
ODESolvers are also Wayfinders: Neural ODEs for
Multi-Agent Pathplanning

Dwip Dalal∗
Indian Institute of Technology, Gandhinagar

dwip.dalal@iitgn.ac.in

Progyan Das∗
Indian Institute of Technology, Gandhinagar

progyan.das@iitgn.ac.in

Anirban Dasgupta
Indian Institute of Technology, Gandhinagar

anirbandg@iitgn.ac.in

Abstract

Multi-agent path planning is a central challenge in areas such as robotics, au-
tonomous vehicles, and swarm intelligence. Traditional discrete methods often
struggle with real-time adaptability and computational efficiency, emphasizing
the need for continuous, optimizable solutions. This paper introduces a novel
approach that harnesses Neural Ordinary Differential Equations (Neural ODEs)
for multi-agent path planning in a continuous-time framework. By parameterizing
agent dynamics using neural networks within these ODEs, we enable end-to-end
trajectory optimization. The inherent dynamics of ODEs facilitate collision avoid-
ance. We demonstrate our method’s effectiveness across both 2D and 3D scenarios,
navigating multiple agents amidst obstacles, underscoring the potential of Neural
ODEs to transform path planning.

1 Introduction

Path-planning refers to the problem of finding a valid, low-cost curve connecting two points on an
environmental map. Multi-agent path-planning, therefore, refers to the case where multiple agents are
involved, and the paths are non-colliding. Multi-agent path planning is a well-established NP-hard
problem, and recent techniques have often resorted to deep learning. One of the major challenges
of multi-agent path planning is to avoid the collision of two agents - especially where there is no
possibility of communication between them.

We model the path-planning environment using ordinary differential equation ϕ represented by a
vector field F . Since each point r in is associated with a unique vector F(r), the intersection of field
lines would result in a contradiction. Hence, field lines never intersect. We exploit this property of
vector fields to ensure that points that travel based on ϕ never collide with each other. The Neural
ODE, represented by dx

dt = F(x) (where F(x) is a neural network), allows us to train the vector field
F . The ϕ(x,t), takes as argument the starting position(s) x0 and a time period t, and returns ϕ(x0, t),
the position(s) of x0 once it has flowed through ϕ for time t. We can then reduce the loss between
ϕ(x0, t) and the set of target destinations, y0.

Our framework is highly adaptable and capable of incorporating various objectives and constraints
without requiring a complete algorithmic redesign. Bridging the gap between the rich theoretical
underpinnings of differential equations and the practical needs of multi-agent systems opens new
avenues for research in robotics, optimization, and machine learning. To the best of our knowledge,

∗Equal Contribution

DLDE-III Workshop in the 37th Conference on Neural Information Processing Systems (NeurIPS 2023).

this is the first work that has addressed the challenge of path planning with Ordinary Differential
Equations.

2 Related Works

The landscape of Multi-Agent Path Planning (MAPP) has evolved significantly with the integration
of data-driven models, outperforming traditional algorithms like Dijkstra’s and A*. [7] presents a
well-structured optimization framework albeit with scalability limitations. On the other hand, the
work in [4] introduces Symplectic networks to solve high-dimensional optimal control problems
efficiently, especially notable in scenarios requiring energy conservation. Reinforcement learning,
as utilized in [1] and [3], demonstrated scalable and dynamic path planning solutions, with the
actor-critic architecture facilitating effective exploration and exploitation. The incorporation of LSTM
units for spatial encoding in MAPP, as presented in [9], allows for capturing temporal dependencies
and scalability across numerous agents and dimensions. The roadmap-based approach in [8] and the
large neighborhood search techniques in [2] highlight cooperative behaviors and significant speed
improvements respectively. Furthermore, the exploration of overlooked constraints in MAPP by
employing world-line concepts from Special Relativity in [5] unveils new possibilities in modeling
agents’ trajectories. Lastly, the ‘Flow-Planning’ approach utilizing Neural Ordinary Differential
Equations (NODEs) aims to bridge machine learning efficiency with optimization theory rigor,
inspired by recent advancements in NODEs as seen in [6] which proposes a learning-based modular
motion planning pipeline using NODEs for ensuring stability and safety during task execution.

3 Methodology

In this section, we describe the end-to-end methodology for training the pathfinding flow over a
particular environment, beginning with constructing the SDF for a given environment, establishing a
flow and registering start and target positions for each agent, and then training the Neural ODE to
reach the target position without entering forbidden regions of the map.

Problem Statement We address the problem of learning optimal paths in a multi-dimensional
space filled with obstacles and targets. Given an initial point A and a target point A′, the objective is
to find a trajectory that not only minimizes the distance between the end point of the trajectory and
A′, but also avoids obstacles and maximizes the curvature of the path.

We employ Neural ODEs to model the continuous-time dynamics of the system. A Neural ODE is an
ODE where the derivative function f is parameterized by a neural network. Formally, given an initial
point A, the trajectory τA (where we use τ to denote trajectory) is obtained by solving the following
ODE:

dτA
dt

= f(τA, t; θ) (1)

where θ represents the parameters of the neural network. The optimization objective consists of
multiple terms, each serving a specific purpose described below.

End Point Loss The end point loss lossA is computed as the Mean Squared Error (MSE) between
the last point of the trajectory τA[−1] (where τ denotes the trajectory) and the target point A′.

LMSE = MSE(α× τA[−1], α×A′) (2)

Obstacle Avoidance (SDF-based Loss) The SDF-based loss lossB ensures that the trajectory
avoids obstacles. For each point p in τA, we compute its Signed Distance Function (SDF) value. We
add a sharp sigmoid drop-off with a constant β to both heavily penalize trajectories that fall even
marginally inside the obstacle, and to ignore trajectories that fall even marginally outside.

LSDF = sigmoid(−β × SDF (p)) (3)

Curvature Regularization To encourage the trajectory to curve, we introduce the curvature κ at
each point in τA, computed as:

κ =
dx× d2y − dy × d2x

(dx2 + dy2)1.5
(4)

2

The curvature regularization is then the negative sum of the absolute curvature values:

Lκ = −
∑

|κ| (5)

The total multi-objective loss is given by:

L = LMSE + λLSDF + γLκ (6)

3.1 Fast Marching Method for fast SDF calculation

The Signed Distance Function (SDF) provides a way to represent the geometry of a binary image. It
assigns each pixel a value that corresponds to the shortest distance from that pixel to the boundary of
the object. Positive values are assigned to pixels inside the object, and negative values are assigned to
pixels outside the object.

1. For each pixel p = (x, y) inside the object (black pixel), find the minimum Euclidean
distance d(x, y) to a background pixel (white pixel). Set ϕ(x, y) = d(x, y).

2. For each pixel p = (x, y) outside the object (white pixel), find the minimum Euclidean
distance d(x, y) to an object pixel (black pixel). Set ϕ(x, y) = −d(x, y).

The time complexity of this method is O(N2) for an image with N pixels, which makes it computa-
tionally expensive for large images. We can alleviate this problem with a technique called the Fast
Marching Method (FMM), which is as follows –

1. Initialize SDF with large positive and negative values for object and background pixels,
respectively.

2. Start with an initial set of points (usually the boundary of the object) and assign them an
SDF value of zero. Add these points to a priority queue.

3. Use the priority queue to propagate the SDF values to the neighboring pixels. Update the
SDF values according to the Eikonal equation(

∂ϕ

∂x

)2

+

(
∂ϕ

∂y

)2

= 1

4. Continue the process until the priority queue is empty.

The time complexity of the Fast Marching Method is approximately O(N logN) for an image with N
pixels, making it more efficient than the brute-force method. We present here a sample environment
and its SDF.

3.2 Establishing a path-planning flow.

In our approach, we leverage Neural Ordinary Differential Equations (Neural ODEs) to generate
flows in n-dimensional spaces. A flow is formally defined as a continuous, time-parameterized
mapping from a state space to itself. Explicitly, a flow on a set X is a mapping, ϕ, such that,

ϕ : X × R → X

such that, for all x ∈ X and some s, t ∈ R, we have ϕ(x, 0) = x and ϕ(ϕ(x, t), s) = ϕ(x, t + s).
The second statement, essentially, would be the composition of two flows. A Neural ODE allows us
to parameterize and train over these flows, by modeling the dynamics of a point, or multiple points,
over the flow.

Given an initial point x0 in Rn, our Neural ODE model describes the evolution of this point through
the state space by solving the ordinary differential equation dx

dt = fθ(x, t). Here, fθ is a neural
network parameterized by θ, and t serves as the continuous time variable. This formulation inherently
ensures the smoothness and continuity of the generated flow. The neural network fθ is trained to
minimize the MSELoss between the end of the trajectories ϕ(X, t) of the agents, (X being the starting
positions of each agent) and the corresponding target destinations T .

3

However, that only ensures that the agents will move from one point to another – we also need to
constrain them to the non-forbidden regions of the environment. To make sure the agents don’t
flow over the forbidden regions of the environment, we sample points P from the trajectory of the
agents and set the loss function to Σn

i=1SDF (Pi), where SDF (kx) is the signed distance function
corresponding to the environment, where x is the coordinate of the agent and k is a sharpness constant,
that determines how sharply the distance function falls off after encountering an obstacle.

Therefore, the resultant loss function L is,

L = MSELoss(ϕ(X, t), T) + αΣn
i=1SDF (Pi),

where α is a constant that helps determine the right weights for the losses. In the case of coincident
target destinations, i.e., in the case where we want ϕ(x0, t) = ϕ(x1, t) in the solution, an approximate
answer can be achieved by randomly perturbing the ending points so they do not end up at the exactly
same location.

The optimization problem becomes somewhat more complex as the number of agents increases, but
it allows us to plan differentiable, non-grid-bound routes for agents from starting location to target
without any prior training on a dataset over any number of dimensions, given an environment whose
SDF can be reliably calculated.

Figure 1: SDF of 2D maze
primitive maze shape obstacle.
The bodies are confined in the
space.

Figure 2: Multi-body SDF
solving challenge. The bod-
ies have to go from the start
point to the end point without
moving out of the SDF.

Figure 3: Obstacle Avoidance
in 3D using Neural ODE.

4 Results

As we can see, our method designs non-intersecting paths from the starting points to the ending
points for each planning problem. We can extend the problem to the basic case of a circular obstacle.
The paths planned clearly avoid the obstacle, with non-intersecting paths. On generating a number of
random (starting point, ending point) tuples, we see that our method generates consistent
paths for each case.

We shift to the dataset of mazes and record the performance. Since our method is dataless, we can
reduce each pathfinding problem to an optimization problem. We will soon be quoting our results.

5 Conclusion

Multi-agent path planning stands as a significant challenge in various domains, from robotics to
autonomous vehicles. Traditional approaches, while having their merits, often grapple with issues
such as computational efficiency, optimality, and safety. This paper introduced , a groundbreaking
methodology that harnesses the power of Neural Ordinary Differential Equations (Neural ODEs)
for multi-agent path planning in a continuous-time framework. By modeling the path-planning
environment as a differentiable flow and employing a neural network to parameterize the dynamics,
this method brings forth the strengths of continuous-time modeling, including memory efficiency and
adaptability to irregular time steps.

4

In essence, the paradigm represents a significant step forward in the domain of multi-agent path
planning. By bridging the gap between differential equations and practical multi-agent systems,
this approach paves the way for novel research opportunities in robotics, optimization, and machine
learning. Future endeavors in this direction may explore further optimization techniques, integration
with more complex environments, and expanding the application domains of this approach.

References
[1] Huifeng Guan et al. “AB-Mapper: Attention and BicNet Based Multi-agent Path Finding for

Dynamic Crowded Environment”. In: arXiv preprint arXiv:2110.00760 (2021).
[2] Jiaoyang Li et al. “MAPF-LNS2: fast repairing for multi-agent path finding via large neigh-

borhood search”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36. 9.
2022, pp. 10256–10265.

[3] Zuxin Liu et al. “MAPPER: Multi-Agent Path Planning with Evolutionary Reinforcement
Learning in Mixed Dynamic Environments”. In: 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2020, pp. 11748–11754.

[4] Tingwei Meng et al. “SympOCnet: Solving Optimal Control Problems with Applications
to High-Dimensional Multiagent Path Planning Problems”. In: SIAM Journal on Scientific
Computing 44.6 (2022), B1341–B1368.

[5] Vismay Modi et al. “Multi-Agent Path Planning with Asymmetric Interactions In Tight Spaces”.
In: arXiv preprint arXiv:2204.00567 (2022).

[6] Farhad Nawaz. “Learning Safe and Stable Motion Plans with Neural Ordinary Differential
Equations”. In: Arxiv (). URL: https://ar5iv.org/abs/2308.00186.

[7] Takuma Okubo and Masaki Takahashi. “Simultaneous optimization of task allocation and
path planning using mixed-integer programming for time and capacity constrained multi-agent
pickup and delivery”. In: 2022 22nd International Conference on Control, Automation and
Systems (ICCAS). IEEE. 2022, pp. 1088–1093.

[8] Keisuke Okumura et al. “CTRMs: Learning to Construct Cooperative Timed Roadmaps for
Multi-agent Path Planning in Continuous Spaces”. In: Proceedings of the 21st International
Conference on Autonomous Agents and Multiagent Systems. International Foundation for
Autonomous Agents and Multiagent Systems. 2022, pp. 972–981.

[9] Marc Schlichting. “Long Short-Term Memory for Spatial Encoding in Multi-Agent Path Plan-
ning”. In: Journal of Guidance, Control, and Dynamics (2022).

5

https://ar5iv.org/abs/2308.00186

	Introduction
	Related Works
	Methodology
	Fast Marching Method for fast SDF calculation
	Establishing a path-planning flow.

	Results
	Conclusion

