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Abstract
Large language models hold significant poten-001
tial for integrating various data types, such as002
text documents and database records, for ad-003
vanced analytics. However, blending text and004
numerical data presents substantial challenges.005
LLMs need to process and cross-reference enti-006
ties and numbers, handle data inconsistencies007
and redundancies, and develop planning capa-008
bilities such as building a working memory for009
managing complex data queries. In this paper,010
we introduce four novel tasks centered around011
sports data analytics to evaluate the numerical012
reasoning and information fusion capabilities013
of LLMs. These tasks involve providing LLMs014
with detailed, play-by-play sports game descrip-015
tions, then challenging them with adversarial016
scenarios such as new game rules, longer dura-017
tions, scrambled narratives, and analyzing key018
statistics in game summaries. We conduct ex-019
tensive experiments on NBA and NFL games020
to assess the performance of LLMs on these021
tasks. Our benchmark, SportsMetrics, intro-022
duces a new mechanism for assessing LLMs’023
numerical reasoning and fusion skills.024

1 Introduction025

Large language models (LLMs) are more power-026

ful than ever. OpenAI’s GPT-4 Turbo (2023) fea-027

tures a 128k context window, allowing it to process028

over 300 pages of text in a single prompt. Claude029

v2.1 (2023) steps it up with a 200k token window,030

equivalent to roughly 150,000 words or more than031

500 pages. Mistral AI (2023) has created a sparse032

mixture of experts model capable of processing up033

to 32k tokens. The developments suggest language034

models can now engage with vast amounts of text035

content and data, opening doors to exciting new036

applications in various domains.037

One of the most promising uses of LLMs is in038

handling a combination of unstructured texts and039

structured data. For example, determining if a pa-040

tient can be discharged from the hospital may in-041

volve reviewing doctor notes, radiology and pathol-042

ogy reports, lab results, and other records that blend043
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Play-by-Play Descriptions

Detroit Pistons
Cade Cunningham
Jalen Duren
Alec Burks ...

Chicago Bulls
Zach LaVine
Ayo Dosunmu
Nikola Vucevic ...

Jalen Duren had __ points and __ rebounds as the Detroit 
Pistons overcame a career-high __ points from Zach LaVine to 
beat the Chicago Bulls __-__ on Saturday night.

Team-Player Data

Game Recap

Figure 1: Play-by-plays of an NBA game. We include
timestamps, player actions, team affiliations and a game
recap. Total points for both teams are indicated in dotted
circles and are withheld from LLMs.

text and structured data (Adams et al., 2021; Bard- 044

han et al., 2022; Veen et al., 2023; Ben Abacha 045

et al., 2023); LLM Assistants for online shopping 046

need to process product catalogs, sales transactions, 047

and customer queries (Brynjolfsson et al., 2023; 048

Loten, 2023). However, summarizing key details 049

from a mix of unstructured and structured sources 050

remains a considerable challenge. An LLM must 051

navigate text descriptions, link entities, aggregate 052

numbers, handle discrepancies, and beyond. 053

Information fusion focuses on synthesizing in- 054

formation from multiple textual sources to derive 055

meaningful conclusions (Barzilay et al., 1999). 056

Current approaches involve summarizing multiple 057

text documents, providing concise answers to user 058

queries, and integrating summarization with natural 059

language inference to deduce information (Bhaskar 060

et al., 2023; Caciularu et al., 2023; Sprague et al., 061

2022; Bostrom et al., 2022). The output is often a 062

short text summary, the quality of which is difficult 063
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Chicago Bulls

2 Points Field Goal (Inside the Three-Point Line): A player makes 
a basket from inside the three-point line.

Three-Point Field Goal: A player makes a basket from 
beyond the three-point line.

Free Throw: After certain types of fouls, a player may be 
awarded one or more free throws. 
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Chicago Bulls
Points:                       77
Rebounds:                28
Assists:                     …
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Chicago Bulls

Demar DeRozan

Nikola Vucevic

Coby White

Zach LaVine …

Detroit Pistons

Ausar Thompson

Isaiah Stewart

Jalen Duren

Cade Cunningham

Killian Hayes …

Patrick Williams

Chicago Bulls
Points:                       83
Rebounds:                29
Assists:                     …

Detroit Pistons    
Points:                       95
Rebounds:                49
Assists:                     …

Key Stats (After)

Figure 2: (TOP LEFT) We examine the impact of changing game rules on final scores. For basketball, scoring events
such as free throws, three-pointers, field goals, vary from 1 to 3 points. We ask LLMs to maintain these scoring
events but under a new rule where each is worth only 1 point. (BOTTOM LEFT) We randomly swapped player team
affiliations in the table without altering the game’s play-by-play records. (RIGHT) LLMs are provided with detailed
play-by-play descriptions of a sports game and player team affiliations. Their job is to use this information to update
key game statistics in a JSON format.

to evaluate (Deutsch et al., 2021). Our approach064

differs by focusing on the numerical aspect of in-065

formation fusion (Geva et al., 2020). We enable066

the LLM to navigate through lengthy texts, gather067

crucial statistics, and develop a working memory068

to manage complex data queries.069

We introduce SportsMetrics, a benchmark de-070

signed to assess LLMs’ abilities in numerical rea-071

soning and data fusion. This benchmark provides072

LLMs with detailed, play-by-play descriptions of073

sports games, including timestamps, player actions,074

and team affiliations, as illustrated in Figure 1. We075

focus on four novel tasks to evaluate LLMs in ad-076

versarial scenarios: (a) adapting to new game rules,077

(b) handling lengthy game descriptions, (c) manag-078

ing scrambled game narratives, and (d) analyzing079

critical statistics in game summaries. E.g., an LLM080

might be asked to complete a basketball game recap081

by inserting missing key statistics, which requires082

the development of a working memory for game083

stats and reasoning skills.084

Our SportsMetrics benchmark presents three085

main benefits. First, it uses a broad range of sports086

data; they are dynamic narratives that LLMs cannot087

easily memorize. Second, it allows us to evaluate088

LLMs’ ability to track key statistics such as team089

points, assists, blocks, steals, and more, while also090

offering an overall game efficiency score for direct091

LLM comparison. Lastly, its use of widely under-092

stood sports terminology makes it more accessible093

to researchers than specialized medical language,094

making it an ideal benchmarking tool. While our095

current focus is on English, SportsMetrics also096

holds promise for multilingual applications.097

2 Related Work 098

There is a growing need for a benchmark to evalu- 099

ate LLMs’ information fusion capabilities, which 100

offers clear, quantitative scores for comparing var- 101

ious LLMs. For example, Chatbot Arena (Zheng 102

et al., 2023) utilizes Elo ratings (Boubdir et al., 103

2023), MT-Bench comprises of 80 multi-turn ques- 104

tions, and MMLU focuses on a model’s multitask 105

accuracy across 57 tasks (Hendrycks et al., 2021). 106

Multi-document summarization offers a promising 107

benchmark (Huang et al., 2021; Wang et al., 2022; 108

Xu et al., 2023). However, developing a summary 109

scoring system poses challenges due to variables 110

such as summary length, content coverage, and 111

faithfulness (Cao et al., 2022; Liu et al., 2023c; Kr- 112

ishna et al., 2023). Furthermore, we need to ensure 113

that benchmark data has not been part of LLM pre- 114

training datasets (Liu et al., 2023c; Li et al., 2023). 115

Sports game data, which combines static knowl- 116

edge with player dynamics, presents an untapped 117

opportunity for benchmarking LLMs. 118

Combining information from a blend of textual 119

and numerical records poses a significant challenge. 120

In traditional multi-document summarization, the 121

system creates a concise summary from a set of 122

topically related documents. Giorgi et al. (Giorgi 123

et al., 2023) show that this task remains difficult in 124

an “open-domain” setting, where the document set 125

is generated by a retriever and may include irrele- 126

vant information. With the growing popularity of 127

retrieval-augmented generation (RAG) (Karpukhin 128

et al., 2020; Liu et al., 2022), there is an increasing 129

need to accurately fuse information from various 130

sources. We explore information fusion by examin- 131
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Game Score = (Points) 
            + 0.4 x (Field Goals Made) 
             - 0.7 x (Field Goals Attempted)
             - 0.4 x (Free Throws Attempted - Free Throws Made)
             + 0.7 x (Offensive Rebounds) + 0.3 x (Defensive Rebounds)
             + (Steals) + 0.7 x (Assists) + 0.7 x (Blocks)
             - 0.4 x (Personal Fouls) - (Turnovers)

Passing Efficiency = { 8.4 x (Yards) 
             + 330 x (Touchdowns) 
             - 200 x (Interceptions)
             + 100 x (Completions) } / Attempts

Yards = Number of Yards Passing
Touchdowns = Number of Passes for Touchdowns
Interceptions = Number of Passes intercepted
Completions / Attempts = Number of Passes Completed / Attempted

The NBA Game Score, developed by former ESPN writer John Hollinger, provide a 
rough measure of a player's productivity in a basketball game. 

“It takes into account both positive contributions (such as points, rebounds, and 
assists) and negative ones (such as missed shots and turnovers). It's a useful tool for 
quickly comparing players' performances.”

Source: https://www.nbastuffer.com/analytics101/game-score

In 1979, the NCAA created the Passing Efficiency formula with specific scaling factors 
to ensure an average passer would have a rating of exactly 100 for yards-per-attempt 
and completion percentage. 

“The factors 330 (3.3 times touchdown percentage) and 200 (2.0 times interception 
percentage) were selected so that they would balance each other out for an average 
player. While the NCAA and NFL formulas are essentially similar, the NFL's use of 
"caps" makes its formula a bit more complex to calculate.”

Source: https://stassen.com/football/pass-eff/

Passing Efficiency (PE) 

Game Score (GS) 

Figure 3: We adopt the NBA’s Game Score, originally designed for player evaluation, to measure a team’s overall
efficiency. For American football, we apply NCAA’s Passing Efficiency formula.

ing how LLMs cross-reference players and actions,132

and aggregate data across play-by-play descriptions133

to compile key game statistics.134

Our work relates to numerical reasoning, which135

uses arithmetic reasoning to tackle mathematical136

word problems. Prior datasets in this area include137

MathQA (Amini et al., 2019), GSM8k (Cobbe138

et al., 2021), SVAMP (Patel et al., 2021), and139

MATH (Liu et al., 2023d), targeting grade school140

level problems, and allowing models to generate141

answer explanations. The problems typically have142

brief descriptions, with the challenge lying in cre-143

ating an expression tree and applying arithmetic144

knowledge. In contrast, our approach focuses on as-145

sessing LLMs’ ability to track key statistics across146

extremely long contexts.147

Sports data has been utilized in various natural148

language tasks, including data-to-text generation149

for sports games (Lareau et al., 2011; Zhang et al.,150

2016; Wiseman et al., 2017; van der Lee et al.,151

2017; Puduppully et al., 2019), real-time game sum-152

marization from live commentaries (Edouard et al.,153

2017; Huang et al., 2020); and other aspects such154

as sports commentator bias (Merullo et al., 2019).155

Beyond sports, there’s significant interest in anno-156

tating and analyzing large-scale game-related cor-157

pora, such as reviews and gameplay logs, and sum-158

marizing gameplay commentaries (Lukin, 2020;159

Kicikoglu et al., 2020; Gu et al., 2022; Furman160

et al., 2022). We anticipate that insights from our161

SportsMetrics benchmark will benefit these areas,162

enhancing our understanding of game narratives163

and player dynamics.164

3 The SportsMetrics Benchmark165

We collect NBA and NFL play-by-play data from166

ESPN.com. The descriptions capture the essence of167

each game. They are typically written by ESPN’s168

sports journalists, who are experts in their respec-169

tive sports. We reached out to ESPN as necessary to 170

ensure adherence to their data policies. In Figure 1, 171

we use “time” to indicate the exact moment of each 172

action on the game clock, while “play” details the 173

actions occurring at those times. Scoring actions, 174

which change the game’s score, are identified but 175

not disclosed to LLMs during our experiments, as 176

are team points. Additionally, we collect data on 177

players’ team affiliations and the game’s box scores 178

for our analysis. 179

Our task requires LLMs to track key stats across 180

thousands of play-by-play records, which is a non- 181

trivial effort. An ideal LLM needs to associate each 182

action with the right player and their team in order 183

to calculate team-level statistics. It must also moni- 184

tor multiple key statistics simultaneously, such as 185

field goals, free throws, rebounds, assists, blocks, 186

steals, personal fouls, and turnovers in a basketball 187

game. We believe an LLM’s ability to summarize 188

key details and fill in the missing statistics in game 189

summaries demonstrates its capabilities in data fu- 190

sion and numerical reasoning. 191

We need a comprehensive scoring metric to eval- 192

uate LLMs’ ability to monitor key game statistics. 193

Simply reporting individual metrics such as team 194

points, rebounds, assists, and blocks for each team 195

is inefficient and does not provide a holistic view of 196

game analysis. To address this, we employ expert- 197

developed team statistics formulas, as illustrated in 198

Figure 3. We adopt the NBA’s “Game Score” by 199

John Hollinger, originally for player evaluation, to 200

measure a team’s overall effectiveness in basket- 201

ball. It considers both positive (points, rebounds, 202

assists) and negative (missed shots, turnovers) fac- 203

tors. For American football, we apply NCAA’s 204

“Passing Efficiency” formula, as the NFL rule is 205

more complex. In the following sections, we evalu- 206

ate LLMs under different adversarial scenarios to 207

assess their robustness. 208
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You are a helpful assistant tasked with analyzing sports games. You have been given play-by-play breakdowns of a basketball game between two teams.

The "Time" column shows the exact time on the game clock when each play took place. The game clock counts down, so this column displays times in a descending order.

The "Play" column describes the action that happened at the respective times. It provides details of specific plays, movements, and outcomes on the court.

Team players are listed in two rows, each row representing one of the two basketball teams involved in the game.

Your task is to fill in the missing key statistics from a basketball game recap. Each missing statistic is marked 
with '___'.

Game Recap: ```Jalen Duren had ___ points and ___ rebounds as the Detroit Pistons overcame a career-
high ___ points from Zach LaVine to beat the Chicago Bulls ___-___ on Saturday night.```

First, create an internal memory as a JSON object. Initially, this JSON object only has placeholders for team 
points, like this:

Initial Memory: {"Chicago Bulls": {"points": null}, "Detroit Pistons": {"points": null}}

Next, add the necessary key game or player statistics to the working memory to complete the missing 
information. These statistics might include categories such as 'field goals made', 'field goals attempted', 
'free throws made', 'free throws attempted', 'rebounds', 'assists', 'blocks', 'steals', 'points' and others. This 
JSON object will later be populated with relevant data that will be used to fill in the blanks.

Working Memory Example: {"Jalen Duren": {"points": null, "rebounds": null}, "Zach LaVine": {"points": null}, 
"Chicago Bulls": {"points": null}, "Detroit Pistons": {"points": null}}

Now, you will be given a new game recap. Your goal is to create a working memory as a JSON object, which 
can be used to fill in the missing key statistics in the Game Recap. 

Game Recap: ```{GAME-RECAP}```

Can this working memory, represented as a JSON object, 
effectively complete the missing key statistics for the given game 
recap? If yes, just respond with the working memory. If not, 
improve the memory structure. Do not take into account or modify 
the NULL value.

Game Recap: ```Franz Wagner scored 24 of his ___ points in the 
second half, Paolo Banchero added ___ points, and the Orlando 
Magic overcame Nikola Jokic's triple-double Wednesday night to 
record their fifth straight victory, ___-___ over the Denver 
Nuggets.```

Initially, you are given a JSON object where all values are set to 
null. Based on the provided play-by-play breakdown and team-
player data, you will update these key statistics in JSON format.

{"Jalen Duren": {"points": null, "rebounds": null}, "Zach LaVine": 
{"points": null}, "Chicago Bulls": {"points": null}, "Detroit Pistons": 
{"points": null}}

Your task is to complete the missing key statistics from a basketball game recap. You'll fill in the blanks using only information from the working memory, which is represented as a JSON 
object containing the essential game or player statistics. Here's an example:

Working Memory Example: {"Jalen Duren": {"points": 23, "rebounds": 15}, "Zach LaVine": {"points": 51}, "Chicago Bulls": {"points": 102}, "Detroit Pistons": {"points": 102}}

Game Recap:  ```Jalen Duren had ___ points and ___ rebounds as the Detroit Pistons overcame a career-high ___ points from Zach LaVine to beat the Chicago Bulls ___-___ on Saturday 
night.```

Output: ```Jalen Duren had 23 points and 15 rebounds as the Detroit Pistons overcame a career-high 51 points from Zach LaVine to beat the Chicago Bulls 118-102 on Saturday night.```

Now, you will be given a new game recap and its working memory, represented as a JSON object. 

Working Memory: {WORKING-MEMORY}    Game Recap: ```{GAME-RECAP}```    Output: 
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Figure 4: An LLM fills in missing key statistics in game summaries through a three-step process. Initially, the LLM
creates an internal JSON object as its memory. It then enriches this memory by adding necessary game or player
statistics, where all values are set to null, and further reflects on whether this memory is sufficient to accomplish the
task. Lastly, the LLM uses detailed play-by-play and team-player data to update the JSON object’s values; it finally
utilizes this updated memory to fill in the blanks in the game summary.

3.1 Long-Form Game Narratives209

We begin by examining LLMs’ ability to reason210

over long contexts. For example, Liu et al. (2023b)211

introduced two tasks, multi-document QA and key-212

value retrieval, which require the model to identify213

relevant information within long contexts. They214

found that LLMs’ performance significantly deteri-215

orates when they have to access relevant informa-216

tion in the middle of long contexts. Our study goes217

a step further, requiring LLMs to not only identify218

relevant actions but also accurately track statistics219

throughout long-form game narratives.220

In this task, each LLM is provided detailed play-221

by-play descriptions of a sports game, including222

timestamps and specific actions. The players’ team223

affiliations are listed in two rows, representing each224

team. The LLM’s task is to use the play-by-plays225

to update key game statistics within a JSON object,226

initially filled with null values. For long-context227

LLMs such as GPT-4 Turbo, Claude 2.1, and Gem-228

ini Pro (Anil et al., 2023), we provide the entire229

game’s data at once for processing. For LLMs with230

4k or 8k tokens context, we break the game down231

into four quarters. The LLM gathers statistics quar-232

ter by quarter. It generates a JSON object that holds233

values from each quarter. These are then added up234

to derive game-level statistics.235

We use comprehensive, expert-devised formulas236

to evaluate LLMs in tracking game statistics. For237

NBA games, we monitor 11 key statistics: team 238

points, field goals made, field goals attempted, free 239

throws made, free throws attempted, offensive re- 240

bounds, defensive rebounds, steals, assists, blocks, 241

and personal fouls.1 Moreover, we calculate ‘Game 242

Score’ to measure a team’s overall effectiveness in 243

basketball. For NFL games, we track passing yards, 244

touchdowns, interceptions, and pass completions 245

and attempts. These additional stats allow for the 246

computation of ‘Passing Efficiency.’ 247

3.2 The Impact of Changing Game Rules 248

It is important to understand LLMs’ ability to make 249

decisions under changing world rules. LLMs pos- 250

sess extensive knowledge from pretraining on the 251

Internet, books, and other texts. This knowledge, 252

held in their parametric memory, might not always 253

align with the external evidence given to the model. 254

Therefore, LLMs need to adjust to changing rules. 255

Xie et al. (2023) highlight the importance of know- 256

ing when to trust a model’s own knowledge. Meng 257

et al. (2023) explored finetuning LLMs to alter 258

specific knowledge, but such changes are often ir- 259

reversible. Here, we propose two tasks to evaluate 260

LLMs’ abilities in adapting to new game rules. 261

1We exclude turnovers from tracking due to limitations
in the data. Play-by-play descriptions may not capture every
turnover, making it difficult for the model to track them accu-
rately. When necessary, we rely on the ground-truth Turnover
count from the box score to calculate the Game Score.
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Model Release Date Context Len Input Output Organization
Claude-2.1 11.21.2023 200,000 $.008 $.024 Anthropic
GPT-4-1106-preview 11.06.2023 128,000 $.01 $.03 OpenAI
Gemini-Pro 12.06.2023 32,000 $.001 $.002 Deepmind
GPT-3.5-Turbo-1106 11.06.2023 16,385 $.001 $.002 OpenAI
Mistral-7B-Instruct-v0.1 09.27.2023 8,000 — — Mistral
GPT-3.5-Turbo-0613 06.13.2023 4,096 $.0015 $.0015 OpenAI
Llama-2-13B-Chat 07.18.2023 4,096 — — Meta

Table 1: LLMs used in this study. Prices are per 1,000 tokens. Llama-2 and Mistral-7B are free and open-source.

New Scoring Rules We examine the impact of262

changing game rules on final scores. For basketball,263

scoring events such as free throws, three-pointers,264

field goals, vary from 1 to 3 points. We ask LLMs265

to maintain these scoring events but under a new266

rule where each action is worth only 1 point. This267

contradicts LLMs’ existing knowledge, challeng-268

ing them to recalibrate game scores accordingly.269

Ground-truth scores under this rule are obtained270

by counting the total number of scoring actions to271

determine each team’s total points.272

Player Swapping We randomly swapped player273

team affiliations in the table without changing the274

game’s play-by-play records, as illustrated in Fig-275

ure 2. Ground-truth team scores for this task are cal-276

culated by summing individual player scores under277

their new affiliations. This task allows us to vary278

the degree of conflict between the model’s existing279

knowledge and the provided evidence. Swapping280

more players increases the task’s difficulty.281

3.3 Robustness Against Noise282

Shuffling Play-by-Plays We present an adver-283

sarial challenge where we shuffle basketball game284

play-by-play descriptions and then ask LLMs to285

track the total points of each team. We choose286

basketball because adjacent actions in this context287

do not show strong causal relationships. Changing288

the sequence of scoring actions does not affect the289

teams’ total points. We anticipate that long-context290

LLMs will produce consistent or similar final game291

scores. To avoid confusing the model, we maintain292

the original order of timestamps.293

We can also adjust the frequency of scoring plays294

in a game, making it more or less challenging for295

LLMs to process the narrative. By choosing a296

probability p from a set of values {-50%, -20%, 0,297

+20%, +50%}, we can either duplicate non-scoring298

plays (thereby decreasing scoring play density and299

extending the game narrative) or remove them (in-300

creasing scoring play density). Further, to test the301

LLM’s inherent knowledge, we randomly select302

{
  "Denver Nuggets": {
    "points": "victory_score"
  },
  "New York Knicks": {
    "points": "defeat_score"
  },
  "Ty Lawson": {
    "points": "Lawson_score"
  },
  "Randy Foye": {
    "points": "Foye_score"
  }
}

{
  "Denver Nuggets": {
    "points": null
  },
  "New York Knicks": {
    "points": null
  },
  "Ty Lawson": {
    "points": null
  },
  "Randy Foye": {
    "points": null
  }
}

{
  "Ty Lawson": {
    "points": 25,
    "assists": 7
  },
  "Randy Foye": {
    "points": 18,
    "rebounds": 5
  },
  "New York Knicks": {
    "points": 98,
    "rebounds": 42
  },
  "Denver Nuggets": {
    "points": 103,
    "rebounds": 45
  }
} GPT-4 TurboClaude-2.1 LLaMA-2

Figure 5: Effective working memory is key in this task.
While a sophisticated structure is possible, it also in-
creases the likelihood of errors when populating values.

players from each team in NFL games and assign 303

them new names, such as characters from science 304

fictions. This approach evaluates the model’s abil- 305

ity to adapt to changes in player identities. These 306

alterations do not introduce new players or change 307

the total points scored in the game; it simply varies 308

the narrative’s complexity. 309

3.4 Planning for Complex Data Queries 310

In this task, LLMs fill in missing key statistics from 311

game summaries (e.g., from ESPN). The process 312

unfolds in three steps, illustrated in Figure 4. First, 313

the LLM creates an internal JSON object memory, 314

initially with placeholders for team points. Next, 315

it enriches this memory by adding crucial game or 316

player statistics. During a self-reflection phase, the 317

LLM evaluates if its JSON memory can accurately 318

complete the missing statistics for the given game 319

recap. If it can, it responds with this memory; if not, 320

it further refines the memory structure. Finally, us- 321

ing the detailed play-by-play and team-player data, 322

the LLM updates the key statistics in the JSON for- 323

mat, then uses this information to fill in the blanks 324

in the game summary. Figure 5 illustrates various 325

LLM attempts building a memory. 326

Our task is inspired by several studies on LLM 327

planning. Unlike LLM+P which uses the Planning 328

Domain Definition Language (PDDL) for problem- 329
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System ∆GScore ∆Points ∆NewRule ∆Swap ∆Shuffle
Long-Context GPT-3.5-Turbo-1106 33.50 9.45 14.10 13.53 9.89
(16k+ Tokens) Gemini-Pro 32.30 17.62 25.99 17.78 14.85

GPT-4-1106-preview 51.97 25.17 14.55 39.91 49.57
Claude-2.1 55.16 21.73 22.28 17.12 31.11

Standard GPT-3.5-Turbo-0613 114.28 94.34 18.22 88.25 89.11
(4k to 8k Tokens) Mistral-7B-Instuct 123.49 73.53 26.79 70.69 103.24

Llama-2-13B-Chat 110.69 70.77 83.04 53.98 81.09

Table 2: Average absolute difference between model predictions and the actual scores on NBA data for tracking a
team’s total points (Points) and all key game statistics (GScore). Moreover, we evaluate LLMs’ performance in
three adversarial scenarios: ∆NewRule, ∆Swap and ∆Shuffle.

solving (Liu et al., 2023a), we simplify the process330

by requiring only a valid JSON object for working331

memory. Relevant studies such as Reflexion (Shinn332

et al., 2023), ReAct (Yao et al., 2023b), and Tree-333

of-thought (Yao et al., 2023a) have also influenced334

our approach. Sumers et al. (2023) have developed335

a framework for integrating planning into LLM336

agents. Prior studies have focused on ALFWorld’s337

interactive TextWorld environments. Our method338

are focused on sports, which involves masking key339

statistics in game recaps by sports journalists, then340

converting them into task data points for LLMs. We341

assess LLMs by their accuracy in filling in missing342

key statistics from game summaries.343

4 Experiments344

We evaluate various LLMs in our SportsMetrics345

benchmark. These models are listed in Table 1 and346

split into two categories: long-context LLMs, ca-347

pable of processing over 16k tokens, and standard348

LLMs, handling 4k to 8k tokens. Our evaluation349

focuses on their ability to accurately track a team’s350

total points (Points) and all key game statistics351

(GameScore). We measure the average absolute352

difference (deviation) between the models’ predic-353

tions and the actual box scores, denoted as ∆Points354

and ∆GScore, respectively.2355

Our dataset comprises 28,492 NBA games and356

5,867 NFL games spanning two decades from 2002357

to 2023, available through ESPN’s archives. We358

randomly selected 100 games from each sport for359

our test set. On average, NBA games contain 466360

plays and NFL games 173 plays. An average NBA361

2∆GScore consistently shows higher values compared to
∆Points because it goes beyond counting a team’s points. It
offers a full game analysis by requiring the LLM to consoli-
date key statistics such as points, rebounds, steals, assists and
more into an overall score. Considering only team points is
insufficient, especially in sports like soccer where scoring is
rare. When necessary, we can convert GameScore to points
by zeroing out other stats.

game includes 6,229 tokens, while an NFL game 362

has 6,166 tokens, with maximum lengths reaching 363

7,322 and 7,659 tokens, respectively. 364

LLMs’ ability to integrate information is tested 365

under three adversarial scenarios: (a) ‘NewRule,’ 366

which assigns every scoring action just one point, 367

regardless of the move, (b) ‘Swap’ which randomly 368

selects two players from each team to swap their 369

affiliations in the team-player table, (c) ‘Shuffle,’ 370

which duplicates any non-scoring action with a 371

20% chance (p=0.2) before shuffling the play-by- 372

plays. We assess LLMs’ performance in these sce- 373

narios and report the deviation of predicted team 374

points from actual scores as ∆NewRule, ∆Swap 375

and ∆Shuffle. 376

In Table 2, we present our findings from the NBA 377

section of our dataset. With ∆ representing the gap 378

between predictions and actual scores, smaller val- 379

ues are preferable. We find that long-context LLMs 380

significantly outperform standard LLMs across all 381

tasks. GPT-3.5-Turbo-1106 leads in performance 382

in every task except for ∆GScore, where Gemini- 383

Pro has a slight edge. Long-context models have 384

been released recently in late 2023. These results 385

demonstrate their remarkable ability in identifying 386

relevant actions from game play-by-plays, attribut- 387

ing each action to the right player and team, and 388

aggregating numerical data to compute final team 389

points and GameScore. This requires a level of 390

numerical reasoning that humans are adept at but it 391

is still new territory for LLMs. 392

In Figure 6, we organize games based on the 393

length (number of tokens) of their play-by-play de- 394

scriptions, with the x-axis showing the games and 395

the y-axis the deviation scores from various LLMs, 396

where lower scores indicate better performance. 397

We perform a regression analysis to demonstrate 398

each LLM’s trend in handling games of increas- 399

ing length. GPT-3.5-Turbo-1106 and Gemini-Pro 400

stand out, maintaining nearly flat curves, which cor- 401
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System ∆Yards ∆ATT ∆COMP ∆TD ∆INT ∆PE
Long-Context GPT-4-1106-Preview 34.77 4.44 2.96 0.17 0.13 14.33
(16k+ Tokens) Claude-2.1 52.53 5.43 3.75 0.29 0.22 17.53

GPT-3.5-Turbo-1106 64.87 7.80 4.73 0.49 0.30 18.43
Gemini-Pro 85.14 12.68 6.87 0.83 0.52 26.17

Standard GPT-3.5-0613 105.68 24.11 15.80 1.09 0.60 89.56
(4k to 8k Tokens) Llama-2-13B-Chat 244.48 22.37 19.66 1.47 1.03 191.76

Mistral-7B-Instuct 119.31 17.64 9.05 1.23 0.69 202.07

Table 3: Discrepancies between model predictions and actual scores on NFL stats, including yards (Yards), attempts
(ATT), completions (COMP), touchdowns (TD), interceptions (INT) and passing efficiency (PE).
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Figure 6: We organize games based on the length of
their play-by-plays, with the x-axis showing the games
and the y-axis the deviation scores; lower scores indicate
better performance. GPT-3.5-Turbo-1106 and Gemini-
Pro stand out here, maintaining nearly flat curves.

responds with their superior performance as shown402

in Table 2. By contrast, GPT-4-1106-Preview does403

well in shorter games but face difficulties in aggre-404

gating key statistics for longer games. Additionally,405

79% its returned JSON objects contain zeros or null406

values, contributing to its unsatisfying performance407

on this task.408

We note that basketball teams typically score409

between 100 to 120 points. Our findings show that410

the smallest prediction gap for ∆Points is 9.45,411

while the largest can exceed 100. This indicates the412

difficulty in accurately tracking key game statistics413

over long contexts, as standard LLMs can produce414

predictions significantly off from actual scores due415

to hallucinations. Among the three adversarial416

scenarios, the New Rule is relatively simpler as it417

requires LLMs to assign one point to every scoring418

action, focusing on counting these actions instead419

of distinguishing between types (3-pointers vs. free420

throws) and adding them up for a team’s score. In421

this scenario, Llama-2-13B-Chat scores lower than422

all other LLMs.423

In Table 3, we present NFL data findings. Amer- 424

ican football’s play-by-plays have demonstrated a 425

sequential nature, we cannot apply tests like New 426

Rule, Swap, or Shuffle as with basketball games. 427

Instead, we measure how model predictions deviate 428

from actual scores on key game statistics, including 429

yards (∆Yards), attempts (∆ATT), completions 430

(∆COMP), touchdowns (∆TD), and interceptions 431

(∆INT). We also combine them into Passing Ef- 432

ficiency (∆PE) for a holistic game analysis. Our 433

results suggest that long-context LLMs greatly sur- 434

pass standard models, with GPT-4-1106-Preview 435

taking the lead, followed by Claude-2.1 and GPT- 436

3.5-Turbo-1106. 437

Particularly, passing yards are vital in the NFL 438

games, often leading to scoring opportunities like 439

touchdowns and field goals. On average, NFL 440

teams average 200 to 250 passing yards per game. 441

We find that the top model, GPT-4-1106-Preview, 442

exhibits a 34.77-yard discrepancy in passing yards 443

prediction, while the open-source Llama-2-13B- 444

Chat lags significantly in comparison. This high- 445

lights the difficulty of tracking passing yards, a task 446

even more challenging than summarizing basket- 447

ball points, with most models struggling to accu- 448

rately aggregate such data. 449

In Figure 7, we test LLMs’ robustness against ad- 450

versarial conditions. In the left subfigure, we vary 451

the difficulty of identifying scoring events by either 452

dropping or duplicating non-scoring events. E.g., 453

at probability p=-0.5, we eliminate any non-scoring 454

event with a 50% chance; at p=0.2, we duplicate 455

any non-scoring event with a 20% chance, before 456

shuffling the entire game description. The y-axis 457

measures the deviation from the actual box score, 458

with smaller values indicating better model perfor- 459

mance. We observe that GPT-3.5-Turbo-1106 and 460

Gemini-Pro perform the best, whose curves are 461

quite flat, indicating their robustness to a varying 462

level of noise in the play-by-plays. Overall, LLMs 463

perform well when non-scoring events are removed, 464
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Figure 8: Accuracy of various LLMs in filling missing
key statistics from basketball game recaps. Claude-2.1
shows strong performance, while Mistral-7B-Instruct
achieves the highest accuracy among standard LLMs.

yet their performance drops as more non-scoring465

events are added, akin to searching for a needle in466

a larger haystack.467

Further, we randomly swapped n players’ af-468

filiations in the team-player table and replaced n469

players’ names with science fiction characters, all470

without changing the play-by-play texts. Our find-471

ings are shown in the middle and right subfigures.472

We find that Claude-2.1, Gemini-Pro, and GPT-3.5-473

Turbo-1106 are the top performers. Interestingly,474

renaming players significantly decreases all mod-475

els’ performance. This suggests LLMs may use476

familiar basketball player names from their pre-477

training to guess team scores, rather than analyz-478

ing the actual play-by-plays. GPT-4-1106-Preview479

is the least adaptable to these adversarial conditions480

among the long-context LLMs. We also observe a481

notable performance disparity exists between open-482

source and proprietary LLMs.483

We assess the accuracy of various LLMs in com-484

pleting missing key statistics from basketball game 485

recaps. The types of missing data include a player’s 486

total points, team scores, assists, rebounds, and 487

other stats. An LLM must understand the recap’s 488

context to precisely estimate the missing statistic. 489

To do this, LLMs create a JSON object as its work- 490

ing memory. They then calculate the needed statis- 491

tics using play-by-play and team-player data and 492

use this memory object to fill in the blanks. 493

Figure 8 presents the results of this task. Claude- 494

2.1 shows strong performance, while Mistral-7B- 495

Instruct achieves the highest accuracy among stan- 496

dard LLMs. This task requires that LLMs possess 497

strong instruction-following capabilities to build 498

an effective working memory. Figure 5 provides 499

sample working memories from various LLMs. Al- 500

though complex structures are possible, they in- 501

crease the risk of errors when populating values. 502

Models such as GPT-4-1106-Preview and Llama- 503

2-13B-Chat face difficulties in creating a working 504

memory. They hallucinate field values or fail to 505

accurately fill fields with aggregated values from 506

play-by-play data. By contrast, Claude-2.1’s mem- 507

ory structure is the best in terms of efficiency, focus- 508

ing on essential game statistics. Our task crucially 509

evaluates LLMs’ memory management skills when 510

handling complex data queries. 511

5 Conclusion 512

We introduce SportsMetrics, a novel benchmark 513

designed to evaluate LLMs in sports data analytics. 514

It assess LLMs’ numerical reasoning and fusion 515

abilities through challenges such as new game rules, 516

lengthy descriptions, scrambled narratives and key 517

stats analysis in game summaries. SportsMetrics 518

highlights LLMs’ potential in fields such as multi- 519

player gaming and collaborative workspaces. 520
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6 Limitations521

Our research focuses on NBA and NFL games,522

which are major sports with rich datasets. We are523

interested in exploring the generalizability of our524

findings to other sports. For example, soccer and525

cricket have distinct play styles and rules, which526

might challenge LLMs in unique ways. Our study527

has explored multiple adversarial scenarios, such528

as new game rules and scrambled game narratives.529

Such drastic changes might be uncommon in real-530

world conditions, and the models’ ability to handle531

these scenarios might not translate to improved532

performance in other analytical tasks. Finally, our533

scoring system’s effectiveness in assessing LLMs’534

numerical reasoning capabilities in different con-535

texts, such as multiplayer online gaming or collab-536

orative workspaces, remains to be validated. This537

study explores LLMs’ potential in sports analytics.538

It is important to recognize these limitations when539

applying our findings to broader contexts.540
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