
Progressive Learning for Physics-informed Neural
Motion Planning

Ruiqi Ni and Ahmed H. Qureshi
Department of Computer Science, Purdue University

{ni117,ahqureshi}@purdue.edu
Start Intermediate Goal

Fig. 1: Physics-informed neural motion planning of a 6-DOF robot manipulator in a real-world narrow passage environment.
The images from left to right show the robot’s motion sequence from its start to the desired goal configuration. In this case,
the proposed approach took 0.05 seconds, whereas LazyPRM* took 2.79 seconds to find a path, making our method at least
50× faster than a traditional approach.

Abstract—Neural motion planners (NMPs) demonstrate fast
computational speed in finding path solutions but require a
huge amount of expert trajectories for learning, thus adding
a significant training computational load. In contrast, recent
advancements have also led to a physics-informed NMP approach
that directly solves the Eikonal equation for motion planning and
does not require expert demonstrations for learning. However,
experiments show that the physics-informed NMP approach
performs poorly in complex environments and lacks scalability
in high-dimensional real robot settings. To overcome these limita-
tions, this paper presents a novel and tractable Eikonal equation
formulation and introduces a new progressive learning strategy to
train neural networks without expert data in complex, cluttered,
high-dimensional robot motion planning scenarios. We show that
our approach scales to the real robot set up in a narrow passage
environment. The proposed method’s videos and code implemen-
tations are available at https://github.com/ruiqini/P-NTFields.

I. INTRODUCTION

Robots moving in their surrounding environment must find
their feasible motion trajectory coordinating their actuators
to move from their start configuration to goal configura-
tion while satisfying all the constraints, such as collision
avoidance. Various approaches exist, from classical methods
[16, 19, 7, 9, 3, 6] to learning-based neural motion planners
(NMPs) [12, 13, 5, 11, 8, 1], that solve motion planning
problems.

Inspired by physics-informed deep learning models [15, 17]
and Fast Marching Method (FMM) [16, 19] for motion
planning, recent development has led to a physics-informed
NMP called Neural Time Fields (NTFields) [10] that require
no expert training trajectories and instead directly learn to

solve the Eikonal equation for motion planning. Once trained,
NTFields output the speed and time fields in the given en-
vironment for the desired start and goal configuration. Time
fields’ gradients are then followed to retrieve the feasible path
solution for the underlying MP problem. Although NTFields
find path solutions extremely fast and require no expert data,
they struggle in complex environments and do not scale well
to high-dimensional planning problems. These limitations are
mainly due to the following two reasons. First, the Eikonal
equation formulation has an extremely sharp feature solution
around low-speed obstacles, making it difficult for the under-
lying deep-learning model to converge and perform well in
complex scenarios. Second, training deep neural models to
solve PDEs is inherently challenging and requires advanced
learning strategies and an expressive PDE formulation with a
smooth loss landscape.

Therefore, this paper addresses the limitations of NTFields
and proposes a new progressive learning method, which also
requires no training trajectories and scales very well to com-
plex scenarios, including high-dimensional, real-world robot
manipulator planning problems. The main contributions of the
paper are summarized as follows:

• We highlight that the Eikonal equation formulation for
motion planning in NTFields can converge to incorrect
local minimums during training, resulting in relatively
low performance and incapability to scale to complex
environments.

• We introduce a novel progressive speed scheduling strat-
egy that iteratively guides neural model training from a
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constant high speed to a very low speed around obstacles
in the environment, preventing incorrect local minimums
when training physics-informed NMPs in complex, clut-
tered environments.

• We propose using the viscosity term [2] based on the
Laplacian operator in the Eikonal equation formulation to
transform its ill-posed, non-linear behavior into a semi-
linear elliptic representation with a unique smooth solu-
tion around low-speed obstacles. Our novel formulation
leads to physics-informed NMPs that are scalable to
complex scenarios.

• We also demonstrate our framework performance using
a 6 degree-of-freedom (DOF) UR5e robot in solving
real-world narrow passage motion planning problems, as
shown in Fig. 1.

II. BACKGROUND

This section formally presents the background to robot
motion planning problems and their solutions through physics-
informed NMPs.

A. Robot Motion Planning

Let the robot’s configuration and environment space be
denoted as Q ⊂ Rd and X ⊂ Rm, where {m, d} ∈ N
represents their dimensionality. The obstacles in the environ-
ment, denoted as Xobs ⊂ X , form a formidable robot con-
figuration space (c-space) defined as Qobs ⊂ Q. Finally, the
feasible space in the environment and c-space is represented
as Xfree = X\Xobs and Qfree = Q\Qobs, respectively.
The objective of robot motion planning algorithms is to find
a trajectory τ ⊂ Qfree that connects the given robot start
qs ∈ Qfree and goal qg ∈ Qfree configurations. Furthermore,
additional constraints are sometimes imposed on the trajectory
connecting the start and goal, such as having the shortest
Euclidean distance or minimum travel time. The latter is often
preferred as it allows imposing speed constraints near obstacles
for robot and environment safety. However, planning under
speed constraints is computationally expensive, and existing
methods rely on path-smoothing techniques when safety is
desired.

B. Physics-informed Motion Planning Framework

Recent development led to a physics-informed motion plan-
ning framework called Neural Time Fields (NTFields) [10],
which provide a computationally-efficient and demonstration-
free deep learning method for motion planning problems. It
views motion planning problems as the solution to a PDE,
specifically focusing on solving the Eikonal equation. The
Eikonal equation, a first-order non-linear PDE, allows finding
the shortest trajectory between start (qs) and goal (qg) under
speed constraints by relating a predefined speed model S(q)
at configuration qg to the arrival time T (qs, qg) from qs to qg
as follows:

1/S(qg) = ∥∇qgT (qs, qg)∥ (1)

The ∇qgT (qs, qg) is the partial derivative of the arrival time
T (qs, qg) function with respect to qg . Therefore, finding a

trajectory connecting the given start and goal requires solving
the PDE under a predefined speed model and arrival time
function. The arrival time function in NTFields is factorized
as follows:

T (qs, qg) = ∥qs − qg∥/τ(qs, qg) (2)

The τ(qs, qg) is the factorized time field which is the output of
NTFields’ deep neural network for the given qs and qg . Since
the neural network in NTfields outputs the factorized time
field τ , the corresponding predicted speed is computed using
the above equation. Furthermore, the NTField framework
determines the ground truth speed using a predefined speed
function:

S∗(q) =
sconst

dmax
× clip(d(p(q),Xobs), dmin, dmax) (3)

where d(·, ·) is the minimal distance between robot surface
points p(q) at configuration q and the environment obstacles
Xobs. The dmin, and dmax are minimum and maximum dis-
tance thresholds, and the sconst is a predefined speed constant;
we normalize sconst = 1 to represent the maximum speed in
the free space, and smin = sconst×dmin/dmax represents the
minimum speed in the obstacle space. Finally, the NTFields
neural framework is trained end-to-end using a isotropic loss
function between predicted S and ground truth S∗ speeds.

III. PROPOSED METHOD

Although NTFields demonstrate the ability for efficient mo-
tion planning without expert training data, it exhibits relatively
low success rates in complex, cluttered environments, includ-
ing high-dimensional problems. We observed that these limita-
tions are mainly because of the ill-posed nature of the Eikonal
equation and that the physics-informed loss landscapes are
hard to optimize in general. To overcome these limitations,
we introduce a new progressive learning algorithm comprising
a novel viscosity-based Eikonal equation formulation and a
progressive speed update strategy to train physics-informed
NMPs in complex, high-dimensional scenarios.

A. Viscosity-based Eikonal Equation

The Eikonal equation’s exact solution has several problems
that lead to neural network fitting issues. First, the solution
is not differentiable at every point in space, which means a
neural network cannot approximate the solution very well,
especially for the sharp feature in low-speed environments.
Second, the gradient ∇qgT (qs, qg) is not unique at these non-
smooth points, which will also cause the neural network fitting
issue because training is based on the supervision of the
gradient ∇qgT (qs, qg).

To fix these problems, we propose to use a viscosity term
that can provide a differentiable and unique approximation
of the Eikonal equation’s solution. The viscosity term comes
from the vanishing viscosity method [2]. It adds the Laplacian
∆qgT (qs, qg) to the Eikonal equation, i.e.,

1/S(qg) = ∥∇qgT (qs, qg)∥+ ϵ∆qgT (qs, qg), (4)

where ϵ ∈ R is a scaling coefficient. The resulting system in
Eq. 4 is a semi-linear elliptic PDE with a smooth and unique
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Fig. 2: Effect of viscosity coefficient, ϵ, on the correctness of
time field results. It can be seen a large value of ϵ deviates
from the solution given by the expert. The expert is FMM
which finds a solution to the Eikonal equation. The colorbar
shows the speed fields range from 0 to 1.

solution. Furthermore, the value of ϵ affects the smoothness
of the predicted time fields. In Fig 2, we compare fields with
different values of ϵ to the ground truth field generated with
the FMM approach. It can be seen that by varying the ϵ, the
correctness of results varies compared to the ground truth.
In practice, when the coefficient ϵ → 0, the smooth and
unique solution of Eq. 4 will approach the exact solution of
the Eikonal equation Eq. 1.

B. Progressive speed scheduling

This section introduces our progressive speed scheduling ap-
proach to train physics-informed motion planners in complex
environments. The physics-based loss functions are generally
challenging to optimize as they depend on the gradient of
the underlying neural network. In physics-informed motion
planners, the optimization becomes more difficult due to low-
speed conditions near obstacles, often leading to an incorrect
local minimum, i.e., despite small training loss, the neural
model behaves as if low-speed obstacles do not exist in the
environment. To circumvent the incorrect local minimums,
we observe and leverage the following two properties of
the Eikonal equation to progressively guide the NN training
process and capture the low-speed obstacle space for collision
avoidance.

First, we notice the solution of the Eikonal equation (Eq.
1), T (qs, qg), in a constant max speed scene (S(q) = 1)
will become the distance between the given start and goal,
which leads to trivial solution τ(qs, qg) = 1. Second, we find
that the interpolation from the constant max-speed to the low
speed around obstacles is continuous, and the solutions of the
Eikonal equation along those interpolations are also continu-
ous. Based on these observations, we propose a progressive
speed alteration strategy that gradually scales down the speed
from a constant max value to a low value around obstacles
using a parameter α(t) ∈ [0, 1], i.e.,

S∗
α(t)(q) = (1− α(t)) + α(t)S∗(q), (5)

where t ∈ N represent the training epochs. Therefore, when
α(t) = 0, the scene will have a constant max speed, and the
Eikonal equation solution will be trivial. Furthermore, when
α(t) = 1, the scene will have low speed around obstacles. Fig
3 shows the gradual progression of speed and time fields as
α linearly scales from 0 to 1. It can be seen that the speed

0.0 0.2 0.4 0.6 0.8 1.0

α = 0.0 α = 1/3 α = 2/3 α = 1.0−→ −→ −→

Fig. 3: Progressively decreasing the speed around obstacles
using parameter α leads to continuous interpolation of speed
and time fields in the given environment. The colorbar shows
the speed fields range from 0 to 1.

and time fields are changing continuously with α changing
linearly.

To train the physics-informed motion planner, we start with
a low value of α(t) and let NN fit a constant speed trivial
solution. Next, we progressively interpolate the field from
constant max speed to low speed by gradually increasing
the α(t) over the training epochs. The NN can easily fit the
trivial solution. Then progressively decreasing obstacle speed
S∗(q) guides the network to learn the interpolating lower-
speed fields. Furthermore, we also observe that the speed fields
change linearly with α(t), but the resulting time fields change
more aggressively. Thus, we also reduce the rate of change of
α(t) as the training epochs increase.

C. Neural Architecture

This section describes our neural framework, as shown in
Fig. 4, for generating the speed and time fields for solving the
robot motion planning problems. Our framework comprises
the following modules. Given the robot’s initial (qs) and
target (qg) configurations, we use random Fourier features
γ [18, 14] for obtaining high-frequency robot configuration
embeddings. These features are further processed into a latent
embedding by a C-space encoder f(·), which is a ResNet-
style multi-layer perception [4]. To combine features f(γ(qs))
and f(γ(qg)), we use the non-linear symmetric operator

⊗
from NTFields method [10], i.e. f(γ(qs))

⊗
f(γ(qg)) =

[max(f(γ(qs)), f(γ(qg))),min(f(γ(qs)), f(γ(qg)))].
Our time field generator network g is a ResNet-

style multi-layer perceptron which takes the encoding
f(γ(qs))

⊗
f(γ(qg)) and outputs the factorized time field

τ(qs, qg) = g(f(γ(qs))
⊗

f(γ(qg))). Given the τ(qs, qg), we
compute its gradient and Laplacian to determine the S(qs)
and S(qg). Finally, we propose a smooth isotropic objective
function 6 to train our framework.

L(S∗
α(q), S(q)) =

S∗
α(qs)

S(qs)
+

S(qs)

S∗
α(qs)

+
S∗
α(qg)

S(qg)
+

S(qg)

S∗
α(qg)

− 4 (6)

D. Planning pipeline

Once trained, we use the execution pipeline similar to the
NTFields method. First, we predict τ(qs, qg) for the given
start qs, goal qg . Next, the factorized time, τ , parameterizes
Eq. 2 and 1 for computing time T (qs, qg) and speed fields
S(qs), S(qg), respectively. Finally, the path solution is deter-
mined in a bidirectional manner by iteratively updating the
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Fig. 4: The neural architecture comprises the Fourier-based C-
space Encoder, symmetric operator, and time-field generator.
Three images on the top left show we progressively decrease
the speed around a bunny-shaped obstacle to guide the neural
network training. The image on the top right shows the final
time field from start to goal generated by the trained model.

start and goal configurations as follows,

qs ← qs − βS2(qs)∇qsT (qs, qg)

qg ← qg − βS2(qg)∇qgT (qs, qg)
(7)

The parameter β ∈ R is a predefined step size. Furthermore,
at each planning iteration, the start and goal configurations
are updated using gradients to march toward each other until
∥qs − qg∥ < dg , where dg ∈ R.

IV. EVALUATION

In this section, we evaluate our method through the 6-DOF
UR5e robot manipulator planning in two complex cabinet
environments with narrow passages. For these scenarios, we
present evaluations in both simulation and real-world.

In the simulation, we directly load a cabinet mesh, whereas,
for real setup, we use Dot3D with RealSense camera to scan
and create a point cloud of an actual cabinet. To form our test
set, we randomly sampled 2×100 start and goal configuration
pairs for simulated and real-world environments.

The table in Fig. 5 compares our method, NTField, RRT*,
Lazy-PRM*, and RRT-Connect in both scenarios. We exclude
IEF3D due to large data generation and training times. In the
table, it can be seen that our method achieves the highest
success rate with the shortest execution time, demonstrating
the effectiveness of our progressive learning approach in
complex, narrow passage environments.

Fig. 5 shows the execution of our method (left) and RRT-
Connect (right) in a challenging case in the simulated environ-
ment and the table underneath presents the overall statistical
comparison of the indicated methods on the testing dataset.
In the presented scenario, the UR5e robot’s end effector starts
from the middle shelf of the cabinet and crosses two relatively
thin obstacles to the bottom shelf of the cabinet without
collision. In this particular situation, NTField could not find a
solution whereas our method took 0.07 seconds to get a 0.83
length path with a safe margin of 0.03, and RRT-Connect took
20.13 seconds to get a 0.90 length path with a safe margin
of 0.02. For real-world experiments, in Fig. 1, we show a

Manipulator time (sec) length safe margin sr(%)
Ours 0.03± 0.00 0.43± 0.10 0.04± 0.00 92.0

NTFields 0.05± 0.00 0.38± 0.06 0.04± 0.00 84.5
RRT* 5.16± 0.01 0.52± 0.36 0.04± 0.00 67.0

LazyPRM* 2.79± 0.48 0.76± 0.80 0.04± 0.00 86.0
RRT-Connect 1.08± 0.69 1.14± 0.23 0.02± 0.00 87.5

Fig. 5: Our method (left) and RRT-Connect (right) in a
challenging case in the simulated environment: the manipu-
lator crosses two relatively thin obstacles to move from the
middle (start) to the bottom (goal) shelf. The table shows
statistical results on 2×100 different starts and goals for two
environments.

challenging path that the robot went from the initial pose to
make its end effect go deep into the cabinet.

V. DISCUSSIONS, CONCLUSIONS, AND FUTURE WORK

We propose a novel progressive learning framework to
train physics-informed NMPs by solving the Eikonal equation
without expert demonstration. Our method deals with the PDE-
solving challenges in physics-informed NMPs such as NT-
Fields [10]. First, we propose a progressive speed scheduling
strategy that begins with finding a simple PDE solution at
constant high speed and then gradually decreases the speed
near the obstacle for finding a new solution. Second, we
propose to use the viscosity term for the Eikonal equation
and convert a nonlinear PDE to a semi-linear PDE, which is
easy for a neural network to solve. Thus our method solves the
Eikonal equation more precisely and efficiently and increases
the overall performance in solving motion planning problems
than prior methods. Additionally, our method requires fewer
neural network parameters due to our progressive learning
strategy than NTFields, leading to computationally efficient
physics-informed NMPs’ training and planning. Furthermore,
we also demonstrate that our method scales to complex
scenarios, such as real-world narrow-passage planning with
a 6-DOF UR5e manipulator.

Although our method can scale to complex real-world setups
and outperform prior methods with expert demonstration data,
a few limitations, highlighted in the following, will still be
the focus of our future research directions. First, our method
cannot generalize to unseen environments. Therefore, one of
our future directions will be to explore novel environment
encoding strategies to make physics-informed NMP generalize
to the novel, never-before-seen environments. Lastly, aside
from addressing a few limitations, we also aim to explore novel
PDE formulations to train physics-informed NMPs to solve
motion planning under dynamic and manifold constraints.
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