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ReLU Can Compute Numerical Integration
Mechanistic Interpretation of a Non-linear Activation

Anonymous Authors1

Abstract
Extending the analysis from Nanda et al. (2023)
and Zhong et al. (2023), we offer an end-to-end
interpretation of the 1 layer MLP-only modular
addition transformer model with symmetric em-
beds. We present a clear and mathematically rig-
orous description of the computation at each layer,
in preparation for the proofs-based verification ap-
proach as set out in Author et al. (2024). In doing
so, we present a new interpretation of the ReLU:
that it implement quadrature schemes to carry out
numerical integration, and we provide anecdotal
and mathematical evidence in support.

1. Introduction
An open problem in mechanistic interpretation of toy models
is understanding non-linear activations (Elhage et al., 2021).
Current approaches largely either treat non-linear activations
as detecting binary (“on-off”) features with scaling, or treat
them as black-boxes, only describing input-output behavior.

The key challenge in interpreting non-linearities is their
expressiveness. While k-layer linear networks are not
any more expressive than 1-layer linear networks of the
same width, deep non-linear networks are not easily com-
pressed. Concretely, if matrices A and B are both n × n,
a complete description of input-output behavior of AB
or A + B requires only n2 parameters. Since there are
2n2 parameters in specifying A and B, half of them are
assumed to be completely arbitrary, and the effective pa-
rameter count of the computation is only n2. By contrast,
no such compression of x 7→ ReLU(AReLU(Bx)) nor
x 7→ ReLU(Ax) + ReLU(Bx) is possible in general.

Nanda et al. (2023) and Zhong et al. (2023) provide exciting
mechanistic interpretations of transformers with non-linear
ReLU activations trained to perform modular addition. They

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

infer an algorithm where the binary features are frequencies,
by comprehensively analyzing the linear components of the
models and black-boxing the ReLUs, describing only its
input-output behavior.

Following the intuitions of concurrent work (Author et al.,
2024) on quantitatively grading explanation compression us-
ing formal proofs, we aim to interpret the model in enough
detail that we can: provide a parameterisation of a “hand-
coded” model of the same architecture, where (1) the param-
eterisation is at most linear in the effective parameter count
of the original architecture, and (2) the time to check that
a collection of parameters is valid is linear in the number
of (hand-coded) parameters. Then, the faithfulness of such
explanations is established by show that (3) when express-
ing every weight and bias of the model as a sum of our
“hand-coded” model and a “noise” term, the contributions
of the noise terms are always small.

In the course of finding such an interpretation, we found
that the ReLU implements a quadrature scheme to carry out
numerical integration to double the frequency of trigono-
metric functions (section 4) used in the rest of the algorithm
described in prior work.

2. Setup
We work with the ‘pizza’ model from Zhong et al. (2023): a
one-layer ReLU transformer with constant attention = 1

2 for
all tokens, trained to computeM : (x, y) 7→ (x+y) mod p.
The model takes input (x, y) encoded as one-hot vectors,
and outputs logit(x, y, z) for all possible values (mod p),
with the largest logit representing its predicted answer. We
represent the model computation of logits as

logit(x, y, z) =
∑

i ReLU(OV(x)i +OV(y)i + embed(y)i)
· (Wout)zi + residual terms

Here, the Wout matrix represents the unembed layer and
final linear layer combined (we ignore the bias term because
it is very small), and the notation OV(x) represents the OVE
circuit applied to the one-hot vector for x.
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Zhong et al. (2023) state that the model computation of
logits can be approximated as

logit(x, y, z) = |cos(k(x− y)/2)| cos(k(x+ y − z))

and offer an argument of how this expression arises. As is
standard in mechanistic interpretability, part of their argu-
ment is justified visually, by noting in Appendix A via plots
that |cos(t)| − |sin(t)| ≈ cos(2t), and a more complicated
function in Appendix L. In order to check that a parameter-
isation using their stated algorithm is valid, we’d have to
sum dmlp terms for all p points separately.

3. Finding numerical integration
As explained in (Nanda et al., 2023), we carry out Fourier
transform on the OVE vectors in the token dimension:

OV(x)i ≈
∑

k a
k
i cos(kx)+b

k
i sin(kx) =

∑
k a

k
i cos(kx+ϕ

k
i )

We find that each neuron pre-ReLU, i.e. the values OV(x)i,
are ‘single-frequency’. That is, OV(x)i ≈ ai cos(k(i)x +
ϕi). So, we use the angle shift representation of Fourier
transforms as it helps us compare neurons of the same fre-
quency by their angle ϕi. This also allows us to look at
the corresponding angles for the Wout matrix. Note that
the frequency k can depend on the neuron, but only a few
frequencies occur (in many models we see 4 different fre-
quencies used). Denote the pre-ReLU input as F1(x, y)i
and split the ReLU layer into ReLU(x) = x+|x|

2 . We do
this because the absolute value function may be easier to
deal with than the raw ReLU function, especially when we
have products. We have (ignoring biases and the residual
stream from the embeds)

F1(x, y)i

≈ ai(cos(k(i)x+ ϕi) + cos(k(i)y + ϕi))

= 2ai cos(k(i)(x− y)/2) cos(k(i)(x+ y)/2 + ϕi)

ReLU(F1(x, y)i)

≈ ai |cos(k(i)(x− y)/2)| |cos(k(i)(x+ y)/2 + ϕi)|
+ ai cos(k(i)(x− y)/2) cos(k(i)(x+ y)/2 + ϕi)

The columns of Wout are also ‘single-frequency’, with fre-
quencies for each column matching the corresponding OVE
frequency. That is, (Wout)zi ≈ bi cos(k(i)z + ψi). Thus,

logit(x, y, z) =
∑

i bi cos(k(i)z + ψi)·
ai(|cos(k(i)(x− y)/2)| |cos(k(i)(x+ y)/2 + ϕi)|
+ cos(k(i)(x− y)/2) cos(k(i)(x+ y)/2 + ϕi))

=
∑

k |cos(k(x− y)/2)|
∑

i:k(i)=k

ri(cos(kz) cos(ψi) |cos(k(x+ y)/2 + ϕi)|
− sin(kz) sin(ψi) |cos(k(x+ y)/2 + ϕi)|)

−3 −2 −1 0 1 2 3

−2

0

2

ψi

ϕ
i

Primary frequency Non-primary frequency ϕ = −2ψ

Figure 1. Angles for frequency k = 12. ψi ≈ −2ϕi for the
primary frequency of each neuron but not in general.

+ similar terms for the identity component

where ri = aibi. Thus, if we want to produce the logit
formula, one way to do this is to match the coefficients:∑
i:k(i)=k

ri cos(ψi)| cos(k(x+y)
2 + ϕi)| ≈ Ck cos(k(x+ y))

and similarly for sine. Then we can apply the cosine addition
formula and obtain the required expression for the logit.

4. How numerical integration works
We find that this explanation of ReLU bears out in the model.
As suggested by our expressions, we investigate the rela-
tionship between ψi and ϕi and notice that ψi ≈ −2ϕi with
very high accuracy, see Figure 1. We also have∫ π

−π
cos(−2ϕ)

∣∣cos(k2 + ϕ)
∣∣ dϕ = 4

3 cos(k)∫ π

−π
sin(−2ϕ)

∣∣cos(k2 + ϕ)
∣∣ dϕ = 4

3 sin(k)

So it is plausible that the MLP neurons are working together
to implement a quadrature scheme to carry out the two
integrals listed above:1∫ π

−π
f(ϕ)dϕ ≈

∑
i rif(ϕi)

Interpreting the RHS as rectangles with width ri sampled at
the point ϕi gives the visualization of Figure 2, as follows:

First normalise the widths ri such that
∑

i ri = 2π, the
range of integration. Then, sort the angles and line up the
rectangles with width ri correspondingly to form end-points
a0 = −π, a1 = −π + r1, a2 = −π + r1 + r2, . . . , an =
−π + r1 + ... + rn = π. Note that since the function is
2π-periodic, we can shift the intervals formed above by any

1The toy approximation offered in Zhong et al. (2023, Ap-
pendix A), is just sampling the integral by two points (0 and π/2).
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Figure 2. Converting the weighted sum into rectangles to estimate
an integral (for frequency k = 12).

constant. In what follows, when bounding approximation
error, we use the shift that gives the lowest bound.

Additionally, by utilising the fact that the function f(x) is
actually π-periodic rather than 2π-periodic, we can overlap
the two halves of sampled points to try and reduce the error
of integration. (In this way, the rectangles in the approxima-
tion are narrower and so the error would be smaller.)

5. Error bound calculation
The discrepancy is:

∣∣∣∫ π

−π
f(x)− f(ϕi) dx

∣∣∣ where ϕi is the
angle s.t. x ∈ [ai−1, ai]. A crude bound is:

≤
∫ π

−π
|f(x)− f(ϕi)|dx

≤
∫ π

−π
|x− ϕi| · supx |f ′(x)|dx

≤ supx |f ′(x)|
∑

i

(∫ ai−ϕi

ai−1−ϕi
|x|dx

)
We must also include approximation error from ψi ≈
2ϕi: we have

∑
i ri |cos(ki(x+ y)/2− ϕi)| · (cosψi −

cos 2ϕi) ≤
∑

i ri |cos(ki(x+ y)/2− ϕi)| · |ψi − 2ϕi| ≤∑
i ri|ψi − 2ϕi|.

Using the specific frequency k = 12, the angle discrepancy
gives us a bound of 0.15 using our data.

We can bound supx |f ′(x)| ≤ 2 from differentiating the
function analytically, and the integral within the sum can be
evaluated easily. This gives us a way of bounding the error
in integration in time linear in the number of sample points
(p). Using this method on our data gives a bound of 0.45,
so combined with above, this gives a bound of 0.60. This
is compared to the naive estimate of integral = 0, which
gives an average absolute error of 0.74. In comparison, if we
simply evaluate the integral at all positions and combine it to
the weighted sum, for all values of x+y, the maximum error
here is just 0.043. This shows that numerical integration is

the right idea, but we still have some way to go to produce
a sublinear bound approaching the actual error.

Note that our bounding argument is O(nfreqdmlp), while the
procedure to check the maximum error is O(pdmlp). Since
there are pdmlp effective parameters in the MLP layer, our
argument is of order square root in the number of parame-
ters (assuming p ≈ dmlp and nfreq ≪ p). This showcases
the tradeoff between computational complexity and bound
accuracy as set out in Author et al. (2024). The fact that
we get a valid bound (better than the naive estimate) in sub-
linear time shows that our guess is very likely on the right
track. However, our large bound shows that there is more to
understand about how the quadrature scheme works, such
as how do we align the intervals, what do the values of the
ϕi and ri play here, etc.

6. The rest of the model
Recall that we broke down ReLU into two parts, the abso-
lute value component (considered above) and the identity
component. We can apply the same argument to the term
Gi

1(x, y)/2: we have the same quadrature scheme with

f(ϕ) = cos(−2ϕ) cos(k2+ϕ) and f(ϕ) = sin(−2ϕ) cos(k2+ϕ)

In this case, the integrals evaluate to 0, which means the
main contribution to the logits comes from the absolute
value component rather than the identity component. In-
deed, calculating the weighted sum in the expression above
gives a maximum modulus of 0.06, suggesting our claim is
reasonably solid. Hence, if we ignore the residual stream
(from the attention layer), then we obtain the approximate
expression for the logits (as above)∑

k
4
3Ck| cos(k(x− y)/2)| cos(k(x+ y − z)).

We have the following results for the other frequencies in-
cluded in this models:

Error Bound Type \ Freq. 12 18 21 22

Normalised abs error 0.04 0.03 0.04 0.03
Normalised id error 0.06 0.05 0.04 0.04
Numerical

∫
bound 0.60 0.41 0.46 0.41

Naive bound 0.74 0.74 0.74 0.74

Alas, our approximations above are not completely cor-
rect, because when we regress the logits against the factors
|cos(k(x− y)/2)| cos(k(x + y − z)), we obtain an R2 of
0.86, while if we regress them against just cos(k(x+y−z)),
we obtain an R2 of 0.98. (A similar value is obtained if we
just use the MLP output and drop the residual streams.)
However, if we only consider the contribution to the logits
from the absolute value component of ReLU, the R2 values
become 0.99 and 0.85 respectively. Therefore, although
the contribution from the identity component of ReLU is

3
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small, it does make a difference towards reducing the logit
dependence on x− y, in particular |cos(k(x− y)/2)|. This
is a good thing because when cos(k(x− y)/2) is small, the
logit difference between the correct logit (x+ y) and other
logits will also be small, which will lead to a higher loss.
The identity component slightly counters this effect. Then

WoutOV(x)/2 +WoutOV(y)/2 +Woutembed(y)/2

Thus, we can store the matrices logit id1[:, x] =
WoutOV(x)/2 and logit id2[:, x] = Woutembed(x)/2,
then we have

F2(x, y)z = residual stream + absolute value terms
+ logit id1[z, x] + logit id1[z, y] + logit id2[z, y]

We carry out a 2D Fourier transform to find out the decom-
position of the logit id1 and logit id2 matrices (because
Wout and OV(x) are sparse in the (1D) Fourier basis, so
their product will naturally be sparse in the 2D Fourier basis).
We get logit id1[z, x] ≈ 2ℜ(

∑
k ake

i(kz−2kx)), where the
frequencies k here are the same as section 3. Hence, the
output from the identity component of ReLU is (ignoring
logit id2 for now, which comes from the residual stream
and is smaller):

∑
kDk(cos(kz−2kx)+cos(kz−2ky))+

Ek(sin(kz − 2kx) + sin(kz − 2ky)) =
∑

k cos(k(y −
x))(Dk cos(k(z − x− y)) + Ek sin(k(z − x− y))).

The imaginary component of the FT is very small, ck ≈ 0;
so the contribution is

∑
k bk cos(k(y−x)) cos(k(x+y−z)).

Why does this happen, and why does it help explain the
R2 values we got above? We first list the approximate
coefficients ak:

Frequency 12 18 21 22

abs coefs (Ck) 13.9 15.1 12.1 11.2
id coefs (Dk) -3.7 -3.9 -3.2 -3.3

Thus, the overall expression for the logits is

F2(x, y)z ≈
∑

k(Ck |cos(k(y − x)/2)|
+Dk cos(k(y − x))) cos(k(x+ y − z))

=
∑

k(2D
2
k |cos(k(y − x)/2)|2

+ Ck |cos(k(y − x)/2)|) cos(k(x+ y − z))

−Dk cos(k(x+ y − z))

using double angle formula. Since Dk < 0, the∑
k −Dk cos(k(x + y − z)) term gives some cushion

for the base performance of the model (since as we dis-
cussed, the cos(k(x + y − z)) term is why the model
gives the highest logit when z = x + y). Moreover, the
2D2

k| cos(k(y − x)/2)|2 term also further improves the
model since it is always non-negative. Hence, the con-
tribution of the identity term evens out parts of the model

and improves the logit difference when |cos(k(y − x)/2)| is
small (where the absolute value part doesn’t do well). Note
that the model would work on its own if we only use the
absolute value part, but since ReLU is composed of both the
absolute value and identity part and the coefficients combine
both parts in a way that improve model performance.

7. Discussion, interpretation, and further work
First, note the correspondence between the complexity of
the argument and mechanistic understanding of the model.
In the first stage, restricting each node to a single frequency
(using mechanistic insight) means we only need O(p · dmlp)
time complexity to compute the neuron activations (the x−y
term can be grouped together and considered later since it
is the same factor for all neurons of the same frequency).
In the second stage, there is a lack of explanation of how
the ReLU layer works in Zhong et al. (2023, Appendix
L), where they just evaluated all the combinations in the
simplified expression, to check that we indeed get cos(k(x+
y)) terms. Our numerical integration argument can infer
about the accuracy of the scheme just by looking at the
angle samples ϕi and ψi, which is O(p+ dmlp) complexity.
This corresponds to a better explanation of how the ReLU
layer works. In particular, this argument should allow us to
produce a large family of hand-coded, parameterised models
which we know will perform the task well, and this family
of models approximates what happens when they are trained
empirically. Producing this family of models is future work.

Second, the argument presented here is not fully rigorous.
We have not obtained a proof that the network as a whole
indeed well-approximates numerical integration. (In fact, it
is difficult even to obtain good error bounds for the ‘single
frequency’ approximation of the neurons.) This reflects
a general problem of mechanistic interpretability – a lot
of the evidence is merely demonstrative or anecdotal, and
something which looks ‘obvious’ to some human eyes may
actually be impossible to prove. Thus, to have truly con-
vincing interpretability work, we should put more effort into
rigorous proofs or guarantees about the correctness of our
observations and approximations.

Impact Statement
This paper presents work whose goal is to advance the field
of Mechanistic Interpretability. There are many potential
societal consequences of our work, none which we feel must
be specifically highlighted here.
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A. Further work
There are obvious problems with generalising this sort of
approach to neural network interpretation. Not only does it
depend on the specifics of this problem (how we can have a
specific desired formula for the logits), but also it is highly
labour intensive. Thus, in order for the approach to have
any practical use, we need to develop automated tools to
make these approximations and interpretations. For exam-
ple, we may want to use the first few terms of the Fourier
expansion (or other low-rank approximations) to approxi-
mate the action of various layers in a neural network, and
then combine those to get algebraic expressions for certain
neuron outputs of interest. Such algebraic expressions will
natural admit phenomena like the numerical integration we
described above. This sort of method may be particularly
fruitful on problems which Fourier transforms play a large
role, such as signal processing and solutions to partial dif-
ferential equations.

B. Future technical work
To complete the technical work laid out in the introduction,
we must accomplish two tasks which we discuss in this
appendix section: constructing a parameterisation of the
MLP which is checkable in less than O(p · dmlp) time, and
more generally constructing a parameterisation of the entire
‘pizza’ model that is checkable in time that is linear in the
number of parameters; and establishing a bound on the error
in the model’s logits that does not neglect any terms.

B.1. Linear parameterisation

Constructing a parameterisation of the model which is
checkable in less than O(p·dmlp) time is a relatively straight-
forward task, given the interpretation in the body of the
paper. We expect that the parameters are:

• A choice of nfreq frequencies ki.

• A splitting of the neurons into groups by frequency,
and an ordering of the neurons within each group.

• An assignment of widths ri to each neuron, and an
assignment of angles ϕi to each neuron.

• An assignment of orthogonal planes into which each
frequency is embedded by the embedding matrix, and
by the unembedding matrix.

• Rotations and scaling of the low-rank subset of the hid-
den model dimension for each of the O and V matrices.

B.2. Bounding the error of the MLP

To bound the error of our interpreation of the MLP precisely,
we’d need to include a bound on the primary frequency con-

tribution of the identity component (which integrates to 0
symbolically), and include bounds on the residual compo-
nents – OVE on x and y, the MLP bias, and the embed of y,
as inputs to ReLU; and UOVE on x and y and UE on y as
output logits.

We could decompose every matrix in our model as a sum
of the corresponding matrix from our parameterized model
and a noise term. Expanding out the resulting expression for
the logits (and expanding |x+ ε| as |x|+ (|x+ ε| − |x|)),
we will have an expression which is at top-level a sum of
our parameterized model result and a noise term which is
expressed recursively as the difference between the actual
model and the parameterized model. We can then ask two
questions:

1. What worst-case bounds can we prove on the error
terms at various complexities?

2. What are the empirical worst-case bounds on the rele-
vant error terms?

6


