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Abstract

We present adaptive gradient methods (both basic and accelerated) for solving
convex composite optimization problems in which the main part is approximately
smooth (a.k.a. (δ, L)-smooth) and can be accessed only via a (potentially biased)
stochastic gradient oracle. This setting covers many interesting examples including
Hölder smooth problems and various inexact computations of the stochastic gradi-
ent. Our methods use AdaGrad stepsizes and are adaptive in the sense that they do
not require knowing any problem-dependent constants except an estimate of the
diameter of the feasible set but nevertheless achieve the best possible convergence
rates as if they knew the corresponding constants. We demonstrate that AdaGrad
stepsizes work in a variety of situations by proving, in a unified manner, three
types of new results. First, we establish efficiency guarantees for our methods in
the classical setting where the oracle’s variance is uniformly bounded. We then
show that, under more refined assumptions on the variance, the same methods
without any modifications enjoy implicit variance reduction properties allowing us
to express their complexity estimates in terms of the variance only at the minimizer.
Finally, we show how to incorporate explicit SVRG-type variance reduction into
our methods and obtain even faster algorithms. In all three cases, we present both
basic and accelerated algorithms achieving state-of-the-art complexity bounds. As
a direct corollary of our results, we obtain universal stochastic gradient methods
for Hölder smooth problems which can be used in all situations.

1 Introduction
Motivation. Gradient methods are among the most popular and efficient optimization algorithms
for solving machine learning problems. To achieve the best convergence speed for these algorithms,
their stepsizes needs to be chosen properly. While there exist various theoretical recommendations,
dictated by the convergence analysis, on how to select stepsizes based on various problem-dependent
parameters, they are usually impractical because the corresponding constants may be unknown or their
worst-case estimates might be too pessimistic. Furthermore, every applied problem usually belongs
to multiple problem classes at the same time, and it is not always evident in advance which of them
better suits the concrete problem instance one works with. For classical optimization algorithms, this
problem is typically resolved by using a line search. This is a simple yet powerful mechanism which
automatically chooses the best stepsize by checking at each iteration a certain condition involving the
objective value, its gradient, etc.

However, the line-search approach is usually unsuitable for problems of stochastic optimization,
where gradients are observed with random noise (unless some extra assumptions are made, see [57]).
For these problems, it is common instead to apply so-called adaptive methods which set up their

∗CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



stepsizes by simply accumulating on-the-fly certain information about observed stochastic gradients.
The first such an algorithm, AdaGrad [17, 39], was obtained from theoretical considerations but
quickly inspired several other heuristic methods like RMSProp [56] and Adam [32] that are now at
the forefront of training machine learning models.

Excellent practical performance of adaptive methods on various applied problems naturally sparked a
lot of theoretical interest in these algorithms. An important observation was done by Levy, Yurtsever,
and Cevher [34] who showed that AdaGrad possesses a certain universality property, in the sense
that it works for several problem classes simultaneously. Specifically, they showed that AdaGrad
converges both for nonsmooth problems with bounded gradient and also for smooth problems with
Lipschitz gradient, without needing to know neither the corresponding Lipschitz constants, nor
the oracle’s variance but enjoying the rates which are characteristic for algorithms which have the
knowledge of these constants. They also presented an accelerated version of AdaGrad with similar
properties. An independent version of the accelerated AdaGrad including diagonal scaling was
proposed by Deng, Cheng, and Lan [12]. Further improvements and generalization of these ideas
were considered in [18, 28, 30].

Nonsmooth and smooth problems are the extremes of the more general Hölder class of problems.
The fact that AdaGrad methods simultaneously work for these two extreme cases does not seem to be
a coincidence and suggests that these algorithms should work more generally for any problem with
intermediate level of smoothness. Some further confirmations to this were recently provided in [48]
although in a rather restricted setting of deterministic problems and only for the basic AdaGrad
method. The stochastic case and acceleration were constituting an open problem which was recently
resolved in [49] for a slightly modified AdaGrad stepsize (see (4)).

All the previously discussed results were proved only for the classical stochastic optimization setting
where the variance of stochastic gradients is assumed to be uniformly bounded. In a recent work,
Attia and Koren [2] showed that the basic AdaGrad method for smooth problems works under the
more general assumption when the variance is bounded by a constant plus a multiple of the squared
gradient norm. On a related note, it was also shown recently that AdaGrad stepsizes can be used inside
gradient methods with SVRG-type variance-reduction. The first such an algorithm was proposed
in [16]. The accelerated SVRG method enjoying optimal worst-case oracle complexity for smooth
finite-sum optimization problems was later presented in [36].

Contributions. In this work, we further extend the results mentioned above by demonstrating that
AdaGrad stepsizes are even more universal than was shown previously in the literature. Specifically,
we consider the composite optimization problem where the main part is approximately smooth
(a.k.a. (δ, L)-smooth) and can be accessed only via a (potentially biased) stochastic gradient oracle.
This setting is more general than typically considered in the literature on adaptive methods and
covers many interesting examples, including smooth, nonsmooth and, more generally, Hölder smooth
problems, problems in which the objective function is given itself as another optimization problem
whose solution can be computed only approximately, etc.

Our contributions can be summarized as follows:

1. We start, in Section 3, with identifying the key property of AdaGrad stepsizes, which allows us to
apply these stepsizes, in a unified manner, in a variety of situations we consider later. We present
our two mains algorithms, UniSgd and UniFastSgd which are the classical stochastic gradient
method (SGD) and its accelerated version, respectively, equipped with AdaGrad stepsizes.

2. We then establish, in Section 4, efficiency guarantees for these methods in the classical setting
where the oracle’s variance is assumed to be uniformly bounded.

3. In Section 5, we complement these results by showing that, under additional assumptions that
the variance is itself approximately smooth w.r.t. the objective function, the same UniSgd and
UniFastSgd without any modifications enjoy implicit variance reduction properties allowing us
to express their complexity estimates in terms of the variance only at the minimizer.

4. Under the additional assumption that one can periodically compute the full (inexact) gradient of
the objective function, we show, in Section 6, how to incorporate explicit SVRG-type variance
reduction into our methods, obtaining new UniSvrg and UniFastSvrg algorithms which enjoy
even faster convergence rates by completely eliminating the variance.

Our results are summarized in Table 1 (in the BigO-notation). In all the situations, we present both
basic and accelerated algorithms whose only essential parameter is an estimate D of the diameter
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Table 1: Summary of main results for solving problem (1) with our methods. “Convergence rate” is expressed in
terms of the expected function residual at iteration k (or t, depending on the method). “SO complexity” denotes
the cumulative stochastic-oracle complexity of the method since its start and up to iteration k (or t), which is
defined as the number of queries to the stochastic oracle pg; for SVRG methods, we assume that querying the
(inexact) full-gradient oracle sg is n times more expensive than pg, and define the SO complexity as N

pg + nN
sg ,

where N
pg and N

sg are the number of queries to pg and sg, respectively. The second and third columns should be
understood in terms of the BigO-notation which we omit for brevity.

Method Convergence rate SO complexity Assumptions Reference

UniSgd (Alg. 1)
LfD2

k + σD√
k

+ δf k
1, 2, 3 Thm. 4

(Lf+L
pg)D2

k + σ∗D√
k

+ δf + δ
pg 1, 2, 6 Thm. 7

UniFastSgd (Alg. 2)
LfD2

k2 + σD√
k

+ kδf k
1, 2, 3 Thm. 5

LfD2

k2 +
L

pgD2

k + σ∗D√
k

+ kδf + δ
pg 1, 2, 6 Thm. 8

UniSvrg (Alg. 3)
(Lf+L

pg)D2

2t
+ δf + δ

pg 2t + n log t 1, 2, 6, 9 Thm. 10

UniFastSvrg (Alg. 4)
(Lf+L

pg)D2

n(t−log log n)2
+ t(δf + δ

pg) nt 1, 2, 6 Thm. 11

of the feasible set; the methods automatically adapt to all other problem-dependent constants. In
a number of special cases, our algorithms achieve known state-of-the-art complexity bounds, but
not restricted to those special cases. In Section 7, we illustrate the significance of our results by
demonstrating that complexities for our methods on stochastic optimization problems with Hölder
smooth components can be obtained as simple corollaries from our main results.

2 Preliminaries

Notation. We work in the space Rd equipped with the standard inner product ⟨·, ·⟩ and a certain
Euclidean norm: ∥x∥ := ⟨Bx, x⟩1/2, where B is a fixed positive definite matrix. The dual norm is
defined in the standard way: ∥s∥∗ := max∥x∥=1⟨s, x⟩ = ⟨s,B−1s⟩1/2.

For a convex function ψ : Rd → R ∪ {+∞}, its (effective) domain is the following set: domψ :=
{x ∈ Rd : ψ(x) < +∞}. By ∂ψ(x), we denote the subdifferential of ψ at a point x ∈ domψ; the
specific subgradients are typically denoted by ∇ψ(x).

A convex function f : Rd → R is called (ν,H)-Hölder smooth for some ν ∈ [0, 1] and H ≥ 0 iff
∥∇f(x) − ∇f(y)∥∗ ≤ H∥x − y∥ν for all x, y ∈ Rd and all ∇f(x) ∈ ∂f(x), ∇f(y) ∈ ∂f(y).
Apart from the special case of ν = 0, such a function f is differentiable at every point, i.e., ∂f(x) is
a singleton. A (1, L)-Hölder smooth function is usually called L-smooth.

For a convex function ψ : Rd → R∪{+∞}, point x ∈ Rd, vector g ∈ Rd, and coefficientM ≥ 0, by
Proxψ(x, g,M) := argminy∈domψ{⟨g, y⟩+ψ(y)+ M

2 ∥y−x∥2}, we denote the proximal mapping.
When M = 0, we allow the solution to be chosen arbitrarily.

For a convex function f : Rd → R, points x, y ∈ Rd and ∇f(x) ∈ ∂f(x), we denote the Bregman
distance by β∇f(x)

f (x, y) := f(y)− f(x)− ⟨∇f(x), y − x⟩ (≥ 0). When the specific subgradient
∇f(x) is clear from the context, we use the simplified notation βf (x, y).

The positive part of t ∈ R is [t]+ := max{t, 0}. For τ > 0, we also use log+ τ := max{1, log τ}.

Problem Formulation. In this paper, we consider the composite optimization problem

F ∗ := min
x∈domψ

[
F (x) := f(x) + ψ(x)

]
, (1)

where f : Rd → R is a convex function, and ψ : Rd → R∪{+∞} is a proper closed convex function
which is assumed to be sufficiently simple in the sense that the proximal mapping Proxψ can be
easily computed. We assume that this problem has a solution which we denote by x∗.

To quantify the smoothness level of the objective function, we use the following assumption:
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Algorithm 1 (sxN , xN ,MN ) ∼= UniSgd
pg,ψ(x0,M0, N ;D)

Input: Oracle pg, comp. part ψ, point x0 ∈ domψ, coefficient M0, iteration limit N , diameter D.
1: g0 ∼= pg(x0).
2: for k = 0, . . . , N − 1 do
3: xk+1 = Proxψ(xk, gk,Mk), gk+1

∼= pg(xk+1).
4: Mk+1 =M+(Mk, D

2, xk, xk+1, gk, gk+1) ▷ e.g.,
(3)
=

√
M2

k + 1
D2 ∥gk+1 − gk∥2

∗.

5: return (sxN , xN ,MN ), where sxN := 1
N

∑N
i=1 xi.

Assumption 1. The function f in problem (1) is approximately smooth: there exist constants
Lf , δf ≥ 0 and sf : Rd → R, sg : Rd → Rd such that, for any x, y ∈ Rd, βf, sf,sg(x, y) := f(y) −
sf(x)− ⟨sg(x), y − x⟩ satisfies the following inequality: 0 ≤ βf, sf,sg(x, y) ≤

Lf

2 ∥x− y∥2 + δf .

Assumption 1 is well-known in the literature under the name (δ, L)-oracle and was originally
introduced in [15]. It covers many interesting examples. For instance, if f is L-smooth, then
Assumption 1 is satisfied with sf = f , sg = ∇f , δf = 0 and Lf = L. More generally, if the function f
is (ν,Hf (ν))-Hölder smooth, then Assumption 1 is satisfied with sf = f , sg = ∇f (arbitrary selection
of subgradients), any δf > 0 and Lf := [ 1−ν

2(1+ν)δf
]
1−ν
1+ν [Hf (ν)]

2
1+ν (see Theorem 13). If f can be

uniformly approximated by anL-smooth function ϕ, i.e., ϕ(x) ≤ f(x) ≤ ϕ(x)+δ, then Assumption 1
is satisfied with sf = ϕ, sg = ∇ϕ and δf = δ. If f represents another auxiliary optimization problem
with a strongly concave objective, e.g., f(x) = maxuΨ(x, u), whose solution su(x) can only be found
with accuracy δ, then f satisfies Assumption 1 with sf(x) = Ψ(x, su(x)), sg(x) = ∇uΨ(x, su(x)) and
δf = δ. For more details and other interesting examples, we refer the reader to [15].

In what follows, we assume that we have access to an unbiased stochastic oracle pg for sg. Formally,
this is a pair pg = (g, ξ) consisting of a random variable ξ and a mapping g : Rd × Im ξ → Rd
(with Im ξ being the image of ξ). When queried at a point x, the oracle automatically generates an
independent copy ξ of its randomness and then returns pgx = g(x, ξ) (notation: pgx ∼= pg(x)). We call
g and ξ the function component and the random variable component of pg, respectively. At this point,
we only assume that our stochastic oracle pg is un unbiased estimator of sg, and later make various
assumptions on its variance.

Another important assumption on problem (1), that we need in our analysis, is the boundedness of
the feasible set domψ.
Assumption 2. There exists D > 0 such that ∥x− y∥ ≤ D for any x, y ∈ domψ.

Assumption 2 is rather standard in the literature on adaptive methods for stochastic convex op-
timization (see [16, 18, 30, 34, 36, 49]) and can always be ensured with D = 2R0 whenever
one has the knowledge of an upper bound R0 on the distance from the initial point x0 to the so-
lution x∗. To that end, it suffices to rewrite the problem (1) in the following equivalent form:
minx∈domψD

[f(x) + ψD(x)], where ψD is the sum of ψ and the indicator function of the ball
B0 := {x ∈ Rd : ∥x− x0∥ ≤ R0}. Note that this transformation keeps the function ψD reasonably
simple as its proximal mapping can be computed via that of ψ by solving a certain one-dimensional
nonlinear equation, which can be done very efficiently by Newton’s method (at no extra queries to the
stochastic oracle); in some special cases, the corresponding nonlinear equation can even be solved
analytically, e.g., when ψ = 0, the proximal mapping of ψD is simply the projection on B0.

Throughout this paper, we refer to D from Assumption 2 as the diameter of the feasible set, and
assume that its value is known to us. This will be the only essential parameter in our methods.

3 Main Algorithms and Stepsize Update Rules
We now present our two main algorithms for solving problem (1): UniSgd (Algorithm 1), and
its accelerated version, UniFastSgd (Algorithm 2). Except the specific choice of the stepsize
coefficients Mk, both algorithms are rather standard: the first one is the classical SGD method, and
the second one is the classical accelerated gradient method for stochastic optimization [33], also
known as the Method of Similar Triangles (see, e.g., Section 6.1.3 in [46]).

Both methods are expressed in terms of a certain abstract stepsize update rule M+(·) defined as
follows. Given the current stepsize coefficient M ≥ 0, constant Ω > 0 (the scaled squared diameter),
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Algorithm 2 UniFastSgd
pg,ψ(x0;D)

Input: Stochastic oracle pg, composite part ψ, point x0 ∈ domψ, diameter D.
1: v0 = x0, M0 = A0 = 0.
2: for k = 0, 1, . . . do
3: ak+1 = 1

2
(k + 1), Ak+1 = Ak + ak+1.

4: yk = Ak
Ak+1

xk +
ak+1

Ak+1
vk, gyk ∼= pg(yk).

5: vk+1 = Proxψ(vk, gyk ,
Mk
ak+1

).

6: xk+1 = Ak
Ak+1

xk +
ak+1

Ak+1
vk+1, gxk+1

∼= pg(xk+1).

7: Mk+1=
a2k+1

Ak+1
M+

(Ak+1

a2
k+1

Mk,
a2k+1

A2
k+1

D2, yk, xk+1, gyk , gxk+1

)
▷e.g.,

(3)
=

√
M2

k+
a2
k+1

D2 ∥gxk+1
− gyk∥2

∗.

current point x ∈ domψ with the stochastic gradient pgx ∼= pg(x), next iterate px+ = x+(pgx) ∈ domψ
(which is the result of the deterministic function applied to pgx), and the corresponding stochastic
gradient pgx+

∼= pg(px+), the update rule computes xM+ = M+(M,Ω, x, px+, pgx, pgx+) (deterministic
function of its arguments) such that xM+ ≥M and the following inequality holds for any ĎM > c2Lf :

E[p∆(xM+) + (xM+ −M)Ω + βf, sf,sg(px+, x)]

≤ c1
ĎM − c2Lf

E[Var
pg(px+) + Var

pg(x)] + c3δf + c4 E
{
[min{xM+, ĎM} −M ]+Ω

}
,

(2)

where p∆(xM+) := βf, sf,sg(x, px+)+ ⟨sg(x)−pgx, px+−x⟩− xM+

2 ∥px+−x∥2, c1, c2, c3, c4 > 0 are some
absolute constants, and Var

pg(x) := Eξ[∥g(x, ξ) − sg(x)∥2∗] is the variance of pg. The expectations
in (2) are taken w.r.t. the randomness (ξ, ξ+) coming from pgx ≡ g(x, ξ), pgx+

≡ g(px+, ξ+).

The main example is the following AdaGrad rule:

xM+ =

√
M2 +

1

Ω
∥pgx+

− pgx∥2∗. (3)

For this rule, we have c1 = 5
2 , c2 = 4, c3 = 6, c4 = 2 (see Lemma 20). Another interesting example

recently suggested in [49] is xM+ found from the equation

(xM+ −M)Ω =
[
⟨pgx+

− pgx, px+ − x⟩ −
xM+

2
∥px+ − x∥2

]
+
. (4)

This equation admits a unique solution which can be easily written down in closed form (see
Lemma E.1 in [49]). For this rule, we have c1 = 1, c2 = 2, c3 = 6, c4 = 2 (see Lemma 21).

Inequality (2) is the only property we need from the stepsize update rule to establish all forthcoming
results. This inequality is exactly what is typically used inside the convergence proofs for stochastic
gradient methods with predefined stepsizes Mk ≡ ĎM (in which case M = xM+ = ĎM ), where
ĎM depends on problem-dependent constants. The key property of AdaGrad stepsizes (either (3)
or (4)) is that they ensure the same inequality but now ĎM is the virtual stepsize existing only
in the theoretical analysis. The price for this is the extra error term [min{xM+, ĎM} − M ]+Ω
appearing in the right-hand side of (2). The crucial property of this error term is that it is telescopic,∑k
i=0[min{Mi+1, ĎM} −Mi]+Ω = [min{Mk+1, ĎM} −M0]+Ω (see Lemma 18) and therefore its

total cumulative impact is always bounded by the controllable constant ĎMΩ. Although a number of
other works on theoretical analysis of AdaGrad methods for smooth optimization use some similar
ideas about the virtual stepsize (e.g., [30, 34, 36]), this is the first time one has abstracted away all the
technical details and identified the specific inequality (2) responsible for the universality of AdaGrad.

4 Uniformly Bounded Variance

In this section, we assume that the variance of our stochastic oracle is uniformly bounded.
Assumption 3. For the stochastic oracle pg, we have σ2 := supx∈domψ Var

pg(x) < +∞, where
Var

pg(x) := Eξ[∥g(x, ξ)− sg(x)∥2∗].
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Under this assumption, we can establish the following efficiency estimates for our UniSgd and
UniFastSgd methods (the proofs are deferred to Appendix C).
Theorem 4. Let Algorithm 1 with M0 = 0 be applied to problem (1) under Assumptions 1–3. Then,
for the point sxN generated by the algorithm, we have

E[F (sxN )]− F ∗ ≤ c2c4LfD
2

N
+ 2σD

√
2c1c4
N

+ c3δf .

Theorem 5. Let Algorithm 2 be applied to problem (1) under Assumptions 1–3. Then, for any k ≥ 1,

E[F (xk)]− F ∗ ≤ 4c2c4LfD
2

k(k + 1)
+ 4σD

√
2c1c4
3k

+
c3
3
(k + 2)δf .

We see that, in contrast to UniSgd, the accelerated algorithm UniFastSgd is not robust to the
oracle’s errors: it accumulates them with time at the rate of O(kδ). This is not surprising since the
same phenomenon also occurs in the classical accelerated gradient method, even when the oracle is
deterministic and the algorithm has the knowledge about all constants (see [15]).

The complexity results from Theorems 4 and 5 are similar to those from [13]. However, it is important
that our methods are adaptive and do not require knowing the constants Lf and σ.

In the specific case when δf = 0, we recover the same convergence rates as in [30, 34], although our
methods work for the more general composite optimization problem and, in contrast to [34], do not
require that ∇f(x∗) = 0.

5 Implicit Variance Reduction
The assumption of uniformly bounded variance may not hold for some problems, or the corresponding
constant σ2 might be quite large, which is why there has recently been a growing interest in various
alternative variance bound assumptions [5, 22, 24, 29, 42, 54, 59]. One interesting option is expressing
complexity bounds via the variance at the minimizer, σ2

∗ := Var
pg(x

∗), assuming that the stochastic
oracle pg satisfies some extra smoothness conditions. Let us show that, for our Algorithms 1 and 2,
we can also establish such bounds, moreover, this can be done without any modifications to the
algorithms.

In this section, we study problem (1) under Assumptions 1 and 2 and also under the following
additional smoothness assumption on the variance:
Assumption 6. There exist δ

pg, Lpg ≥ 0 such that Var
pg(x, y) ≤ 2L

pg[βf, sf,sg(x, y) + δ
pg] for any

x, y ∈ Rd, where Var
pg(x, y) := Eξ[∥[g(x, ξ)− g(y, ξ)]− [sg(x)− sg(y)]∥2∗].

Note that Var
pg(x, y) is the usual variance of the estimator g(x, ξ) − g(y, ξ) which uses the same

randomness ξ for both arguments. Hence, Var
pg(x, y) ≤ E[∥g(x, ξ) − g(y, ξ)∥2∗] for any x, y.

Furthermore, if pgb is the mini-batch version of pg of size b (i.e., the average of b i.i.d. samples of pg(x)
at any point x), then Var

pgb(x, y) =
1
b Varpg(x, y) for any x, y.

For instance, if f(x) = Eξ[fξ(x)], where each function fξ is convex and (δξ, Lξ)-approximately
smooth with components ( sfξ, sgξ), then, the stochastic gradient oracle pg, defined by g(x, ξ) := sgξ(x)
satisfies Assumption 6 with sf(x) = Eξ[ sfξ(x)], sg(x) = Eξ[sgξ(x)], and δ

pg = 1
Lmax

Eξ[Lξδξ] (≤
Eξ[δξ]), Lpg = Lmax, where Lmax := supξ Lξ (see Lemma 16). Furthermore, if pgb is the mini-batch
version of pg of size b, then pgb satisfies Assumption 6 with the same δ

pgb = δ
pg butL

pgb = 1
bLpg =

1
bLmax

which can be much smaller than Lmax when b is large enough.

Under the new assumption on the variance, UniSgd enjoys the following convergence rate (see
Appendix D.1 for the proof).
Theorem 7. Let Algorithm 1 with M0 = 0 be applied to problem (1) under Assumptions 1, 2 and 6,
and let σ2

∗ := Var
pg(x

∗). Then, for the point sxN produced by the method, we have

E[F (sxN )]− F ∗ ≤
c4(c2Lf + 12c1Lpg)D

2

N
+ 2σ∗D

√
6c1c4
N

+ c3δf +
4

3
δ

pg.

Comparing the above result with Theorem 4, we see that we have essentially replaced the uniform
bound σ with the more refined one σ∗ at the cost of replacing Lf with Lf + L

pg and δf with δf + δ
pg .
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Algorithm 3 UniSvrg
pg,sg,ψ(x0;D)

Input: Oracles pg, sg, composite part ψ, point x0 ∈ domψ, diameter D.
1: x̃0 = x0, M0 = 0.
2: for t = 0, 1, . . . do
3: (x̃t+1, xt+1,Mt+1) ∼= UniSgd

pGt,ψ
(xt,Mt, 2

t+1;D) with pGt = SvrgOrac
pg,sg(x̃t).

This corresponds to classical results on the usual SGD for which we know all problem dependent-
constants. However, our method is universal and works automatically under both assumptions from
the previous section and the current one, and therefore enjoys the best among the rates given by
Theorems 4 and 7.

For the accelerated algorithm, we have the following result (whose proof is located in Appendix D.2).
Theorem 8. Let Algorithm 2 be applied to problem (1) under Assumptions 1, 2 and 6, and let
σ2
∗ := Var

pg(x
∗). Then, for any k ≥ 1, we have

E[F (xk)]− F ∗ ≤ 4c2c4LfD
2

k(k + 1)
+

24c1c4LpgD
2

k + 1
+ 4σ∗D

√
2c1c4
k

+
c3
3
(k + 2)δf +

4

3
δ

pg.

Comparing our previous complexity bound for UniFastSgd under the assumption on uniformly
bounded variance (Theorem 5) with the bound from Theorem 8, we see that, instead of simply
replacing σ with σ∗, Lf with Lf +L

pg and δf with δf + δ
pg , which was the case for the basic method,

the situation is now not that simple. Specifically, the Lf and L
pg terms now converge at different

rates: O( 1
k2 ) and O( 1k ), respectively. While this may seem strange at first, this behavior is actually

unavoidable, at least in the case when δf = δ
pg = 0 (see, e.g., Section E in [59]). For the case when

δf = δ
pg = 0, the complexity result from Theorem 8 is similar to the results for the Accelerated SGD

algorithm from [59]. However, the latter paper studies a specific setting where f(x) = E[fξ(x)],
where each component fξ is Lmax-smooth and then assumes that f is also Lmax-smooth, instead of
working with the constant Lf which can be much smaller than Lmax. A similar separation of the
constants Lf and L

pg , which we do, was recently considered in [24], where the authors obtained some
similar rates to our Theorem 8. However, it is important that, unlike the algorithms considered in [24,
59], our UniFastSgd is universal and does not require knowing any problem-dependent constants
except D. Furthermore, our results are more general because we allow the oracle to be inexact.

6 Explicit Variance Reduction with SVRG
Let us now show that we can also incorporate explicit SVRG-type variance reduction into our methods.
In this section, we consider problem (1) under Assumptions 1, 2 and 6. All the proofs are deferred to
Appendix E.

In addition to the stochastic oracle pg, we now assume that we can also compute the (approximate)
full-gradient oracle sg. This allows us to define the following auxiliary SVRG oracle induced by pg

with center x̃ ∈ Rd (notation pG = SvrgOrac
pg,sg(x̃)) as the oracle with the same random variable

component ξ as pg and the function component given by G(x, ξ) = g(x, ξ)− g(x̃, ξ) + sg(x̃).

Our UniSvrg method is presented in Algorithm 3. This is the classical epoch-based SVRG algorithm
which can be seen as the adaptive version of the SVRG++ method from [1]. A similar scheme was
suggested in [16], however, instead of accumulating gradient differences as in (3), their method
accumulates gradients and therefore does not work without the additional assumption of ∇f(x∗) = 0
(which may not hold for constrained optimization).

Let us now present the complexity guarantees. To do so, we first need to introduce, one more
assumption we need in our analysis.

Assumption 9. The variance of pg satisfies Var
pg(x, y) ≤ 4L

pg[β
∇f(x)
f (x, y) + 2δ

pg] for any x, y ∈ Rd
and any ∇f(x) ∈ ∂f(x).

Assumption 9 is very similar to Assumption 6. The only difference between them is that the
former contains the standard Bregman distance in the right-hand side, while the latter contains
its approximation βf, sf,sg(x, y) involving the approximate function value sf(x) and the approximate
gradient sg(x). Nevertheless, both assumptions are actually satisfied for the main examples we
discussed after introducing Assumption 6 (see Lemma 16).
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Algorithm 4 UniFastSvrg
pg,sg,ψ(x0, N ;D)

Input: Oracles pg, sg, composite part ψ, point x0 ∈ domψ, epoch length N , diameter D.
1: x̃0 = Proxψ(x0, sg(x0), 0), v0 = x0, M0 = 0, A0 = 1

N
.

2: for t = 0, 1, . . . do
3: at+1 =

√
At, At+1 = At + at+1.

4: (x̃t+1, vt+1,Mt+1) ∼= UniTriSvrgEpoch
pg,sg,ψ(x̃t, vt,Mt, At, at+1, N ;D).

Algorithm 5 (x̃+, v+,M+) ∼= UniTriSvrgEpoch
pg,sg,ψ(x̃, v0,M0, A, a,N ;D)

Input: Oracles pg, sg, comp. part ψ, points x̃, v0, coefficients M0, A, a, epoch length N , diameter D.
1: A+ = A+ a, x0 = A

A+
x̃+ a

A+
v0, pG = SvrgOrac

pg,sg(x̃), Gx0 ∼= pG(x0).
2: for k = 0, . . . , N − 1 do
3: vk+1 = Proxψ(vk, Gxk ,

Mk
a
).

4: xk+1 = A
A+

x̃+ a
A+

vk+1, Gxk+1
∼= pG(xk+1).

5: Mk+1 = a2

A+
M+

(A+

a2
Mk,

a2

A2
+
D2, xk, xk+1, Gxk , Gxk+1

)
▷ e.g.,

(3)
=

√
M2

k + a2

D2 ∥Gxk+1
−Gxk

∥2
∗.

6: return (sxN , vN ,MN ), where sxN := 1
N

∑N
k=1 xk.

Theorem 10. Let UniSvrg (as defined by Algorithm 3) be applied to problem (1) under Assumptions 1,
2, 6 and 9. Then, for any t ≥ 1 and sc3 := max{c3, 1}, we have

E[F (x̃t)]− F ∗ ≤
[(c2c4 + 1)Lf + 48c1c4Lpg]D

2

2t
+ 2sc3δf +

8

3
δ

pg.

To construct x̃t, the algorithm needs to make O(2t) queries to pg and O(t) queries to sg.

We now present an accelerated version of UniSvrg, see Algorithm 4. As UniSvrg, this method
is also epoch-based, and its epoch is very similar to UniFastSgd (Algorithm 4) in the sense that
it also iterates similar-triangle steps. However, the triangles in UniTriSvrgEpoch are of the form
(x̃, vk, vk+1), i.e., they always share the common vertex x̃, in contrast to the triangles (xk, vk, vk+1)
in UniFastSgd (in UniTriSvrgEpoch, the role of the average points yk is played by xk). We note
that our UniFastSvrg is essentially the primal version of the VRADA method from [53], but equipped
with AdaGrad stepsizes. Alternative accelerated SVRG schemes with AdaGrad stepsizes (3) were
recently proposed in [36]; however, they seem to be much more complicated.

The special choice of the initial reference point x̃0 at Line 1 is rather standard and motivated by the
desire to keep the initial function residual appropriately bounded: F (x̃0)− F ∗ ≤ 1

2LfD
2 + δf ; the

simplest way to achieve this is to make the full gradient step from any feasible point (see Lemma 34).
Theorem 11. Let UniFastSvrg (Algorithm 4) be applied to problem (1) under Assumptions 1, 2
and 6, and let N ≥ 9. Then, for any t ≥ t0 := ⌈log2 log3N⌉ − 1 (≥ 0), it holds that

E[F (x̃t)]− F ∗ ≤
9[(c2c4 +

1
2 )Lf + 6c1c4Lpg]D

2

N(t− t0 + 1)2
+ (c3t+ 1)δf +

5

3
tδ

pg.

To construct x̃t, the algorithm needs to make O(Nt) queries to pg and O(t) queries to sg. Assuming
that the complexity of querying sg is n times bigger than that of querying pg and choosing N = Θ(n),
we get the total stochastic-oracle complexity of O(nt).

Note that Theorem 11, unlike Theorem 10, does not require the extra Assumption 9. This suggests
that Assumption 9 might be somewhat artificial and could potentially be removed from Theorem 10
as well. However, we do not know how to do it, even in the simplest case when δf = δ

pg = 0 and the
algorithm has the knowledge of the constants Lf and L

pg from Assumptions 1 and 6.

7 Application to Hölder Smooth Problems
To illustrate how powerful our results are, let us quickly consider the specific example of solving the
stochastic optimization problem with Hölder smooth components.
Example 12. Suppose that the function f in problem (1) is the expectation of other functions,
f(x) = Eξ[fξ(x)], where each function fξ is convex and (ν,Hξ(ν))-Hölder smooth. Consider the
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Table 2: Corollaries of our results for the case when problem (1) has Hölder smooth components, as defined
in Example 12. “SO complexity” is the stochastic-oracle complexity for reaching accuracy ϵ in terms of the
expected function residual, defined as in Table 1 but with pg = pgb, sg = ∇f , n = nb.

Method SO complexity Reference

UniSgd (Alg. 1)
(Hf (ν)

ϵ

) 2
1+ν D2 + 1

b min
{

σ2D2

ϵ2
,
(Hmax(ν)

ϵ

) 2
1+ν D2 +

σ2
∗D2

ϵ2

}
Cors. 37, 40

UniFastSgd (Alg. 2)
(Hf (ν)D1+ν

ϵ

) 2
1+3ν + 1

b min
{

σ2D2

ϵ2
,
(Hmax(ν)

ϵ

) 2
1+ν D2 +

σ2
∗D2

ϵ2

}
Cors. 38, 41

UniSvrg (Alg. 3)
[
Nν(ϵ) :=

(Hf (ν)

ϵ

) 2
1+ν D2 + 1

b

(Hmax(ν)
ϵ

) 2
1+ν D2

]
+ nb log+Nν(ϵ) Cor. 43

UniFastSvrg (Alg. 4) [
nν
bHf (ν)D1+ν

ϵ ]
2

1+3ν + [
nν
bHmax(ν)D1+ν

b(1+ν)/2ϵ
]

2
1+3ν + nb log lognb Cor. 44

standard mini-batch stochastic gradient oracle pgb of size b, defined by gb(x, ξ[b]) = 1
b

∑b
j=1 ∇fξj (x),

where ξ[b] := (ξ1, . . . , ξb) with b i.i.d. copies of ξ, and ∇fξ(x) ∈ ∂fξ(x) is an arbitrary selection of
subgradients for each ξ. We define Hf (ν) as the Hölder constant for the function f and Hmax(ν) :=
supξHξ(ν) as the worst among Hölder constants for each fξ. Note that we always have Hf (ν) ≤
Eξ[Hξ(ν)] but Hf (ν) can, in principle, be much smaller than the right-hand side. Also, define
σ2 := supx∈domψ Var

pg1(x) ≡ supx∈domψ Eξ[∥∇fξ(x) − ∇f(x)∥2∗] and σ2
∗ := Var

pg1(x
∗) ≡

Eξ[∥∇fξ(x∗) − ∇f(x∗)∥2∗]. We assume that the computation of pgb can be parallelized and the
computation of ∇f is nb times more expensive than that of pgb.

To solve the above problem, we can apply any of the methods we presented before. The resulting
oracle complexities (in terms of the BigO-notation) are summarized in Table 2; the precise statements
the corresponding results and their proofs are deferred to Appendix F.

Note that our problem is characterized by a large number of parameters, ν, Hf (ν), Hmax(ν), σ, σ∗.
For each combination of these parameters, we get a certain complexity guarantee for each of our
methods, and it is impossible to say in advance which combination results in the smaller complexity
bound. However, it is not important for our methods since none of them needs to know any of these
constants to ensure the corresponding bound. This means that our algorithms are universal: they
automatically figure out the best problem class for a specific problem given to them.

8 Experiments
Let us illustrate the performance of our methods in preliminary numerical experiments2 on solving

f∗ := min
∥x∥≤R

{
f(x) :=

1

n

n∑
i=1

[⟨ai, x⟩ − bi]
q
+

}
, (5)

where ai, bi ∈ Rd, q ∈ [1, 2] and R > 0.

This test problem covers several interesting applications. Indeed, if q = 2, we get the classical Least
squares problem. If q = 1, this is the well-known Support-Vector Machines (SVM) problem. In both
cases, the ball-constraint ∥x∥ ≤ R acts as a regularizer, and problem (5) is, in fact, equivalent to
minx∈Rd [f(x) + µ

2 ∥x∥
2] for a certain µ ≥ 0 (this follows, e.g., from the KKT optimality conditions)

such that µ decreases when R increases.

Another interesting application of (5), which we consider in this section, is the polyhedron feasibility
problem: find x∗ ∈ Rd, ∥x∗∥ ≤ R, inside the polyhedron P = {x : ⟨ai, x⟩ ≤ bi, i = 1, . . . , n}.
Such a point exists iff f∗ = 0. Note that (5) is a problem with Hölder smooth components of degree
ν = q − 1. By varying q in (5), we can therefore check the adaptivity of different methods to the
unknown to them Hölder characteristics of the objective function.

The data for our problem is generated randomly. First, we generate x∗ uniformly from the sphere of
radius 0.95R centered at the origin. Then, we generate i.i.d. vectors ai with components uniformly
distributed on [−1, 1]. We then make sure that ⟨an, x∗⟩ < 0 by inverting the sign of an if necessary.
Next, we generate positive reals si uniformly in [0,−0.1cmin], where cmin := mini⟨ai, x∗⟩ < 0,
and set bi = ⟨ai, x∗⟩ + si. By construction, x∗ is a solution of our problem with f∗ = 0, and the
origin x0 = 0 lies outside the polyhedron since there exists j (corresponding to cmin) such that
bj = cmin + sj ≤ 0.9cmin < 0.

2The corresponding source code is available at https://github.com/mlolab/universal-adagrad-experiments.
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Figure 1: Comparison of different methods on the polyhedron feasibility problem (5).
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Figure 2: Impact of mini-batch size on performance of our methods.

We compare UniSvrg (Algorithm 3) against AdaSVRG [16] (with parameters K = 3 and η = D =
2R). We next compare UniFastSvrg (Algorithm 4) against AdaVRAE and AdaVRAG [36]. We
also compare it with the FastSvrg method with constant stepsize, which is the primal version of the
VRADA method from [53]; the stepsize is selected by doing a grid search over {10j : j = −3, . . . , 4}
and choosing the best value in the sense that the algorithm is neither too slow nor has a large error.
We report UniSgd (Algorithm 1) and UniFastSgd (Algorithm 2) together with these methods. For
UniFastSvrg, contrary to the theoretical recommendation of choosing x̃0 as the result of the full
gradient step, we found it slightly more useful to simply set x̃0 = x0. For all our methods, we use the
AdaGrad stepsize (3); the other stepsize (4) works very similarly (see Appendix H.2 for a detailed
comparison). For all methods, we use the standard mini-batch stochastic oracle of size b = 256.

The results are shown in Fig. 1, where we fix n = 104, d = 103, R = 106 and consider different
values of q ∈ {1, 1.3, 1.6, 2}. We plot the total number of stochastic oracle calls against the function
residual. We treat one mini-batch oracle computation as one stochastic oracle call. If we compute the
full gradient, we count this as n/b stochastic oracle calls where n is the total number of samples and
b denotes the mini-batch size.

We see that, except the AdaSVRG method, all SVRG algorithms typically converge much faster
than the usual SGD methods without explicit variance reduction, at least after a few computations
of the full gradient. Among the non-accelerated SVRG methods, UniSvrg converges consistently
faster than AdaSVRG, while UniFastSvrg performs the best across the accelerated ones. Note that
FastSvrg with constant stepsize is not converging when the problem is not Lipschitz smooth (q < 2),
in contrast to our universal methods.

In Fig. 2, we also illustrate the impact of the mini-batch size b on the convergence of our methods.
We consider the same values of n, d, R as before and fix q = 1.5. As we can see, in the idealized
situation, when one can implement the mini-batch oracle computations by perfect parallelism, there is
a significant speedup in convergence when increasing the mini-batch size, as predicted by our theory.

For additional experiments, including the discussion of implicit variance reduction, see Appendix H.

9 Conclusions
In this paper, we showed that AdaGrad stepsizes can be applied, in a unified manner, in a large variety
of situations, leading to universal methods suitable for multiple problem classes at the same time.
Note that this does not come for free. We still need to know one parameter, the diameter D of the
feasible set. While it is not necessary to know this parameter precisely, the cost of underestimating
or overestimating it, can be high (all complexity bounds would be multiplied by the ratio between
our guess and the true D). At the same time, there already exist some parameter-free methods
which are based on AdaGrad and aim to solve precisely this problem [6, 11, 25, 31, 41]. It is
therefore interesting to consider extensions of our results to these more advanced algorithms. Another
interesting direction is, of course, nonconvex problems.
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A General Auxiliary Results

A.1 Approximately Smooth Functions

Theorem 13 (Lemma 2 in [45]). Let f : Rd → R be a convex (ν,H)-Hölder smooth function for
some ν ∈ [0, 1] and H ≥ 0. Then, for any δ > 0, any x, y ∈ Rd and any ∇f(x) ∈ ∂f(x), it holds
that β∇f(x)

f (x, y) ≤ L
2 ∥x− y∥2 + δ with L = [ 1−ν

2(1+ν)δ ]
1−ν
1+νH

2
1+ν (with the convention that 00 = 1).

Theorem 14. Let f : Rd → R be a (δ, L)-approximately smooth convex function with components
( sf, sg), i.e., for any x, y ∈ Rd and βf, sf,sg(x, y) := f(y)− sf(x)− ⟨sg(x), y − x⟩, we have

0 ≤ βf, sf,sg(x, y) ≤
L

2
∥x− y∥2 + δ. (6)

Then, for any x, y ∈ Rd and any ∇f(x) ∈ ∂f(x), the following inequalities hold:

sf(x) ≤ f(x) ≤ sf(x) + δ, (7)
⟨sg(x)− sg(y), x− y⟩ ≤ βf, sf,sg(x, y) + βf, sf,sg(y, x) ≤ ⟨sg(x)− sg(y), x− y⟩+ 2δ, (8)

⟨sg(x)− sg(y), x− y⟩ ≤ L∥x− y∥2 + 2δ, (9)

∥sg(x)− sg(y)∥2∗ ≤ 2L(βf, sf,sg(x, y) + δ), (10)

∥∇f(x)− sg(y)∥2∗ ≤ 2L(β
∇f(x)
f (x, y) + δ), (11)

∥sg(x)− sg(y)∥2∗ ≤ L2∥x− y∥2 + 4Lδ, (12)

∥sg(x)− sg(y)∥2∗ ≤ 4L(β
∇f(x)
f (x, y) + 2δ), (13)

β
∇f(x)
f (x, y) ≤ L∥x− y∥2 + 2δ. (14)

Proof. Inequality (7) follows immediately from (6) by substituting y = x.

To prove (8), we rewrite

βf, sf,sg(x, y) + βf, sf,sg(y, x) = ⟨sg(x)− sg(y), x− y⟩+ [f(x)− sf(x)] + [f(y)− sf(y)],

and then apply (7).

Using the first part of (8) and applying (6) twice, we obtain (9).

To prove (10) and (11), let us fix some sf1(x) ∈ R and sg1(x) ∈ Rd such that βf, sf1,sg1
(z) :=

f(z)− sf1(x)− ⟨sg1(x), z − x⟩ ≥ 0 for any z ∈ Rd. Note that we can choose either ( sf1, sg1) = ( sf, sg)
or ( sf1, sg1) = (f,∇f). In view of (6), for any z ∈ Rd, we can write the following inequalities:

0 ≤ βf, sf1,sg1
(z) ≤ sf(y)− sf1(x)− ⟨sg1(x), y − x⟩+ ⟨sg(y)− sg1(x), z − y⟩+ L

2
∥z − y∥2 + δ.

Minimizing the right-hand side in z ∈ Rd and rearranging, we conclude that

1

2L
∥sg(y)− sg1(x)∥2∗ ≤ sf(y)− sf1(x)− ⟨sg1(x), y − x⟩+ δ ≤ βf, sf1,sg1

(x, y) + δ,

where the final inequality is due to (7). Substituting now either ( sf1, sg1) = ( sf, sg) or ( sf1, sg1) =
(f,∇f), we obtain either (10) or (11), respectively.

Inequality (12) follows immediately from (6) and (10).

Inequality (13) follows from (11):

∥sg(x)− sg(y)∥2∗ ≤ 2∥∇f(x)− sg(y)∥2∗ + 2∥sg(x)−∇f(x)∥2∗
≤ 4L(β

∇f(x)
f (x, y) + δ) + 4Lδ = 4L(β

∇f(x)
f (x, y) + 2δ).
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To prove (14), we proceed as follows using first (6), then (7), and then (11):

β
∇f(x)
f (x, y) ≡ f(y)− f(x)− ⟨∇f(x), y − x⟩

≤ sf(x)− f(x) + ⟨sg(x)−∇f(x), y − x⟩+ L

2
∥y − x∥2 + δ

≤ ⟨sg(x)−∇f(x), y − x⟩+ L

2
∥y − x∥2 + δ

≤
√
2Lδ∥y − x∥+ L

2
∥y − x∥2 + δ

=
(√L

2
∥y − x∥+

√
δ
)2

≤ L∥y − x∥2 + 2δ,

where the final inequality is (a+ b)2 ≤ 2a2 + 2b2, a, b ≥ 0.

Remark 15. Some of the inequalities from Theorem 14, namely, (7), (10) and (12), were established
already in [15]. We nevertheless prefer to present the corresponding proofs since they are rather
simple, and we use the associated ideas for proving the other new inequalities.
Lemma 16. Let f : Rd → R be the function f(x) := Eξ[fξ(x)], where each fξ : Rd → R is convex
and (δξ, Lξ)-approximately smooth with components ( sfξ, sgξ). Further, let pg be the stochastic oracle
defined by g(x, ξ) := sgξ(x), and let sf(x) := Eξ[ sfξ(x)], sg(x) := Eξ[sgξ(x)]. Then, pg is an unbiased
oracle for sg and, for any x, y ∈ Rd, Lmax := supξ Lξ and sδ := 1

Lmax
Eξ[Lξδξ], it holds that

Var
pg(x, y) ≤ 2Lmax[βf, sf,sg(x, y) +

sδ]. (15)

Furthermore, for any x, y ∈ Rd and any ∇f(x) ∈ ∂f(x), it also holds that

Var
pg(x, y) ≤ 4Lmax[β

∇f(x)
f (x, y) + 2sδ]. (16)

Proof. According to our definition of sg, we have Eξ[sgξ(x)] = sg(x) for any x, so pg is indeed an
unbiased oracle for sg. Further, for any x, y ∈ Rd, we can estimate

Var
pg(x, y) ≡ Eξ

[
∥[sgξ(x)− sgξ(y)]− [sg(x)− sg(y)]∥2∗

]
≤ Eξ

[
∥sgξ(x)− sgξ(y)∥2∗

]
≤ Eξ

[
2Lξ

(
βfξ, sfξ,sgξ

(x, y) + δξ
)]

≤ 2Lmax

(
Eξ[βfξ, sfξ,sgξ

(x, y)] + sδ
)
= 2Lmax[βf, sf,sg(x, y) +

sδ],

where sδ is as defined in the statement; the second inequality follows from Theorem 14 (inequal-
ity (10)), and the final identity is due to the linearity of βf, sf,sg(x, y) in (f, sf, sg) and the fact that, by
our definitions, Eξ[fξ(x)] = f(x), Eξ[ sfξ(x)] = sf(x), Eξ[sgξ(x)] = sg(x) for any x. This proves (15).

The proof of (16) is similar but now we apply (13) instead of (10):

Var
pg(x, y) ≤ Eξ

[
∥sgξ(x)− sgξ(y)∥2∗

]
≤ Eξ

[
4Lξ

(
β
∇fξ(x)
fξ

(x, y) + 2δξ
)]

≤ 4Lmax

(
Eξ[β

∇fξ(x)
fξ

(x, y)] + 2sδ
)
= 4Lmax[β

∇f(x)
f (x, y) + 2sδ],

where we have used the fact that ∂f(x) = Eξ[∂fξ(x)] (see Proposition 2.2 in [4]), meaning that, for
any ∇f(x) ∈ ∂f(x), we can find a selection of ∇fξ(x) ∈ ∂fξ(x) such that ∇f(x) = Eξ[∇fξ(x)].

A.2 Miscellaneous

Lemma 17. Let ψ : Rd → R ∪ {+∞} be a proper closed convex function, x ∈ domψ, g ∈ Rd,
M ≥ 0, and let

x+ := Proxψ(x, g,M).

Then, for any y ∈ domψ, we have

⟨g, y − x+⟩+ ψ(y) +
M

2
∥x− y∥2 ≥ ψ(x+) +

M

2
∥x− x+∥2 +

M

2
∥x+ − y∥2.
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Proof. Indeed, by definition, x+ is the minimizer of the function h : Rd → R ∪ {+∞} given by
h(y) := ⟨g, y⟩+ψ(y) + M

2 ∥x− y∥2, which is strongly convex with parameter M (or simply convex
if M = 0). Hence, for any y ∈ domψ (= domh), we have h(y) ≥ h(x+) +

M
2 ∥y − x+∥2, which

is exactly the claimed inequality.

Lemma 18. Let N ≥ 1 be an integer, (Mk)
N
k=0 be a nondecreasing nonnegative sequence of reals,

and let ĎM ≥ 0. Then,

N−1∑
k=0

[min{Mk+1, ĎM} −Mk]+ = [min{MN , ĎM} −M0]+.

Proof. It suffices to prove the identity only in the special case whenN = 2, i.e., to show that γ0+γ1 =
Γ, where γ0 := [min{M1, ĎM}−M0]+, γ1 := [min{M2, ĎM}−M1]+, Γ := [min{M2, ĎM}−M0]+.
The general case then easily follows by induction.

To prove the identity, we use our assumption that M0 ≤ M1 ≤ M2 and consider three possible
cases. If M1 ≥ ĎM , then γ0 + γ1 = [ĎM −M0]+ + 0 = [ĎM −M0]+ = Γ. If M1 < ĎM ≤ M2,
then γ0 + γ1 = (M1 −M0) + (ĎM −M1) = ĎM −M0 = Γ. Finally, if M2 < ĎM , then γ0 + γ1 =
(M1 −M0) + (M2 −M1) =M2 −M0 = Γ.

Lemma 19. Let pg be a stochastic oracle in Rd. Then, for any x, y, z ∈ Rd and any τ > 0, we have

Var
pg(x) ≤ (1 + τ)Var

pg(y) + (1 + τ−1)Var
pg(x, y),

Var
pg(x, y) ≤ (1 + τ)Var

pg(x, z) + (1 + τ−1)Var
pg(y, z).

Proof. Both inequalities are direct consequences of the standard inequality ∥s1 + s2∥2∗ ≤ (1 +
τ)∥s1∥2∗ + (1 + τ−1)∥s2∥2∗ which is valid for any s1, s2 ∈ Rd and any τ > 0. Indeed, let g
and ξ be, respectively, the function and the random variable components of pg, and let ∆(x, ξ) :=
g(x, ξ)− E[g(x, ξ)] for any x ∈ Rd. Then, for any x, y, z ∈ Rd and τ > 0, we can estimate

Var
pg(x) ≡ E[∥∆(x, ξ)∥2∗] = E[∥∆(y, ξ) + [∆(x, ξ)−∆(y, ξ)]∥2∗]

≤ (1 + τ)E[∥∆(y, ξ)∥2∗] + (1 + τ−1)E[∥∆(x, ξ)−∆(y, ξ)∥2∗]
≡ (1 + τ)Var

pg(y) + (1 + τ−1)Var
pg(x, y).

Similarly,

Var
pg(x, y) ≡ E

[
∥∆(x, ξ)−∆(y, ξ)∥2∗

]
= E

[
∥[∆(x, ξ)−∆(z, ξ)]− [∆(y, ξ)−∆(z, ξ)]∥2∗

]
≤ (1 + τ)E

[
∥∆(x, ξ)−∆(z, ξ)∥2∗

]
+ (1 + τ−1)E

[
∥∆(y, ξ)−∆(z, ξ)∥2∗

]
≡ (1 + τ)Var

pg(x, z) + (1 + τ−1)Var
pg(y, z).

B Omitted Proofs for Section 3

Lemma 20 (AdaGrad stepsize). Let function f satisfy Assumption 1. Consider the stepsize update
rule xM+ =M+(M,Ω, x, px+, pgx, pgx+

) defined by

xM+ :=

√
M2 +

1

Ω
∥pgx+

− pgx∥2∗.

Then, this stepsize update rules satisfies (2) with c1 = 5
2 , c2 = 4, c3 = 6, c4 = 2.

Proof. Let p∆(ĎM) := βf, sf,sg(x, px+)+ ⟨sg(x)− pgx, px+ −x⟩− ĎM
2 ∥px+ −x∥2. From our Assumption 1

and Theorem 14 (inequality (8)), it follows that βf, sf,sg(x, px+)+βf, sf,sg(px+, x) ≤ ⟨sg(px+)−sg(x), px+−
x⟩+ 2δf . Hence,

E[p∆(xM+)+βf, sf,sg(px+, x)] ≤ E
[
⟨sg(px+)−pgx, px+−x⟩−

xM+

2
∥px+−x∥2

]
+2δf = E[p∆1(xM+)]+2δf ,
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where p∆1(xM+) := ⟨pgx+ − pgx, px+ − x⟩ − xM+

2 ∥px+ − x∥2. Hence,

Γ := E[p∆(xM+) + (xM+ −M)Ω + βf, sf,sg(px+, x)] ≤ E[p∆1(xM+) + (xM+ −M)Ω] + 2δf .

From the definition of xM+, it follows that ∥pgx+
−pgx∥2∗ = (xM2

+−M2)Ω = (xM++M)(xM+−M)Ω.

Since xM+ ≥M , this means that

1

2xM+

∥pgx+
− pgx∥2∗ ≤ (xM+ −M)Ω ≤ 1

xM+

∥pgx+
− pgx∥2∗

Let us now upper bound pΓ := p∆1(xM+) + (xM+ −M)Ω. For this, let us fix an arbitrary constant
ĎM ≥ 0 and consider two cases. If xM+ ≥ ĎM , we can bound

pΓ ≤ p∆1(xM+) +
1

xM+

∥pgx+ − pgx∥2∗ ≤ p∆1(ĎM) +
1
ĎM

∥pgx+ − pgx∥2∗ =: pΓ(ĎM).

If xM+ ≤ ĎM , we can bound

pΓ ≤ 1

2xM+

∥pgx+ − pgx∥2∗ + (xM+ −M)Ω ≤ 2(xM+ −M)Ω = 2[min{xM+, ĎM} −M ]+Ω.

Combining the two cases, we get pΓ ≤ [pΓ(ĎM)]+ + 2[min{xM+, ĎM} −M ]+Ω. Thus,

Γ ≤ E[pΓ] + 2δf ≤ E
{
[pΓ(ĎM)]+

}
+ 2E

{
[min{xM+, ĎM} −M ]+Ω

}
+ 2δf .

Let us now estimate the first term. Denote pS := pgx − sg(x) and pS+ := pgx+
− sg(px+). Then,

pΓ(ĎM) ≡ ⟨pgx+
− pgx, px+ − x⟩ −

ĎM

2
∥px+ − x∥2 + 1

ĎM
∥pgx+

− pgx∥2∗

≤ ⟨sg(px+)− sg(x), px+ − x⟩+ 2
ĎM

∥sg(px+)− sg(x)∥2∗

+ ⟨pS+ − pS, px+ − x⟩+ 2
ĎM

∥pS+ − pS∥2∗ −
ĎM

2
∥px+ − x∥2

Using now our Assumption 1 and Theorem 14 (inequalities (9) and (12)), we can continue as follows:

pΓ(ĎM) ≤ Lf∥px+ − x∥2 + 2δf +
2
ĎM

(L2
f∥px+ − x∥2 + 4Lfδf )

+ ⟨pS+ − pS, px+ − x⟩+ 2
ĎM

∥pS+ − pS∥2∗ −
ĎM

2
∥px+ − x∥2

≤ ⟨pS+ − pS, px+ − x⟩+ 2
ĎM

∥pS+ − pS∥2∗ −
ĎM − 2Lf (1 +

2Lf

ĎM
)

2
∥px+ − x∥2 + 2

(
1 +

4Lf
ĎM

)
δf

≤
( 2

ĎM
+

1

2[ĎM − 2Lf (1 +
2Lf

ĎM
)]

)
∥pS+ − pS∥2∗ + 2

(
1 +

4Lf
ĎM

)
δf .

Consequently,

E
{
[pΓ(ĎM)]+

}
≤

( 2
ĎM

+
1

2[ĎM − 2Lf (1 +
2Lf

ĎM
)]

)
E[∥pS+ − pS∥2∗] + 2

(
1 +

4Lf
ĎM

)
δf .

In particular, for ĎM > 4Lf , we can estimate 2
ĎM
+ 1

2[ ĎM−2Lf (1+
2Lf

ĎM
)]
≤ 2

ĎM
+ 1

2( ĎM−4Lf )
≤ 5

2( ĎM−4Lf )
.

Therefore, for any ĎM > 4Lf ,

E
{
[pΓ(ĎM)]+

}
≤ 5

2(ĎM − 4Lf )
E[∥pS+− pS∥2∗]+4δf =

5

2(ĎM − 4Lf )
E[Var

pg(px+)+Var
pg(x)]+4δf ,

where the final identity follows from the fact that E[∥pS+ − pS∥2∗] = E[∥pS+∥2∗] + E[∥pS∥2∗] =

E[Var
pg(px+)] + Var

pg(x) (because pS+, conditioned on the randomness ξ defining pgx ≡ g(x, ξ),
has zero mean).
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Combining everything together, we get

Γ ≤ 5

2(ĎM − 4Lf )
E[Var

pg(px+) + Var
pg(x)] + 6δf + 2E

{
[min{xM+, ĎM} −M ]+Ω

}
.

This is exactly (2) with c1 = 5
2 , c2 = 4, c3 = 6, c4 = 2.

Lemma 21. Let function f satisfy Assumption 1. Consider the stepsize update rule xM+ =
M+(M,Ω, x, px+, pgx, pgx+) defined as the solution of the following equation:

(xM+ −M)Ω = [p∆1(xM+)]+, p∆1(xM+) := ⟨pgx+ − pgx, px+ − x⟩ −
xM+

2
∥px+ − x∥2.

Then, this stepsize update rules satisfies (2) with c1 = 1, c2 = 2, c3 = 6, c4 = 2.

Proof. Let us define p∆(ĎM) := βf, sf,sg(x, px+) + ⟨sg(x)− pgx, px+ − x⟩ − ĎM
2 ∥px+ − x∥2. Starting as in

the proof of Lemma 20, we see that

Γ := E[p∆(xM+) + (xM+ −M)Ω + βf, sf,sg(px+, x)] ≤ E[p∆1(xM+) + (xM+ −M)Ω] + 2δf ,

with the same p∆1(·) as defined in the statement.

Let us now upper bound pΓ := p∆1(xM+) + (xM+ −M)Ω. For this, let us fix an arbitrary constant
ĎM ≥ 0 and consider two cases. If xM+ ≥ ĎM , we can bound, using the monotonicity of p∆1(·),

pΓ = p∆1(xM+) + [p∆1(xM+)]+ ≤ p∆1(ĎM) + [p∆1(ĎM)]+ ≤ 2[p∆1(ĎM)]+.

If xM+ ≤ ĎM , we can bound

pΓ ≤ [p∆1(xM+)]+ + (xM+ −M)Ω = 2(xM+ −M)Ω = 2[min{xM+, ĎM} −M ]+Ω.

Combining the two cases, we get pΓ ≤ 2[p∆1(ĎM)]+ + 2[min{xM+, ĎM} −M ]+Ω, and hence

Γ ≤ E[pΓ] + 2δf ≤ 2E
{
[p∆1(ĎM)]+

}
+ 2E

{
[min{xM+, ĎM} −M ]+Ω

}
+ 2δf .

Let us now estimate the first term. According to our Assumption 1 and Theorem 14 (inequality (9)),
we have ⟨sg(px+) − sg(x), px+ − x⟩ ≤ Lf∥px+ − x∥2 + 2δf . Hence, denoting pS := pgx − sg(x) and
pS+ := pgx+

− sg(px+), we can estimate, for any ĎM > 2Lf ,

p∆1(ĎM) = ⟨sg(px+)− sg(x), px+ − x⟩+ ⟨pS+ − pS, px+ − x⟩ −
ĎM

2
∥px+ − x∥2

≤ ⟨pS+ − pS, px+ − x⟩ −
ĎM − 2Lf

2
∥px+ − x∥2 + 2δf ≤ 1

2(ĎM − 2Lf )
∥pS+ − pS∥2∗ + 2δf .

Hence,

E
{
[p∆1(ĎM)]+

}
≤ 1

2(ĎM − 2Lf )
E[∥pS+−pS∥2∗]+2δf =

1

2(ĎM − 2Lf )
E[Var

pg(px+)+Var
pg(x)]+2δf ,

where the final identity follows from the fact that E[∥pS+ − pS∥2∗] = E[∥pS+∥2∗] + E[∥pS∥2∗] =

E[Var
pg(px+)] + Var

pg(x) (because pS+, conditioned on the randomness ξ defining pgx ≡ g(x, ξ),
has zero mean).

Thus,

Γ ≤ 1
ĎM − 2Lf

E[Var
pg(px+) + Var

pg(x)] + 6δf + 2E
{
[min{xM+, ĎM} −M ]+Ω

}
,

which is exactly (2) with c1 = 1, c2 = 2, c3 = 6, c4 = 2.
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C Omitted Proofs for Section 4

C.1 Universal SGD

Lemma 22 (Stochastic Gradient Step). Consider problem (1) under Assumption 1. Let pg be an
unbiased oracle for sg. Let x ∈ domψ be a point, M ≥ 0 be a coefficient, pgx ∼= pg(x), and let

px+ = Proxψ(x, pgx,M).

Denote p∆(M) := βf, sf,sg(x, px+) + ⟨sg(x)− pgx, px+ − x⟩ − M
2 ∥px+ − x∥2. Then,

E
[
F (px+)− F ∗ +

M

2
∥px+ − x∗∥2

]
+ βf, sf,sg(x, x

∗) ≤ M

2
∥x− x∗∥2 + E[p∆(M)].

If further Assumption 2 is satisfied, and xM+ ≥M is a random coefficient (possibly dependent on pgx),
then, we also have

E
[
F (px+)−F ∗+

xM+

2
∥px+−x∗∥2

]
+βf, sf,sg(x, x

∗) ≤ M

2
∥x−x∗∥2+E

[
p∆(xM+)+(xM+−M)D2

]
.

Proof. From Lemma 17, it follows that

sf(x) + ⟨pgx, px+ − x⟩+ ψ(px+) +
M

2
∥px+ − x∗∥2 + M

2
∥px+ − x∥2

≤ sf(x) + ⟨pgx, x∗ − x⟩+ ψ(x∗) +
M

2
∥x− x∗∥2.

Passing to expectations and rewriting

E[ sf(x) + ⟨pgx, x∗ − x⟩+ ψ(x∗)] = sf(x) + ⟨sg(x), x∗ − x⟩+ ψ(x∗) = F (x∗)− βf, sf,sg(x, x
∗),

and
sf(x) + ⟨pgx, px+ − x⟩+ ψ(px+) = F (px+)− [f(px+)− sf(x)− ⟨pgx, px+ − x⟩]

= F (px+)− [βf, sf,sg(x, px+) + ⟨sg(x)− pgx, px+ − x⟩],

we obtain the first of the claimed inequalities.

To prove the second one, we simply add to both sides of the already proved first inequality the
expected value of

xM+ −M

2
∥px+ − x∗∥2 + p∆(M) − p∆(xM+) =

xM+ −M

2

(
∥px+ − x∗∥2 + ∥px+ − x∥2

)
and then bound ∥px+ − x∗∥ ≤ D, ∥px+ − x∥ ≤ D using our Assumption 2 and the fact that
x, px+, x

∗ ∈ domψ.

Lemma 23 (Universal Stochastic Gradient Step). Consider problem (1) under Assumptions 1 and 2.
Let pg be an unbiased oracle for sg. Further, let x ∈ domψ be a point, M ≥ 0 be a coefficient,
pgx ∼= pg(x), and let

px+ = Proxψ(x, pgx,M), pgx+
∼= pg(px+), xM+ =M+(M,D2, x, px+, pgx, pgx+

).

Then, for any ĎM > c2Lf , it holds that

E
[
F (px+)− F ∗ +

xM+

2
∥px+ − x∗∥2 + βf, sf,sg(px+, x)

]
+ βf, sf,sg(x, x

∗)

≤ M

2
∥x−x∗∥2+ c1

ĎM − c2Lf
E[Var

pg(px+)+Var
pg(x)]+c3δf+c4 E

{
[min{xM+, ĎM}−M ]+D

2
}
.

Proof. According to Lemma 22,

E
[
F (px+)−F ∗+

xM+

2
∥px+−x∗∥2

]
+βf, sf,sg(x, x

∗) ≤ M

2
∥x−x∗∥2+E

[
p∆(xM+)+(xM+−M)D2

]
,
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where p∆(xM+) := βf, sf,sg(x, px+)+⟨sg(x)−pgx, px+−x⟩− xM+

2 ∥px+−x∥2. At the same time, according
to the main requirement (2) on the stepsize update rule, for any ĎM > c2Lf ,

E
[

p∆(xM+) + (xM+ −M)D2 + βf, sf,sg(px+, x)
]

≤ c1
ĎM − c2Lf

E[Var
pg(px+) + Var

pg(x)] + c3δf + c4 E
{
[min{xM+, ĎM} −M ]+D

2
}
.

Combining the two displays, we get the claim.

Lemma 24 (Universal SGD: General Guarantee). Consider problem (1) under Assumptions 1 and 2.
Let pg be an unbiased oracle for sg. Further, let x ∈ domψ be a point, M ≥ 0 be a coefficient, N ≥ 1
be an integer, and let

(sxN , xN ,MN ) ∼= UniSgd
pg,ψ(x0,M0, N ;D),

as defined by Algorithm 1, and let x0, . . . , xN be the corresponding points generated inside the
algorithm. Then, for any ĎM > c2Lf , it holds that

E
[
N [F (sxN )− F ∗] +

MN

2
∥xN − x∗∥2 +

N−1∑
k=0

[βf, sf,sg(xk+1, xk) + βf, sf,sg(xk, x
∗)]

]
≤ M0

2
∥x0 − x∗∥2 + c1

ĎM − c2Lf

N−1∑
k=0

E[Var
pg(xk+1) + Var

pg(xk)] + c3Nδf

+ c4 E
{
[min{MN , ĎM} −M0]+D

2
}
.

Proof. Each iteration k of the algorithm, when conditioned on xk, follows the construction from
Lemma 23 (with x = xk, pgx = gk, M =Mk, px+ = xk+1, pgx+

= gk+1, xM+ =Mk+1). Hence, we
can write, after passing to full expectations, that, for each k = 0, . . . , N − 1,

E
[
F (xk+1)− F ∗ +

Mk+1

2
∥xk+1 − x∗∥2 + βf, sf,sg(xk+1, xk) + βf, sf,sg(xk, x

∗)
]

≤ E
[Mk

2
∥xk−x∗∥2+

c1
ĎM − c2Lf

[Var
pg(xk+1)+Var

pg(xk)]+c4[min{Mk+1, ĎM}−Mk]+D
2
]
+c3δf ,

where ĎM > 2Lf is an arbitrary constant. Telescoping the above inequalities (using Lemma 18) and
then bounding N [F (sxN )− F ∗] ≤

∑N
k=1[F (xk)− F ∗] (using the convexity of F and our choice of

sxN = 1
N

∑N
k=1 xk), we get the claim.

Theorem 4. Let Algorithm 1 with M0 = 0 be applied to problem (1) under Assumptions 1–3. Then,
for the point sxN generated by the algorithm, we have

E[F (sxN )]− F ∗ ≤ c2c4LfD
2

N
+ 2σD

√
2c1c4
N

+ c3δf .

Proof. Applying Lemma 24, substituting our choice of M0 = 0, estimating Var
pg(·) ≤ σ2 and

dropping the nonnegative βf, sf,sg(·, ·) terms, we obtain

E[F (sxN )]− F ∗ ≤ 1

N

(
c4 ĎMD2 +

2c1σ
2N

ĎM − c2Lf
+ c3Nδf

)
=
c4 ĎMD2

N
+

2c1σ
2

ĎM − c2Lf
+ c3δf ,

where ĎM > 2Lf is an arbitrary constant. The optimal ĎM which minimizes the right-hand side is
ĎM = c2Lf +

σ
D

√
2c1
c4
N . Substituting this choice into the above display, we get

E[F (sxN )]− F ∗ ≤ c4D
2

N

(
c2Lf +

σ

D

√
2c1
c4
N
)
+

2c1σ
2

σ
D

√
2c1
c4
N

+ c3δf

=
c2c4LfD

2

N
+ 2σD

√
2c1c4
N

+ c3δf .
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C.2 Universal Fast SGD

Lemma 25 (Stochastic Triangle Step). Consider problem (1) under Assumption 1. Let pg be an
unbiased oracle for sg, let x, v ∈ domψ be points and M,A ≥ 0, a > 0 be coefficients. Further, for
A+ := A+ a, let

y =
Ax+ av

A+
, pgy ∼= pg(y), pv+ = Proxψ(v, pgy,M/a), px+ =

Ax+ apv+
A+

.

Denote p∆(M) := βf, sf,sg(y, px+) + ⟨sg(y)− pgy, px+ − y⟩ − MA+

2a2 ∥px+ − y∥2. Then,

E
[
A+[F (px+)− F ∗] +

M

2
∥pv+ − x∗∥2

]
+Aβf, sf,sg(y, x) + aβf, sf,sg(y, x

∗)

≤ A[F (x)− F ∗] +
M

2
∥v − x∗∥2 +A+ E[p∆(M)].

If further Assumption 2 is satisfied, and xM+ ≥M is a random coefficient (possibly dependent on pgy),
then we also have

E
[
A+[F (px+)− F ∗] +

xM+

2
∥pv+ − x∗∥2

]
+Aβf, sf,sg(y, x) + aβf, sf,sg(y, x

∗)

≤ A[F (x)− F ∗] +
M

2
∥v − x∗∥2 + E[A+

p∆(xM+) + (xM+ −M)D2],

Proof. Denoting θ := Aβf, sf,sg(y, x) + aβf, sf,sg(y, x
∗) and using the fact that E[pgy] = sg(y), we can

rewrite

AF (x) + aF (x∗) +
M

2
∥v − x∗∥2

= A[ sf(y) + ⟨sg(y), x− y⟩+ βf, sf,sg(y, x) + ψ(x)]

+ a[ sf(y) + ⟨sg(y), x∗ − y⟩+ βf, sf,sg(y, x
∗) + ψ(x∗)] +

M

2
∥v − x∗∥2

= A+
sf(y) + ⟨sg(y), Ax+ ax∗ −A+y⟩+Aψ(x) + aψ(x∗) +

M

2
∥v − x∗∥2 + θ

= E
[
A+

sf(y) + ⟨pgy, Ax+ ax∗ −A+y⟩+Aψ(x) + aψ(x∗) +
M

2
∥v − x∗∥2

]
+ θ.

Further, by the definition of pv+ and Lemma 17,

⟨pgy, x∗ − pv+⟩+ ψ(x∗) +
M

2a
∥v − x∗∥2 ≥ ψ(pv+) +

M

2a
∥v − pv+∥2 +

M

2a
∥pv+ − x∗∥2.

This means that

A+
sf(y) + ⟨pgy, Ax+ ax∗ −A+y⟩+Aψ(x) + aψ(x∗) +

M

2
∥v − x∗∥2

≥ A+
sf(y) + ⟨pgy, Ax+ apv+ −A+y⟩+Aψ(x) + aψ(pv+) +

M

2
∥v − pv+∥2 +

M

2
∥pv+ − x∗∥2

≥ A+[ sf(y) + ⟨pgy, px+ − y⟩+ ψ(px+)] +
M

2
∥v − pv+∥2 +

M

2
∥pv+ − x∗∥2

= A+F (px+) +
M

2
∥pv+ − x∗∥2 −A+

p∆(M),

where the second inequality is due to the definition of px+ and the convexity of ψ, and

p∆(M) := f(px+)− sf(y)− ⟨pgy, px+ − y⟩ − M

2A+
∥v − pv+∥2

= βf, sf,sg(y, px+) + ⟨sg(y)− pgy, px+ − y⟩ − MA+

2a2
∥px+ − y∥2

since px+ − y = a
A+

(pv+ − v) (by the definitions of y and px+). Substituting the above inequality into
the first display and rearranging, we get the first of the claimed inequalities.
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To prove the second one, we simply add to both sides of the already proved first inequality the
expected value of

xM+ −M

2
∥pv+ − x∗∥2 +A+[p∆(M)− p∆(xM+)] =

xM+ −M

2

(
∥pv+ − x∗∥2 +

A2
+

a2
∥px+ − y∥2

)
and then bound, using the fact that px+ − y = a

A+
(pv+ − v) together with our Assumption 2,

∥pv+ − x∗∥2 +
A2

+

a2
∥px+ − y∥2 = ∥pv+ − x∗∥2 + ∥pv+ − v∥2 ≤ 2D2.

Lemma 26 (Universal Stochastic Triangle Step). Consider problem (1) under Assumptions 1 and 2,
and let pg be an unbiased oracle for sg. Let x, v ∈ domψ be points, M,A ≥ 0, a > 0 be coefficients.
Further, for A+ := A+ a, let

y =
Ax+ av

A+
, pgy ∼= pg(y), pv+ = Proxψ(v, pgy,M/a), px+ =

Ax+ apv+
A+

,

pgx+
∼= pg(px+), xM+ =

a2

A+
M+

(A+

a2
M,

a2

A2
+

D2, y, px+, pgy, pgx+

)
.

Then, for any ĎM > c2Lf
a2

A+
, it holds that

E
[
A+[F (px+)− F ∗] +

xM+

2
∥pv+ − x∗∥2 +A+βf, sf,sg(px+, y)

]
+Aβf, sf,sg(y, x) + aβf, sf,sg(y, x

∗)

≤ A[F (x)− F ∗] +
M

2
∥v − x∗∥2 + c1a

2

ĎM − c2Lf
a2

A+

E[Var
pg(px+) + Var

pg(y)]

+ c3A+δf + c4 E
{
[min{xM+, ĎM} −M ]+D

2
}
.

Proof. According to Lemma 25 (together with the fact that xM+ ≥ M which is guaranteed by the
requirement on the stepsize update rule), we have

E
[
A+[F (px+)− F ∗] +

xM+

2
∥pv+ − x∗∥2

]
+Aβf, sf,sg(y, x) + aβf, sf,sg(y, x

∗)

≤ A[F (x)− F ∗] +
M

2
∥v − x∗∥2 + E

[
A+

p∆(xM+) + (xM+ −M)D2
]
,

where p∆(xM+) := βf, sf,sg(y, px+)+ ⟨sg(y)−pgy, px+−y⟩− xM+A+

2a2 ∥px+−y∥2. Further, according to the

main requirement (2) on the stepsize update rule (applied in the variables M ′ := A+

a2 M , Ω := a2

A2
+
D2,

xM ′
+ := A+

a2
xM+, ĎM ′ := A+

a2
ĎM for which we have M ′Ω =M D2

A+
, xM ′

+Ω = xM+
D2

A+
, ĎM ′Ω = ĎM D2

A+
),

it holds that

E
[

p∆(xM+) + (xM+ −M)
D2

A+
+ βf, sf,sg(px+, y)

]
≤ c1

A+

a2
ĎM − c2Lf

E[Var
pg(px+) + Var

pg(y)] + c3δf + c4 E
{
[min{xM+, ĎM} −M ]+

D2

A+

}
,

where ĎM > c2Lf
a2

A+
is an arbitrary constant. Multiplying both sides of the above display by A+ and

adding the result to the first display, we obtain the claim.

Lemma 27 (Universal Fast SGD: General Guarantee). Consider Algorithm 2 applied to problem (1)
under Assumptions 1 and 2. Then, for any k ≥ 1 and any ĎM > c2Lf , it holds that

E
[
Ak[F (xk)− F ∗] +

k−1∑
i=0

[Ai+1βf, sf,sg(xi+1, yi) + ai+1βf, sf,sg(yi, x
∗)]

]
≤ c4 ĎMD2 +

c1
ĎM − c2Lf

k−1∑
i=0

a2i+1 E[Varpg(xi+1) + Var
pg(yi)] + c3δf

k∑
i=1

Ai,
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where ak = 1
2k, Ak = 1

4k(k+1),
∑k
i=1 a

2
i =

1
24k(k+1)(2k+1),

∑k
i=1Ai =

1
12k(k+1)(k+2)

for each k ≥ 1.

Proof. Each iteration k of the algorithm, when conditioned on (xk, vk), follows the construction
from Lemma 26 (with x = xk, v = vk, M = Mk, A = Ak, a = ak+1, A+ = Ak+1, y = yk,
pgy = gyk , pv+ = vk+1, px+ = xk+1, pgx+

= gxk+1
, xM+ =Mk+1), where Ak and ak are the following

coefficients: ak = 1
2k, Ak =

∑k
i=1 ai =

1
4k(k+1). Applying Lemma 26 (dropping the nonnegative

βf, sf,sg(y, x) term) and passing to full expectations, we therefore obtain, for each k ≥ 0,

E
[
Ak+1[F (xk+1)−F ∗] +

Mk+1

2
∥vk+1−x∗∥2+Ak+1βf, sf,sg(xk+1, yk)+ ak+1βf, sf,sg(yk, x

∗)
]

≤ E
[
Ak[F (xk)− F ∗] +

Mk

2
∥vk − x∗∥2 +

c1a
2
k+1

ĎM − c2Lf
a2k+1

Ak+1

[Var
pg(xk+1) + Var

pg(yk)]
]

+ c3Ak+1δf + c4 E
{
[min{Mk+1, ĎM} −Mk]+D

2
}
,

where ĎM is an arbitrary constant such that ĎM > c2Lf
a2k+1

Ak+1
. Note however that, for our sequences ak

and Ak, we have a2k
Ak

=
1
4k

2

1
4k(k+1)

= k
k+1 ≤ 1. Therefore, we can replace c1a

2
k+1

ĎM−c2Lf

a2
k+1

Ak+1

in the above

display with c1a
2
k+1

ĎM−c2Lf
under the requirement that ĎM > c2Lf . Doing this and then telescoping the

above inequalities (applying Lemma 18), and using the fact that M0 = A0 = 0, we get the claimed
inequality.

It remains to do some standard computations to see that
∑k
i=1 a

2
i ≡ 1

4

∑k
i=1 i

2 = 1
24k(k+1)(2k+1)

and
∑k
i=1Ai ≡

1
4

∑k
i=1 i(i+1) = 1

4 (
1
6k(k+1)(2k+1)+ 1

2k(k+1)) = 1
12k(k+1)(k+2).

Theorem 5. Let Algorithm 2 be applied to problem (1) under Assumptions 1–3. Then, for any k ≥ 1,

E[F (xk)]− F ∗ ≤ 4c2c4LfD
2

k(k + 1)
+ 4σD

√
2c1c4
3k

+
c3
3
(k + 2)δf .

Proof. Let k ≥ 1 be arbitrary and Fk := E[F (xk)] − F ∗. Applying Lemma 27, dropping the
nonnegative βf, sf,sg(·, ·) terms and bounding Var

pg(·) ≤ σ2, we obtain, for an arbitrary constant
ĎM > c2Lf ,

Fk ≤ 1

Ak

(
c4 ĎMD2 +

2c1σ
2

ĎM − c2Lf

k∑
i=1

a2i + c3δf

k∑
i=1

Ai

)
=

4

k(k + 1)

(
c4 ĎMD2 +

c1k(k + 1)(2k + 1)σ2

12(ĎM − c2Lf )
+
c3
12
k(k + 1)(k + 2)δf

)
=

4c4 ĎMD2

k(k + 1)
+
c1(2k + 1)σ2

3(ĎM − c2Lf )
+ δk,

where δk := c3
3 (k + 2)δf . We now choose ĎM > c2Lf which minimizes the right-hand side. This is

ĎM = c2Lf +
σ
2D

√
c1
3c4
k(k + 1)(2k + 1), for which we get

Fk ≤ 4c4D
2

k(k + 1)

(
c2Lf +

σ

2D

√
c1
3c4

k(k + 1)(2k + 1)

)
+

c1(2k + 1)σ2

3 σ
2D

√
c1
3c4
k(k + 1)(2k + 1)

+ δk

=
4c2c4LfD

2

k(k + 1)
+ 4σD

√
c1c4(2k + 1)

3k(k + 1)
+ δk ≤ 4c2c4LfD

2

k(k + 1)
+ 4σD

√
2c1c4
3k

+ δk.
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D Omitted Proofs for Section 5

D.1 Universal SGD

Theorem 7. Let Algorithm 1 with M0 = 0 be applied to problem (1) under Assumptions 1, 2 and 6,
and let σ2

∗ := Var
pg(x

∗). Then, for the point sxN produced by the method, we have

E[F (sxN )]− F ∗ ≤
c4(c2Lf + 12c1Lpg)D

2

N
+ 2σ∗D

√
6c1c4
N

+ c3δf +
4

3
δ

pg.

Proof. Let x0, . . . , xN be the points generated inside the method and let FN := E[F (sxN )] − F ∗.
Using Lemma 19 and Assumption 6, we can estimate, for any 0 ≤ k ≤ N − 1,

Var
pg(xk+1) + Var

pg(xk) ≤ 3Var
pg(xk) + 2Var

pg(xk+1, xk)

≤ 6σ2
∗ + 6Var

pg(xk, x
∗) + 2Var

pg(xk+1, xk)

≤ 6σ2
∗ + 12L

pg[βf, sf,sg(xk, x
∗) + δ

pg] + 4L
pg[βf, sf,sg(xk+1, xk) + δ

pg]

= 6σ2
∗ + 4L

pg[3βf, sf,sg(xk, x
∗) + βf, sf,sg(xk+1, xk) + 4δ

pg].

Substituting this bound into the general guarantee given by Lemma 24 (and taking into account the
fact that M0 = 0), we obtain

NFN +

N−1∑
k=0

E[βf, sf,sg(xk+1, xk) + βf, sf,sg(xk, x
∗)]

≤ c4 ĎMD2 +
6c1σ

2
∗N

ĎM − c2Lf
+ α

N−1∑
k=0

E[βf, sf,sg(xk+1, xk) + 3βf, sf,sg(xk, x
∗)] +N(c3δf + 4αδ

pg),

where ĎM > c2Lf is an arbitrary constant and α :=
4c1L

pg

ĎM−c2Lf
. Requiring now that 3α ≤ 1 or,

equivalently, that ĎM ≥ c2Lf + 12c1Lpg =: ĎMmin, we can cancel the nonnegative βf, sf,sg(·, ·) terms
on both sides and obtain

FN ≤ c4 ĎMD2

N
+

6c1σ
2
∗

ĎM − c2Lf
+ δ,

where δ := c3δf + 4
3δpg. The optimal coefficient ĎM∗ minimizing the right-hand side is ĎM∗ =

c2Lf + σ∗
D

√
6c1N
c4

. However, we still need to respect the constraint ĎM ≥ ĎMmin. Choosing ĎM =

c2Lf + 12c1Lpg +
σ∗
D

√
6c1N
c4

, we conclude that

FN ≤ c4D
2

N

(
c2Lf + 12c1Lpg +

σ∗
D

√
6c1N

c4

)
+

6c1σ
2
∗

σ∗
D

√
6c1N
c4

+ δ

=
c4(c2Lf + 12c1Lpg)D

2

N
+ 2σ∗D

√
6c1c4
N

+ δ.

D.2 Universal Fast SGD

Theorem 8. Let Algorithm 2 be applied to problem (1) under Assumptions 1, 2 and 6, and let
σ2
∗ := Var

pg(x
∗). Then, for any k ≥ 1, we have

E[F (xk)]− F ∗ ≤ 4c2c4LfD
2

k(k + 1)
+

24c1c4LpgD
2

k + 1
+ 4σ∗D

√
2c1c4
k

+
c3
3
(k + 2)δf +

4

3
δ

pg.

Proof. Let k ≥ 1 be arbitrary and Fk := E[F (xk)]− F ∗. Using Lemma 19 and Assumption 6, we
can estimate, for each i,

Var
pg(xi+1) + Var

pg(yi) ≤ 3Var
pg(yi) + 2Var

pg(xi+1, yi)

≤ 6σ2
∗ + 6Var

pg(yi, x
∗) + 2Var

pg(xi+1, yi)

≤ 6σ2
∗ + 12L

pg[βf, sf,sg(yi, x
∗) + δ

pg] + 4L
pg[βf, sf,sg(xi+1, yi) + δ

pg]

= 6σ2
∗ + 4L

pg[3βf, sf,sg(yi, x
∗) + βf, sf,sg(xi+1, yi) + 4δ

pg].
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Substituting this bound into the guarantee given by Lemma 27, we obtain

AkFk +

k−1∑
i=0

E[Ai+1βf, sf,sg(xi+1, yi) + ai+1βf, sf,sg(yi, x
∗)]

≤ c4 ĎMD2+

k−1∑
i=0

αi+1 E[βf, sf,sg(xi+1, yi)+3βf, sf,sg(yi, x
∗)+4δ

pg]+
6c1σ

2
∗

ĎM − c2Lf

k∑
i=1

a2i+c3δf

k∑
i=1

Ai,

where αi+1 :=
4c1L

pga
2
i+1

ĎM−c2Lf
, ai = 1

2 i, Ak = 1
4k(k + 1),

∑k
i=1 a

2
i =

1
24k(k + 1)(2k + 1),

∑k
i=1Ai =

1
12k(k + 1)(k + 2). Requiring now that 3αi+1 ≤ ai+1 for all i = 0, . . . , k − 1 or, equivalently, that
ĎM ≥ c2Lf +12c1Lpgak ≡ c2Lf +6c1Lpgk, we can cancel the nonnegative βf, sf,sg(·, ·) terms on both
sides and obtain

Fk ≤ 1

Ak

(
c4 ĎMD2 +

6c1σ
2
∗

ĎM − c2Lf

k∑
i=1

a2i + c3δf

k∑
i=1

Ai +
4

3
Akδpg

)
=

4

k(k + 1)

(
c4 ĎMD2 +

c1σ
2
∗k(k + 1)(2k + 1)

4(ĎM − c2Lf )
+
c3
12
δfk(k + 1)(k + 2)

)
+

4

3
δ

pg

=
4c4 ĎMD2

k(k + 1)
+
c1σ

2
∗(2k + 1)

ĎM − c2Lf
+ δk,

where δk := c3
3 (k + 2)δf +

4
3δpg .

The minimizer of the right-hand side is ĎM∗ = c2Lf +
σ∗
2D

√
c1
c4
k(k + 1)(2k + 1). However, recall

that we also need to satisfy the constraint ĎM ≥ c2Lf + 6c1Lpgk. Choosing ĎM = c2Lf + 6c1Lpgk +
σ∗
2D

√
c1
c4
k(k + 1)(2k + 1), we obtain

Fk ≤ 4c4D
2

k(k + 1)

(
c2Lf + 6c1Lpgk +

σ∗
2D

√
c1
c4
k(k + 1)(2k + 1)

)
+

c1σ
2
∗(2k + 1)

σ∗
2D

√
c1
c4
k(k + 1)(2k + 1)

+ δk

=
4c2c4LfD

2

k(k + 1)
+

24c1c4LpgD
2

k + 1
+ 4σ∗D

√
c1c4(2k + 1)

k(k + 1)
+ δk

≤ 4c2c4LfD
2

k(k + 1)
+

24c1c4LpgD
2

k + 1
+ 4σ∗D

√
2c1c4
k

+ δk.

E Omitted Proofs for Section 6

Lemma 28 (Basic property of SVRG oracle). Let pg be a stochastic oracle in Rd, and let pG =

SvrgOrac
pg(x̃) for some x̃ ∈ Rd. Then, for any x ∈ Rd, the mean value of pG at x is the same as that

of pg at x, while Var
pG(x) = Var

pg(x, x̃).

Proof. Let g and ξ be, respectively, the function and the random variable components of pg, and let
g(x) := Eξ[g(x, ξ)], g(x̃) := Eξ[g(x̃, ξ)]. Then, by definition, pG is the oracle with the same random
variable component ξ and the function component G defined by G(x, ξ) = g(x, ξ)− g(x̃, ξ) + g(x̃).
Consequently, Eξ[G(x, ξ)] = g(x), and

Var
pG(x) = Eξ

[
∥G(x, ξ)− g(x)]∥2∗

]
= Eξ

[
∥[g(x, ξ)− g(x̃, ξ)]− [g(x)− g(x̃)]∥2∗

]
= Var

pg(x, x̃).

E.1 Universal SVRG

Lemma 29 (Universal SVRG Epoch). Consider problem (1) under Assumptions 1, 2, 6 and 9. Let
x, x̃ ∈ domψ be points, M ≥ 0 be a coefficient, N ≥ 1 be an integer, pG = SvrgOrac

pg(x̃), and let

(x̃+, x+,M+) ∼= UniSgd
pG,ψ(x,M,N ;D),
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as defined by Algorithm 1. Then, for any ĎM ≥ c2Lf + 12c1Lpg, α :=
4c1L

pg

ĎM−c2Lf
, and any ∇f(x∗) ∈

∂f(x∗), it holds that

E
[
N [F (x̃+)− F ∗] +

M+

2
∥x+ − x∗∥2

]
≤ 6αNβ

∇f(x∗)
f (x∗, x̃)+

M

2
∥x−x∗∥2+N(c3δf +16αδ

pg)+c4D
2 E

{
[min{M+, ĎM}−M ]+

}
.

Proof. Since pg is an unbiased oracle for sg, so is pG (Lemma 28). Therefore, we can apply Lemma 24
to get

E
[
N [F (x̃+)− F ∗] +

M+

2
∥x+ − x∗∥2 +

N−1∑
k=0

[βf, sf,sg(xk+1, xk) + βf, sf,sg(xk, x
∗)]

]
≤ M

2
∥x− x∗∥2 + c1

ĎM − c2Lf

N−1∑
k=0

E[Var
pG(xk+1) + Var

pG(xk)] + c3Nδf

+ c4 E
{
[min{M+, ĎM} −M ]+D

2
}
,

where ĎM > c2Lf is an arbitrary constant and xk are the points generated inside UniSgd.

Applying now Lemmas 19 and 28 and Assumptions 6 and 9, we can estimate, for each k,

Var
pG(xk+1) + Var

pG(xk) = Var
pg(xk+1, x̃) + Var

pg(xk, x̃) ≤ 2Var
pg(xk+1, xk) + 3Var

pg(xk, x̃)

≤ 2Var
pg(xk+1, xk) + 6Var

pg(xk, x
∗) + 6Var

pg(x
∗, x̃)

≤ 4L
pg[βf, sf,sg(xk+1, xk) + δ

pg] + 12L
pg[βf, sf,sg(xk, x

∗) + δ
pg] + 24L

pg[β
∇f(x∗)
f (x∗, x̃) + 2δ

pg]

= 4L
pg[βf, sf,sg(xk+1, xk) + 3βf, sf,sg(xk, x

∗) + 6β
∇f(x∗)
f (x∗, x̃) + 16δ

pg],

where ∇f(x∗) ∈ ∂f(x∗) is arbitrary. Denoting α :=
4c1L

pg

ĎM−c2Lf
, we thus obtain

E
[
N [F (x̃+)− F ∗] +

M+

2
∥x+ − x∗∥2 +

N−1∑
k=0

[βf, sf,sg(xk+1, xk) + βf, sf,sg(xk, x
∗)]

]
≤ 6αNβ

∇f(x∗)
f (x∗, x̃) +

M

2
∥x− x∗∥2 +N(c3δf + 16αδ

pg) + c4 E
{
[min{M+, ĎM} −M ]+D

2
}

+ α

N−1∑
k=0

E[βf, sf,sg(xk+1, xk) + 3βf, sf,sg(xk, x
∗)].

Requiring now ĎM ≥ c2Lf + 12c1Lpg, we get α ≤ 1
3 which allows us to cancel the nonnegative

βf, sf,sg(·, ·) terms on both sides. The claim now follows.

Theorem 10. Let UniSvrg (as defined by Algorithm 3) be applied to problem (1) under Assumptions 1,
2, 6 and 9. Then, for any t ≥ 1 and sc3 := max{c3, 1}, we have

E[F (x̃t)]− F ∗ ≤
[(c2c4 + 1)Lf + 48c1c4Lpg]D

2

2t
+ 2sc3δf +

8

3
δ

pg.

To construct x̃t, the algorithm needs to make O(2t) queries to pg and O(t) queries to sg.

Proof. The algorithm iterates (x̃t+1, xt+1,Mt+1) ∼= UniSgd
pGt,ψ

(xt,Mt, 2
t+1;D) for t ≥ 0, where

pGt = SvrgOrac
pg(x̃t). Applying Lemma 29 with ĎM := c2Lf + 48c1Lpg (for which α = 1

12 so that
6α2t+1 = 2t) and passing to full expectations, we obtain, for any t ≥ 0,

E
[
2t+1[F (x̃t+1)− F ∗] +

Mt+1

2
∥xt+1 − x∗∥2

]
≤ E

[
2tβt +

Mt

2
∥xt − x∗∥2 + c4[min{Mt+1, ĎM} −Mt]+D

2
]
+ 2t+1

(
c3δf +

4

3
δ

pg

)
,

26



where βt := β
∇f(x∗)
f (x∗, x̃t) and ∇f(x∗) ∈ ∂f(x∗) can be chosen arbitrarily. Rewriting Ft+1 :=

F (x̃t+1) − F ∗ as Ft+1 = βt+1 + (Ft+1 − βt+1) and telescoping the above inequalities (using,
Lemma 18), we get, for any t ≥ 1,

E
[
2tβt +

t∑
i=1

2i(Fi − βi) +
Mt

2
∥xt − x∗∥2

]
≤ β0 +

M0

2
∥x0 − x∗∥2 +

(
c3δf +

4

3
δ

pg

) t∑
i=1

2i + c4 E
{
[min{Mt, ĎM} −M0]+D

2
}

≤ β0 + 2(2t − 1)
(
c3δf +

4

3
δ

pg

)
+ c4 ĎMD2 =: Φ0,

where the final inequality is due to the fact that M0 = 0, while
∑t
i=1 2

i = 2(2t − 1). According to
Lemma 30, we can choose ∇f(x∗) ∈ ∂f(x∗) such that βi ≤ F (x̃i)− F ∗ for all i ≥ 0. Dropping
now various nonnegative terms from the left-hand side of the above display, we conclude that

2t E[Ft] ≤ Φ0.

Let us estimate Φ0. Using our Assumptions 1 and 2 and Theorem 14 (inequality (14)), we can bound
β0 ≤ Lf∥x̃0 − x∗∥2 + 2δf ≤ LfD

2 + 2δf . Therefore,

Φ0 ≤ LfD
2 + 2δf + c4 ĎMD2 + 2(2t − 1)(c3δf +

4
3δpg) ≤ LD2 + 2(sc3δf +

4
3δpg) · 2t

where L := Lf + c4 ĎM ≡ (c2c4 + 1)Lf + 48c1c4Lpg and sc3 := max{c3, 1}. Thus,

E[Ft] ≤
Φ0

2t
≤ LD2

2t
+ 2sc3δf +

8

3
δ

pg,

which proves the claimed convergence rate.

Let us now estimate the number of oracle queries. At each iteration t, the algorithm first queries sg

to construct the SVRG oracle pGt (by precomputing sg(x̃t)). All other queries are then done only
to pGt or, equivalently, to pg inside UniSgd

pGt,ψ
which is run for Nt+1 = 2t+1 iterations and thus

requiring O(Nt+1) queries to pg. Summing up, after T iterations, we obtain the total number of∑T
t=1O(Nt) =

∑T
t=1O(2t) = O(2T ) queries to pg, and T queries to sg.

Helper Lemmas

Lemma 30. Let F : Rd → R∪{+∞} be the function F (x) := f(x)+ψ(x), where f : Rd → R is a
convex function, and ψ : Rd → R∪ {+∞} is a proper closed convex function. Let x∗ be a minimizer
of F and let F ∗ := F (x∗). Then, there exists ∇f(x∗) ∈ ∂f(x∗) such that, for any x ∈ domψ,

F (x)− F ∗ ≥ β
∇f(x∗)
f (x∗, x).

Proof. Since x∗ is a minimizer of F , we have 0 ∈ ∂F (x∗) = ∂f(x∗) + ∂ψ(x∗). In other words,
there exists ∇f(x∗) ∈ ∂f(x∗) such that ∇ψ(x∗) := −∇f(x∗) ∈ ∂ψ(x∗). Consequently, for any
x ∈ domψ,

F (x)− F ∗ = f(x)− f(x∗) + [ψ(x)− ψ(x∗)] ≥ f(x)− f(x∗) + ⟨∇ψ(x∗), x− x∗⟩

= f(x)− f(x∗)− ⟨∇f(x∗), x− x∗⟩ = β
∇f(x∗)
f (x∗, x).

E.2 Universal Fast SVRG

Lemma 31 (Universal Triangle SVRG Step). Consider problem (1) under Assumptions 1, 2 and 6.
Let x̃, v ∈ domψ be points, M ≥ 0 and A, a > 0 be coefficients, pG := SvrgOrac

pg(x̃). Further, let,
for A+ := A+ a,

x :=
Ax̃+ av

A+
, pGx ∼= pG(x), pv+ = Proxψ(v, pGx,M/a), px+ =

Ax̃+ apv+
A+

,

pGx+
∼= pG(px+), xM+ =

a2

A+
M+

(A+

a2
M,

a2

A2
+

D2, x, px+, pGx, pGx+

)
.
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Then, for ĎM := c2Lf
a2

A+
+ 6c1Lpg

a2

A , it holds that

E
[
A+[F (px+)− F ∗] +

xM+

2
∥pv+ − x∗∥2

]
≤ A[F (x̃)− F ∗] +

M

2
∥v − x∗∥2 + c4D

2 E
{
[min{xM+, ĎM} −M ]+

}
+ c3A+δf +

5

3
Aδ

pg.

Proof. Since pg is an unbiased oracle for sg, so is pG (Lemma 28). Therefore, we can apply Lemma 26
to obtain

E
[
A+[F (px+)− F ∗] +

xM+

2
∥pv+ − x∗∥2 +A+βf, sf,sg(px+, x)

]
+Aβf, sf,sg(x, x̃)

≤ A[F (x̃)− F ∗] +
M

2
∥v − x∗∥2 + c1a

2

ĎM − c2Lf
a2

A+

E[Var
pG(px+) + Var

pG(x)]

+ c3A+δf + c4 E
{
[min{xM+, ĎM} −M ]+D

2
}
,

where ĎM > c2Lf
a2

A+
is an arbitrary coefficient. Using Lemmas 19 and 28 and Assumption 6, we can

further bound

Var
pG(px+) + Var

pG(x) = Var
pg(px+, x̃) + Var

pg(x, x̃) ≤ 2Var
pg(px+, x) + 3Var

pg(x, x̃)

≤ 2L
pg[2βf, sf,sg(px+, x) + 3βf, sf,sg(x, x̃) + 5δ

pg].

Denoting α :=
2c1L

pga
2

ĎM−c2Lf
a2

A+

, we thus obtain

E
[
A+[F (px+)− F ∗] +

xM+

2
∥pv+ − x∗∥2 +A+βf, sf,sg(px+, x)

]
+Aβf, sf,sg(x, x̃)

≤ A[F (x̃)− F ∗] +
M

2
∥v − x∗∥2 + c3A+δf + 5αδ

pg + c4 E
{
[min{xM+, ĎM} −M ]+D

2
}

+ 2αE[βf, sf,sg(px+, x)] + 3αβf, sf,sg(x, x̃).

Choosing now ĎM = c2Lf
a2

A+
+ 6c1Lpg

a2

A , we get α = 1
3A (≤ 1

3A+), which allows us to drop the
nonnegative βf, sf,sg(·, ·) terms from both sides. The claim now follows.

Lemma 32 (Universal Triangle SVRG Epoch). Consider problem (1) under Assumptions 1, 2 and 6.
Let x̃, v ∈ domψ be points, M ≥ 0 and A, a > 0 be coefficients, N ≥ 1 be an integer, and let

(x̃+, v+,M+) ∼= UniTriSvrgEpoch
pg,ψ(x̃, v,M,A, a,N ;D),

as defined by Algorithm 5. Then, for A+ := A+ a and ĎM := c2Lf
a2

A+
+ 6c1Lpg

a2

A , it holds that

E
[
A+N [F (x̃+)− F ∗] +

M+

2
∥v+ − x∗∥2

]
≤ AN [F (x̃)−F ∗]+

M

2
∥v−x∗∥2+c4D2 E

{
[min{M+, ĎM}−M ]+

}
+N

(
c3A+δf +

5

3
Aδ

pg

)
.

Proof. Each iteration k of the algorithm, when conditioned on vk, follows the construction from
Lemma 31 (with v = vk, M = Mk, A = Ak, a = ak+1, A+ = Ak+1, x = xk, pGx = Gxk

,
pv+ = vk+1, px+ = xk+1, pGx+

= Gxk+1
, xM+ = Mk+1). Hence, we can write, after passing to full

expectations, for each k = 0, . . . , N − 1,

E
[
A+[F (xk+1)− F ∗] +

Mk+1

2
∥vk+1 − x∗∥2

]
≤ A[F (x̃)− F ∗] + E

[Mk

2
∥vk − x∗∥2 + c4[min{Mk+1, ĎM} −Mk]+D

2
]
+ δ,
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where δ := c3A+δf +
5
3Aδpg . Telescoping the above inequalities (using Lemma 18), we get

E
[
A+

N∑
k=1

[F (xk)− F ∗] +
MN

2
∥vN − x∗∥2

]
≤ AN [F (x̃)− F ∗] +

M0

2
∥v0 − x∗∥2 + c4D

2 E
{
[min{MN , ĎM} −M0]+

}
+Nδ.

The claim now follows from the convexity of F and our definitions x̃+ = sxN = 1
N

∑N
k=1 xk,

v+ = vN , M+ =MN , M0 =M , v0 = v.

Theorem 11. Let UniFastSvrg (Algorithm 4) be applied to problem (1) under Assumptions 1, 2
and 6, and let N ≥ 9. Then, for any t ≥ t0 := ⌈log2 log3N⌉ − 1 (≥ 0), it holds that

E[F (x̃t)]− F ∗ ≤
9[(c2c4 +

1
2 )Lf + 6c1c4Lpg]D

2

N(t− t0 + 1)2
+ (c3t+ 1)δf +

5

3
tδ

pg.

To construct x̃t, the algorithm needs to make O(Nt) queries to pg and O(t) queries to sg. Assuming
that the complexity of querying sg is n times bigger than that of querying pg and choosing N = Θ(n),
we get the total stochastic-oracle complexity of O(nt).

Proof. By our definition, the algorithm iterates for t ≥ 0:

(x̃t+1, vt+1,Mt+1) ∼= UniTriSvrgEpoch
pg,sg,ψ(x̃t, vt,Mt, At, at+1, N ;D),

where At and at+1 are deterministic coefficients satisfying the following equations:

At+1 = At + at+1, at+1 =
√
At. (17)

In particular, for any t ≥ 0, we have ĎM ′
t := c2Lf

a2t+1

At+1
+ 6c1Lpg

a2t+1

At
≤ c2Lf + 6c1Lpg =: ĎM , and

hence [min{Mt+1, ĎM ′
t} −Mt]+ ≤ [min{Mt+1, ĎM} −Mt]+ (because, for any fixed a and b, the

function [min{a, ·} − b]+ is nondecreasing as the composition of two nondecreasing functions).
Applying now Lemma 32 and passing to full expectations, we therefore obtain, for any t ≥ 0,

E
[
At+1N [F (x̃t+1)− F ∗] +

Mt+1

2
∥vt+1 − x∗∥2

]
≤ E

[
AtN [F (x̃t)−F ∗]+

Mt

2
∥vt−x∗∥2+c4[min{Mt+1, ĎM}−Mt]+D

2
]
+N

(
c3At+1δf+

5

3
Atδpg

)
.

Telescoping the above inequalities (using, in particular, Lemma 18), we obtain, for any t ≥ 1,

AtN E[F (x̃t)− F ∗] ≤ A0N [F (x̃0)− F ∗] +
M0

2
∥v0 − x∗∥2

+ c4 E
{
[min{Mt, ĎM} −M0]+D

2
}
+N

(
c3δf

t∑
i=1

Ai +
5

3
δ

pg

t−1∑
i=0

Ai

)
≤ A0N [F (x̃0)− F ∗] + c4 ĎMD2 +NSt(c3δf +

5
3δpg),

where, for the last inequality, we have used the fact that M0 = 0 and denoted St :=
∑t
i=1Ai. Thus,

for any t ≥ 1,

E[F (x̃t)]− F ∗ ≤ 1

At

(
A0[F (x̃0)− F ∗] +

c4 ĎMD2

N

)
+
St
At

(
c3δf +

5

3
δ

pg

)
.

At the same time, according to (17), At+1−At =
√
At for any t ≥ 0. Hence, by Lemma 33 (and our

assumption on A0), we can estimate At ≥ 1
9 (t− t0+1)2 for any t ≥ t0 := ⌈log2 log3 1

A0
⌉−1 (≥ 0).

Further, since the sequence At is increasing, we can estimate St ≡
∑t
i=1Ai ≤ tAt, so that St

At
≤ t.

Substituting these bounds into the above display and using our formula for A0, we obtain, for any
t ≥ t0,

E[F (x̃t)]− F ∗ ≤ ρt[F (x̃0)− F ∗ + c4 ĎMD2] + t(c3δf +
5
3δpg),
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where ρt := 9
N(t−t0+1)2 ≤ 1. By our choice of x̃0, it holds that F (x̃0)− F ∗ ≤ 1

2LfD
2 + δf (see

Lemma 34). Denoting L := 1
2Lf + c4 ĎM ≡ (c2c4 +

1
2 )Lf + 6c1c4Lpg , we get

E[F (x̃t)]− F ∗ ≤ ρt(LD
2 + δf ) + t(c3δf +

5
3δpg) ≤ ρtLD

2 + (c3t+ 1)δf +
5
3 tδpg,

which is exactly the claimed convergence rate bound.

Let us now estimate the number of oracle queries. At the beginning, the algorithm makes 1 query
to sg to compute x̃0. All other queries to the oracles are then done, at each iteration t, only inside the
call to UniTriSvrgEpoch (Algorithm 5). Each such a call needs only one query to sg to construct
the SVRG oracle pG (by precomputing sg(x̃)), and O(N) queries to pg (which implements each query
to pG). Summing up, we get, after t iterations, the total number of O(Nt) queries to pg and O(t)
queries to sg.

Helper Lemmas

Lemma 33 (c.f. Lemma 1.1 in [23]). Let At be a positive sequence such that

At+1 −At ≥
√
γAt

for all t ≥ 0, where γ > 0, and let A0 ≤ 1
9γ. Then, for any t ≥ 0, we have

At ≥

{
γ(A0

γ )1/2
t

, if t < t0,
γ
9 (t− t0 + 1)2, if t ≥ t0,

where t0 := ⌈log2 log3
γ
A0

⌉ − 1 (≥ 0).

Proof. By replacing At with A′
t = At/γ, we can assume w.l.o.g. that γ = 1.

For any t ≥ 0, we have At+1 ≥
√
At, and hence

At ≥ A
1/2t

0 .

In particular, for t0 (as defined in the statement), we get t0 ≥ log2 log3
1
A0

− 1, so 2t0 ≥ 1
2 log3

1
A0

,
and hence

At0 ≥ A
2/ log3(1/A0)
0 =

(
3− log3(1/A0)

)2/ log3(1/A0)
= 3−2 =

1

9

(recall that A0 ≤ 1
9 ≤ 1).

On the other hand, for any t ≥ t0, we have√
At+1 −

√
At ≥

√
At +

√
At −

√
At =

√
At√

At +
√
At +

√
At

=
1√

1 + 1√
At

+ 1
≥ 1√

1 + 3 + 1
=

1

3
,

where we have used the fact that At ≥ At0 ≥ 1
9 since At is monotonically increasing. Telescoping

these inequalities and rearranging, we get, for any t ≥ t0,

At ≥
(
1

3
(t− t0) +

√
At0

)2

≥
(
1

3
(t− t0) +

1

3

)2

=
1

9
(t− t0 + 1)2.

Lemma 34. Consider problem (1) under Assumptions 1 and 2. Let x ∈ domψ, and let x+ :=
Proxψ(x, sg(x), 0). Then, F (x+)− F ∗ ≤ 1

2LfD
2 + δf .

Proof. From the first-order optimality condition for the point x+ (see Lemma 17), it follows that

⟨sg(x), x∗ − x+⟩+ ψ(x∗) ≥ ψ(x+).
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Combining the above inequality first with f(x+) ≤ sf(x) + ⟨sg(x), x+ − x⟩+ Lf

2 ∥x+ − x∥2 + δf
and then with sf(x) + ⟨sg(x), x∗ − x⟩ ≤ f(x∗) (which are both due to our Assumption 1), we obtain

F (x+) = f(x+) + ψ(x+) ≤ f(x+) + ⟨sg(x), x∗ − x+⟩+ ψ(x∗)

≤ sf(x) + ⟨sg(x), x∗ − x⟩+ ψ(x∗) +
Lf
2
∥x+ − x∥2 + δf

≤ F ∗ +
Lf
2
∥x+ − x∥2 + δf .

It remains to bound ∥x+ − x∥ ≤ D.

F Omitted Proofs for Section 7

We start with the observation that for our specific example all our main assumptions are satisfied.
Remark 35. Under the setting from Example 12, Assumptions 1, 6 and 9 are satisfied with sf = f ,
sg(x) = ∇f(x) := Eξ[∇fξ(x)], any δf , δpg > 0 and

Lf =

[
1− ν

2(1 + ν)δf

] 1−ν
1+ν

[Hf (ν)]
2

1+ν , L
pg =

1

b

[
1− ν

2(1 + ν)δ
pg

] 1−ν
1+ν

[Hmax(ν)]
2

1+ν .

Further, the oracle pgb satisfies Assumption 3 with σ2
b := supx∈domψ Var

pgb(x) =
1
bσ

2, and σ2
∗,b :=

Var
pgb(x

∗) = 1
bσ

2
∗.

Proof. For b = 1, this follows from Theorem 13 and Lemma 16 and our definitions of σ2 and σ∗.
The general case b ≥ 1 follows from the fact that the standard mini-batching of size b reduces each of
the variances Var

pg1(·) and Var
pg1(·, ·) in b times.

The following auxiliary result will be useful throughout this section:
Lemma 36. Let a, b, p > 0 be real. Then,

min
t>0

{ a
tp

+ bt
}
= (p+ 1)a

1
p+1

(
b

p

) p
p+1

.

Proof. The expression inside the min is a convex function in t > 0. Differentiating and setting its
derivative to zero, we see that the minimum is attained at t∗ = (apb )

1
p+1 . Hence,

min
t>0

{ a
tp

+ bt
}
= a

(
b

ap

) p
p+1

+ b

(
ap

b

) 1
p+1

= (p+ 1)a
1

p+1

(
b

p

) p
p+1

.

F.1 Uniformly Bounded Variance

Corollary 37. Consider problem (1) under the setting from Example 12 and also under Assumption 2.
Let Algorithm 1 be applied to this problem with the oracle pg = pgb and initial coefficient M0 = 0.
Then, for the point sxN generated by the algorithm, we have

E[F (sxN )]− F ∗ ≤ (2c2c4)
1+ν
2 c

1−ν
2

3

1 + ν

Hf (ν)D
1+ν

N
1+ν
2

+ 2σD

√
2c1c4
bN

.

To reach E[F (sxN )]− F ∗ ≤ ϵ for any ϵ > 0, it suffices to make O
(
[
Hf (ν)
ϵ ]

2
1+νD2 + σ2D2

bϵ2

)
queries

to pgb.

Proof. Denote for brevity Hf := Hf (ν). Taking into account Remark 35 and applying Theorem 4,
we get, for any δf > 0,

FN := E[F (sxN )]− F ∗ ≤
c2c4H

2
1+ν

f D2

N

[
1− ν

2(1 + ν)δf

] 1−ν
1+ν

+ c3δf + σN ,
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where σN := 2σbD
√

2c1c4
N = 2σD

√
2c1c4
bN . Minimizing the right-hand side in δf (using Lemma 36

with p = 1−ν
1+ν for which p+ 1 = 2

1+ν ), we obtain

FN ≤ 2

1 + ν

(
c2c4H

2
1+ν

f D2

N

[
1− ν

2(1 + ν)

] 1−ν
1+ν

) 1+ν
2
(
1 + ν

1− ν
c3

) 1−ν
2

+ σN

=
(2c2c4)

1+ν
2 c

1−ν
2

3

1 + ν

HfD
1+ν

N
1+ν
2

+ σN .

This proves the claimed convergence rate, and the oracle complexity bound easily follows since each
iteration of the algorithm requires only 1 query to pgb.

Corollary 38. Consider problem (1) under the setting from Example 12 and also under Assumption 2.
Let Algorithm 2 be applied to this problem with the oracle pg = pgb. Then, for any k ≥ 1, we have

E[F (xk)]− F ∗ ≤
22+ν(c2c4)

1+ν
2 ( c33 )

1−ν
2

1 + ν

Hf (ν)D
1+ν

k
1+3ν

2

+ 4σD

√
2c1c4
3bk

.

To reach E[F (xk)]−F ∗ ≤ ϵ for any ϵ > 0, it suffices to make O
(
[
Hf (ν)D

1+ν

ϵ ]
2

1+3ν + σ2D2

bϵ2

)
queries

to pgb.

Proof. Let k ≥ 1 be arbitrary and denote for brevity Hf := Hf (ν). Taking into account Remark 35
and applying Theorem 5, we get, for any δf > 0,

Fk := E[F (xk)]− F ∗ ≤
4c2c4H

2
1+ν

f D2

k(k + 1)

[
1− ν

2(1 + ν)δf

] 1−ν
1+ν

+
c3
3
(k + 2)δf + σk,

where σk := 4σbD
√

2c1c4
3k = 4σD

√
2c1c4
3bk . Minimizing the right-hand side in δf (using Lemma 36)

and estimating k + 2 ≤ 2(k + 1), we obtain

Fk ≤ 2

1 + ν

(
4c2c4H

2
1+ν

f D2

k(k + 1)

[
1− ν

2(1 + ν)

] 1−ν
1+ν

) 1+ν
2
(
1 + ν

1− ν

2c3(k + 1)

3

) 1−ν
2

+ σk

=
2(4c2c4)

1+ν
2 ( c33 )

1−ν
2

1 + ν

HfD
1+ν

k
1+ν
2 (k + 1)ν

+ σk.

This proves the claimed convergence rate, and the oracle complexity bound easily follows since each
iteration of the algorithm requires only O(1) queries to pgb.

Remark 39. The efficiency guarantees given by Corollaries 37 and 38 are exactly the same as those
from [49], up to absolute constants.

F.2 Implicit Variance Reduction

Corollary 40. Consider problem (1) under the setting from Example 12 and also under Assumption 2.
Let Algorithm 1 be applied to this problem with the oracle pg = pgb and initial coefficient M0 = 0.
Then, for the point sxN generated by the algorithm, we have

E[F (sxN )]− F ∗ ≤ cf (ν)Hf (ν)D
1+ν

N
1+ν
2

+
c

pg(ν)Hmax(ν)D
1+ν

(bN)
1+ν
2

+ 2σ∗D

√
6c1c4
bN

,

where cf (ν) :=
(2c2c4)

1+ν
2 c

1−ν
2

3

1+ν = O(1) and c
pg(ν) :=

(24c4)
1+ν
2 ( 4

3 )
1−ν
2

1+ν = O(1). To reach

E[F (sxN )]−F ∗ ≤ ϵ for any ϵ > 0, it suffices to make O
(
[
Hf (ν)
ϵ ]

2
1+νD2 + 1

b [
H

pg(ν)
ϵ ]

2
1+νD2 +

σ2
∗D

2

bϵ2

)
queries to pgb.
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Proof. Denote for brevity FN := E[F (sxN )] − F ∗, Hf := Hf (ν) and Hmax := Hmax(ν). Taking
into account Remark 35 and applying Theorem 7, we get, for any δf , δpg > 0,

FN ≤
c2c4H

2
1+ν

f D2

N

[
1− ν

2(1 + ν)δf

] 1−ν
1+ν

+
12c4H

2
1+ν
maxD2

bN

[
1− ν

2(1 + ν)δ
pg

] 1−ν
1+ν

+ c3δf +
4

3
δ

pg + σN ,

where σN := 2σ∗,bD
√

6c1c4
N = 2σ∗D

√
6c1c4
bN . Minimizing the right-hand side in δf and δ

pg (using
Lemma 36 twice), we get

FN ≤ 2

1 + ν

(
c2c4H

2
1+ν

f D2

N

[
1− ν

2(1 + ν)

] 1−ν
1+ν

) 1+ν
2
(
(1 + ν)c3
1− ν

) 1−ν
2

+
2

1 + ν

(
12c4H

2
1+ν
maxD2

bN

[
1− ν

2(1 + ν)

] 1−ν
1+ν

) 1+ν
2
(
(1 + ν) 43
1− ν

) 1−ν
2

+ σN

=
(2c2c4)

1+ν
2 c

1−ν
2

3

1 + ν

HfD
1+ν

N
1+ν
2

+
(24c4)

1+ν
2 ( 43 )

1−ν
2

1 + ν

HmaxD
1+ν

(bN)
1+ν
2

+ σN .

This proves the claimed convergence rate, and the oracle complexity bound easily follows since each
iteration of the algorithm requires only 1 query to pgb.

Corollary 41. Consider problem (1) under the setting from Example 12 and also under Assumption 2.
Let Algorithm 2 be applied to this problem with the oracle pg = pgb. Then, for any k ≥ 1, we have

E[F (xk)]− F ∗ ≤ cf (ν)Hf (ν)D
1+ν

k
1+3ν

2

+
c

pg(ν)Hmax(ν)D
1+ν

(bk)
1+ν
2

+ 4σ∗D

√
2c1c4
bk

,

where cf (ν) :=
(8c2c4)

1+ν
2 ( 2

3 c3)
1−ν
2

1+ν = O(1) and c
pg(ν) :=

(48c1c4)
1+ν
2 ( 4

3 )
1−ν
2

1+ν = O(1). To reach

E[F (xk)] − F ∗ ≤ ϵ for any ϵ > 0, it suffices to make O
(
[
Hf (ν)D

1+ν

ϵ ]
2

1+3ν + 1
b [
Hmax(ν)

ϵ ]
2

1+νD2 +
σ2
∗D

2

bϵ2

)
queries to pgb.

Proof. Let k ≥ 1 be arbitrary and denote for brevity Fk := E[F (xk)] − F ∗, Hf := Hf (ν) and
Hmax := Hmax(ν). Taking into account Remark 35 and applying Theorem 8, we get, for any
δf , δpg > 0,

Fk ≤
4c2c4H

2
1+ν

f D2

k(k + 1)

[
1− ν

2(1 + ν)δf

] 1−ν
1+ν

+
24c1c4H

2
1+ν
maxD2

bk

[
1− ν

2(1 + ν)δ
pg

] 1−ν
1+ν

+
c3
3
(k + 2)δf +

4

3
δ

pg + σk,

where σk := 4σ∗,bD
√

2c1c4
k = 4σ∗D

√
2c1c4
bk . Minimizing the right-hand side in δf and δ

pg (using

Lemma 36 twice) and estimating 1
3 (k + 2) ≤ 2

3 (k + 1), we obtain

Fk ≤ 2

1 + ν

(
4c2c4H

2
1+ν

f D2

k(k + 1)

[
1− ν

2(1 + ν)

] 1−ν
1+ν

) 1+ν
2
(
(1 + ν) 2c33 (k + 1)

1− ν

) 1−ν
2

+
2

1 + ν

(
24c1c4H

2
1+ν
maxD2

bk

[
1− ν

2(1 + ν)

] 1−ν
1+ν

) 1+ν
2
(
(1 + ν) 43
1− ν

) 1−ν
2

+ σk

=
(8c2c4)

1+ν
2 ( 23c3)

1−ν
2

1 + ν

HfD
1+ν

k
1+ν
2 (k + 1)ν

+
(48c1c4)

1+ν
2 ( 43 )

1−ν
2

1 + ν

HmaxD
1+ν

(bk)
1+ν
2

+ σk.

This proves the claimed convergence rate, and the oracle complexity bound easily follows since each
iteration of the algorithm requires only O(1) queries to pgb.

Remark 42. In the proof of Corollary 41, it was important that δf and δ
pg were allowed to be two

separate constants. If we were not paying attention to such a separation and simply used the same δ
everywhere, we would end up with the much weaker rate of O(Hmax(ν)D

1+ν

b
1+ν
2 kν

) for the second term.
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F.3 Explicit Variance Reduction with SVRG

Corollary 43. Consider problem (1) under the setting from Example 12 and also under Assumption 2.
Let UniSvrg (as defined by Algorithm 3) be applied to this problem with the stochastic oracle pg = pgb
and the full-gradient oracle sg = ∇f . Then, for any t ≥ 1,

E[F (x̃t)]− F ∗ ≤ cf (ν)Hf (ν)D
1+ν

(2t)
1+ν
2

+
c

pg(ν)Hmax(ν)D
1+ν

(b2t)
1+ν
2

,

where cf (ν) := [2(c2c4+1)]
1+ν
2 (2sc3)

1−ν
2

1+ν = O(1), c
pg(ν) :=

(96c1c4)
1+ν
2 ( 8

3 )
1−ν
2

1+ν = O(1), sc3 :=

max{c3, 1}. To get E[F (x̃t)]−F ∗ ≤ ϵ, it suffices to makeO(Nν(ϵ)) queries to pgb andO(log+Nν(ϵ))

queries to ∇f , where Nν(ϵ) := [
Hf (ν)
ϵ ]

2
1+νD2+ 1

b [
Hmax(ν)

ϵ ]
2

1+νD2. Assuming that the complexity of
querying sgb is nb times bigger than that of querying ∇f , we get the total stochastic-oracle complexity
of O(Nν(ϵ) + nb log+Nν(ϵ)).

Proof. Let t ≥ 1 be arbitrary and denote for brevity Ft := E[F (x̃t)] − F ∗, Hf := Hf (ν) and
Hmax := Hmax(ν). Taking into account Remark 35 and applying Theorem 10, we get, for any
δf , δpg > 0,

Ft ≤
(c2c4 + 1)H

2
1+ν

f D2

2t

[
1− ν

2(1 + ν)δf

] 1−ν
1+ν

+
48c1c4H

2
1+ν
maxD2

b2t

[
1− ν

2(1 + ν)δ
pg

] 1−ν
1+ν

+2sc3δf +
8

3
δ

pg.

Minimizing the right-hand side in δf , δpg (using Lemma 36 twice), we obtain

Ft ≤
2

1 + ν

(
(c2c4 + 1)H

2
1+ν

f D2

2t

[
1− ν

2(1 + ν)

] 1−ν
1+ν

) 1+ν
2
(
(1 + ν)2sc3

1− ν

) 1−ν
2

+
2

1 + ν

(
48c1c4H

2
1+ν
maxD2

b2t

[
1− ν

2(1 + ν)

] 1−ν
1+ν

) 1+ν
2
(
(1 + ν) 83
1− ν

) 1−ν
2

=
cfHfD

1+ν

(2t)
1+ν
2

+
c

pgHmaxD
1+ν

(b2t)
1+ν
2

,

where cf := [2(c2c4+1)]
1+ν
2 (2sc3)

1−ν
2

1+ν and c
pg :=

(96c1c4)
1+ν
2 ( 8

3 )
1−ν
2

1+ν . This proves the claimed conver-
gence rate.

Let us now estimate the oracle complexity. From the already proved convergence rate bound, we
see that Ft ≤ ϵ once 2t ≥ O(1)N(ϵ), where N(ϵ) := [

Hf

ϵ ]
2

1+νD2 + 1
b [
Hmax

ϵ ]
2

1+νD2. At the same
time, according to Theorem 10, to generate the corresponding x̃t, the algorithm needs to make O(2t)
queries to pgb and O(t) queries to ∇f . Combining these two facts together, we get the claimed
O(N(ϵ)) queries to pgb and O(log2N(ϵ) + 1) = O(log+N(ϵ)) queries to ∇f .

Corollary 44. Consider problem (1) under the setting from Example 12 and also under Assumption 2.
Let UniFastSvrg (Algorithm 4) be applied to this problem with the stochastic oracle pg = pgb,
the full-gradient oracle sg = ∇f , and the epoch length N ≥ 9. Then, for any t ≥ 2t0, where
t0 := ⌈log2 log3N⌉ − 1 (≥ 0), it holds that

E[F (x̃t)]− F ∗ ≤ cf (ν)Hf (ν)D
1+ν

N
1+ν
2 (t+ 1)

1+3ν
2

+
c

pg(ν)Hmax(ν)D
1+ν

(bN)
1+ν
2 (t+ 1)

1+3ν
2

,

where cf (ν) :=
[72(c2c4+

1
2 )]

1+ν
2

sc
1−ν
2

3

1+ν = O(1), c
pg(ν) :=

(432c1c4)
1+ν
2 ( 5

3 )
1−ν
2

1+ν = O(1), sc3 :=

max{c3, 1}. To get E[F (x̃t)]− F ∗ ≤ ϵ, it suffices to make O(NTν(ϵ)) queries to pgb and O(Tν(ϵ))

queries to ∇f , where Tν(ϵ) := [
Hf (ν)D

1+ν

N
1+ν
2 ϵ

]
2

1+3ν +[Hmax(ν)D
1+ν

(bN)
1+ν
2 ϵ

]
2

1+3ν +log2 log3N . Assuming that

the complexity of querying sgb is nb times bigger than that of querying ∇f and choosing N = Θ(nb),

we get the total stochastic-oracle complexity of O
(
[
nν
bHf (ν)D

1+ν

ϵ ]
2

1+3ν + [
nν
bHmax(ν)D

1+ν

b(1+ν)/2ϵ
]

2
1+3ν +

nb log log nb
)

34



Proof. Let t ≥ 2t0 be arbitrary, Ft := E[F (x̃t)] − F ∗, Hf := Hf (ν), Hmax := Hmax(ν). Taking
into account Remark 35 and applying Theorem 11, we get, for any δf , δpg > 0,

Ft ≤
9(c2c4 +

1
2 )H

2
1+ν

f D2

N(t− t0 + 1)2

[
1− ν

2(1 + ν)δf

] 1−ν
1+ν

+
54c1c4H

2
1+ν
maxD2

bN(t− t0 + 1)2

[
1− ν

2(1 + ν)δ
pg

] 1−ν
1+ν

+ (c3t+ 1)δf +
5

3
tδ

pg.

Since t ≥ 2t0, we can estimate t− t0 + 1 = 1
2 t+

1
2 t− t0 + 1 ≥ 1

2 (t+ 1), which gives us

Ft ≤
36(c2c4 +

1
2 )H

2
1+ν

f D2

N(t+ 1)2

[
1− ν

2(1 + ν)δf

] 1−ν
1+ν

+
216c1c4H

2
1+ν
maxD2

bN(t+ 1)2

[
1− ν

2(1 + ν)δ
pg

] 1−ν
1+ν

+ sc3(t+ 1)δf +
5

3
(t+ 1)δ

pg.

Minimizing the right-hand side in δf , δpg (using Lemma 36 twice), we obtain

Ft ≤
2

1 + ν

(
36(c2c4 +

1
2 )H

2
1+ν

f D2

N(t+ 1)2

[
1− ν

2(1 + ν)

] 1−ν
1+ν

) 1+ν
2
(
(1 + ν)sc3(t+ 1)

1− ν

) 1−ν
2

+
2

1 + ν

(
216c1c4H

2
1+ν
maxD2

bN(t+ 1)2

[
1− ν

2(1 + ν)

] 1−ν
1+ν

) 1+ν
2
(
(1 + ν) 53 (t+ 1)

1− ν

) 1−ν
2

=
cfHfD

1+ν

N
1+ν
2 (t+ 1)

1+3ν
2

+
c

pgHmaxD
1+ν

(bN)
1+ν
2 (t+ 1)

1+3ν
2

,

where cf :=
[72(c2c4+

1
2 )]

1+ν
2

sc
1−ν
2

3

1+ν and c
pg :=

(432c1c4)
1+ν
2 ( 5

3 )
1−ν
2

1+ν . This proves the claimed conver-
gence rate.

Let us now estimate the number of oracle queries. In view of the above convergence rate bound,
we have Ft ≤ ϵ once t ≥ T (ϵ) := T1(ϵ) + 2t0 = O

(
T1(ϵ) + log logN

)
, where T1(ϵ) :=

[
HfD

1+ν

N(1+ν)/2ϵ
]

2
1+3ν + [ HmaxD

1+ν

(bN)(1+ν)/2ϵ
]

2
1+3ν = T2(ϵ)

N
1+ν
1+3ν

, where T2(ϵ) := [
HfD

1+ν

ϵ ]
2

1+3ν + [HmaxD
1+ν

b(1+ν)/2ϵ
]

2
1+3ν

does not depend on N . Combining this with Theorem 11 saying that, to generate the correspond-
ing x̃t, the algorithm needs to make O(Nt) queries to pgb and O(t) queries to ∇f , we get the claimed
O(NT (ϵ)) queries to pgb and O(T (ϵ)) queries to ∇f .

Assuming now that the complexity of querying ∇f is nb times bigger than that of querying pgb, we
get the total stochastic-oracle complexity of O

(
(N + nb)T (ϵ)

)
= O

(
(N + nb)

[ T2(ϵ)
N(1+ν)/(1+3ν) +

log logN
])

. Ignoring the doubly-logarithmic term, we get the expression of the form (N +nb)
1
Nq =

N1−q + nb

Nq with q := 1+ν
1+3ν ∈ [0, 1], whose minimal value is achieved at N = Θ(nb). Substituting

this value into our complexity bound, we get the stochastic-oracle complexity ofO
(
nb(

T2(ϵ)

n
(1+ν)/(1+3ν)
b

+

log log nb)
)
= O

(
n

2ν
1+3ν

b T2(ϵ) + nb log log nb
)
.

G Additional Discussion of Related Work

Inexact Oracle and Approximate Smoothness. Devolder, Glineur, and Nesterov [15] introduced
the notion of the inexact first-order oracle and analyzed the behaviour of several first-order methods
for smooth convex optimization using such an oracle. Although their work was motivated by the
desire to present the general definition of an inexact oracle covering many different applications,
it was also observed that this oracle model is suitable for studying weakly smooth problems. This
insight was later used in [45] to develop universal gradient methods for Hölder smooth problems. First
stochastic gradient methods for approximately smooth functions with inexact oracle were proposed
in [13]. These algorithms however are not adaptive and require the knowledge of problem-dependent
constants. For more details on the subject, see [14].
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Figure 3: Comparison of various methods on the logistic regression problem with real-world data.

Parameter-Free Methods. Parameter-free algorithms originating from the literature on online
learning [9, 10, 26, 40, 47, 55] is another popular type of adaptive methods. They are usually endowed
with mechanisms helping achieving efficiency bounds that are almost insensitive (typically, with
logarithmic dependency) to the error of estimating certain problem parameters, such as the diameter
of the feasible set [6, 11, 25, 31, 41].

Variance Reduction. Variance reduction techniques encompass a set of strategies that enhance
the convergence speed of SGD when multiple passes are possible over the training dataset. Various
researchers simultaneously introduced methods to reduce variance around the same period [27, 38,
50, 52, 58, 60]. The consideration of mini-batching in the context of these methods is documented
in [3], while, in [20], it is shown that the convergence rate is influenced by both the average and the
maximum smoothness of individual components. For further details, see [21] and the references
therein.

Sometimes, it is even not necessary to use an explicit variance reduction mechanism. SGD may
converge fast in the so-called over-parameterized regime, or when the stochastic noise is small at the
optimal solution [8, 35, 37, 43, 44, 51]. In this work, we call this effect implicit variance reduction.
Such a situation is also considered in [19, 54] and, more recently, Woodworth and Srebro [59]
proposed an accelerated SGD algorithm for this setting, under the assumption that the smoothness
and noise constants are known.

H Additional Experiments

H.1 Logistic Regression with Real-World Data

In this section, we present experiments on the logistic regression problem:

f∗ = min
∥x∥≤R

{
f(x) :=

1

n

n∑
i=1

log(1 + e−bi⟨ai,x⟩)
}
,

where ai ∈ Rd and bi ∈ {−1, 1} are features and labels taken from diverse real-world datasets from
LIBSVM [7]: mushrooms (d ≪ n), w8a (d ≪ n), leu (d ≫ n) and colon-cancer (d ≫ n). The
dataset leu is quite special because it satisfies the so-called interpolation condition, meaning that the
variance at the optimum is zero. We fix R = 1 and use the mini-batch size of b = 32 for the first two
datasets and b = 1 for the last two.

Figure 3 shows the results of our experiments. The solid lines and the shaded area for each method
represent, respectively, the mean and the region between the minimum and the maximum values after
three independent runs of the algorithm. We see that, on the leu dataset, UniSgd and UniFastSgd
converge as fast as the best non-accelerated and accelerated SVRG methods, respectively, which
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Figure 4: Comparison of our methods for different stepsize update rules on the polyhedron feasibility
problem.

confirms our theory on implicit variance reduction. Otherwise, these two SGD methods are typically
much slower than the SVRG algorithms. Our UniSvrg method performs consistently better than
AdaSVRG across all the datasets. Overall, all adaptive accelerated SVRG methods demonstrate
comparable performance for solving these smooth problems.

H.2 Comparison between Stepsize Update Rules

In this section, we compare the AdaGrad stepsize rule (3) with the other rule (4) for UniSgd
(Algorithm 1), UniFastSgd (Algorithm 2), UniSvrg (Algorithm 3), and UniFastSvrg (Algorithm 4).
We consider the polyhedron feasibility and logistic regression problems under the same setups as in
Section 8 and Appendix H.1.

The results are shown in Figs. 4 and 5, where we plot the function residual and the stepsize (inverse
of M ) against stochastic oracle calls. We see that the two stepsize rules work very similarly across
all test cases, which was not evident from the theory alone.
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Figure 5: Comparison of our methods for different stepsize update rules on the logistic regression
problem with real-world data.
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