
ReLU MLPs Can Compute Numerical Integration
Mechanistic Interpretation of a Non-linear Activation

Chun Hei Yip 1 Rajashree Agrawal 2 Jason Gross 2

Abstract
Interpreting non-linear activations in toy trans-
former models is an open problem (Elhage et al.,
2021; 2022). While progress has been made
in models with MLPs that approximate linear
functions or other sparse functions, we present
the infinite-width lens for interpreting densely-
connected MLPs. Using the infinite-width lens,
we extend the analysis from Nanda et al. (2023)
and Zhong et al. (2023) to interpret the 1 layer
ReLU-only modular addition transformer model.
We present a new interpretation of the ReLU: that
it implement quadrature schemes to carry out nu-
merical integration. Compared to the black-box
treatment of MLPs in prior work, the quadrature
interpretation permits us to compress the MLP
and prove non-vacuous bounds in linear time.

1. Introduction
A key open problem in interpreting toy models is interpret-
ing densely connected non-linear activations (Elhage et al.,
2021; 2022). The difficulty seems tied to the expressiveness
of nested nonlinearities. While deep linear networks are
not any more expressive than shallow linear networks of the
same width, the same is not true for nonlinear networks. As
a toy model, consider simply adding or multiplying k matri-
ces of shape m×m: a complete description of input-output
behavior requires only m2 parameters, independent of k.
Deep non-linear networks are not similarly compressible:
inserting nonlinearities such as ReLU around binary matrix
operations in our toy example blows up the effective param-
eter count to km2, and complexity of the resulting function
is exponential in k (Raghu et al., 2017).

In practice, we can easily compress nonlinear components
that are well-approximated as linear (Nanda et al., 2023;
Akyürek et al., 2023). Sparsely connected nonlinear com-
ponents can also be compressed by treating activations as

1University of Cambridge 2Independent. Correspondence to:
Jason Gross <jasongross9@gmail.com>.

Copyright 2024 by the author(s).

detecting binary (“on-off”) features with scaling (Bricken
et al., 2023; Olah et al., 2020; Marks et al., 2024; Elhage
et al., 2022; Cunningham et al., 2023). However, per the toy
model, we do not expect these conditions to be the default.

Nanda et al. (2023) and Zhong et al. (2023) provide excellent
mechanistic interpretations of 1-layer ReLU transformers
trained on modular addition. However, the MLPs of these
models are neither sparse nor approximately linear. As
a result, only the black-box input-output behavior of the
ReLUs is described. In this work, we provide a compression
of the nonlinear function using an infinite-width lens.

Briefly, we think of densely connected MLPs as finite ap-
proximations to an infinite-MLP-width limit. This permits
us to turn post-activation matrix multiplications into ap-
proximate integrals and analyze the remaining operations
of the network – including the nonlinear operations – ana-
lytically. Similar to linear approximations, we validate that
our approximation is sound by bounding error terms.

As an example, consider the output Lx given by

0.1fx(.2)+0.11fx(.4)+0.09fx(.6)+0.12fx(.8)+0.08fx(1)

for fx(ξ) some nonlinear function of x and ξ. Taking the
limit as the number of terms in the sum goes to infinity
while fixing the overall total of the coefficients, we might
say that this expression is roughly

1

2

n∑
i=1

fx

(
i

n

)
1

n
=⇒
n→∞

1

2

∫ 1

0

fx(ξ) dξ

If we can non-vacuously lower-bound the error term Ex :=

|Lx − 1
2

∫ 1

0
fx(ξ) dξ| in time linear in n but independent

of the number of inputs x considered, we can be assured
that this approximation allows us to compress the work the
network is doing.

To back up this story in more detail, we will first describe the
model architecture of Zhong et al. (2023) and derive a form
of the mechanistic interpretation using Fourier series follow-
ing Nanda et al. (2023) and Zhong et al. (2023) in section 2.
We then extend the interpretation using the infinite-width
lens in section 3. We develop a description of the MLP as
implementing a quadrature scheme to carry out numerical in-
tegration to double the frequency of trigonometric functions,

1

Neurons Are Not Just Binary Feature Detectors: An MLP Computing Numerical Integration

and present suggestive evidence in support. In section 4
we present a rigorous validation of our quadrature-based
interpretation by verifying a non-vacuous worst-case bound
on the error terms (Gross et al., 2024) where the verification
time is linear in the parameter count of the MLP. We close
with a discussion in section 5 on how our infinite-width in-
tegration approach might be extended to other models with
densely connected nonlinearities.

Our code can be downloaded from https:
//colab.research.google.com/drive/
1W4QAomLR1GEq1U8Rgo8rmar2f_ekF6pY.

2. Setup
We work with the ‘pizza’ model from Zhong et al. (2023):
a one-layer ReLU transformer with constant attention =
1
2 for all tokens, trained to compute M : (x, y) 7→ (x +
y) mod p. The model takes input (x, y) encoded as one-hot
vectors, and outputs logit(x, y, z) for all possible values
(mod p), with the largest logit representing its predicted
answer. Ignoring the skip connection and the biases, which
are small in our model, we represent the model computation
of logits as

logit(x, y, z) ≈
∑

i ReLU(OV(x)i +OV(y)i︸ ︷︷ ︸
F (x,y)i

) · (Wout)zi

Here, theWout matrix combines the unembed layer and final
linear layer, OV(x) represents the OVE circuit applied to
the one-hot vector for x, and underbraces define the function
F . See Appendix A for a more precise equation of the model
and details of the derivation of results.

As explained in Nanda et al. (2023), we carry out Fourier
transform on the OV vectors in the token dimension and
on Wout in the output dimension. In our model, each neu-
ron is “single-frequency” both pre-ReLU and in the output
dimension, and these frequencies match:

OV(x)i ≈ ai cos(kix) + bi sin(kix) = ci cos(kix+ ϕi)

(Wout)zi ≈ ei cos(kiz + ψi)

Note that, unlike Zhong et al. (2023) and Nanda et al. (2023),
we use the amplitude-phase form of the Fourier series rather
than the sine-cosine form; this will prove crucial to finding
a relationship between Wout and OV that we can analyze
analytically.

Using the cosine addition formula we get

F (x, y)i ≈ di cos(ki(x− y)/2) cos(ki(x+ y)/2 + ϕi)

and manipulating the expression for logits gives

logit(x, y, z)

≈
∑
i

ReLU((F (x, y))i)(Wout)zi

≈
∑
k

|cos(k(x− y)/2)|
(

(1)

{
∑
i

ri ReLU[cos(k(x+ y)/2 + ϕi)] cos(ψi)} cos(kz)

− {
∑
i

ri ReLU[cos(k(x+ y)/2 + ϕi)] sin(ψi)} sin(kz)
)

with ri = |di|ei. Hence, after slight manipulation and
factoring out the dependence on z and x − y, we have
that the inputs to the ReLU are cos(k(x+ y)/2) cos(ϕi)−
sin(k(x+ y)/2) sin(ϕi), and the outputs are multiplied by
ri cos(ψi) and −ri sin(ψi) and summed.

LettingGk(t) :=
∑

i ri ReLU[cos(kt/2+ϕi)] cos(ψi) and
Hk(t) :=

∑
i ri ReLU[cos(kt/2 + ϕi)] sin(ψi), we could

plot Gk(t) and Hk(t) for a fixed k as Zhong et al. (2023)
do in their Appendices A & L, and find that they are propor-
tional to cos(kt) and sin(kt) respectively. This gives us a
black-box input-output specification for the ReLU computa-
tion, which require doing dmlp computations for each of the
p points.

Figure 1. A diagram showing our model architecture and existing
interpretations. The question marks indicate that the explanation
there is incomplete: a brute force algorithm was used to plot the
graph to ensure that the result was valid over [−π, π].

3. Numerical integration: infinite-width limit
We note from Figure 2 that in Equation 1, ψi ≈ −2ϕi.

Furthermore, noting that the weighted sum by ri resembles

2

https://colab.research.google.com/drive/1W4QAomLR1GEq1U8Rgo8rmar2f_ekF6pY
https://colab.research.google.com/drive/1W4QAomLR1GEq1U8Rgo8rmar2f_ekF6pY
https://colab.research.google.com/drive/1W4QAomLR1GEq1U8Rgo8rmar2f_ekF6pY

Neurons Are Not Just Binary Feature Detectors: An MLP Computing Numerical Integration

−3 −2 −1 0 1 2 3

−2

0

2

ψi

ϕ
i

Primary frequency Non-primary frequency ϕ = −2ψ

Figure 2. Angles for frequency k = 12. ψi ≈ −2ϕi for the
primary frequency of each neuron but not in general.

a quadrature scheme, suppose we replaced∑
i

ri ReLU[cos(k(x+ y)/2 + ϕi)] cos(−2ϕi)

with

Rk

∫ π

−π

ReLU[cos(k(x+ y)/2 + ϕ)] cos(−2ϕ) dϕ

and similarly for the second term. Computing the integrals:

∫ π

−π
cos(−2ϕ)ReLU cos(k2 + ϕ) dϕ = 2

3 cos(k)∫ π

−π
sin(−2ϕ)ReLU cos(k2 + ϕ) dϕ = 2

3 sin(k)

We would then recover

logit(x, y, z)

≈
∑
k

2

3
Rk(cos(k(x+ y)) cos(kz) + sin(k(x+ y)) sin(kz))

=
∑
k

2

3
Rk cos(k(x+ y − z))

which matches the derivation of the final unembed layer
shown in Nanda et al. (2023).

One way to make sense of the quadrature scheme is to
interpret the RHS as rectangles with width ri sampled at the
point ϕi gives the visualization of Figure 3, as follows:

First normalise the widths ri such that
∑

i ri = 2π, the
range of integration. Then, sort the angles and line up the
rectangles with width ri correspondingly to form end-points
a0 = −π, a1 = −π + r1, a2 = −π + r1 + r2, . . . , an =
−π + r1 + ...+ rn = π.

−3 −2 −1 0 1 2 3

−0.2

0

0.2

0.4

0.6

0.8

1

ϕ

f
(ϕ
)

Figure 3. Converting the weighted sum into rectangles to estimate
an integral (for frequency k = 12).

4. Computing numerical integration error
The question then becomes a mathematical one of evaluating
the efficiency of the quadrature scheme∫ π

−π

f(ϕ) dϕ ≈
∑
i

ri
Rk

f(ϕi)

We first provide empirical evidence. For ease of further
investigation, we split the ReLU function as

ReLU(x) =
x

2
+

|x|
2

(i.e. respectively the ‘id’ component and the ‘abs’ compo-
nent)

The maximum empirical error (obtained by evaluating the
expression for each value of x+y (mod p)) is shown below:

Error Bound Type \ Freq. 12 18 21 22

Normalised abs error 0.04 0.03 0.04 0.03
Normalised id error 0.06 0.05 0.04 0.04
Numerical abs

∫
bound 0.60 0.41 0.46 0.41

Naive abs bound 0.74 0.74 0.74 0.74

The naive bound is given by the average value of∣∣∣∣∫ π

−π

f(ϕ) dϕ

∣∣∣∣
and the error is given by∣∣∣∣∣

∫ π

−π

f(ϕ) dϕ−
∑
i

ri
Rk

f(ϕi)

∣∣∣∣∣
We compute the error both by brute force exactly (the first
two rows) and by mathematical analysis (the third row).
The exact error is much smaller than the size of the integral,

3

Neurons Are Not Just Binary Feature Detectors: An MLP Computing Numerical Integration

and the mathematical error bound is also smaller than the
size of the integral. This gives convincing evidence that the
model is indeed performing numerical integration.

Below we show how the mathematical error bound is
produced.

Note that since the function is 2π-periodic, we can shift the
intervals formed above by any constant. In what follows,
when bounding approximation error, we use the shift that
gives the lowest bound.

Additionally, by utilising the fact that the function f(x) is
actually π-periodic rather than 2π-periodic, we can overlap
the two halves of sampled points to try and reduce the error
of integration. (In this way, the rectangles in the approxima-
tion are narrower and so the error would be smaller.)

The discrepancy is:
∣∣∣∫ π

−π
f(x)− f(ϕi) dx

∣∣∣ where ϕi is the
angle s.t. x ∈ [ai−1, ai]. A crude bound is:

≤
∫ π

−π
|f(x)− f(ϕi)|dx

≤
∫ π

−π
|x− ϕi| · supx |f ′(x)|dx

≤ supx |f ′(x)|
∑

i

(∫ ai−ϕi

ai−1−ϕi
|x|dx

)
We must also include approximation error from ψi ≈
2ϕi: we have

∑
i ri |cos(ki(x+ y)/2− ϕi)| · (cosψi −

cos 2ϕi) ≤
∑

i ri |cos(ki(x+ y)/2− ϕi)| · |ψi − 2ϕi| ≤∑
i ri|ψi − 2ϕi|.

Using the specific frequency k = 12, the angle discrepancy
gives us a bound of 0.15. The code for the analysis is linked
here.

We can bound (analytically)

sup
x

|f ′(x)| ≤ 2

and the integral within the sum can be evaluated easily in
O(dmlp) time. This gives us a way of bounding the error in
integration in time linear in the number of sample points
(p). This bound is represented visually in Figure 4.

Using this method on our data gives a bound of 0.45, so
combined with above, this gives a bound of 0.60. We can
compare this bound with the brute force bound and the naive
bound as shown in the table above. We also include results
for the other frequencies.

Note that our bounding argument is O(nfreqdmlp), while the
procedure to check the maximum error is O(pdmlp). Since
there are pdmlp effective parameters in the MLP layer, our
argument is of order square root in the number of parame-
ters (assuming p ≈ dmlp and nfreq ≪ p). This showcases

−3 −2 −1 0 1 2 3

−0.5

0

0.5

1

ϕ

f
(ϕ
)

Figure 4. Error bound is the red area (for frequency k = 12). Note
how the red area includes both the actual curve and the numerical
integration approximation.

the tradeoff between computational complexity and bound
accuracy as set out in Gross et al. (2024). The fact that we
get a valid bound (better than the naive estimate) in sub-
linear time shows that our guess is very likely on the right
track. However, our large bound shows that there is more to
understand about how the quadrature scheme works, such
as how do we align the intervals, what do the values of the
ϕi and ri play here, etc.

5. Discussion, interpretation, and further work
First, note the correspondence between the complexity of
the argument and mechanistic understanding of the model.
In the first stage, restricting each node to a single frequency
(using mechanistic insight) means we only need O(p · dmlp)
time complexity to compute the neuron activations (the x−y
term can be grouped together and considered later since it
is the same factor for all neurons of the same frequency).
In the second stage, there is a lack of explanation of how
the ReLU layer works in Zhong et al. (2023, Appendix
L), where they just evaluated all the combinations in the
simplified expression, to check that we indeed get cos(k(x+
y)) terms. Our numerical integration argument can infer
about the accuracy of the scheme just by looking at the
angle samples ϕi and ψi, which is O(p+ dmlp) complexity.
This corresponds to a better explanation of how the ReLU
layer works. In particular, this argument should allow us to
produce a large family of hand-coded, parameterised models
which we know will perform the task well, and this family
of models approximates what happens when they are trained
empirically. Producing this family of models is future work.

Second, the argument presented here is not fully rigorous.
We have not obtained a proof that the network as a whole
indeed well-approximates numerical integration. (In fact, it

4

https://colab.research.google.com/drive/1W4QAomLR1GEq1U8Rgo8rmar2f_ekF6pY?usp=drive_link

Neurons Are Not Just Binary Feature Detectors: An MLP Computing Numerical Integration

is difficult even to obtain good error bounds for the ‘single
frequency’ approximation of the neurons.) This reflects
a general problem of mechanistic interpretability – a lot
of the evidence is merely demonstrative or anecdotal, and
something which looks ‘obvious’ to some human eyes may
actually be impossible to prove. Thus, to have truly con-
vincing interpretability work, we should put more effort into
rigorous proofs or guarantees about the correctness of our
observations and approximations.

Finally, although we have only considered one model, we
hope our analysis might inspire further work on other mod-
els. It might be possible, for example, to find a scheme for
using gradient descent to find denser and denser approxima-
tions to the infinite-MLP-width limit in cases where linear
layers are already dense. In such cases, we might be able to
understand

Acknowledgements
We would like to thank the Mentorship for Alignment
Research Students (MARS) program of the Cambridge
AI Safety Hub (CAISH) for setting up this collaboration,
and providing funding for compute and in-person research
sprints. We are grateful to Euan Ong, Alex Gibson, and
Soufiane Noubir, and Lawrence Chan for helpful discus-
sions and support during the development of this project.

Author Contributions
Chun Hei Yip was the primary contributor, running the
experiments and developing the interpretation that ReLU
implements quadrature. Rajashree Agrawal worked on dis-
tillation, developing toy models and providing editorial feed-
back. Jason Gross advised the project, steering experiments
on the infinite-width lens and working on writing the paper.

Impact Statement
This paper presents work with the goal to advance the field
of Mechanistic Interpretability. There are many potential
societal consequences of our work, none which we feel must
be specifically highlighted here.

References
Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and

Zhou, D. What learning algorithm is in-context learning?
investigations with linear models, 2023. URL https:
//arxiv.org/abs/2211.15661.

Bricken, T., Templeton, A., Batson, J., Chen, B., Jermyn,
A., Conerly, T., Turner, N., Anil, C., Denison, C.,
Askell, A., Lasenby, R., Wu, Y., Kravec, S., Schiefer, N.,
Maxwell, T., Joseph, N., Hatfield-Dodds, Z., Tamkin, A.,

Nguyen, K., McLean, B., Burke, J. E., Hume, T., Carter,
S., Henighan, T., and Olah, C. Towards monosemanticity:
Decomposing language models with dictionary learning.
Transformer Circuits Thread, 2023. URL https:
//transformer-circuits.pub/2023/
monosemantic-features/index.html.

Cunningham, H., Ewart, A., Riggs, L., Huben, R., and
Sharkey, L. Sparse autoencoders find highly interpretable
features in language models, 2023. URL https://
arxiv.org/abs/2309.08600.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T.,
DasSarma, N., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Jones, A., Kernion, J., Lovitt, L.,
Ndousse, K., Amodei, D., Brown, T., Clark, J., Kaplan, J.,
McCandlish, S., and Olah, C. A mathematical framework
for transformer circuits. Transformer Circuits Thread,
2021. URL https://transformer-circuits.
pub/2021/framework/index.html.

Elhage, N., Hume, T., Olsson, C., Schiefer, N., Henighan,
T., Kravec, S., Hatfield-Dodds, Z., Lasenby, R., Drain,
D., Chen, C., Grosse, R., McCandlish, S., Kaplan,
J., Amodei, D., Wattenberg, M., and Olah, C. Toy
models of superposition. Transformer Circuits Thread,
2022. URL https://transformer-circuits.
pub/2022/toy_model/index.html.

Gross, J., Agrawal, R., Kwa, T., Ong, E., Yip, C. H., Gibson,
A., Noubir, S., and Chan, L. Compact proofs of model
performance via mechanistic intepretability, June 2024.
URL https://arxiv.org/abs/2406.11779.

Marks, S., Rager, C., Michaud, E. J., Belinkov, Y., Bau,
D., and Mueller, A. Sparse feature circuits: Discovering
and editing interpretable causal graphs in language mod-
els, 2024. URL https://arxiv.org/abs/2403.
19647.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mech-
anistic interpretability. arXiv preprint, 2023. doi:
10.48550/arXiv.2301.05217.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov, M.,
and Carter, S. Zoom in: An introduction to circuits. Dis-
till, 2020. doi: 10.23915/distill.00024.001. URL https:
//distill.pub/2020/circuits/zoom-in.

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Sohl-
Dickstein, J. On the expressive power of deep neural
networks, 2017. URL https://arxiv.org/abs/
1606.05336.

5

https://arxiv.org/abs/2211.15661
https://arxiv.org/abs/2211.15661
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://arxiv.org/abs/2406.11779
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2403.19647
https://distill.pub/2020/circuits/zoom-in
https://distill.pub/2020/circuits/zoom-in
https://arxiv.org/abs/1606.05336
https://arxiv.org/abs/1606.05336

Neurons Are Not Just Binary Feature Detectors: An MLP Computing Numerical Integration

Zhong, Z., Liu, Z., Tegmark, M., and Andreas, J. The clock
and the pizza: Two stories in mechanistic explanation of
neural networks, 2023.

6

Neurons Are Not Just Binary Feature Detectors: An MLP Computing Numerical Integration

A. Derivation of the logit expression
A more precise equation of the model is

logit(x, y, z) =
∑

i ReLU(OV(x)i +OV(y)i + embed(y)i)
· (Wout)zi + residual terms (2)

A more precise version of the breakdown from section 2 is

F1(x, y) = OV(x) + OV(y) + Embed(y)
F2(x, y) =WinF1(x, y) + bin

logits(x, y) =Wout ReLU(F2(x, y)) + bout +WUF1(x, y)

where Win, Wout, WU , bin, bout, are parameters of the
model.

We start with

OV(x)i ≈ ai cos(kix) + bi sin(kix) = ai cos(kix+ ϕi)

Then

F1(x, y) = OV(x) + OV(y) + Embed(y)
≈ ai(cos(kix) + cos(kiy)) + bi(sin(kix) + sin(kiy))

+ Embed(y)
= ci(cos(kix+ ϕi) + cos(kiy + ϕi)) + Embed(y)

where we use the reverse direction of the cosine addition
formula

cos(kix+ ϕi) = cos(kix) cos(ϕi)− sin(kix) sin(ϕi)

We ignore the Embed term (which is the residual stream),
and use the trigonometric identity

cos(x) + cos(y) = 2 cos((x+ y)/2) cos((x− y)/2)

to get

F2(x, y) =WinF1(x, y) + bin

≈Winci(cos(kix+ ϕi) + cos(kiy + ϕi)) + bin

≈ di cos(ki(x− y)/2) cos(ki(x+ y)/2 + ϕi)

where di = 2(Winc)i.

Finally, for the logit expression, using

(Wout)zi ≈ ei cos(kiz + ψi)

we have

logits(x, y) =Wout ReLU(F2(x, y)) + bout +WUF1(x, y)

≈Wout ReLU(F2(x, y))

(again ignoring the residual stream)

Then

logits(x, y, z)

=
∑
i

ReLU((F2(x, y))i)(Wout)zi

≈
∑
i

ReLU(di cos(ki(x− y)/2)

cos(ki(x+ y)/2 + ϕi))ei cos(kiz + ψi))

=
∑
k

| cos(k(x− y)/2|∑
i

ri ReLU(cos(k(x+ y)/2 + ϕi)) cos(kz + ψi)

≈
∑
k

| cos(k(x− y)/2)|

{
∑
i

ri ReLU[cos(k(x+ y)/2 + ϕi)] cos(ψi)} cos(kz)

+ {
∑
i

ri ReLU[cos(k(x+ y)/2 + ϕi)] sin(ψi)} sin(kz)

where we sum over the ‘key frequencies’ k (in our example
k = 12, 18, 21, 22), ri = diei, and we use again the cosine
addition formula.

B. Analysis of the ‘identity’ component of
ReLU

Recall that we broke down ReLU into two parts,

ReLU(x) =
x

2
+

|x|
2

The integrals then split into∫ π

−π
cos(−2ϕ) 12cos(

k
2 + ϕ) dϕ = 2

3 cos(k)∫ π

−π
sin(−2ϕ) 12cos(

k
2 + ϕ) dϕ = 2

3 sin(k)∫ π

−π
cos(−2ϕ) 12 | cos(

k
2 + ϕ)|dϕ = 0∫ π

−π
sin(−2ϕ) 12 | cos(

k
2 + ϕ)|dϕ = 0

We see that the ‘identity’ part of the ReLU yields a zero
integral. So does this part of the model contribute to the log-
its? It turns out that the answer is yes. To resolve this issue,
we look at the discrepancy between the results suggested by
previous work: Zhong et al. (2023) claim that logits are of
the form

logit(x, y, z) ∝ |cos(k(x− y)/2)| cos(k(x+ y − z))

while Nanda et al. (2023) claim that logits are of the form

logit(x, y, z) ∝ cos(k(x+ y − z))

To check which is correct, we regress the logits against
the factors |cos(k(x− y)/2)| cos(k(x + y − z)), which

7

Neurons Are Not Just Binary Feature Detectors: An MLP Computing Numerical Integration

gives an R2 of 0.86, while if we regress them against just
cos(k(x + y − z)), we obtain an R2 of 0.98. So overall,
Nanda et al. (2023) give a more accurate expression, but
this seems to go against the analysis we did above, which
led to the expression in Zhong et al. (2023). (A similar
value is obtained if we just use the MLP output and drop
the residual streams.) However, if we only consider the
contribution to the logits from the absolute value compo-
nent of ReLU, the R2 values become 0.99 and 0.85 re-
spectively. Therefore, although the contribution from the
identity component of ReLU is small, it does make a dif-
ference towards reducing the logit dependence on x− y, in
particular |cos(k(x− y)/2)|. This is a good thing because
when cos(k(x−y)/2) is small, the logit difference between
the correct logit (x+ y) and other logits will also be small,
which will lead to a higher loss. The identity component
slightly counters this effect. Then

WoutOV(x)/2 +WoutOV(y)/2 +Woutembed(y)/2

Thus, we can store the matrices logit id1[:, x] =
WoutOV(x)/2 and logit id2[:, x] = Woutembed(x)/2,
then we have

F2(x, y)z = residual stream + absolute value terms
+ logit id1[z, x] + logit id1[z, y] + logit id2[z, y]

We carry out a 2D Fourier transform to find out the decom-
position of the logit id1 and logit id2 matrices (because
Wout and OV(x) are sparse in the (1D) Fourier basis, so
their product will naturally be sparse in the 2D Fourier basis).
We get logit id1[z, x] ≈ 2ℜ(

∑
k ake

i(kz−2kx)), where the
frequencies k here are the same as section 3. Hence, the
output from the identity component of ReLU is (ignoring
logit id2 for now, which comes from the residual stream
and is smaller):

∑
kDk(cos(kz−2kx)+cos(kz−2ky))+

Ek(sin(kz − 2kx) + sin(kz − 2ky)) =
∑

k cos(k(y −
x))(Dk cos(k(z − x− y)) + Ek sin(k(z − x− y))).

The imaginary component of the FT is very small, ck ≈ 0;
so the contribution is

∑
k bk cos(k(y−x)) cos(k(x+y−z)).

Why does this happen, and why does it help explain the
R2 values we got above? We first list the approximate
coefficients ak:

Frequency 12 18 21 22

abs coefs (Ck) 13.9 15.1 12.1 11.2
id coefs (Dk) -3.7 -3.9 -3.2 -3.3

Thus, the overall expression for the logits is

F2(x, y)z ≈
∑

k(Ck |cos(k(y − x)/2)|
+Dk cos(k(y − x))) cos(k(x+ y − z))

=
∑

k(2D
2
k |cos(k(y − x)/2)|2

+ Ck |cos(k(y − x)/2)|) cos(k(x+ y − z))

−Dk cos(k(x+ y − z))

using double angle formula. Since Dk < 0, the∑
k −Dk cos(k(x + y − z)) term gives some cushion

for the base performance of the model (since as we dis-
cussed, the cos(k(x + y − z)) term is why the model
gives the highest logit when z = x + y). Moreover, the
2D2

k| cos(k(y − x)/2)|2 term also further improves the
model since it is always non-negative. Hence, the con-
tribution of the identity term evens out parts of the model
and improves the logit difference when |cos(k(y − x)/2)| is
small (where the absolute value part doesn’t do well). Note
that the model would work on its own if we only use the
absolute value part, but since ReLU is composed of both the
absolute value and identity part and the coefficients combine
both parts in a way that improve model performance.

C. Further work
There are obvious problems with generalising this sort of
approach to neural network interpretation. Not only does it
depend on the specifics of this problem (how we can have a
specific desired formula for the logits), but also it is highly
labour intensive. Thus, in order for the approach to have
any practical use, we need to develop automated tools to
make these approximations and interpretations. For exam-
ple, we may want to use the first few terms of the Fourier
expansion (or other low-rank approximations) to approxi-
mate the action of various layers in a neural network, and
then combine those to get algebraic expressions for certain
neuron outputs of interest. Such algebraic expressions will
natural admit phenomena like the numerical integration we
described above. This sort of method may be particularly
fruitful on problems which Fourier transforms play a large
role, such as signal processing and solutions to partial dif-
ferential equations.

D. Future technical work
To complete the technical work laid out in the introduction,
we must accomplish two tasks which we discuss in this
appendix section: constructing a parameterisation of the
MLP which is checkable in less than O(p · dmlp) time, and
more generally constructing a parameterisation of the entire
‘pizza’ model that is checkable in time that is linear in the
number of parameters; and establishing a bound on the error
in the model’s logits that does not neglect any terms.

D.1. Linear parameterisation

Constructing a parameterisation of the model which is
checkable in less than O(p·dmlp) time is a relatively straight-
forward task, given the interpretation in the body of the
paper. We expect that the parameters are:

8

Neurons Are Not Just Binary Feature Detectors: An MLP Computing Numerical Integration

• A choice of nfreq frequencies ki.

• A splitting of the neurons into groups by frequency,
and an ordering of the neurons within each group.

• An assignment of widths ri to each neuron, and an
assignment of angles ϕi to each neuron.

• An assignment of orthogonal planes into which each
frequency is embedded by the embedding matrix, and
by the unembedding matrix.

• Rotations and scaling of the low-rank subset of the hid-
den model dimension for each of the O and V matrices.

D.2. Bounding the error of the MLP

To bound the error of our interpretation of the MLP precisely,
we’d need to include a bound on the primary frequency con-
tribution of the identity component (which integrates to 0
symbolically), and include bounds on the residual compo-
nents – OVE on x and y, the MLP bias, and the embed of y,
as inputs to ReLU; and UOVE on x and y and UE on y as
output logits.

We could decompose every matrix in our model as a sum
of the corresponding matrix from our parameterized model
and a noise term. Expanding out the resulting expression for
the logits (and expanding |x+ ε| as |x|+ (|x+ ε| − |x|)),
we will have an expression which is at top-level a sum of
our parameterized model result and a noise term which is
expressed recursively as the difference between the actual
model and the parameterized model. We can then ask two
questions:

1. What worst-case bounds can we prove on the error
terms at various complexities?

2. What are the empirical worst-case bounds on the rele-
vant error terms?

9

