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Abstract

We present adaptive gradient methods (both basic and accelerated) for solving
convex composite optimization problems in which the main part is approximately
smooth (a.k.a. (J, L)-smooth) and can be accessed only via a (potentially biased)
stochastic gradient oracle. This setting covers many interesting examples including
Holder smooth problems and various inexact computations of the stochastic gradi-
ent. Our methods use AdaGrad stepsizes and are adaptive in the sense that they do
not require knowing any problem-dependent constants except an estimate of the
diameter of the feasible set but nevertheless achieve the best possible convergence
rates as if they knew the corresponding constants. We demonstrate that AdaGrad
stepsizes work in a variety of situations by proving, in a unified manner, three
types of new results. First, we establish efficiency guarantees for our methods in
the classical setting where the oracle’s variance is uniformly bounded. We then
show that, under more refined assumptions on the variance, the same methods
without any modifications enjoy implicit variance reduction properties allowing us
to express their complexity estimates in terms of the variance only at the minimizer.
Finally, we show how to incorporate explicit SVRG-type variance reduction into
our methods and obtain even faster algorithms. In all three cases, we present both
basic and accelerated algorithms achieving state-of-the-art complexity bounds. As
a direct corollary of our results, we obtain universal stochastic gradient methods
for Holder smooth problems which can be used in all situations.

1 Introduction

Motivation. Gradient methods are among the most popular and efficient optimization algorithms
for solving machine learning problems. To achieve the best convergence speed for these algorithms,
their stepsizes needs to be chosen properly. While there exist various theoretical recommendations,
dictated by the convergence analysis, on how to select stepsizes based on various problem-dependent
parameters, they are usually impractical because the corresponding constants may be unknown or their
worst-case estimates might be too pessimistic. Furthermore, every applied problem usually belongs
to multiple problem classes at the same time, and it is not always evident in advance which of them
better suits the concrete problem instance one works with. For classical optimization algorithms, this
problem is typically resolved by using a line search. This is a simple yet powerful mechanism which
automatically chooses the best stepsize by checking at each iteration a certain condition involving the
objective value, its gradient, etc.

However, the line-search approach is usually unsuitable for problems of stochastic optimization,
where gradients are observed with random noise (unless some extra assumptions are made, see [57]).
For these problems, it is common instead to apply so-called adaptive methods which set up their
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stepsizes by simply accumulating on-the-fly certain information about observed stochastic gradients.
The first such an algorithm, AdaGrad [|17} 39|, was obtained from theoretical considerations but
quickly inspired several other heuristic methods like RMSProp [56] and Adam [32]] that are now at
the forefront of training machine learning models.

Excellent practical performance of adaptive methods on various applied problems naturally sparked a
lot of theoretical interest in these algorithms. An important observation was done by Levy, Yurtsever,
and Cevher [34]] who showed that AdaGrad possesses a certain universality property, in the sense
that it works for several problem classes simultaneously. Specifically, they showed that AdaGrad
converges both for nonsmooth problems with bounded gradient and also for smooth problems with
Lipschitz gradient, without needing to know neither the corresponding Lipschitz constants, nor
the oracle’s variance but enjoying the rates which are characteristic for algorithms which have the
knowledge of these constants. They also presented an accelerated version of AdaGrad with similar
properties. An independent version of the accelerated AdaGrad including diagonal scaling was
proposed by Deng, Cheng, and Lan [12]. Further improvements and generalization of these ideas
were considered in [[18| 28, 30].

Nonsmooth and smooth problems are the extremes of the more general Holder class of problems.
The fact that AdaGrad methods simultaneously work for these two extreme cases does not seem to be
a coincidence and suggests that these algorithms should work more generally for any problem with
intermediate level of smoothness. Some further confirmations to this were recently provided in [48]]
although in a rather restricted setting of deterministic problems and only for the basic AdaGrad
method. The stochastic case and acceleration were constituting an open problem which was recently
resolved in [49)] for a slightly modified AdaGrad stepsize (see (@)

All the previously discussed results were proved only for the classical stochastic optimization setting
where the variance of stochastic gradients is assumed to be uniformly bounded. In a recent work,
Attia and Koren [2] showed that the basic AdaGrad method for smooth problems works under the
more general assumption when the variance is bounded by a constant plus a multiple of the squared
gradient norm. On a related note, it was also shown recently that AdaGrad stepsizes can be used inside
gradient methods with SVRG-type variance-reduction. The first such an algorithm was proposed
in [16]. The accelerated SVRG method enjoying optimal worst-case oracle complexity for smooth
finite-sum optimization problems was later presented in [36].

Contributions. In this work, we further extend the results mentioned above by demonstrating that
AdaGrad stepsizes are even more universal than was shown previously in the literature. Specifically,
we consider the composite optimization problem where the main part is approximately smooth
(a.k.a. (4, L)-smooth) and can be accessed only via a (potentially biased) stochastic gradient oracle.
This setting is more general than typically considered in the literature on adaptive methods and
covers many interesting examples, including smooth, nonsmooth and, more generally, Holder smooth
problems, problems in which the objective function is given itself as another optimization problem
whose solution can be computed only approximately, etc.

Our contributions can be summarized as follows:

1. We start, in Section [3] with identifying the key property of AdaGrad stepsizes, which allows us to
apply these stepsizes, in a unified manner, in a variety of situations we consider later. We present
our two mains algorithms, UniSgd and UniFastSgd which are the classical stochastic gradient
method (SGD) and its accelerated version, respectively, equipped with AdaGrad stepsizes.

2. We then establish, in Section[d] efficiency guarantees for these methods in the classical setting
where the oracle’s variance is assumed to be uniformly bounded.

3. In Section[5} we complement these results by showing that, under additional assumptions that
the variance is itself approximately smooth w.r.t. the objective function, the same UniSgd and
UniFastSgd without any modifications enjoy implicit variance reduction properties allowing us
to express their complexity estimates in terms of the variance only at the minimizer.

4. Under the additional assumption that one can periodically compute the full (inexact) gradient of
the objective function, we show, in Section[6} how to incorporate explicit SVRG-type variance
reduction into our methods, obtaining new UniSvrg and UniFastSvrg algorithms which enjoy
even faster convergence rates by completely eliminating the variance.

Our results are summarized in Table[I] (in the BigO-notation). In all the situations, we present both
basic and accelerated algorithms whose only essential parameter is an estimate D of the diameter



Table 1: Summary of main results for solving problem (I)) with our methods. “Convergence rate” is expressed in
terms of the expected function residual at iteration k (or ¢, depending on the method). “SO complexity” denotes
the cumulative stochastic-oracle complexity of the method since its start and up to iteration & (or t), which is
defined as the number of queries to the stochastic oracle g; for SVRG methods, we assume that querying the
(inexact) full-gradient oracle g is n times more expensive than g, and define the SO complexity as N + nNg,
where N and Ny are the number of queries to g and g, respectively. The second and third columns should be
understood in terms of the BigO-notation which we omit for brevity.
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of the feasible set; the methods automatically adapt to all other problem-dependent constants. In
a number of special cases, our algorithms achieve known state-of-the-art complexity bounds, but
not restricted to those special cases. In Section [7] we illustrate the significance of our results by
demonstrating that complexities for our methods on stochastic optimization problems with Holder
smooth components can be obtained as simple corollaries from our main results.

2 Preliminaries

Notation. We work in the space R? equipped with the standard inner product (-, -) and a certain
Euclidean norm: ||z|| := (Bx, z)'/2, where B is a fixed positive definite matrix. The dual norm is
defined in the standard way: ||s||, := max,=;(s, ) = (s, B~!s)/2.

For a convex function 1/: R? — R U {400}, its (effective) domain is the following set: dom ) :=
{x € R? : 9)(z) < +oo}. By 9i(x), we denote the subdifferential of ¢ at a point z € dom 1; the
specific subgradients are typically denoted by V().

A convex function f: RY — R is called (v, H)-Hélder smooth for some v € [0,1] and H > 0 iff

IVf(x) = Vi)« < H|lz — y||" forall 2,y € R? and all Vf(z) € 0f(z), Vf(y) € 0f(y).
Apart from the special case of v = 0, such a function f is differentiable at every point, i.e., O f () is
a singleton. A (1, L)-Holder smooth function is usually called L-smooth.

For a convex function 1: R? — RU{+o00}, point z € R%, vector g € R?, and coefficient M > 0, by
Proxy(z, g, M) = argmin, ¢ 4o, {(9,¥) + ¥ (y) + % ly — x||?}, we denote the proximal mapping.
When M = 0, we allow the solution to be chosen arbitrarily.

For a convex function f: R? — R, points 2,y € R% and V f(x) € 0f(z), we denote the Bregman
distance by vaf(x) (z,y) = fly) — f(x) = (Vf(z),y — x) (> 0). When the specific subgradient
V f(z) is clear from the context, we use the simplified notation 5 (x, ).

The positive part of ¢ € Ris [t]; = max{¢,0}. For 7 > 0, we also use log, 7 := max{1,log7}.
Problem Formulation. In this paper, we consider the composite optimization problem

F*:= min [F(z):= f(z) + ¢(z)], e))

redom 1

where f: R? — R is a convex function, and ¢»: RY — R U {+0c} is a proper closed convex function
which is assumed to be sufficiently simple in the sense that the proximal mapping Prox,, can be
easily computed. We assume that this problem has a solution which we denote by z*.

To quantify the smoothness level of the objective function, we use the following assumption:



Algorithm 1 (Zn, zn, My) & Unngdg’w(mo, My, N; D)

Input: Oracle g, comp. part 1, point 2o € dom 1), coefficient My, iteration limit N, diameter D.

1: go = ?](mo)

2: fork=0,...,N —1do

3 Trt1 = Proxy (Tr, gk, Mk), gr+1 = G(@r41)-

4: Mpiy1 = My (My, D*, 21, Tht1, Gk, Grt1) beg, 2 \/M,erﬁHng — gxll2.
5

_ - N
: return (Zn,xn, M), where Ty = % >, .

Assumption 1. The function f in problem is approximately smooth: there exist constants
Ly, 6p > 0and f: R? = R, g: RY — R? such that, for any z,y € R?, By ra(®y) = fly) —

f(x) = (g(z),y — x) satisfies the following inequality: 0 < B; 7 -(,y) < %Hx —y||? + 5.

Assumption [1| is well-known in the literature under the name (6, L)-oracle and was originally
introduced in [15]]. It covers many interesting examples. For instance, if f is L-smooth, then
Assumptionis satisfied with f = f,g = Vf,d; = 0and Ly = L. More generally, if the function f
is (v, Hy(v))-Holder smooth, then Assumptionis satisfied with f = f, g = V f (arbitrary selection
of subgradients), any ; > 0 and Ly = [2(11;7;’)%]% [Hf(z/)}l%v (see Theorem . If f can be
uniformly approximated by an L-smooth function ¢, i.e., ¢(z) < f(z) < ¢(x)+4, then Assumption
is satisfied with f = ¢, g = V¢ and 0 ¢ = 0. If f represents another auxiliary optimization problem
with a strongly concave objective, e.g., f(z) = max,, ¥(x,u), whose solution #(x) can only be found
with accuracy 9§, then f satisfies Assumptionwith f(z) = U(x,u(x)), g(z) = V,¥(z,u(x)) and
0 = 4. For more details and other interesting examples, we refer the reader to [[15]].

In what follows, we assume that we have access to an unbiased stochastic oracle g for g. Formally,
this is a pair § = (g, &) consisting of a random variable ¢ and a mapping g: R? x Im¢ — RY
(with Im £ being the image of £). When queried at a point x, the oracle automatically generates an
independent copy & of its randomness and then returns g, = g(x, £) (notation: g, = g(z)). We call
g and ¢ the function component and the random variable component of g, respectively. At this point,
we only assume that our stochastic oracle g is un unbiased estimator of g, and later make various
assumptions on its variance.

Another important assumption on problem (TJ), that we need in our analysis, is the boundedness of
the feasible set dom ).

Assumption 2. There exists D > 0 such that ||x — y|| < D for any x,y € dom .

Assumption [2| is rather standard in the literature on adaptive methods for stochastic convex op-
timization (see [[16} |18} 30, |34, 36, 49]) and can always be ensured with D = 2R, whenever
one has the knowledge of an upper bound Ry on the distance from the initial point x¢ to the so-
lution z*. To that end, it suffices to rewrite the problem (I)) in the following equivalent form:
Milyedomyp [f(2) + ¥p(x)], where ¢p is the sum of ¢ and the indicator function of the ball
By = {z € R?: ||z — x0]| < Ro}. Note that this transformation keeps the function v reasonably
simple as its proximal mapping can be computed via that of ¢ by solving a certain one-dimensional
nonlinear equation, which can be done very efficiently by Newton’s method (at no extra queries to the
stochastic oracle); in some special cases, the corresponding nonlinear equation can even be solved
analytically, e.g., when 1) = 0, the proximal mapping of ¢ is simply the projection on By.

Throughout this paper, we refer to D from Assumption [2| as the diameter of the feasible set, and
assume that its value is known to us. This will be the only essential parameter in our methods.

3 Main Algorithms and Stepsize Update Rules

We now present our two main algorithms for solving problem (I): UniSgd (Algorithm [I)), and
its accelerated version, UniFastSgd (Algorithm [2). Except the specific choice of the stepsize
coefficients My, both algorithms are rather standard: the first one is the classical SGD method, and
the second one is the classical accelerated gradient method for stochastic optimization [33]], also
known as the Method of Similar Triangles (see, e.g., Section 6.1.3 in [46]).

Both methods are expressed in terms of a certain abstract stepsize update rule M () defined as
follows. Given the current stepsize coefficient M > 0, constant {2 > 0 (the scaled squared diameter),



Algorithm 2 UniFastSgd; , (wo; D)

Input: Stochastic oracle g, composite part 1), point g € dom v, diameter D.
1: ’Uo—.’]Zo,Mo AOZO
2: fork—071,. .do
3: art1 = 3(k+1), Apgy1 = Ak + apq1.
_ A
Uk = Z Tk + g vk gy = G(yk)-

4
M,

5 Vk+1 = PI‘OX¢ (vkv gyk ’ akil )

6

Tpt1 = k+ A Vk+1, Jzpiq = > G(Thg1)-

Ak+1
. k+1 Ak+1 ak+1 a1
7 Mep= Ak+1M+(a%+1 My, 52 D SUks Tt 1, Gy s Gosr) Dot f\/MQ S N9k — 9w, |12

current point z € dom v with the stochastic gradient g,, = g(x), next iterate T, = x4 (g,,) € dom1)
(which is the result of the deterministic function applied to g,.), and the corresponding stochastic

gradient g, = §(74 ), the update rule computes M = M, (M,Q,x,2, Gy, §. ) (deterministic
function of its arguments) such that A/, > M and the following inequality holds for any M > ¢, L Iz

EAM,) + (My — M)Q + By 7 (54, )]

a E[Vary(Zy) + Varg(z)] + c305 + ca E{[min{]\?ﬁ, M} — M) Q},

L — @
B M—CgLf

where A(M) = By 5(2,84) + (G(x) — o, T — ) — 225 | T4 —2||% e1, €2, €3, ¢4 > O are some
absolute constants, and Varg(z) = E¢[||g(z,£) — g(z)||?] is the variance of §. The expectations
in (2) are taken w.r.t. the randomness (&, £ ) coming from g, = g(z,&), g.,. = 9(Z1,&4).

The main example is the following AdaGrad rule:

- A R
M+:\/M2+Q”gx+_gx”2‘ 3)

5
29

recently suggested in [49] is M+ found from the equation

For this rule, we have ¢c; = 2, ¢y =4, ¢c3 = 6, ¢4 = 2 (see Lemmaz Another interesting example

—~ L M,
(My = M)Q = |G, = G- B4 —2) = |74 — 2l )
This equation admits a unique solution which can be easily written down in closed form (see
Lemma E.1 in [49]]). For this rule, we have ¢; = 1, co = 2, ¢c3 = 6, ¢4 = 2 (see Lemma[2]).

Inequality (2)) is the only property we need from the stepsize update rule to establish all forthcoming
results. This inequality is exactly what is typically used inside the convergence proofs for stochastic

gradient methods with predefined stepsizes Mj, = = M (in which case M = M+ = M), where
M depends on problem-dependent constants. The key property of AdaGrad stepsizes (either (3)
or {@)) is that they ensure the same inequality but now M is the virtual stepsize existing only

in the theoretical analysis. The price for this is the extra error term [min{M+, M} — M), Q
appearing in the right-hand side of (2)). The crucial property of this error term 1s that it is telescopic,
Zf:o[mln{Merlv M} — M;]+Q = [min{ M1, M} — M)+ (see Lemma and therefore its
total cumulative impact is always bounded by the controllable constant A/€). Although a number of
other works on theoretical analysis of AdaGrad methods for smooth optimization use some similar
ideas about the virtual stepsize (e.g., [30L|34}[36]), this is the first time one has abstracted away all the
technical details and identified the specific inequality (2)) responsible for the universality of AdaGrad.

4 Uniformly Bounded Variance

In this section, we assume that the variance of our stochastic oracle is uniformly bounded.

Assumption 3. For the stochastic oracle §, we have o>

Varg(z) = Ee[[lg(x,€) — g(@)II]-

= SUP,cdomy Varg(x) < 400, where



Under this assumption, we can establish the following efficiency estimates for our UniSgd and
UniFastSgd methods (the proofs are deferred to Appendix [C).

Theorem 4. Ler Algorithm[I\with My = 0 be applied to problem (1)) under Assumptions[IH3] Then,
for the point T y generated by the algorithm, we have

LyD? /2
E[F(zyn)] — F* 626% + 20D cji/,&l + c305.

Theorem 5. Let Algorithm[2|be applied to problem (1)) under Assumptions[IH3] Then, for any k > 1,

4C2C4LfD2 26104 C3

EF - < —==J1_ 140D —(k+2)d;.
We see that, in contrast to UniSgd, the accelerated algorithm UniFastSgd is not robust to the
oracle’s errors: it accumulates them with time at the rate of O(kd). This is not surprising since the
same phenomenon also occurs in the classical accelerated gradient method, even when the oracle is
deterministic and the algorithm has the knowledge about all constants (see [[15]]).

IN

The complexity results from Theorems 4] and[5are similar to those from [[13]. However, it is important
that our methods are adaptive and do not require knowing the constants L ¢ and o.

In the specific case when d; = 0, we recover the same convergence rates as in [30, [34], although our
methods work for the more general composite optimization problem and, in contrast to [34]], do not
require that V f (z*) = 0.

S Implicit Variance Reduction

The assumption of uniformly bounded variance may not hold for some problems, or the corresponding
constant o2 might be quite large, which is why there has recently been a growing interest in various
alternative variance bound assumptions [5L22}124, 129,142, 54 59]. One interesting option is expressing
complex1ty bounds via the variance at the minimizer, 02 := Varg(x*), assuming that the stochastic
oracle g satisfies some extra smoothness conditions. Let us show that, for our Algorithms|[T]and[2]
we can also establish such bounds, moreover, this can be done without any modifications to the
algorithms.

In this section, we study problem (T)) under Assumptions [T] and 2] and also under the following
additional smoothness assumption on the variance:

Assumption 6. There exist 05, Lz > 0 such that Varg(x,y) < 2L3[B; 7 ;(,y) + 05| for any
@,y € RY, where Varg(z,y) = E¢[[[[g(x,€) — 9(y,€)] — [g (x) - g2

Note that Varg(z,y) is the usual variance of the estimator g(x,&) — g(y, &) which uses the same
randomness ¢ for both arguments. Hence, Varz(z,y) < E[|g(z,£) — g(y,£)||?] for any z,y.
Furthermore, if g is the mini-batch version of g of size b (i.e., the average of b i.i.d. samples of g(x)
at any point x), then Varg, (z,y) = ¢ Varg(z, y) for any z,y.

For instance, if f(z) = E¢[fc(x)], where each function f¢ is convex and (¢, L¢)-approximately
smooth with components (f¢, ge ), then, the stochastic gradient oracle g, defined by g(z, &) = ge(z)
satisfies Assumption@with f(z) = E¢[fe(2)], g(x) = E¢[ge(w)], and 65 = ﬁ]Eg[Lgég] (<
E¢[0¢]), Lj = Liax, where Loy = supg L¢ (see Lemma . Furthermore, if g is the mini-batch
version of g of size b, then g, satisfies Assumption@with the same &5, = 05 but Ly, = 3 L5 = § Liax
which can be much smaller than L,,,x when b is Jarge enough.

Under the new assumption on the variance, UniSgd enjoys the following convergence rate (see
Appendix [D.T]for the proof).

Theorem 7 Let Algorithm[[|with My = 0 be applied to problem (1)) under Assumptions|[l} 2] and|6]
and let o2 = Varg(x*). Then, for the point T produced by the method, we have

Ly +12c,L;)D?
E[F(zy)] — F* < Sl +N c1lg) +20*D,/6‘i704 +esdy + 255

Comparing the above result with Theorem[d] we see that we have essentially replaced the uniform
bound o with the more refined one o, at the cost of replacing Ly with Ly + L and 6 with 67 + d;.



Algorithm 3 UniSvrg (z0; D)

Input: Oracles g, g, composite part ¢, point 2o € dom 1), diameter D.

1: :fo = CEo,MO =0.

2: fort =0,1,...do R

3: (Zeg1, Teq1, Mig1) =2 Unngd@t‘w(gvt7 M, 2t+1, D) with G = SvrgOracg,g(it).

9.9,¢

This corresponds to classical results on the usual SGD for which we know all problem dependent-
constants. However, our method is universal and works automatically under both assumptions from
the previous section and the current one, and therefore enjoys the best among the rates given by
Theorems A and

For the accelerated algorithm, we have the following result (whose proof is located in Appendix [D.2).

Theorem 8. Let Algorithm [2] be applied to problem (1) under Assumptions [I} 2] and [6] and let
02 := Varz(x*). Then, for any k > 1, we have

40204LfD2 240104L§D2 2c1c4  c3 4
E[F —F* < 40.D —(k+2)6 —05.
[P ()] S TR D T kel TPV TR + 3 (b +2)07+ 30

Comparing our previous complexity bound for UniFastSgd under the assumption on uniformly
bounded variance (Theorem [3)) with the bound from Theorem [§] we see that, instead of simply
replacing o with o, Ly with Ly + L; and 6 with §¢ + &5, which was the case for the basic method,
the situation is now not that simple. Specifically, the L and Lj; terms now converge at different
rates: O(k%) and O(%) respectively. While this may seem strange at first, this behavior is actually
unavoidable, at least in the case when 6y = d; = 0 (see, e.g., Section E in [59])). For the case when
0y = 65 = 0, the complexity result from Theorem@is similar to the results for the Accelerated SGD
algorithm from [59]]. However, the latter paper studies a specific setting where f(z) = E[f¢(z)],
where each component f¢ is Lyax-smooth and then assumes that f is also Ly ax-smooth, instead of
working with the constant L which can be much smaller than L,,,«. A similar separation of the
constants L ¢ and Lz, which we do, was recently considered in [24]], where the authors obtained some
similar rates to our Theorem@ However, it is important that, unlike the algorithms considered in [24}
59|, our UniFastSgd is universal and does not require knowing any problem-dependent constants
except D. Furthermore, our results are more general because we allow the oracle to be inexact.

6 Explicit Variance Reduction with SVRG

Let us now show that we can also incorporate explicit SVRG-type variance reduction into our methods.
In this section, we consider problem (T) under Assumptions [T} 2Jand[6} All the proofs are deferred to

Appendix [E]

In addition to the stochastic oracle g, we now assume that we can also compute the (approximate)
full-gradient oracle g. This allows us to define the following auxiliary SVRG oracle induced by g
with center & € R (notation G = SvrgOrac; ;(Z)) as the oracle with the same random variable
component £ as g and the function component given by G(z, &) = g(z,€) — g(%, &) + ().

Our UniSvrg method is presented in Algorithm[3] This is the classical epoch-based SVRG algorithm
which can be seen as the adaptive version of the SVRG++ method from [1f]. A similar scheme was
suggested in [[16]], however, instead of accumulating gradient differences as in (3), their method
accumulates gradients and therefore does not work without the additional assumption of V f(z*) = 0
(which may not hold for constrained optimization).

Let us now present the complexity guarantees. To do so, we first need to introduce, one more
assumption we need in our analysis.

Assumption 9. The variance of g satisfies Varg(z,y) < 4L; [,vaf(x) (z,y) +205] for any z,y € R?

and any V f(z) € Of (x).

Assumption [J] is very similar to Assumption [6 The only difference between them is that the
former contains the standard Bregman distance in the right-hand side, while the latter contains
its approximation S 7 g(x, y) involving the approximate function value f(x) and the approximate
gradient g(x). Nevertheless, both assumptions are actually satisfied for the main examples we

discussed after introducing Assumption [6] (see Lemma[I6).



Algorithm 4 UniFastSvrg xo, N; D)

g
Input: Oracles g, g, composite part 1, point o € dom 1, epoch length N, diameter D.
1: 2o = PI‘OX¢($0,§($0), 0), vo = x0, Mo =0, Ap = %
2: fort =0,1,...do
3: a1 = VA, Arvr = Ar +air.
4. (i’t+1, Vt+1, Mt+1) = UniTI‘iSVI‘ngOChgyg’w (i‘t, Vt, Mt, At7 At41, N; D)

Algorithm 5 (2.4, v, My) = UniTriSvrgEpoch; . (%, vo, Mo, 4, a, N; D)

Input: Oracles g, g, comp. part @, points &, vo, coefficients Mo, A, a, epoch length N, diameter D.

1: Ay =A+a,z0 = ﬁ‘% + Aa+ vo, G = SvrgOracl@’g(oE), Gz & é(:cg)

2: fork=0,...,N —1do
My,
3 Vkt1 = Proxy (vk, Gz, =2)
A = ~ A
4: Tht1 = Ix-i- ﬁvkﬂ, Guppy = G(Tr41).
2 A 2 2 22
5 M1 = XiMﬂL(T;MkMZ?D ,mk,xk+17sz,ka+l) l>e.g.,gl \/M,f—&-ﬁHG%Jrl - Gqp |12
. = = . 1 N
6: return (Tn,vn, Mn), where Ty = % > _1_; Tk.

Theorem 10. Let UniSvrg (as defined by Algorithm[3) be applied to problem (I)) under Assumptions|]]
@and@] Then, for any t > 1 and ¢3 = max{cs, 1}, we have

~ * [(6264 + 1)L + 486164LA]D2
E[F(&,)] - F* < i :

To construct Ty, the algorithm needs to make O(2) queries to § and O(t) queries to g.

8

We now present an accelerated version of UniSvrg, see Algorithm E} As UniSvrg, this method
is also epoch-based, and its epoch is very similar to UniFastSgd (Algorithm {)) in the sense that
it also iterates similar-triangle steps. However, the triangles in UniTriSvrgEpoch are of the form
(Z,vg, Uk+1), €., they always share the common vertex Z, in contrast to the triangles (x, Vi, Vg+1)
in UniFastSgd (in UniTriSvrgEpoch, the role of the average points yy, is played by xx). We note
that our UniFastSvrg is essentially the primal version of the VRADA method from [53]], but equipped
with AdaGrad stepsizes. Alternative accelerated SVRG schemes with AdaGrad stepsizes (3) were
recently proposed in [[36]; however, they seem to be much more complicated.

The special choice of the initial reference point & at Line [I]is rather standard and motivated by the
desire to keep the initial function residual appropriately bounded: F'(Zg) — F™* < %L +D? + 6;; the
simplest way to achieve this is to make the full gradient step from any feasible point (see Lemma [34).
Theorem 11. Let UniFastSvrg (Algorithm|)) be applied to problem (1)) under Assumptions
and|6] and let N > 9. Then, for any t > to := [log,logs N1 — 1 (> 0), it holds that

. 9[(cacs + 2)L + 6¢1c4 L] D?
]E F o F* < 2 J g
[F(#0)] = N(t —to +1)2

5
+ (st +1)05 + 5105,

To construct Ty, the algorithm needs to make O(Nt) queries to g and O(t) queries to g. Assuming
that the complexity of querying g is n times bigger than that of querying g and choosing N = ©(n),
we get the total stochastic-oracle complexity of O(nt).

Note that Theorem [T1] unlike Theorem[I0} does not require the extra Assumption[9] This suggests
that Assumption [9] might be somewhat artificial and could potentially be removed from Theorem [I0]
as well. However, we do not know how to do it, even in the simplest case when §; = d5 = 0 and the
algorithm has the knowledge of the constants Ly and L; from Assumptions [I{and @

7 Application to Holder Smooth Problems

To illustrate how powerful our results are, let us quickly consider the specific example of solving the
stochastic optimization problem with Holder smooth components.

Example 12. Suppose that the function f in problem (I)) is the expectation of other functions,
f(z) = E¢[fe(x)], where each function f¢ is convex and (v, He(v))-Holder smooth. Consider the



Table 2: Corollaries of our results for the case when problem (T)) has Holder smooth components, as defined
in Example[T2] “SO complexity” is the stochastic-oracle complexity for reaching accuracy e in terms of the
expected function residual, defined as in Tablebut withg = gy, g = Vf,n = np.

Method SO complexity Reference
UniSgd (Alg. (Hfff")) ™ p? 4 1 min{”iigz, (M)%DZ + "36752} COrS.
UniFastSgd (Alg‘ (w) H% + % Inin{ %D—z, (M) H% D? + %D—Q} Cors.
UniSvrg (Alg‘ [Nu(e) = (Hff(y))1+LVD2 + %(H“‘%’M)H%Dz] + ny logy Ny (e€) Cor.
UniFastSvrg (AlgAH) [M] 5 + [%] 5 + nyp loglogng CorA

standard mini-batch stochastic gradient oracle gy, of size b, defined by gy (z,{pp)) = 3 Z?Zl V fe, (),

where £ = ({1, - - -, &) with bi.i.d. copies of §, and V f¢(z) € Of¢(x) is an arbitrary selection of
subgradients for each {. We define H;(v) as the Holder constant for the function f and Hy,ax(v) =
sup, He¢(v) as the worst among Holder constants for each f¢. Note that we always have H(v) <
E¢[He(v)] but Hy(v) can, in principle, be much smaller than the right-hand side. Also, define
o = Supxedomwvarfll (Z‘) = SUPzedom ¢ Ef“lvfﬁ(x) - Vf($)||i] and Uf = Varg, (x*) =
Ee[||V fe(x*) — V f(2*)]|?]. We assume that the computation of g can be parallelized and the
computation of V f is n;, times more expensive than that of gj.

To solve the above problem, we can apply any of the methods we presented before. The resulting
oracle complexities (in terms of the BigO-notation) are summarized in Table[2} the precise statements
the corresponding results and their proofs are deferred to Appendix [F|

Note that our problem is characterized by a large number of parameters, v, H (), Hymax(v), 0, 0.
For each combination of these parameters, we get a certain complexity guarantee for each of our
methods, and it is impossible to say in advance which combination results in the smaller complexity
bound. However, it is not important for our methods since none of them needs to know any of these
constants to ensure the corresponding bound. This means that our algorithms are universal: they
automatically figure out the best problem class for a specific problem given to them.

8 Experiments

Let us illustrate the performance of our methods in preliminary numerical experimentsﬂ on solving

1 n
* = i = — 7 - bi a 9
/ HgﬁlgnR{f(x) n Zizl[w"@ 1t} ©)
where a;,b; € R%, g € [1,2] and R > 0.

This test problem covers several interesting applications. Indeed, if ¢ = 2, we get the classical Least
squares problem. If ¢ = 1, this is the well-known Support-Vector Machines (SVM) problem. In both
cases, the ball-constraint ||z| < R acts as a regularizer, and problem () is, in fact, equivalent to
mingcga[f(z) + 4| 2|[?] for a certain p > 0 (this follows, e.g., from the KKT optimality conditions)
such that p decreases when R increases.

Another interesting application of (3), which we consider in this section, is the polyhedron feasibility
problem: find z* € R?, ||x*|| < R, inside the polyhedron P = {z : (a;,z) < b;, i = 1,...,n}.
Such a point exists iff f* = 0. Note that (3) is a problem with Holder smooth components of degree
v = ¢ — 1. By varying ¢ in (5), we can therefore check the adaptivity of different methods to the
unknown to them Holder characteristics of the objective function.

The data for our problem is generated randomly. First, we generate =* uniformly from the sphere of
radius 0.95 R centered at the origin. Then, we generate i.i.d. vectors a; with components uniformly
distributed on [—1, 1]. We then make sure that (a,,, 2*) < 0 by inverting the sign of a,, if necessary.
Next, we generate positive reals s; uniformly in [0, —0.1cpin], Where ¢pin = min,{a;,z*) < 0,
and set b; = (a;,z*) + s;. By construction, z* is a solution of our problem with f* = 0, and the
origin g = 0 lies outside the polyhedron since there exists j (corresponding to cniy) such that
bj = cmin + 55 < 0.9¢cmin < 0.

’The corresponding source code is available at https://github.com/mlolab/universal-adagrad-experiments|


https://github.com/mlolab/universal-adagrad-experiments
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Figure 1: Comparison of different methods on the polyhedron feasibility problem (3).
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Figure 2: Impact of mini-batch size on performance of our methods.

We compare UniSvrg (Algorithm [3) against AdaSVRG [[16] (with parameters K’ = 3 andn = D =
2R). We next compare UniFastSvrg (Algorithm [4) against AdaVRAE and AdaVRAG [36]. We
also compare it with the FastSvrg method with constant stepsize, which is the primal version of the
VRADA method from [53]; the stepsize is selected by doing a grid search over {107 : j = —3,...,4}
and choosing the best value in the sense that the algorithm is neither too slow nor has a large error.
We report UniSgd (Algorithm [T)) and UniFastSgd (Algorithm [2) together with these methods. For
UniFastSvrg, contrary to the theoretical recommendation of choosing Zg as the result of the full
gradient step, we found it slightly more useful to simply set £y = x¢. For all our methods, we use the
AdaGrad stepsize (3)); the other stepsize (@) works very similarly (see Appendix [H.2]for a detailed
comparison). For all methods, we use the standard mini-batch stochastic oracle of size b = 256.

The results are shown in Fig. [1} where we fix n = 104, d = 103, R = 106 and consider different
values of ¢ € {1,1.3,1.6,2}. We plot the total number of stochastic oracle calls against the function
residual. We treat one mini-batch oracle computation as one stochastic oracle call. If we compute the
full gradient, we count this as n/b stochastic oracle calls where n is the total number of samples and
b denotes the mini-batch size.

We see that, except the AdaSVRG method, all SVRG algorithms typically converge much faster
than the usual SGD methods without explicit variance reduction, at least after a few computations
of the full gradient. Among the non-accelerated SVRG methods, UniSvrg converges consistently
faster than AdaSVRG, while UniFastSvrg performs the best across the accelerated ones. Note that
FastSvrg with constant stepsize is not converging when the problem is not Lipschitz smooth (¢ < 2),
in contrast to our universal methods.

In Fig. [2] we also illustrate the impact of the mini-batch size b on the convergence of our methods.
We consider the same values of n, d, R as before and fix ¢ = 1.5. As we can see, in the idealized
situation, when one can implement the mini-batch oracle computations by perfect parallelism, there is
a significant speedup in convergence when increasing the mini-batch size, as predicted by our theory.

For additional experiments, including the discussion of implicit variance reduction, see Appendix [H]

9 Conclusions

In this paper, we showed that AdaGrad stepsizes can be applied, in a unified manner, in a large variety
of situations, leading to universal methods suitable for multiple problem classes at the same time.
Note that this does not come for free. We still need to know one parameter, the diameter D of the
feasible set. While it is not necessary to know this parameter precisely, the cost of underestimating
or overestimating it, can be high (all complexity bounds would be multiplied by the ratio between
our guess and the true D). At the same time, there already exist some parameter-free methods
which are based on AdaGrad and aim to solve precisely this problem [6| (11} 25} [31} 41]]. It is
therefore interesting to consider extensions of our results to these more advanced algorithms. Another
interesting direction is, of course, nonconvex problems.
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A General Auxiliary Results

A.1 Approximately Smooth Functions

Theorem 13 (Lemma 2 in [45]). Let f: RY — R be a convex (v, H)-Hélder smooth function for
some v € [0,1] and H > 0. Then, for any § > 0, any x,y € R% and any V f(x) € 0f(x), it holds
that 5Vf(””)(x’ y) < Ll —y||? + 6 with L = [ﬁ]%Hl% (with the convention that 0° = 1).
Theorem 14. Let f: RY — R be a (8, L)-approximately smooth convex function with components
(f,9), ie, forany z,y € R and f; 7 ;(x,y) = f(y) — f(x) — (G(x),y — ), we have

L
0< Brrg(@y) < Fle—yl*+0. ©)

Then, for any z,y € R? and any V f (z) € 0f (z), the following inequalities hold:

flx) < fx) < f(a) + @)

(9(x) —g(y);x —y) < By a(w,y) + By sy x )_ (9(x) —g(y),x — y) + 26, ®)
(g(z) — gy).x —y) < Lz —y||> + 24, ©)

Ig(z) — g7 < 2L(B; f4(z,y) +6), (10)

IV£(x) — g)lI? < 2L(8) 7 (@, y) +0), (1n

I5(z) — g2 < L2z — y||* + 4L, (12)

Ig(x) — g()II? < ALY (@,y) + 20), (13)

By (w,y) < Ljlz — y||* + 26. (14)

Proof. Inequality (7) follows immediately from (6)) by substituting y = .

To prove (8), we rewrite

Br.rg@y) + By gy, x) = (g(x) —g(y),x —y) + [f(x) — f(@)] + [f () — fF(W)],
and then apply (7).
Using the first part of (8) and applying (6) twice, we obtain (9).

To prove and , let us fix some fi(z) € R and g;(z) € R? such that Bi frg.(2) =
f(2) = fi(z) = (gi(z),z — x) > 0 for any z € R?. Note that we can choose either (f1,1) = (f,9)
or (f1,91) = (f, Vf). In view of @, for any z € R%, we can write the following inequalities:

0<Bs5.0.(2) < fly) = filz) = (G1(x),y — x) + (G(y) — Gu(x), 2 —y) + %HZ —yl* +4.

Minimizing the right-hand side in z € R and rearranging, we conclude that

S 80) ~ @) < Flo) — @)~ (@a(@)y —2) +6 < By, 01 (@0) 45,

where the final inequality is due to . Substituting now either (f1,g1) = (f,9) or (f1,51) =
(f, V), we obtain either or (1), respectively.

Inequality (T2) follows immediately from (6)) and (I0).
Inequality (T3) follows from (TI):

19(z) = W1 < 2V f(z) = g1 +2/lg(z) = Vf(2)]I2
<ALBYT ) (w,y) + 8) + 4L6 = 4L(BY ) (z,y) + 20).
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To prove (T4), we proceed as follows using first (6), then (7). and then (TT):
877 (@,y) = f(y) — f(a) = (Vi().y —a)
< J@) ~ 1(@) +{g(@) ~ VS ()y —a) + Sy~ ) + 0
< (5(a) ~ V() y — ) + £y — 2l +9

L
<V2Lélly — @l + S lly = 2ll* + 9

I 2
= (\/3ly =2l +V3)" < Llly —all* + 25,
where the final inequality is (a + b)? < 2a% + 262, a,b > 0. O

Remark 15. Some of the inequalities from Theorem T4} namely, (7), (I0) and (T2), were established
already in [|15]]. We nevertheless prefer to present the corresponding proofs since they are rather
simple, and we use the associated ideas for proving the other new inequalities.

Lemma 16. Let f: R? — R be the function f(x) = E¢[fe(x)], where each fe: RY — R is convex
and (8¢, L¢)-approximately smooth with components ( f¢, ge ). Further, let § be the stochastic oracle
defined by g(z,&) = ge(), and let f(z) = E¢[fe(x)], g(x) = Eg [ge(x)]. Then, g is an unbiased
oracle for g and, for any x,y € R, L.y = supg L¢ and 5= E¢[Lede], it holds that

Ltna
Varg(z,y) < 2Lmax[B; 7 4(z,y) + 9] (15)
Furthermore, for any x,y € R? and any V f(x) € 0f(z), it also holds that

Varg(w,y) < 4Lmax[B87 7 (2, ) + 20]. (16)

Proof. According to our definition of g, we have E¢[g¢(z)] = g(«) for any z, so g is indeed an
unbiased oracle for g. Further, for any x,y € R?, we can estimate

Varg (e, ) = Ee [[[Ge (@) — ¢ ()] - [9(2) — g)]I1]
< Ee[[|ge () — 5eW)II?] < Ee[2Le (B, 1. o () + 5¢)]
< 2Lunax (EelBy, 7, 5. (@) +8) = 2LunaxlBy .5 (2,y) + 3,

where 0 is as defined in the statement; the second inequality follows from Theorem. (inequal-
ity (I0)), and the final identity is due to the linearity of 3 7 ;(x,y) in (f, f,g) and the fact that, by

our defnitions, Ee ()] = f(2), el ()] = /(z), Belge(2)] = g() for any . This proves
The proof of (I6) is similar but now we apply (I3) instead of (T0):

Varg(z,y) < Ee[[g¢(x) — ge)1%] < e [ALe (877 (2, y) + 26¢)]
< AL (Be 87, (2,9)] + 20) = 4Lenax[B} T (2, ) + 28],

where we have used the fact that 0 f(x) = E¢[0f¢(x)] (see Proposition 2.2 in [4]]), meaning that, for
any Vf(z) € 0f(x), we can find a selection of V f¢(x) € df¢(x) such that V f(z) = E¢[V fe(z)].
O

A.2 Miscellaneous

Lemma 17. Let ¢p: R? — R U {+o00} be a proper closed convex function, v € dom, g € R,
M >0, and let

x4y = Proxy(z, g, M).
Then, for any y € dom ), we have

M M M
(9,9 —24) +¥(y) + 7”30 —yI? > ¥(xy) + 7”% —zi|?+ 7”33+ — |
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Proof. Indeed, by definition, - is the minimizer of the function h: RY — R U {+oc} given by
h(y) = (g,y) +¥(y) + & ||l= — y||*, which is strongly convex with parameter M (or simply convex
if M = 0). Hence, for any y € dom1) (= dom h), we have h(y) > h(z4) + Mly — x4 ||*, which
is exactly the claimed inequality.

Lemma 18. Let N > 1 be an integer, (M k);cV:o be a nondecreasing nonnegative sequence of reals,
and let M > 0. Then,

Z_ [min{ Mj, 1, M} — M)+ = [min{ My, M} — Mo .
k=0

Proof. It suffices to prove the identity only in the special case when N = 2, i.e., to show that yo+7; =
T, where v == [min{ My, M} — Mo|+, y1 = [min{ My, M} — M)+, T := [min{ My, M } — M|+
The general case then easily follows by induction.

To prove the identity, we use our assumption that My < M; < M, and consider three possible
cases. If My > M, thenyy +v1 = [M — Mo+ + 0= [M — Myl =T. If M1 < M < Mo,
then o +v1 = (M1 — My) + (M — My) = M — My = T. Finally, if My < M, then v + 71 =
(Ml—M0)+(M2—M1):M2—M0:F. O

Lemma 19. Let § be a stochastic oracle in R%. Then, for any x,vy, 2 € R% and any 7 > 0, we have

Varg(z) < (1+7) Varg(y) + (1 + 7'_1) Varg(z,y),
Varg(z,y) < (14 1) Varg(z, z) + (1 + 7'*1) Var;(y, 2).

Proof. Both inequalities are direct consequences of the standard inequality ||s; + s2/|2 < (1 +
)||s1||? + (1 + 771)||s2||? which is valid for any s1,s5 € R? and any 7 > 0. Indeed, let g
and ¢ be, respectively, the function and the random variable components of g, and let A(z, &) =
g(x,€) — E[g(x, &)] for any x € R?. Then, for any z,y, 2 € R? and 7 > 0, we can estimate

E[| Az, ©)[12] = E[IA(y, &) + [A(,€) — Ay, E)]1Z]
< (L+7)E[A®y, OIE] + (1 + 7 ) E[| Az, €) — Ay, §)|2]
(14 7) Varg(y) + (1 + 771) Varg(z,y).

Varg(x)

Similarly,

<A+NE[|A@ €) = Az OIE] + 1+ 7 ) E[IA®WY, €) — Az §)II]
= (14 7) Varg(z,2) + (1 +771) Varg(y, 2). O

B Omitted Proofs for Section

Lemma 20 (AdaGrad stepsize). Let function f satisfy Assumption[l}) Consider the stepsize update
rule My = My (M,Q, 2,2, Gx, §u ) defined by

—~ 1 R

My = \/M2 + ﬁ”gmr — G212
Then, this stepsize update rules satisfies with ¢y = g, co=4,¢3=06,c4 =2.
Proof. Let A(M) = By 7@, 24) +(g(x) = Gu, T4 — ) — % |Z, — z||?. From our Assumption
and Theorem(inequality (@), it follows that 8 7 - (2, 24 )+ By 7.5(T+,2) < (G(Z4)—g(z), T4 —
x) + 264. Hence,

—

o~ R A M. o~
E[AM)+By,7,(T+, 7)) < E[<g($+)—gmx+—$>—7+||93+—33||2 +205 = E[A1(M)]+205,
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where Ay (M) == (G0, — Go, 24 — x) — 22|71 — [|>. Hence,

T = E[ADM) + (My = M)Q+ B 5 5(34,2)] < E[A; (M) + (M — M)Q] + 205

From the definition of J\/ZJF, it follows that ||g,, — G./|2 = (M2 M?)Q = (.7\//.74r + M)(M\+ —M)Q.
Since My > M, this means that
1 — 1
= NGas — Gall? < (My = M)Q < =—||G0, — 9ll2
oM, T " M,
Let us now upper bound T= Al(M+) (]/\4\+ — M)Q. For this, let us fix an arbitrary constant
M > 0 and consider two cases. If M+ > M, we can bound

o ~ ~ o1 ~ .
[ <A (My)+ ﬁngIJr — G212 < Ay (M) + ﬁ”gau = Gull7 = T(M).

+
If J\/ZJr < M, we can bound
~ 1 — e —
< T 1Ge, — Gall? + (My — M)Q < 2(My — M)Q = 2[min{M,, M} — M], Q.
+

Combining the two cases, we get I' < [['(M)] + Q[min{]\//ﬁ, M} — M],Q. Thus,
T <E[[] +20; <B{[[(M)]4} + 2B{[min{M,, M} — M|, Q} + 24;.

~

Let us now estimate the first term. Denote S := g, — g(«) and §+ ‘= gu, — g(Z4). Then,

- L M. 1
L(M) = (Goy, = Gar B —2) = 5|14 = x| + 7190, — A

IN

(9(4) —g(2), 24 —2) + %H?(@) —g(@)|I2

A~ 4 2.5 ape M
F(84 =88, —a) + 218, - 812 - ey — a?
Using now our Assumption [T|and Theorem [T4](inequalities (9) and (I2)), we can continue as follows:

. ~ 2
[(M) < Ly||#y — 2| + 205 + ﬁ(Lfcllu — x||” + 4L 5y)

I 2~ s, M,
+<S+—S,x+—x>+ﬁ||5+—Sllf—gl\m—ﬂcll2

. 9 A A M—2Lp(1+32EL) AL
<(8: = 8,24 —a) + =118 - 52 - s — a2 (1+ =)o
2 1 4L
<(Z + S, =82 +2(1+ =L)s,.
(M Q[M_QLf(1+)])| Sl ( M) f

Consequently,

E{P(D) ) < (= +

1
2(M — 2L (1 + 2]

)IE[||§+ — 3|2 ]+2(1 + %)@

In particular, for M > 4L ;, we can estimate = 1 < 2z _1 < 5 .
P ’ > A5 M+2[1\7172Lf(1+”7f)] - M+2(M*4Lf) — 2(M—4Ly)

Therefore, for any M > 4Ly,
5

~ a2
— 4 = ——

E{[T( E[Varg(Z )+ Varg(z)]+44y,

+}_2M 4L)

where the final identity follows from the fact that E[|S, — S||2] = E[||S,[2] + E[||S|]2] =
(

E[Var(Z)] + Varg(z) (because S, conditioned on the randomness ¢ defining §, = g(x, £),
has zero mean).

17



Combining everything together, we get

5

< m E[Val“ﬁ(-%Jr) + Varg(x)] + 65f + 2E{[min{ﬁ+’ ]\7} — M]+Q}

This is exactly W1th c1 = g ca=4,c3=06,c4 =2. 0

Lemma 21. Let function f satisfy Assumption Consider the stepsize update rule ]\//T+ =
My (M,Q, 2,24, 0x, s, ) defined as the solution of the following equation:

—

—~ N~ N~ - M, .
(My = M)Q = [Ar(M )]y, A(My) = Gy = Go, Ty — ) = 7+III+ —af|*.

Then, this stepsize update rules satisfies @) withcy =1, ¢c0 =2, ¢c3=06,cq4 = 2.

Proof. Letus define A(M) := B, 7 ,(2,21) + (§(x) — §ur &4 — x) — 2|7, — ||. Starting as in
the proof of Lemma[20] we see that

= E[ADM,) + (My — M)Q+ B 5,531, 7)] < E[A1 (M) + (M, — M)Q] + 23y,
with the same A (+) as defined in the statement.

Let us now upper bound I := A, (M+) (]TL. — M)Q. For this, let us fix an arbitrary constant
M > 0 and consider two cases. If M+ > M, we can bound, using the monotonicity of Ay (),

[ = Ay (M) + [Ay (M) < Ay(M) + [Ay(M)]+ < 2[A4 (M)
If M\Jr < M, we can bound
[ < [Ay (M) + (My — M)Q = 2(M, — M)Q = 2[min{M, M} — M], Q.
Combining the two cases, we get I' < 2[A;(M)]4 + 2[min{]\//7+, M} — M],Q, and hence
T <E[T]+26; < 2E{[A(M)];} + 2E{[min{ M, M} — M], Q} + 2.

Let us now estimate the first term. According to our Assumption [T]and Theorem @ (inequality (©)),
we have (g(Z4) — g(z), 24+ — 2) < L¢||Z4+ — «||* + 2d;. Hence, denoting S =g, — g(x) and
S+ = Ju, — g(Z4), we can estimate, for any M > 2Ly,

I & _an M, .
AI(M)Z(9($+)—9(17),37+—37>+<5+—57$+—$>—7||$+—QTHQ

A~ A M —2Ly . 1 PN
S<S+—S7$+—9C>—Tf||$+—$\|2+25fSm||5+—5||3+25f-
Hence
~ 1 ~ A 1
E{A(M)];) € ———— E[|8,—5|2|+20; = ——— E[Vary (4 )+Varg(z)]+20
{1A( )}+}_2(M—2Lf) (1154 —=5S11X]+26¢ S(3 = 2L;) [Varg (24)+Varg(2)]+24y,

where the final identity follows from the fact that E[| S, — §2] = E[|542] + E[IS)|?2] =
(

E[Varg(Z)] + Varz(z) (because §+, conditioned on the randomness ¢ defining g, = g(z, &),
has zero mean).
Thus,
1 ~ P —
r< m E[Var; () + Varg(z)] + 607 + 2 E{ [min{M,, M} — M].Q},

which is exactly Z) withc; =1, ¢o =2, ¢3 =6, ¢4 = 2. O
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C Omitted Proofs for Section 4

C.1 Universal SGD

Lemma 22 (Stochastic Gradient Step). Consider problem (1) under Assumption[l} Let g be an
unbiased oracle for g. Let x € dom 1) be a point, M > 0 be a coefficient, g, = g(x), and let

Z4 = Proxy(x, g, M).

Denote A(M) = B g Ty) +(9(x) = Gy T4 — 7) — M|z — z||% Then,
. L oM M . -
E[F(@) — F* + 2y — 2 I?] + By pg(@,2%) < S llo — 27|12 + EIAM)).

If further Assumption E| is satisfied, and ]TL_ > M is a random coefficient (possibly dependent on g.,),
then, we also have
M.

~ * ~ * * M * N T r
B[F(24) =P+ 518 —a" 2] 461 4(w27) < S o= IP+E[AG,) + (3, —M)D?).

Proof. From Lemma|[T7} it follows that

a9..7 > M ~ * M ~
F@) + (a2 — ) + 9(@1) + S 1By — 2P+ o134 — ol

~ o, M .
< J@) + @™ =) + (@) + oo -2
Passing to expectations and rewriting

E[f(z) + (Ga, 2™ — @) + (")) = f(2) + (g(2), 2" — @) + P(a") = F(2") — By, 4(z,27),

and

F@) + (G2, B4 — ) + 0(@4) = F(@4) = [f(@4) = f(2) = (G2, 34 — @)]
= F(&y) = By 7.g(x, 1) + (9(2) — G, T4 — )],
we obtain the first of the claimed inequalities.

To prove the second one, we simply add to both sides of the already proved first inequality the
expected value of

M, —M, . A ~ M,—M,, . § _
S ey - ot 4 Ay - ALY = S (IR - oI Ry - )
and then bound ||Z+ — 2*|| < D, ||Z+ — z|| < D using our Assumption [2| and the fact that

x, Ty, x* € dom.

Lemma 23 (Universal Stochastic Gradient Step). Consider problem (1)) under Assumptions[I|and 2]
Let g be an unbiased oracle for g. Further, let x € dom be a point, M > 0 be a coefficient,
9z 2 g(x), and let

fc\-‘r = Prox?/)(xvgﬂcaM)v Gz y = E]\(‘%-‘r)v M+ = M+(M7D27xa£+a/g\xa§m+)'

Then, for any M > ca Ly, it holds that

—

~ o My . ~ .
E[F(UH) —F+ 7; 124 —2*|? +ﬂf,f,g($+733)} + By.7.5(x, %)
M ~ o
< —Hx—x*HQ—i——cil E[Varg(Z )+ Varg(z)]+c36 s +cy E{ [min{ M, M} — M| D?}.
2 M — CgLf

Proof. According to Lemma 22}

—

A~ o My " " M . ~ o~ —~
E[F(x+)—F + 57— ||2]+ﬁf’ﬁg(x,:c )< Sllz—a 1P+ E[A(My)+ (M. —M)D?],
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where ﬁ(]\//L) =By 5.5(®74)+(9(2) = Gu, T4 —x) — % |Z+ —z|*. Atthe same time, according

to the main requirement (2) on the stepsize update rule, for any M > eI s

E[A(ﬂ+) + (M\Jr — M)D? + Bf_f,g(£+7$)]

< ﬁ E[Varg (%) + Varg(2)] + c367 + ¢4 B{[min{ M, M} — M], D?}.
— el

Combining the two displays, we get the claim. O

Lemma 24 (Universal SGD: General Guarantee). Consider problem (1) under Assumptions[Ijand 2]
Let g be an unbiased oracle for g. Further, let x € dom 1 be a point, M > 0 be a coefficient, N > 1
be an integer, and let

(TN, zn, My) = UniSgdy (w0, Mo, N; D),

as defined by Algorithm[l| and let o, . ..,xN be the corresponding points generated inside the
algorithm. Then, for any M > cy Ly, it holds that

N-1
= * MN * *

E[N[F(@) = F]+ St llen = a* 2+ Y [8y g (i an) + By g, o)

k=0

N—-1

M,

< 70“330 — J?*HQ + —671 E[Varg(ka) + Varg(xk)] +c3Néy

2 M — CQLf 5—0

+ ey E{ [min{My, M} — Mo]+ D?}.

Proof. Each iteration k of the algorithm, when conditioned on xy, follows the construction from
Lemmaﬂ(with T =Tk, Jo = Gk M = My, T4 = 11, o, = Gt1, My = My41). Hence, we
can write, after passing to full expectations, that, foreach k =0,..., N — 1,

My 11
2
C

1
M — CQLf

E[F(ors1) = F* + =5 aw — 2|2+ By 1 g (@asr,a0) + By g g, )]

M , _
<E[ S fla—a" |2+ [V (@+1)+ Varg (@0)]+ealmin{ My, M =M D] +eady,

where M > 2L ¢ 1s an arbitrary constant. Telescoping the above inequalities (using Lemma and
then bounding N [F(Zy) — F*] < Zszl [F(zy) — F™*] (using the convexity of F' and our choice of
_ 1 N .

TN = « D_p—1 Tk), We get the claim. O

Theorem 4. Let Algorithm[I\with My = 0 be applied to problem (1)) under Assumptions[IH3] Then,
for the point Ty generated by the algorithm, we have

LyD? /2
E[F(zn)] — F* < 626% + 20D ?;4 + c305.

Proof. Applying Lemma [24] substituting our choice of My = 0, estimating Varz(-) < o and
dropping the nonnegative 3; 7 -(-, ) terms, we obtain

_ 1 — 2¢102N cyMD? 2¢102
E[F —F*<—( MD? 4 2899 N5>: _ 5.
[F(zn)] < 5l T, TN N e, T

where M > 2L ¢ is an arbitrary constant. The optimal M which minimizes the right-hand side is
M = c3L 5t 54/ %N . Substituting this choice into the above display, we get

D? 2 2¢10°
E[F(zy)] - F* < &2 (CQLf + 3,/ﬂN) + 7 sy
N DYV ¢4 o [2
D Cq
L;D? 2
- % + 20D/ 22 4 oy, O
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C.2 Universal Fast SGD

Lemma 25 (Stochastic Triangle Step). Consider problem (1) under Assumption[l| Let g be an
unbiased oracle for g, let x,v € dom ) be points and M, A > 0, a > 0 be coefficients. Further, for
Ay = A+a,let

Ax + av
Yy= ——"

. Ax+avy
Ay '

§y g/g\(y)a ﬁ-‘r :Proxlb(va/g\yaM/a)a Ty = A
+
N ~ — ~ A MA ~
Denote A(M) = B, 1 5(r3+) + {8(9) — 8y B4 — ) — M85 2, — g2 Then

~ * M ~ * *
E[A+[F($+) - F]+ 7HU+ - HQ} + ABy 5.5y, ) +aBy 5 5 (y, %)
< AlF() ~ P+ 3 o — 2| + AL B,

If further Assumption|2|is satisfied, and M\+ > M is a random coefficient (possibly dependent on g,,),
then we also have

o~

~ o My X «
E[A+[F($+) — F7] 7+||v+ -z HQ} + ABys 5y, 2) +aBy 5 o(y, %)

M ~ o~ —~
< A[F(@) - F*] + o — o2 + BA, AL ) + (W, — M)D?),

Proof. Denoting 0 := AB; 7 .(y,x) + aB; j;(y,z*) and using the fact that E[g,] = g(y), we can
rewrite

AF(@) +aF () + 3 o —a*?
= A[f(y) + (G(y). & —y) + By 74y, 2) + ¥ (2)]

— * * * M *
+alf(y) + @), 2" = v) + By p oy, 27) + 0 (@) + v — 27|
T, — * * M *
= AL fy) + (), Az + az” — Ayy) + () + agp(a") + - o — 27" + 0
ry ~ * * M *
= E[A44F(y) + (G Az + az” = Ary) + A(e) + (") + o — 2" |2] +0.
Further, by the definition of ¥, and Lemma
~ * ~ * M * ~ M ~ M ~ *
Gy, 2" = 00) + (@) + o llo = 2" |P 2 9(@4) + Ml = B4 [* + o115 — 271,

This means that

. . oo M .
AL f(y) + (Gy, Az + ax™ — Ayy) + AY(z) + ayp(z™) + 7“1} —z*|)?
7 ~ ~ ~ M S, Moo )2
> A f(5) + G Av + by — Asy) + V() +ab(By) + oo — 042 + S5 — o7
= " A ~ M ~ M . N
> Ay[f) + @8 — ) + 0@+ Sl =By P + Sy — 27
~ M . . A
= A F@4) + 5oy —2 1> — A+ A(M),
where the second inequality is due to the definition of Z and the convexity of ¢, and
~ . _ A M .
AM) = f(@4) = ) = @y, B4 — ) — 55— v = 04|
2A4
MA,
2a?

sincez, —y = ﬁ(@_ — v) (by the definitions of y and Z ). Substituting the above inequality into
the first display and rearranging, we get the first of the claimed inequalities.

12+ —yl?

= Br.7.0W21) + Gy) — Gy, By —y) —

21



To prove the second one, we simply add to both sides of the already proved first inequality the
expected value of

M,-M . A o= M -M
— oy — |+ AL[AM) - A(M,)] = %(

and then bound, using the fact that 7, — y = Aaj (U3 — v) together with our Assumption

—

N AL
o — a2 + =13+ — yl?)

- AL L - ~
04 —2*|* + a—;||z+ =yl =119+ — 2”|* + |54 — ol* < 2D D

Lemma 26 (Universal Stochastic Triangle Step). Consider problem (I) under Assumptions|[I|and2]
and let § be an unbiased oracle for g. Let x,v € dom ) be points, M, A > 0, a > 0 be coefficients.
Further, for Ay == A+ a, let

Az +av . . R R N Az + avy
y=—7— w=9), vy =Proxy(v,gy,M/a), Ty=—p—,
+ +
2 2
o —~ a Ay a® 5 A A A
Gy =9(7y), My = A7+M+(a72M’ TiD ,y7$+»gy,gz+>~

Then, for any M > coLy %, it holds that

o~

~ N M, . N ~ "
E A+[F({E+)—F ] +||U+—CE H2+A+ﬁf7f7§(m+7y) +Aﬁf,f7,§(y7x)+aﬁf,f,§(yvx )
2
M 2 N
< A[F(z) = F*]+ =|lv — 2*|* + =— % E[Vary(24) + Vary(y)]
2 M — oLy 4~

+e3A4 8 + ca BY [min{ M, M} — M|, D?}.

Proof. According to Lemma (together with the fact that M\+ > M which is guaranteed by the
requirement on the stepsize update rule), we have

_ o My \
E[A+[F($+) —F ]+T+||U+—$ Hﬂ + ABy 5.y, x) +aBy 5 (y, %)

M ~ o~ —~
Sollo —a* |2 + E[AL A(RL,) + (M — M)D?],

< A[F(z) — F*]+ 5

where A(M;) =B 7.0, T1) +(G(y) =gy, T+ —y) — M;ﬁ* |Z —yl|?. Further, according to the
main requirement (2)) on the stepsize update rule (applied in the variables M’ := %M , Q= X—iDQ,

+
M) = £ M, M := 2% M for which we have M'Q = M B~ M\.Q = M, 2= M'Q = M2,
it holds that

~ o~ —~ D? R
E[A(M,) + (M, - M)+ Bl )|
C1

—~ D?
< ————— E[Var;(Z,) + Var; +c30f +ca B [min{M, ., M} — M ,
A7 o, BVt () + Varg(u)] + coty + s pmin{ 3T, 3T} - M),

+ A,
where M > coLL I % is an arbitrary constant. Multiplying both sides of the above display by A, and
adding the result to the first display, we obtain the claim. O

Lemma 27 (Universal Fast SGD: General Guarantee). Consider Algorithm [2)applied to problem (1)
under Assumptionsand IZI Then, for any k > 1 and any M > ca Ly, it holds that

k—1
E[Ak [F(ax) = F* 1+ Y [Aip1By f.g(@ivr i) + aiv1By 7 4 (vin 517*)]]
1=0
o c k—1 k
< e MD?* + ——— %" a2, | E[Vary(2i41) + Varg(y:)] + csdy »_ A,

M —caLg i3 i=1
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where ay = Lk, Ay = 2k(k+1), Y a2 = Lk(k+ 1)k +1), 20, Ay = Lk(k+1)(k+2)
for each k > > 1.

Proof. Bach iteration k of the algorithm, when conditioned on (z, v), follows the construction
from Lemma 26] (with = x4, v = v, M = My, A = A, a = apy1, Ay = App1, ¥ = Yo

Gy = Gyp» V4 = Ukt 1, T4 = Thi1s Jop = Yapyr» My = Myy1), where Ay and ay, are the following

coefficients: ap, = 3k, Aj, = SF ai= 1k(k+1). Applying Lemma(dropping the nonnegative

8 .7, g(y, x) term) and passing to full expectations, we therefore obtain, for each k& > 0,

* M * *
E[ Ak [Porsn) = F1+ =5 owss = 0 12+ AkeBy 1 (@nr1, ve) + ans1 By g g (e 2|

M, ciaj
< B[A[F (o) = F*) 4 S fos = 27?4 ———E4
M — ¢y kst
f A

+ CgAk+1(5f “+ ¢4 E{[min{Mk+1, M} — Mk]_;,_Dz},

[Vag (w+1) + Varg ()]

where M is an arbitrary constant such that A/ > ¢, L A A . Note however that, for our sequences ay,
2 B 1 k2 _ cra k+1 .
and A, we have < A—k = ik(k-&—l) = k+1 <1. Therefore we can replace ——+5— in the above

M—csL; £

ciLa k+1

display with 37 under the requirement that A/ > ¢, L . Doing this and then telescoping the

above 1nequahtres (applyrng Lemma |[T8)), and using the fact that M, = Ay = 0, we get the claimed
inequality.

It remains to do some standard computations to see that Zl Lai = %Zz = Lk(k+1)(2k+1)
and S8 A =150 (i 1) = LR k(k+1)(2k+1) + 1k(k +1)) = iz. (k+1)(k+2). O

Theorem 5. Let Algorithm[2|be applied to problem (1)) under Assumptions[IH3] Then, for any k > 1,

4eqey Ly D? 2c1c4
E[F —Fr< == 140D
[F(ze)] S ke € 3k

Cg(km)af.

Proof. Let k > 1 be arbitrary and Fj, = E[F(xx)] — F*. Applying Lemma dropping the
nonnegative (3; 7 - (-,-) terms and bounding Varg(-) < o, we obtain, for an arbitrary constant
M > colL fs

1 2
Fk<A—k(c MD? + ?;sza +c35fZA)

4 cik(k +1)(2k + 1)0?
 k(k+1) 12(M — coLy)

_ 4eyMD? | ¢1(2k 4 1)0?
TR+ 1) 3(M —ealy)

(C4J\_4D2+ + %k(k+1)(k+2)6f>

+6k7

(k 4+ 2)d . We now choose M > ¢, Ly which minimizes the right-hand side. This is
M = coLf + 575/ 5= k(k + 1)(2k + 1), for which we get

4cy D? 2k +1)0?
Fkgc“<c2Lf+ \/k(k+ )(2k+1)>+ (k£ o + 05,
k(k+1) 2D 3551/ s k(k +1)(2k + 1)

4C204LfD2 0104(2k + 1)
=———+4oDy| ———
e+ T\ R

4C204LfD 20104
O0p < ———— +40D Ok O
TS Ty TP e T
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D Omitted Proofs for Section

D.1 Universal SGD

Theorem 7. Let Algorithm([I\with My = 0 be applied to problem (1) under Assumptions|I} [2|and|6]
and let 02 := Varg(x*). Then, for the point T produced by the method, we have
ca(coLy + 1201L§)D2 6cicy

E|F(x —F* < 20D
[F(zn)] < N + 20 N

4
+ 305 + g(sg.

Proof. Let xg,. ..,z be the points generated inside the method and let Fiy := E[F(Zy)] — F*.
Using Lemmaand Assumption@ we can estimate, forany 0 < kK < N — 1,

Varg(zp41) + Varg(zr) < 3 Varg(zx) + 2 Varg(zpy1, ox)
< 602 + 6 Varg(zy, v*) + 2 Varg(wg41, 7%)
< 607 + 12L5[B; 7. (wx, ) + 0] +4Lg[By 7 5 (@h+1, 71) + 6]

= 60’5 + 4L§[3ﬂf’f@($k, x*) + ﬂf,ﬁg(xk-i-l, xp) + 4(5@].
Substituting this bound into the general guarantee given by Lemma [24] (and taking into account the
fact that My = 0), we obtain

N—1
NFy + Z E[Bs 5.g(@k+1,21) + By 5 g(n, 27)]
k=0
— 6c102N = )
< e,MD? + 7" L Z E[ﬁf fg(xkﬂ,xk) + 3ﬁff§(a;k,gg )] + N(eady + 4ady),
M 702Lf =0 o 5Jo
where M > coL ¢ is an arbitrary constant and o = M‘liliif' Requiring now that 3a < 1 or,

equivalently, that M > oL f+12c1Lg = M,in, we can cancel the nonnegative 3 £ 7, g(~, -) terms
on both sides and obtain — )
C4MD 6010
Fy < + = 4§,
N=""N M — cyLy

where § = c3df + %5@. The optimal coefficient M, minimizing the right-hand side is M, =

coLy + %* %. However, we still need to respect the constraint M > My, Choosing M =

oLy +12c1L5 + % %, we conclude that

D? . [6aN 6ey o2
By < 55 (ealy #1200+ Ty 205 )+ —HE= 40
! RV
ca(caLy + 1201L§)D2 6cicy
N e N

D.2 Universal Fast SGD

Theorem 8. Let Algorithm [2| be applied to problem (1)) under Assumptions[I} 2| and [6] and let
02 := Varz(x*). Then, for any k > 1, we have
4CQC4LfD2 24c104L§D2 2c1¢4

— *<
ElF ()] = F" = 5073 rr1 APy

C3 4
—(k+2)df + =95.

Proof. Let k > 1 be arbitrary and F, := E[F(24)] — F**. Using Lemma[19and Assumption[6] we
can estimate, for each 7,

Varg(xip1) + Varg(y;) < 3 Varg(y;) + 2 Varg(zit1,y;)
< 602 + 6 Varg(y;, z*) + 2 Varg (w41, y:)
< 60% +12L5[8; 7.5(yir ©*) + 03] +4Lg[8; 7.5(wiv1, 4i) + 6]
= 607 + 4L5[38; .4 (i, &™) + By 7o (wis1, yi) + 405).
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Substituting this bound into the guarantee given by Lemma[27] we obtain

k—1
ApFy, + ZE[Ai+1Bf7f,g($i+l7yi) + aiv1By 7.5(Yi, ©")]
i=0
kot 60 o2
< C4MD2+Z i1 E[By 7 (@it1, yi)+3B; f 5(yi, 27)+465]+ lc Z a;+ezdy Z Ag,
i=0 —col I

a2
where a1 = ‘*Mfigf a; = Li, Ay = Lk(k+1), X8 a2 = Lk(k+1)(2k+1), 5, 4, =
1—1_213(/@ + 1)(k + 2). Requiring now that 3cv; 11 < a;4q foralli =0,...,k — 1 or, equivalently, that
M > coLy+12c1 Lgay = caLy + 6¢1 Lk, we can cancel the nonnegative 5f,f,g('7 -) terms on both
sides and obtain

FkSAik<4MD2 6(:10 Za +c35fZA+ AM)

—CQLf
4 — C1U2k(k +1)(2k + 1) cs 4
=——(e4MD? o —6rk(k+1)(k+2 —6;5
k(k+1)(c4 T M =Ly 1Y (k+ D)k + ))+3 g

_ 4eMD? | 102(2k 4 1)
k(1) M —cyLy
where 6, = £ (k + 2)d5 + 305.

+5k7

The minimizer of the right-hand side is M, =

S k(k +1)(2k + 1). However, recall
that we also need to satisfy the constraint M > co Ly + 6¢1Lgk. Choosing M = caLy + 6e1Lgk +
o=/ Sk(k + 1)(2k + 1), we obtain

2D
4esD? . % + 1
Fkgkgll(CQLf+6c1L§k+;D\/Clk(k+1)(2k+1)>+ ok +1) + o
k+1) ¢ S5\ 2h(h + 1) (2K + 1)
4CQC4LfD2 246104L§D2 0104(2]€ + 1)
- 4o, Dy ST ) 5
kT 1) S K1) T

40204LfD2 24clc4L§D2 2¢c1cy
< 40,.D Ok
S TRkt T k1 PV TR T

E Omitted Proofs for Section

Lemma 28 (Basic property of SVRG oracle). Let § be a stochastic oracle in R%, and let G =
SvrgOrac; (%) for some & € R%. Then, for any x € R, the mean value of G at x is the same as that
of g at x, while Var 5 () = Varg(z, Z).

Proof. Let g and £ be, respectively, the function and the random variable components of g, and let

9(z) == Eelg(z, )], (%) := Ee[g(Z,€)]. Then, by definition, G is the oracle with the same random
variable component £ and the function component G defined by G(z, &) = g(z,§) — 9(Z, &) + g(Z).
Consequently, E¢[G(z,£)] = g(x), and

Varg (z) = Ee[[|G(x, €) — g(2)]||2]
=Ee[lllg(z,€) — 9(2,6)] - [9(x) — g()]||] = Varg(z,2). O
E.1 Universal SVRG

Lemma 29 (Universal SVRG Epoch). Consider problem (1)) under Assumptions[I} 2 [6|and[9} Let
x,T € dom be points, M > 0 be a coefficient, N > 1 be an integer, G = SvrgOracg(i“), and let

(j-i-a ) M+) = Unlsgdé7¢(xa Mv Na D)a
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as defined by Algorithm Then, for any M > caL; + 12¢1 Ly, a = A;iléf;f, and any V f(z*) €
Of (x*), it holds that

~ * M *
E[NIF(#1) = F7) + 5 oy — *|?]
< 6aN By (2, )+—||:c 2*||2 + N(c38f 4 16ad5) + cs D* E{ [min{ M, M} — M], }.

Proof. Since § is an unbiased oracle for g, so is G (Lemma . Therefore, we can apply Lemma
to get

N

i

~, * M * —
E[NIF@) = F]+ ooy = a"IF + 32 (B g (onrn @) + By g glwn, 2]
k=0
M c N—-1
* 1
< ?Hm |2 + oL, 2 E[Varg(zg41) + Varg(zr)] + caNdy

+ ¢4 E{[min{M, M} — M|, D?},
where M > ¢y ¢ 1s an arbitrary constant and x}, are the points generated inside UniSgd.
Applying now Lemmas [I9]and 28| and Assumptions [f]and[9] we can estimate, for each k,

Varg(zry1) + Varg(zy) = Varg(ary1, Z) + Varg(zg, ) < 2 Varg(zpy1, 2x) + 3 Varg(z, T)
< 2Varg (241, k) + 6 Varg(xy, %) + 6 Varg(z™, 7)

< ALG(B; 7 (T, xk) + 03) + 12518, 7 4 (wn, ) + 5] + 24Lg (877 (2, &) + 26)
= 4L§[ﬂf’f,g(xk+1,xk) + SBf’fyg(xk,x*) + Gﬂfvf(m*)(sc , &) + 1605),

where V f(x*) € 0f(x*) is arbitrary. Denoting « := ]\;ilc[; if , we thus obtain
M N-1
E[NIF(i1) = F]+ 55 o — a2+ Y By g @nrn a0) + By, 1 g (ons )]
k=0

. M _
< 6aNBy ) (2, 7) + 5 e = 27> + N(eady + 16ad5) + e B{ [min{M,, M} — M), D*}
N—-1

+a Y BBy (ki k) + 38 7 5 (wr, 2],
k=0

Requiring now M > L r+12c1Lg, we get a < % which allows us to cancel the nonnegative

By 7,5(+» ) terms on both sides. The claim now follows. O

Theorem 10. Let UniSvrg (as defined by Algorithm[3) be applied to problem (I)) under Assumptions|I]
2| [6|and[9) Then, for any t > 1 and ¢3 := max{cs, 1}, we have

[(6264 + 1)Lf + 486104L§]D2
2t

To construct Ty, the algorithm needs to make O(2%) queries to § and O(t) queries to g.

8
E[F(3,)] — F* < + 22507 + 565.

Proof. The algorithm iterates (Z¢+1, 411, Myy1) =2 UniSgdg, (¢, M, 2t+1. D) for t > 0, where
C:'t = SvrgOrac;(¥;). Applying Lemmaawith M = co Ly + 48¢cy L (for which o = % so that
6a2t*1 = 2%) and passing to full expectations, we obtain, for any t > 0,

~ * M *
B[22 [F (@) = F') + 5w — o]

M, — 4
< E[2tﬁt + a2 + calming My, M} - Mt}JrDQ} ot (c35f + gag),
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where 3; = vaf(x*) (z*,Z¢) and V f(z*) € Of(x*) can be chosen arbitrarily. Rewriting F} 1 :=

F(Zt41) — F* as Fip1 = Bry1 + (Fir1 — Pry1) and telescoping the above inequalities (using,
Lemma([T8), we get, for any ¢ > 1,

t
; M
t WE — B) 4+ — oy, — 2*|2
]E[Qﬂﬂr;?(ﬂ Bi) + Stllae — ]
t
M 4 , _ _
< Bo+ SPlleo — 7 + (eads +30) ;2 + c4 E{ [min{M;, M} — My)+ D*}

4 _
< Bo+2(2¢ — 1)(C35f n gd@) + e MD? = @y,

where the final inequality is due to the fact that My = 0, while Zle 2t = 2(2! — 1). According to

Lemma 30| we can choose V f(z*) € df(2*) such that 8; < F(z;) — F* for all i > 0. Dropping
now various nonnegative terms from the left-hand side of the above display, we conclude that

2! E[F,] < ®,.
Let us estimate ®. Using our Assumptions [T]and [2]and Theorem [T4] (inequality (T4)), we can bound
Bo < L¢l|Zo — x*||* + 205 < Ly D? + 2. Therefore,
®g < LyD* 4265 + s MD? +2(2" — 1)(c30y + 365) < LD* + 2(c30y + 305) - 2°
where L :== Ly + caM = (cacq + 1)Ly + 48cicaLy and €3 := max{cs, 1}. Thus,
®, LD>
E[F] < 5 < 5
which proves the claimed convergence rate.

8
+ 2305 + 5557’

Let us now estimate the number of oracle queries. At each iteration ¢, the algorithm first queries g
to construct the SVRG oracle @t (by precomputing g(&;)). All other queries are then done only
to ét or, equivalently, to g inside Unngdé“ " which is run for Ny, ; = 2!*! iterations and thus
requiring O(Ny41) queries to g. Summing up, after T iterations, we obtain the total number of
Zle O(N:) = Zle 0(2%) = O(21) queries to g, and T" queries to g. O

Helper Lemmas

Lemma 30. Let F': RY — RU{+oc0} be the function F(z) = f(x)+(z), where f: R — Risa
convex function, and 1): R — R U {400} is a proper closed convex function. Let x* be a minimizer
of F and let F* := F(x*). Then, there exists V f(x*) € Of (x*) such that, for any x € dom 1,

F(z)— F* > 37707 (@, ).

Proof. Since z* is a minimizer of F', we have 0 € 9F (z*) = Jf(x*) + 0¢(z*). In other words,
there exists V f(z*) € 0f(x*) such that Vi)(z*) = —V f(z*) € 9¢(z*). Consequently, for any
x € dom),

Fla) = F* = f(z) = f(z7) + [Y(2) = o(z)] = fz) = f(2") + (VY ("), 2 —27)

= f(@) = ") = (Vf(@*), 2 —a*) = 7T (@, ). O

E.2 Universal Fast SVRG

Lemma 31 (Universal Triangle SVRG Step). Consider problem (1)) under Assumptions|[I} 2] and|6]
Let ,v € dom v be points, M > 0 and A, a > 0 be coefficients, G :== SvrgOracg(i). Further, let,
for Ay = A+a,
AT + av ~
= —-—— G,
A+ ) x

A ~ A ~ AT +av
G(z), vy =Proxy(v,Gy, M/a), Z4 = %,
+

1%

X



Then, for M = coL 54— AT . 6¢1 L34, it holds that

9gA

~ w . My .
E[A+[F(31) = F*]+ 5554 — 2]

M ~ 5
< A[F(%) — F*] + 7||v —2*||> + s D* E{[min{ M, M} — M|} } + c3Ay 67 + §A5§.

Proof. Since § is an unbiased oracle for g, so is G (Lemma . Therefore, we can apply Lemma
to obtain

—

~ w o My . ~ -
E[AL (@) = 4+ S50 [0 — 2| + A1 By (34, 0)] + 4By g4 (2,8)
N M c16> ~
<AF(Z) = F 1+ —|lv—z|?+ ——— E[Vara(Z.) + Vara(z
< AIPG) = F]+ Sl =P+ G BlVang(E2) + Varg(o)

+C3A+(Sf +C4]E{ miH{M+,M} — M +D2},

where M > ¢y L 74— is an arbitrary coefficient. Using Lemmas|19{and [28and Assumptlon@ we can
further bound

Varg (74 ) + Varg(z) = Varg (74, T) + Varg(z, ) < 2 Varg(74, x) + 3 Varg(z, 7)
< 2L§[2ﬁf’fﬁg(§;‘\+, x) + 35f,f,§(x’ )+ 5(5@].

2c1Lza
17(12, we thus obtain

Denoting « :=
M—caLy AL

—~

~ o My . ~ -
E[A4[F(31) = F7) 4+ 5584 — 2" |2 + A By (54, 2) | + ABy 1 5w, 7)
M —
< A[F(%) - F*]+ 7”@ — 2*|]® + c3 A4 05 + 5ady + ca E{[min{ M, M} — M|, D}
+2aE[B; 75T, 2)] + 3By 5 5(x, ).

Choosing now M = chf A T 6c1Lg T, we geta = i 3A (< L 3A4), which allows us to drop the

nonnegative 3 7 g( -) terms from both sides. The clalm now follows. O

Lemma 32 (Universal Triangle SVRG Epoch). Consider problem (1) under Assumptions|[I| 2] and|[6]
Let ,v € dom v be points, M > 0 and A, a > 0 be coefficients, N > 1 be an integer, and let

(T4, v4, M) = UniTriSvrgEpoch; ,(%,v, M, A, a, N; D),

as defined by Algorlthmﬁ Then, for Ay = A+ a and M = oLy 4 yn . Gcng “r» it holds that

E[A+N[F(i: ) — F* ]+M7Hv *HQ}

M _ 5
< AN[F(@) = F']+ 5 [v—a"|* + e D* E{ min{ My, M} — M) } +N(CSA+5f + §A5§) .

Proof. Each iteration k of the algorithm, when conditioned on vy, follows the construction from
Lemma(w1th v = Uk, M = Mg, A = A, a = ags1, Ay = Apy1, ¢ = xy, G = Gy,
Uy = Vg1, T4 = Tha1, G = GMH, M+ = Mj+1). Hence, we can write, after passing to full
expectations, for each k = O ,N—1,

* M *
B[4+ [F(wrs1) = F* + = o — 2]

- . M, . . —
< A[F(7) — F*] + E[Tkﬂvk — || + ca[min{ My 41, M} — My, D?| + 96,
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where § := c3 A4y + %Aég. Telescoping the above inequalities (using Lemma, we get

N
B[4, Y@ F+ 22 o — 2]
k=1

M, —

< AN[F(%) — F*] + 7°||v0 — 2*|]> + c4D* E{[min{ My, M} — Mo) } + N6.
The claim now follows from the convexity of F and our definitions # = Zy = & Zszl Tk,
’U+:UN,M+:MN,M0:M,’UOZ’U. O
Theorem 11. Let UniFastSvrg (Algorithm{) be applied to problem (1) under Assumptions|[l} 2]
and|6] and let N > 9. Then, for any t > to := [log, logs N1 — 1 (> 0), it holds that

~ 9[(c2ca + 5) L + 6c1c4Lg) D?
E[F - F*< 2 g
[F(@2)] = N(t —to+1)2

5
+ (est + 1)5f + §t5§.

To construct Ty, the algorithm needs to make O(Nt) queries to g and O(t) queries to g. Assuming
that the complexity of querying g is n times bigger than that of querying g and choosing N = ©(n),
we get the total stochastic-oracle complexity of O(nt).

Proof. By our definition, the algorithm iterates for ¢t > 0:
(Ze41, Vi1, Mey1) = UniTriSvrgEpochy, o o, (T4, v, My, Ay, a1, N3 D),
where A; and a; are deterministic coefficients satisfying the following equations:

Ay = Ay + apqa, a1 =\ Ay an
J— a2 af _
In particular, for any ¢ > 0, we have M, == coLy At:l +6c1L; Atl < oLy +6¢; Ly = M, and

hence [min{M; 1, M}} — M;] < [min{M; 1, M} — M,] (because, for any fixed a and b, the
function [min{a,-} — b]; is nondecreasing as the composition of two nondecreasing functions).
Applying now Lemma [32]and passing to full expectations, we therefore obtain, for any ¢ > 0,

) M .
E[Au NIF@i1) = F] + =55 o — 2|2
~ * Mt * (|12 . AT 2 5
< E[AtN[F(xt)—F [+ St lvi—a” [Pesfmin{ Mg, M=), D }+N<C3At+15f+§j4t5§).

Telescoping the above inequalities (using, in particular, Lemma ﬂ;S'[), we obtain, for any ¢t > 1,
~ * ~ * MO * (12
AtNE[F(J)t) —F ] S A()N[F(.I‘Q) - F ] + THUQ — X H
o t 5 t—1
+ ey E{ [min{M;, M} — Mo, D2} + N<C35f DAty Ai)
i=1 i=0

< AgN[F (&) — F*] + c4MD? + NSy(c365 + 265),

where, for the last inequality, we have used the fact that My = 0 and denoted S; := 22:1 A;. Thus,
forany ¢ > 1,

c‘dzD?) + % (c35f T g(sg).

At the same time, according to , As1 — Ay = Ay forany ¢ > 0. Hence, by Lemma(and our
assumption on Ag), we can estimate 4; > & (t—to+ 1) forany ¢ > to := [log, logs Aio] —-1(>0).

Further, since the sequence A; is increasing, we can estimate S; = 22:1 A; < tA;, sothat tht <t.

BIF(@1)] - F* < o (AolF(30) - F'] +

Substituting these bounds into the above display and using our formula for A, we obtain, for any
t > 1o, _
E[F(%)] — F* < pe[F(Z0) — F* + caM D?| + t(c36; + 255),
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where p; = m < 1. By our choice of Zo, it holds that F(Z¢) — F* < $L;D? + §; (see

Lemma. Denoting L := %Lf +caM = (coeq + %)Lf + 6c1caLy, we get
E[F(&)] — F* < pi(LD? + 6y) + t(c36s + 265) < prLD? + (est + 1)3y + Std5,
which is exactly the claimed convergence rate bound.

Let us now estimate the number of oracle queries. At the beginning, the algorithm makes 1 query
to g to compute Z(. All other queries to the oracles are then done, at each iteration ¢, only inside the
call to UniTriSvrgEpoch (Algorithm [5). Each such a call needs only one query to g to construct

the SVRG oracle G (by precomputing g(Z)), and O(N) queries to g (which implements each query
to ). Summing up, we get, after ¢ iterations, the total number of O(Nt) queries to g and O(t)

queries to g.

Helper Lemmas

Lemma 33 (c.f. Lemma 1.1 in [23])). Let A; be a positive sequence such that
Appr — Ay > /Ay

forallt > 0, where v > 0, and let Ay < %7. Then, for any t > 0, we have

At > 7(%)1/2 5 lft <t0a
T\ 3t —to+1)%, ift >,

where to == [log, logg 2-1 —1 (= 0).

Proof. By replacing A; with A}, = A;/~, we can assume w.l.0.g. that y = 1.
For any t > 0, we have A;;1 > /A, and hence

A > AV

In particular, for 4 (as defined in the statement), we get ¢y > log, log, Aio —1,502% > Zlog, Aio,

and hence
1

9

Ato > Ag/ log3(1/Ao) _ (3—logg(l/AU))2/1083(1/Ao) —3-2_

(recall that Ag < % <.

On the other hand, for any ¢ > t(, we have

/ - VA
\/At+1_m2 At+m—m—m+m
1

B 1

= > J—
1 “V1+3+1 3
«/Hm“ +o+

where we have used the fact that 4, > A, > % since A; is monotonically increasing. Telescoping

these inequalities and rearranging, we get, for any ¢ > ¢,

1 2 1 1\ 1
A > St =t A >(Z(t—t ) ==t —tg+1)2 O
2 (Fe-w+ VL) = (G-t g) =gle—to+)

Lemma 34. Consider problem (1) under Assumptions[l|and 2] Let x € domv, and let . =
Proxy(z,g(x),0). Then, F(xy) — F* < 1Ly D? + b5.

Proof. From the first-order optimality condition for the point 2 (see Lemma([I7), it follows that

(@), 2" —zy) + (%) = P(2y).
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Combining the above inequality first with f(z,) < f(z) + (g(z), x4 — x) + %H:@ —z||? + &
and then with f(x) + (g(z),2* — ) < f(2*) (which are both due to our Assumption , we obtain

F(ey) = f(z2) +9(s) < (o) +{g(0), 2 — ) + 0()
f<><<ma:—m+w<>+f§m+—ﬂﬁ+@
<P Hfoy —al? 155,

It remains to bound ||z4 — z|| < D. O

F Omitted Proofs for Section[7]

We start with the observation that for our specific example all our main assumptions are satisfied.
Remark 35. Under the setting from Example|12] Assumptions |§| and|§| are satisfied with f = f,
g(z) = Vf(x) == E¢[V fe(z)], any 0y, 05 > 0 and

L= || @l %=Hﬁf%JmmmmMa

Further, the oracle gj, satisfies Assumptionwith O = SUD,cdomy Varg, (z) = 302, and o2 b=
Varg, (z*) = %af.

Proof. For b = 1, this follows from Theorem |13|and Lemma [16|and our definitions of ¢ and o..
The general case b > 1 follows from the fact that the standard mini-batching of size b reduces each of
the variances Varg, (-) and Varg, (-, -) in b times. O

The following auxiliary result will be useful throughout this section:
Lemma 36. Let a,b,p > 0 be real. Then,
. [a 2 (b Za
Ifn>1(r)l{t77 +bt} = (p+1)ap+1 (p) .

Proof. The expression inside the min is a convex function in ¢ > 0. Differentiating and setting its
derivative to zero, we see that the minimum is attained at ¢, = (%) »+1, Hence,

b\ 7 ap 2 (b 7T
rgg{ +bt} ((lp) +b(b> = (p+1)ar (p) ) O

F.1 Uniformly Bounded Variance

Corollary 37. Consider problem (1)) under the setting from Example@and also under Assumption|2]
Let Algorithm|I| be applied to this problem with the oracle § = G, and initial coefficient My = 0.
Then, for the point Xy generated by the algorithm, we have

+ v
(2c2¢4) 2 Cs ~ Hy(v)D'* + 90Dy ) 25

E[F(zy)] — F* < .
[F@w)] = 1+v N bN

To reach E[F(Zn)] — F* < e for any € > 0, it suffices to make O([ V)] v D? + ”b[; ) queries
to /.db-

Proof. Denote for brevity H; := H(v). Taking into account Remark and applying Theorem
we get, for any 05 > 0,

1—v

_2
CQC4Hf1+V l)2 1—v 1+v
Fy =E|[F(x —F* < )
N [ (LEN)] < N |:2(1+l/)5f:| +c3 f+0'N7
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where oy = 203D 26104 =20D 20104 . Minimizing the right-hand side in §; (using Lemma

|4

> for which p+1= H—y), we obtain

with p = i;

1+v 1—v

2 1—v
2 (ecaH VD[ 1—p |59\ 72 (140 \ 2
Frn <
N—1+y( N [2(1+y)} > (1uc3> ton

v 1—v
(2¢9¢4) = ¢y® HyD'Ytv N
= ON.
1+l/ Nl;,/ N

This proves the claimed convergence rate, and the oracle complexity bound easily follows since each
iteration of the algorithm requires only 1 query to gp. [

Corollary 38. Consider problem (1)) under the setting from Example[I2)and also under Assumption|2]
Let Algorithm 2| be applied to this problem with the oracle § = Gy. Then, for any k > 1, we have

22 (cyey) 3 (L) 7 Hy(v) DMV 2104
1+v P 3bk

E[F(xg)] — F* <

14
To reach E[F (z1,)] — F* < € for any € > 0, it suffices to make O([M]% + 0232) queries
to §b.

Proof. Let k > 1 be arbitrary and denote for brevity Hy := H(v). Taking into account Remark
and applying TheoremE], we get, for any 67 > 0,

1—v

2
< 4CQC4Hfl+V D2 1—v T+v
= k(k+1) [2(1+u)5f]

By = E[F(2x)] —

n %(k’ +2)8; + o,

3bk
and estimating k + 2 g 2(k + 1), we obtain

where o, == 403D 2”“‘ = 40D/ %4 Minimizing the right-hand side in s (using Lemma i

i — U v — UV

2 4CzC4Hf1+”D2 -y T\ 2 1+v2e3(k+1) =R N

E— ag
1+v\ k(k+1) [2(0+v) 1-v 3 F

 2(descy) F(%)F0 HpDMY

1+v ks (k+ 1)

Ey,

This proves the claimed convergence rate, and the oracle complexity bound easily follows since each
iteration of the algorithm requires only O(1) queries to gp. O

Remark 39. The efficiency guarantees given by Corollaries 37 and [38] are exactly the same as those
from [49]], up to absolute constants.

F.2 TImplicit Variance Reduction

Corollary 40. Consider problem (1)) under the setting from Example[I2|and also under Assumption[2)
Let Algorithm|[I| be applied to this problem with the oracle § = Gy, and initial coefficient My = 0.
Then, for the point N generated by the algorithm, we have

et * Cf(V)Hf(V)D1+” C§(V) max( )DlJrV 6C164
E[F _Fr< 20, D ,
[ (IN)] = N1J2ru + (bN) Tv + 20 N
o (202(34) 145,,0151» B _ (24c4)1+1/ 4 121/
where cf(v) = =3 —=— = O(1) and c3(v) = o O(1). To reach

IE[F(JEN)] F* < e forany e > 0, it suffices to make O (| f(y)] v D? + [%m] v D2 + ;52)
queries 1o Gp.
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Proof. Denote for brevity Fy = E[F(Zn)] — F*, Hy = Hy(v) and Hpax = Hmax(v). Taking
into account Remark@] and applying Theorem we get, for any 05, d5 > 0,

_2 1—v _2
. cocd Hi " D*[ 11—y 17 12¢,Hiik D2 1-vw
M= 2( (

I+v 4
N 11093, N y)(sg} T es0p + 30 +ow,

where oy = 20, , D4/ 844 = 20, D/ %44 Minimizing the right-hand side in 67 and J; (using
Lemma [36]twice), we get

2 1—v
P < 2 6204Hf1+”D2 1—v (1+v)es\ =
N=110 N 2(1+v) T1-v

L2 120, HEZ D2 1— v (1+v)g %+
1+v bN 1+y 1—v IN

-
 (2e004) ey HpDYY (24c4) 5 (3)F Hpay DMV

1+ v N 1+ov (bN)H—TU +oN
This proves the claimed convergence rate, and the oracle complexity bound easily follows since each
iteration of the algorithm requires only 1 query to gp. O

Corollary 41. Consider problem (1)) under the setting from Example[I2|and also under Assumption[2)
Let Algorithm 2] be applied to this problem with the oracle § = Gy. Then, for any k > 1, we have

¢ (V) Hy(v) DI+ lt) o LA PoTy

(bk) = bk

E[F ()] — F* <

> 1430

k=
14v 1—v

1tv 1y
where c¢(v) = (8czca) i+£%c3) = = 0(1) and ¢z (v) = (486164)1+2V(%) ~ = O(1). To reach

E[F(zk)] — F* < € for any € > 0, it suffices to make O([M] T 4 %[H‘%"(V)]H%DQ +
aggz ) queries to g

Proof. Let k > 1 be arbitrary and denote for brevity Fy, := E[F(x})] — F*, Hy == H¢(v) and
Hyax = Huax(v). Taking into account Remark [35] E and applying Theorem we get, for any
dr,05 > 0,

1—v 2 1—v

2
deges Hy " D? 11— 177 2deyeyHadi D*[ 1—v |70
k(k+1) (1+v)d; bk 2(1+v)d;

[
C3 4

where oy, == 40, D4/ 26164 =4o,D 26164 . Minimizing the right-hand side in J; and 5 (using
Lemmatwice) and estlmatlng Lk + 2) < 2(k + 1), we obtain

2 — Vv v —
poo 2 (lecTDR 1oy VENE (4B
S\ k41D [20+0) 1—v

= 1-v 14y =2
2 decics HEED?*[ 1—v 1\ 2 /(1+ )3\ 2
+ ) R I

1+v bk 2(14+v 1—-v
(8cacy) " (563)1% H;D'tv (48c1¢4) 2" (%) 7 Hpax D' n
= 1ty itv Ok-
1+v kst (k+ 1) 1+v (bk) 5"
This proves the claimed convergence rate, and the oracle complexity bound easily follows since each
iteration of the algorithm requires only O(1) queries to gp. O

Remark 42. In the proof of Corollary it was important that 6y and J; were allowed to be two
separate constants. If we were not paying attention to such a separation and simply used the same ¢

. 14v
everywhere, we would end up with the much weaker rate of O(%) for the second term.
b2 k¥
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F.3 Explicit Variance Reduction with SVRG

Corollary 43. Consider problem (1)) under the setting from Example[I2)and also under Assumptton@
Let UniSvrg (as defined by Algorzthml) B) be applied to this problem with the stochastic oracle § = g
and the full-gradient oracle g = V f. Then, for any t > 1,

(VH()D  c5(0) s (v) D

B[F(7,)] — F* < <L e e
[F(24)] 25 25

i

JEDN e
where cy(v) = [2(C2C4+1)]1+2V (2c3) 2 _ 0(1), cz(v) = i = 0(1), ez =

max{cs, 1}. To get E[F(Z;)]|—F* < ¢, itsuﬁ?ces to make O(N,, (¢€)) queries to g, and O(log . N, (¢))
queries to V f, where N, (¢) = [Hf( )} D2+ ¢ m:(u)] v D2. Assuming that the complexity of

querying gy is ny, times bigger than that of querying V f, we get the total stochastic-oracle complexity
of O(N,(€) + nylog, Ny (e)).

Proof. Lett > 1 be arbitrary and denote for brevity F; := E[F (%)) — F*, H f = Hy(v) and
Hppax = Hmax(v). Taking into account Remark E and applying Theorem L we get, for any
) fs (5@ > 0,

2 —v 2
(coca + 1)Hf1+” D? { 1—v } = 48¢ic  Hidi D? { 1—v
t <
2( (

2 1+ v)d; b2! V)04

Minimizing the right-hand side in d 7, 65 (using Lemma@twice), we obtain

T 8

1—v

_2 —v v
7 o< 2 ((c2ca + H;7" D[ 1y o\ (1+wv)2e3\
E ot 2(1+v) 1—v

2 1-v  14v g 1=z
n 2 A8ciea HuhiD?*[ 1—v 17\ 2 /(1 + )3\ 2
1+v b2t 2(1+v) 1—v

CfoDlJFV C_AHmaxDlJrV

(2t) 1+l/ (th) 1+1/ ?
2cacat1)] 5 (265) 20 (96c1ca) 25 (8) 12"
where ¢ = [2(e2¢s )]1 SR and ¢ = gt . This proves the claimed conver-
gence rate.

Let us now estimate the oracle complexity. From the already proved convergence rate bound, we
see that F; < e once 2¢ > O( )N (e), where N (€) = [Hf]1+ D? + b[H““‘X}lJrl D2, At the same

time, accordmg to Theorem | to generate the corresponding 74, the algorithm needs to make O(2")
queries to g, and O(t) queries to Vf. Combining these two facts together, we get the claimed
O(N (€)) queries to g, and O(log, N(€) + 1) = O(log, N(e)) queries to V f. O

Corollary 44. Consider problem (1)) under the setting from Example[I2)and also under Assumptwn@
Let UniFastSvrg (Algorithm E|) be applied to this problem with the stochastic oracle § = gy,
the full-gradient oracle § = V f, and the epoch length N > 9. Then, for any t > 2t,, where
to == [logylogs N1 — 1 (> 0), it holds that

E[F(3,)] — F* < cr(VH()DY  c5(v) Hyax (v) DI

TN (1) N) (1)

1= NI~ AP i 2
where c(v) = Pt T8 o) g = Wl FOT _ o), g =
max{cs, 1}. To get B[F (Z;)] — F* < ¢, it suffices to make O(NT, ( )) queries to g, and O(T, (¢))
queries to NV f, where T, (€) :== [%] T 4 [H'(";’:[()#] 37 +log, logg N. Assuming that

the complexity of querying gy is ny, times bigger than that of querying ¥V f and choosing N = ©(ny),

nyHy(v)D't 2 1Y Hunax () D' 1 2
(2= + [P T+

we get the total stochastic-oracle complexity of O(
ny log log nb)
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Proof. Lett > 2t be arbitrary, Fy := E[F(Z)] — F*, Hf := H¢(V), Hmax = Hmax(v). Taking
into account Remark@] and applying Theorem@, we get, for any o5, 55 > 0,

-

—v

_2 —v _2
9(cacq + %)HfHV D? 1—v = 54cicq Hnbs D? 1—v v
N(t—tog+1)2 2(14v)oy bN(t —to+1)2 [2(1+v)d;

t =
5
+ (est + 1)o7 + gtég.

Since t > 2t(, we can estimate t — g + 1 = %t + %t —to+1> %(t + 1), which gives us

2 1—v _2 1—v
P < 36(coca + 5)H; "D 11—y 177 206cicaHai D2[ 1—v 177
b= N(t+1)2 2(1+v)d; DN(t+1)2 | 2(1 + )5,
)
+c3(t+1)0f + §(t +1)d;.
Minimizing the right-hand side in 0y, 65 (using Lemma 36| twice), we obtain
14y 1-v

2 —v
L2 (3lect HHITDAT 1y TENF (14 nat+ 1)
K N(t+1)2 2(1+v) 1—v

1—v 14+v 1—v
2

1+u) ((HZ)_?’(jH)) >

_2

n 2 2161, HAFZD? [ 1—v
1+v bN(t+1)2 2(1+v)

CfoDlJrV CgHmaXDl—H/

1tv 1430 1tv 1+3v

Nz ({t+1)—=2  (bN)=z (t+1)7=

[72( +1)]1§V’1;V (432 )1J£u(5)1;u

CcaC 5 C. ci1cC. X . .

where Cr == 20472 3 and ¢c; == 1 3 . This proves the claimed conver-
1+v g 14+v

gence rate.

Let us now estimate the number of oracle queries. In view of the above convergence rate bound,
we have F; < eonce t > T(e) = Ti(e) + 2ty = O(Ty(e) + loglog N), where Ty(e) =
H;DYtv ;_2 HmaxD1+u 2_ T Y Ditv 2 HmaxD1+u 2
[N({+1/)/26] 1+3v 4 [‘(bN)(Hu)/ze] sy = Nfé—;?:); , where T2(€) = [ L P }IHV + [ p(1+1)/2¢ ]Hd”
does not depend on N. Combining this with Theorem [ T]saying that, to generate the correspond-
ing Z;, the algorithm needs to make O(Nt) queries to g;, and O(t) queries to V f, we get the claimed

O(NT(e)) queries to g, and O(T'(¢)) queries to V f.

Assuming now that the complexity of querying V f is n;, times bigger than that of querying g,, we

get the total stochastic-oracle complexity of O((N + n)T'(€)) = O((N + ny) [1\[(152)7%&,) +

loglog N ] ) Ignoring the doubly-logarithmic term, we get the expression of the form (N + ny,) ﬁ =
N7+ 2 with g := 2 € [0, 1], whose minimal value is achieved at N = ©(n,). Substituting

1+3v
this value into our complexity bound, we get the stochastic-oracle complexity of O (nb ( % +
y,

_2v
loglogny)) = O(ny ™ Ta(e) + ny loglogny). O

G Additional Discussion of Related Work

Inexact Oracle and Approximate Smoothness. Devolder, Glineur, and Nesterov [15]] introduced
the notion of the inexact first-order oracle and analyzed the behaviour of several first-order methods
for smooth convex optimization using such an oracle. Although their work was motivated by the
desire to present the general definition of an inexact oracle covering many different applications,
it was also observed that this oracle model is suitable for studying weakly smooth problems. This
insight was later used in [45] to develop universal gradient methods for Holder smooth problems. First
stochastic gradient methods for approximately smooth functions with inexact oracle were proposed
in [13]]. These algorithms however are not adaptive and require the knowledge of problem-dependent
constants. For more details on the subject, see [|14].
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Figure 3: Comparison of various methods on the logistic regression problem with real-world data.

Parameter-Free Methods. Parameter-free algorithms originating from the literature on online
learning [9} |10} 261 140L (47, |55]] is another popular type of adaptive methods. They are usually endowed
with mechanisms helping achieving efficiency bounds that are almost insensitive (typically, with
logarithmic dependency) to the error of estimating certain problem parameters, such as the diameter
of the feasible set |6} |11} 25,31} 41].

Variance Reduction. Variance reduction techniques encompass a set of strategies that enhance
the convergence speed of SGD when multiple passes are possible over the training dataset. Various
researchers simultaneously introduced methods to reduce variance around the same period [27, |38,
50,521 |58,|60]. The consideration of mini-batching in the context of these methods is documented
in [3[], while, in [20], it is shown that the convergence rate is influenced by both the average and the
maximum smoothness of individual components. For further details, see [21]] and the references
therein.

Sometimes, it is even not necessary to use an explicit variance reduction mechanism. SGD may
converge fast in the so-called over-parameterized regime, or when the stochastic noise is small at the
optimal solution [8} 35,37, 43| 44} |51]]. In this work, we call this effect implicit variance reduction.
Such a situation is also considered in [19, |54] and, more recently, Woodworth and Srebro [59]
proposed an accelerated SGD algorithm for this setting, under the assumption that the smoothness
and noise constants are known.

H Additional Experiments

H.1 Logistic Regression with Real-World Data

In this section, we present experiments on the logistic regression problem:

f*= min {f(x) = %Zlog(l +e—bi<ai7z>)}’
i=1

llzl| <R

where a; € R? and b; € {—1, 1} are features and labels taken from diverse real-world datasets from
LIBSVM [7]]: mushrooms (d < n), w8a (d < n), leu (d > n) and colon-cancer (d > n). The
dataset leu is quite special because it satisfies the so-called interpolation condition, meaning that the
variance at the optimum is zero. We fix R = 1 and use the mini-batch size of b = 32 for the first two
datasets and b = 1 for the last two.

Figure 3] shows the results of our experiments. The solid lines and the shaded area for each method
represent, respectively, the mean and the region between the minimum and the maximum values after
three independent runs of the algorithm. We see that, on the leu dataset, UniSgd and UniFastSgd
converge as fast as the best non-accelerated and accelerated SVRG methods, respectively, which
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Figure 4: Comparison of our methods for different stepsize update rules on the polyhedron feasibility
problem.

confirms our theory on implicit variance reduction. Otherwise, these two SGD methods are typically
much slower than the SVRG algorithms. Our UniSvrg method performs consistently better than
AdaSVRG across all the datasets. Overall, all adaptive accelerated SVRG methods demonstrate
comparable performance for solving these smooth problems.

H.2 Comparison between Stepsize Update Rules

In this section, we compare the AdaGrad stepsize rule (3) with the other rule @) for UniSgd
(Algorithm[T)), UniFastSgd (Algorithm 2), UniSvrg (Algorithm 3)), and UniFastSvrg (Algorithm ).
We consider the polyhedron feasibility and logistic regression problems under the same setups as in
Section[8]and Appendix [H.1]

The results are shown in Figs.[d]and [5] where we plot the function residual and the stepsize (inverse
of M) against stochastic oracle calls. We see that the two stepsize rules work very similarly across
all test cases, which was not evident from the theory alone.

37



q=1 q=13 q=16 q=2
100 100 10!
100
102 1072 10°
107
10-4 1074
107 102
10-6 10-6
o 4 & 1072 & 107
z 10 x 107 z X
s F e 0
0710 1071 102
10-3
10712 10712 -4
o 10 1076
-1 1024
10 10-5 1077
0 10000 20000 30000 40000 50000 0 20000 40000 60000 80000 [ 20000 40000 60000 0 20000 40000 60000 80000 100000
number of stochastic oracle calls number of stochastic oracle calls number of stochastic oracle calls number of stochastic oracle calls
10! X
10 101
-
e 107t
0
g v L g 1 g g
a a a a
3z 2 g 2
@ & @ @
10-2 ~
107 10t 10
0 10000 20000 30000 40000 50000 4 20000 40000 60000 80000 4 20000 40000 60000 0 20000 40000 60000 80000 100000
number of stochastic oracle calls number of stochastic oracle calls number of stochastic oracle calls number of stochastic oracle calls
—k— UniSgd-AdaGrad  —p— UniSgd-Other ¥~ UniSvrg-AdaGrad ~ —- UniSvrg-Other
q=1 q=13 q=16 q=2
100 100
107 107 -1
10 10
2 -2
1072 10 102 10
. . 107 . L w7
Z 107 bl 10 & 1077 &
& & E 2107
. 1074 10-4
10 105
107 10°
10 106
- 10-6
107 107
10°°
0 10000 20000 30000 40000 50000 0 50000 100000 150000 200000 250000 0 25000 50000 75000 100000125000150000 0 5000010000250002000025000800000
number of stochastic oracle calls number of stochastic oracle calls number of stochastic oracle calls number of stochastic oracle calls
10!
B — e —— U pe———— 1071
10° 0 l
10 { 102
2
107! 101 10
102
80 g 102 & &
g g g gy
o 1072 @107 A 1073 & |
10
10 |
1074
107 10-6
1074
-5
10 1076 1077
0 10000 20000 30000 40000 50000 0 50000 100000 150000 200000 250000 0 25000 50000 75000 100000125000L50000 0 5000010000050002000025000800000
number of stochastic oracle calls number of stochastic oracle calls number of stochastic oracle calls number of stochastic oracle calls
~@- UnifastSgd-AdaGrad UnifastSgd-Other  —&— UniFastSvrg-AdaGrad > UniFastSvrg-Other

Figure 5: Comparison of our methods for different stepsize update rules on the logistic regression
problem with real-world data.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]
Justification: We provide the pseudocode and the hyperparameter settings for all algorithms.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide the GitHub link to our code.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Everything is carefully described in Section [§]and Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Different runs of the same algorithm for the same hyperparameter settings
result in almost the same performance in our experiments. Therefore, we plot only one
curve for each method, focusing more on highlighting the (more significant) differences
between various methods.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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10.

Answer:

Justification: This is not important for the results we present since the algorithms are
compared in terms of oracle calls and not the actual time of execution. All experiments are
run on a standard MacBook Pro laptop and do not require a lot of computational power.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This is a theory paper.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: This is a theory paper. We do not expect immediate societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Does not apply.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the LIBSVM dataset.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any new assets in this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

15.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No such experiments or research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Does not apply.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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