editing to multiple subjects has been studied in previ-
ous work, but has not been explored here. For such scenar-
ios, one approach would be to generate separate correspon-
dence maps for each of the various subjects of interest, and
inject each using separate MOTIONGUIDE modules. We
leave this direction of research for future work.

7. Conclusion

We presented VIDMP3, a novel video editing technique
based on T2I models, which utilizes pose and position pri-
ors to generate motion-preserved videos based on a source
video. We introduce the MOTIONGUIDE module, which
learns generalized motion representations from spatial cor-
respondence and depth maps. These representations are
injected into the temporal self-attention layers of a T2V
model initialized from a T2I model, thus forming VIDMP3.
We evaluated VIDMP3 on challenging video editing tasks:
1) Cross-Domain Editing, and 2) Structure Editing. We
observed that VIDMP3 can generate objects with signif-
icant structural and semantic changes relative to the sub-
ject in the source video, while maintaining temporal con-
sistency. We show qualitatively and quantitatively that our
method improves over previous strong baselines on the task
of motion-preserved video editing. Additionally, we scaled
our method to use SDXL as the base T2I model, which is
a novel effort in the area of video editing. We explored
the adaptibility of our method on various video editing
tasks, including personalized editing, background editing,
and style editing. Despite its potential to enhance creative
workflows, motion-preserved video editing without rigid
structural constraints remains a relatively under-explored
domain. VIDMP3 addresses this gap by introducing a novel
approach that maintains temporal coherence while allowing
flexible content modification, laying the groundwork for fu-
ture research and developments in this area.
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VIDMP3: Video Editing by Representing Motion with Pose and Position Priors
Supplementary Material

8. Adaptability of VIDMP3

Personalization. VIDMP3 supports customized or per-
sonalized concepts through additive methods such as ED-
LoRA [13]. In Fig. 8, we present edited videos generated
using VIDMP3 with pre-trained customizations provided
by [14]. During model optimization on the source video,
the LoRA layers were not attached; they were utilized only
during inference on the saved model. The degree of cus-
tomization can be adjusted using the LoRA blend weight
parameter.

In Fig. 9, we present editing results generated using
VIDMP3 with the Anything-v4.0 personalized model as
the foundation model. This model specializes in producing
anime-style images.

Background and Style Editing We also explore back-
ground and style edits, with the results shown in Fig. 10,
illustrating background edit in the second row and style ed-
its in the fourth row.

“a silver jeep\ drivi own a road in the countryside”
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Latent Blending. Our proposed method is robust
enough to incorporate plug-and-play features such as latent
blending as used in VideoSwap. Latent blending facilitates
subject swapping while preserving the background region
in the edited video to remain identical to the source video.
The core concept relies on latents maintaining spatial corre-
lations within pixels. During the diffusion process, at each
step, the spatial values representing the background in the
predicted latents are replaced with the corresponding spa-
tial values from the source video latents, obtained during
the inversion process. Results in Fig. 8, Fig. 11, and Fig. 12
utilize latent blending to preserve the background.

9. Additional results

We provide additional results of 1) Cross-Domain Editing,
2) Structure Editing, and 3) scaling to SDXL in Figs. 11,
12, and 13, respectively. We also provide some video re-
sults in the supplementary zip file.

Figure 8. Personalization. Using pre-trained ED-LoRA concepts during inference, we generated the illustrated frames featuring person-
alized subjects: a concept car (top) and the character Thanos (bottom).
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“a woman is running down the sidelwalk near the water and a grassy area‘ with a large building in the backgrounil”
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Figure 9. Theme Personalization Edited video frames rendered in anime style using Anything-v4.0 as the foundation model in VIDMP3.

frames

Figure 10. Background and Style Edit. Results of background modification (top) and style modification (bottom) using SD-v1.5 as the
foundation model in VIDMP3.
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10. First Frame Editing method

We show results of the first frame edit propagation method
AnyV2V for the case of swapping “silver jeep” to a novel
car whose image has been provided. We use AnyDoor to
edit the first frame of the video (as AnyV2V suggests), and
then provide this to AnyV2V for video editing. Firstly,
we note that the editing quality of AnyDoor is subpar and
also requires human effort in masking regions. However,
it should be noted that the quality of AnyDoor is better
for editing than the prompt-based method InstructPix2Pix
which is another option employed by AnyV2V for first
frame editing. Secondly, we notice that the identity of the

“an elk standing and turning its head in a field”

‘Source Video

“a crane machine standing and turning its head in a field”

Edited Video

- .

car changes drastically over frames finally becoming gray,
which shows that AnyV2V cannot handle pose changes of
objects. For comparison with VIDMP3 for this case, please
refer to the first row of Fig. 8.

11. MOTIONGUIDE Architecture

We utilize the correspondence map C,, and segmented
depth map D,, as inputs to the MOTIONGUIDE module. To
reduce computational complexity, these inputs are scaled
down using the same scaling factor applied by the VAE en-
coder in most T2I models. The first convolutional layer
then expands the input from three channels to 64 channels.
The second convolutional layer operates on a 128-channel

frames

Figure 11. Cross-Domain Edit. Examples of cross-domain edits where an animate object is replaced with an inanimate object (top: “elk”

— “crane machine”) and an inanimate object is replaced with an animate object (bottom: “airplane” — “Ironman”).

Method Structure Cross-Domain
Image-Text Image-Image Image-Text Image-Image
Tune-A-Video 25.64 97.74 25.57 95.01
FateZero 25.55 97.39 24.25 94.60
VideoSwap 26.70 97.71 27.19 95.13
VidMP3 26.74 97.58 30.75 97.94

Table 1. Quantitative evaluation with CLIP ViT-L/14@336px.
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Figure 12. Structure Edit. Examples of structural editing, while keeping the edited subject in the same domain.

input, formed by concatenating the positional encoding P
with the output of the previous convolutional layer, produc-
ing an output of 256 channels. Finally, a linear layer trans-
forms this 256-channel activation into the desired number
of channels, making it suitable for integration with the at-
tention layer’s values. Figure 15 illustrates the architecture
of the MOTIONGUIDE module.

12. Evaluation

We evaluate VIDMP3 and previous methods using the same
videos as described in Sec.4 Datasets. 180 edited results
from each video editing method are compared in both auto-
matic and human evaluation settings as described below.

Automatic Evaluation.

We utilized CLIP-Score [16] as an automatic evaluation
metric to quantitatively assess all video editing methods.
To compute the video-text alignment score for a test video,
we averaged the image-text alignment scores across all its
frames. Subsequently, the video-text alignment scores of all
test videos were averaged to derive the overall video-text
alignment score for each method.

As a preliminary analysis of temporal consistency in
a test video, we calculate the image-to-image alignment

score for every alternate frame pair and average these scores
across all frames to determine the video’s temporal consis-
tency. The temporal consistency scores of all test videos are
then averaged to compute the overall temporal consistency
score for each method.

The results of the automatic evaluation, categorized into
(1) Structure Editing and (2) Cross-Domain Editing, are
summarized in Table 1. For structure editing, VIDMP3
achieves performance comparable to previous methods.
However, for cross-domain editing, VIDMP3 demonstrates
significantly superior performance.

Human Evaluation. We conducted a controlled lab-
oratory study to evaluate different methods based on the
following criteria: (1) Subject Identity, (2) Motion Align-
ment, (3) Temporal Consistency, and (4) Overall Prefer-
ence. Preference-based feedback was collected for all 180
edits from 10 participants, with each participant providing
ratings for all edits, resulting in a total of 180 ratings per
participant. While a larger sample size of feedback per edit
is generally preferred, the task of identifying issues in the
edited results is relatively straightforward, making 10 par-
ticipants a reasonably sufficient number for this study. The
human evaluation results shown in Fig. 7 of the main paper
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frames

Figure 13. More SDXL Results. Additional examples of novel concepts generated using SDXL as the foundation model in VIDMP3.

Figure 14. Results of AnyV2V on subject swapping. We observe that AnyV2V cannot handle pose changes in the subject. Additionally,
it relies on the image editing quality of the first frame which is of poor quality and also requires human effort. Compare to Fig.8 which
shows our results for the same edit.
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Figure 15. MOTIONGUIDE Architecture.

clearly indicate a strong preference for our method.

For each editing concept, the rating interface displays the
source video, source prompt, edit prompt, and the edited
videos generated by all methods under comparison. For
personalized video editing, the interface also includes the
reference images utilized for ED-LORA-based personaliza-
tion.
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