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Abstract001

Recent work shows that post-training datasets002
for LLMs can be substantially downsampled003
without noticeably deteriorating performance.004
However, data selection often incurs high com-005
putational costs or is limited to narrow domains.006
In this paper, we demonstrate that data selection007
can be both—efficient and universal—by using008
a multi-step pipeline in which we efficiently009
bin data points into groups, estimate quality010
using specialized models, and score difficulty011
with a robust, lightweight method. Task-based012
categorization allows us to control the compo-013
sition of our final data—crucial for finetuning014
multi-purpose models. To guarantee diversity,015
we improve upon previous work using embed-016
ding models and a clustering algorithm. This017
integrated strategy enables high-performance018
fine-tuning with minimal overhead.019

1 Introduction020

Data selection has long been a central challenge in021

machine learning, aimed at curating datasets that022

maximise model performance. This has gained par-023

ticular significance in the era of large language024

models (LLMs) (Albalak et al., 2024). LLM025

training typically spans three stages—pretraining,026

instruction-tuning, and alignment—with data selec-027

tion playing a crucial role in each (e.g. Grattafiori028

et al., 2024b). However, the training objectives029

differ between each phase, and the goals of data030

selection also vary accordingly. While in pretrain-031

ing the selection mechanisms are relatively coarse,032

relying on heuristics or lightweight classifiers to fil-033

ter out the most undesirable data (Rae et al., 2021;034

Lee et al., 2022; Weber et al., 2024; Penedo et al.,035

2024), the post-training phase of instruction-tuning036

and subsequent alignment requires, in compari-037

son, more rigorous selection strategies to guide038

the model toward desirable behaviors (Longpre039

et al., 2023; Conover et al., 2023; Wang et al., 2023;040

Grattafiori et al., 2024b).041
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Figure 1: An illustration of our three-stage pipeline: we
first classify instructions into seven types, then score
each sample for instruction difficulty (fi) and response
quality (qi). We rank their combined scores (pi) and
sample top scoring examples within embedding-space
clusters as well as overall, while maintaining fixed cate-
gory proportions.

Recent research on instruction tuning (IT) un- 042

derscores the critical importance of data quality 043

over sheer data quantity, establishing the benefits 044

of IT data selection beyond merely reducing costs 045

(see e.g. Zhou et al., 2023a; Liu et al., 2025; Qin 046

et al., 2025), as larger datasets not only yield dimin- 047

ishing returns as they expand, but they can have 048

detrimental effects on performance, especially with 049

synthetic data (Ge et al., 2024; Diddee and Ippolito, 050

2025). On the other hand, given the abundance 051

of available instruction data, one has to make a 052

selection decision. 053

Manually curating effective instruction sets is 054

both time-consuming and labour-intensive (Zhou 055

et al., 2023a). A promising alternative is to auto- 056

matically filter a small but diverse set of effective 057

instructions from the extensive pool of available 058

instruction data. Previous studies have proposed 059

strategies to select “effective” instructions, focus- 060

ing on three key dimensions of data assessment 061

(Qin et al., 2025): i) difficulty/relevance, assess- 062

ing whether a sample is trivial or challenging and 063

how much it can therefore contribute to perfor- 064

mance improvements, ii) quality, which refers to 065

the usefulness and accuracy of responses, and iii) 066

diversity, emphasising the scope of within-domain 067

variability and cross-domain coverage of the data. 068
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Prior work and its limitations. Prior work high-069

lights the value of complex or challenging exam-070

ples for post-training (Li et al., 2024a; Liu et al.,071

2024a), but often relies on prompting LLMs to072

estimate complexity (Liu et al., 2024b; Lu et al.,073

2024) and lacks domain generalizability (Muen-074

nighoff et al., 2025). Similarly, quality scoring075

methods (e.g., Liu et al., 2024b; Ge et al., 2024)076

often ignore task-specific scoring needs (e.g., so-077

lutions’ correctness for math or coding problems),078

and some depend on large or proprietary models,079

raising cost and reproducibility issues (Chen et al.,080

2024). Domain-aware scoring strategies require a081

preprocessing step to bucket samples by task type.082

While some works mention this as part of data anal-083

ysis (Ouyang et al., 2022a; Conover et al., 2023) or084

filtering pipelines (Grattafiori et al., 2024b), con-085

crete methods and applications remain underex-086

plored. Furthermore, as we detail in Section 2,087

only a few prior works consider all aspects of data088

assessment simultaneously (e.g., Liu et al., 2024b),089

and most evaluate on a single benchmark, limiting090

generalizability.091

Our contributions. In this paper, we propose092

a robust instruction-tuning data selection frame-093

work that simultaneously considers difficulty, qual-094

ity and diversity, and we demonstrate its effective-095

ness across a wide range of benchmarks. Our key096

contributions are as follows: (i) a novel data sam-097

pling strategy for instruction-tuning that integrates098

task types (e.g., math, coding, generation), diffi-099

culty, and quality scores, while preserving both100

inter- and intra-class diversity through clustering101

and ranking; (ii) an efficient method for classify-102

ing IT data samples by task type; (iii) a new and103

efficient approach to estimate difficulty scores us-104

ing model performance across diverse benchmarks;105

(iv) task-specific quality scoring strategies, includ-106

ing custom-designed scorers, particularly for con-107

strained generation and coding tasks focusing on108

responses’ correctness; and (v) a large-scale eval-109

uation spanning models of different families and110

sizes, with comparisons to strong baselines.111

2 Related work112

IT data selection. Prior work on IT data selec-113

tion generally falls into two categories based on114

how they assess sample difficulty, quality, and di-115

versity: external scoring and model-inherent crite-116

ria. External scoring methods rely on: (i) hand-117

crafted features such as coherence, grammatical-118

ity, naturalness and understandability (Cao et al., 119

2024); (ii) heuristics based on length or formatting 120

(Zhao et al., 2024a; Muennighoff et al., 2025); and 121

(iii) scores derived from LLMs of varying scales 122

(LLM-scorers). Notable approaches leveraging 123

LLM-scorers are: AlpaGasus (Chen et al., 2024), 124

which prompts ChatGPT to score each data point; 125

InsTag (Lu et al., 2024), which uses ChatGPT to 126

generate open-ended tags for deriving complex- 127

ity/diversity; Deita (Liu et al., 2024b), which fine- 128

tunes LLaMA-1-13B on ChatGPT-annotated com- 129

plexity/quality labels as deita-scorers; and CaR (Ge 130

et al., 2024), which trains a 550M reward model 131

to rank instruction-response pairs by quality. On 132

the other hand, model-inherent criteria form an- 133

other group of approaches that rely on signals from 134

the target model itself, including: LESS (Xia et al., 135

2024), which estimates data influence using gradi- 136

ent information; SelectIT (Liu et al., 2024a), which 137

measures uncertainty via token probability, prompt 138

variation and multiple models’ assessments; SHED 139

(He et al., 2024), which clusters data and estimates 140

impact using Shapley values; instruction-following 141

difficulty (IFD, Li et al., 2024a) measuring discrep- 142

ancies between the model’s intrinsic generation ca- 143

pability and its desired response; and the approach 144

by Li et al. (2024b), which evaluates sample utility 145

based on how much it reduces loss when used as 146

an in-context example. 147

Our approach combines both perspectives: we 148

use domain-specific LLM-scorers to assess quality, 149

and leverage various models’ performances across 150

benchmarks to estimate difficulty—that is, how 151

likely an average model is to fail on a given instruc- 152

tion. For diversity, our approach closely follows 153

CaR (Ge et al., 2024), which clusters data points 154

and samples one representative from each cluster. 155

IT data categorization. Previous work has pro- 156

posed various task types (e.g., open QA, brain- 157

storming, creative writing), to guide IT data collec- 158

tion from human annotators (Ouyang et al., 2022a; 159

Conover et al., 2023). Grattafiori et al. (2024b) fine- 160

tuned Llama 3 8B for coarse-grained (e.g., math- 161

ematical reasoning) and fine-grained (e.g., geom- 162

etry and trigonometry) topic classification to help 163

filter low-quality samples, though they provide lit- 164

tle detail on the methodology or intended down- 165

stream use. Other efforts impose tags or domain 166

taxonomy on IT data to ensure diversity (Lu et al., 167

2024; Muennighoff et al., 2025). Dong et al. (2024) 168

study how data composition across tasks affects 169
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model performance, but assume that ShareGPT170

only contains general alignment tasks—we found171

that nearly 30% of it actually consists of coding172

tasks. To our knowledge, no prior work leverages173

IT data categorization to apply task-specific scoring174

strategies during selection.175

Utilities of IT data selection methods. Sev-176

eral papers criticized the effectiveness and cost-177

efficiency of existing IT data selection strategies.178

Zhao et al. (2024a) show that simply selecting the179

longest responses can outperform more complex180

methods while being significantly cheaper and eas-181

ier to implement. Similarly, Diddee and Ippolito182

(2025) find that many sophisticated methods barely183

outperform random sampling under realistic con-184

ditions, and emphasize the cost-performance trade-185

off. However, most of these comparisons are lim-186

ited to a single-source sampling setup, whereas a187

more practical scenario involves selecting from a188

pool of IT data sources. Additionally, prior eval-189

uations focus on LLaMA models with a few ex-190

ceptions using Mistral (Liu et al., 2025), leaving191

the generalizability of selection strategies across192

model families and sizes largely unexplored.193

3 Methods194

Our goal is to determine a subset of an arbitrarily195

large-scale instruction dataset that is effective when196

finetuning a given pre-trained base model. We197

define an effective dataset as one which achieves198

high performance on a given set of general evalu-199

ation tasks, while requiring relatively few model200

parameter updates. Formally, let D = {di}Ni=1 with201

di = (xi, yi) be the full IT dataset of size N , where202

xi represents an input sequence (i.e. an instruction)203

and yi represents the corresponding output (i.e. de-204

sirable model response). We wish to select a subset205

D′ ⊂ D of size m (with m ≪ N ) that is most206

effective for instruction tuning.207

Previous research has shown that i) instruc-208

tion difficulty (see e.g. Li et al., 2024a; Liu et al.,209

2024a,b; Zhao et al., 2024b) ii) response quality210

(see e.g. Zhao et al., 2024a; Chen et al., 2024; Liu211

et al., 2024b) and iii) diversity/composition (see212

e.g. Ge et al., 2024; Lu et al., 2024) are crucial for213

effective data selection for LLM finetuning. We214

address these three aspects in a three-step pipeline215

as illustrated in Figure 1:216

1. Classification. We train a lightweight classifier217

πc to categorise all inputs xi in D into one out218

of seven categories, which we denote as l ∈ L.219

2. Scoring. Each input–output pair (xi, yi) is 220

scored using a category-specific quality scorer 221

(yielding fi) and a general-purpose difficulty 222

scorer (yielding qi); the results are combined 223

into an overall preference score pi. 224

3. Clustering + Ranking. Ultimately, we select 225

the samples with the highest pi while using a 226

clustering approach to maintain diversity and 227

minimise redundancies in D′. 228

We detail each step in the remainder of this section. 229

3.1 Instruction Classification 230

Inspired by the use-case categories defined in 231

Ouyang et al. (2022b), we establish the following 232

task categories L for samples in instruction tun- 233

ing datasets: i) Math, from simple calculation to 234

problems requiring multi-step reasoning; ii) Cod- 235

ing, code generation tasks or programming-related 236

question answering; iii) Generation, textual gen- 237

eration tasks including roleplaying, summarizing 238

and rewriting passages; iv) Reasoning, questions 239

requiring deductive/logical reasoning; v) Brain- 240

storming, information-seeking and recommenda- 241

tion questions that require inductive reasoning, in- 242

cluding classification tasks; vi) Factual QA, fac- 243

tual questions with simple facts as answers; and 244

vii) Extraction, tasks requiring structured/answer 245

extraction from textual contexts. We let two hu- 246

man annotators classify 80 samples from the pop- 247

ular MT-Bench dataset (Zheng et al., 2023a) and 248

achieve high inter-annotator agreement (Cohen’s 249

Kappa = 0.8635), demonstrating the discriminabil- 250

ity of our categories. We compare two different 251

approaches to build a classification model: i) LLM 252

annotator and ii) SetFit classifier. 253

With the LLM-annotator approach (Wei et al., 254

2022), we prompt instruction categorization by list- 255

ing categories with brief explanations, followed 256

by “What is the category of the following task?” 257

(see Figure 12, Appendix A.1). Meanwhile, Set- 258

Fit (Tunstall et al., 2022) is a few-shot learning 259

method that tunes Sentence Transformers (Reimers 260

and Gurevych, 2019) on labelled input pairs in a 261

contrastive, Siamese manner. We manually iden- 262

tify approximately 250 samples strongly associated 263

with each category (see Table 3, Appendix A.1) 264

to train the SetFit classifier; hyperparameters are 265

detailed in Appendix A.1. 266

For evaluation, we use the manually annotated 267

MT-Bench dataset as the test set, assessing accu- 268

racy, macro F1-score, and Cohen’s Kappa agree- 269

ment with human judgment (see Table 1). While 270
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Approach LLM annotator/embedding model Acc F1 Cohen’s
Kappa

Zero-shot GPT-4o 0.88 0.86 0.85
prompting tiiuae/Falcon3-10B-Instruct 0.85 0.84 0.82

meta-llama/Llama-3.1-8B-Instruct 0.76 0.65 0.71

SetFit NovaSearch/stella_en_400M_v5 † 0.85 0.81 0.82
classifier Lajavaness/bilingual-embedding-large 0.82 0.78 0.79

NovaSearch/stella_en_1.5B_v5 0.66 0.60 0.60

Table 1: Evaluation results on instruction categorization.
† denotes the chosen approach and model for our data
selection pipeline.

zero-shot prompting with GPT-4o performs best,271

we choose the SetFit classifier for our pipeline272

due to its comparable performance and higher effi-273

ciency than larger LLMs like GPT-4o and Falcon3-274

10B-Instruct (Team, 2024b).275

3.2 Scoring276

Domain-agnostic difficulty scorer. Previous re-277

search suggests that difficulty (sometimes referred278

to as complexity) matters for data selection (see279

e.g. Liu et al., 2024b; Cao et al., 2024; Zhao et al.,280

2024b; Muennighoff et al., 2025), with more chal-281

lenging data generally resulting in better model282

performance. However, existing difficulty met-283

rics either often lack generality across domains284

(e.g. length of reasoning trace in response in285

Muennighoff et al., 2025) or are strongly influ-286

enced by spurious features (e.g. the widely used287

deita-complexity is strongly biased towards long288

sequences; see Figure 7 in Appendix A.2.1; Liu289

et al., 2024b).290

Our goal is to train a general and robust difficulty291

scorer for our data selection pipeline that predicts292

how likely it is for an average model to solve a data293

point incorrectly, independent of its category l.294

To source the training set Ddiff for such a scorer,295

we collect 20k instruction-response pairs, evenly296

distributed across categories li ∈ L (data sources297

are listed in Table 4; proportions are shown in Fig-298

ure 8). We evaluate every item with a heteroge-299

neous pool of 18 instruction-tuned LLMs (see Ta-300

ble 5). Subsequently, we apply multiple preprocess-301

ing steps to the model scores: First, we normalise302

the item scores to the interval [0, 1] and remove303

items with a score of 0 across all models, as they304

are likely to contain noise or annotation errors. To305

mitigate potential skews in the model performance306

distribution, we convert the absolute scores into rel-307

ative deviations with respect to the model’s mean308

performance on the corresponding category source309

dataset, by subtracting the average from the abso-310

lute score on each item. Ultimately, a difficulty tar- 311

get for every item is obtained by averaging over the 312

model pool. We fine-tune a Qwen-3-8B backbone 313

(Team, 2025) with a single-layer regression head 314

to minimise the mean-squared error on this dataset 315

(training details can be found in Appendix A.2.3). 316

Response quality scorer. Prior work shows that 317

sample selection strategies based on response 318

length or quality, as judged by external models, 319

lead to better instruction tuning datasets (see e.g. 320

Zhao et al., 2024a; Chen et al., 2024; Liu et al., 321

2024b). However, these strategies underestimate 322

the diverse problem types within instruction tun- 323

ing dataset, which may require different evaluation 324

criteria. For example, the quality of responses to 325

math and coding problems is heavily dependent 326

on solution correctness, while constrained gener- 327

ation requires evaluation of adhered constraints. 328

In this work, we designate a dedicated quality 329

scorer for each category defined in Section 3.1, 330

focusing on i) mathematical reasoning traces for 331

Math (qmath), ii) code snippets for Coding (qcode), 332

and iii) instruction-following capability for Gen- 333

eration and Brainstorming (qif ). For Reasoning, 334

Factual QA and Extraction, we employ the deita- 335

quality scorer1 (qdeita, Liu et al., 2024b), a fine- 336

tuned LLaMA-13B for quality assessment, 337

Process reward model. Process reward models 338

(PRMs, Lightman et al., 2023; Uesato et al., 2022) 339

are trained to verify steps in reasoning traces as they 340

are common in mathematical reasoning. We score 341

Math data points using Qwen2.5-Math-PRM-7B 342

(Zhang et al., 2025b). We find double linebreaks 343

and—if no double linebreaks present—single line- 344

breaks as a delimiter to be a good heuristic to sepa- 345

rate reasoning steps. As a reasoning trace breaks 346

with a single erroneous step, we aggregate scores 347

by taking the minimal score out of all steps within 348

each trace, as the qmath score. 349

Code quality scorer. We design a quality scoring 350

framework for Coding samples, drawing inspira- 351

tion from Wadhwa et al. (2024). For each data point 352

(xi, yi), we leverage code-oriented LLMs to: (i) as- 353

sess the functional correctness of the code snippet 354

in yi with respect to the problem xi, and (ii) pro- 355

duce a revised version that improves or fixes the 356

original code (see Figure 13, Appendix A.3). The 357

resulting score, qcode, is based on the normalized 358

Levenshtein similarity between lines of the orig- 359

1https://huggingface.co/hkust-nlp/
deita-quality-scorer
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inal (lo0, ..., lon) and revised (lr0, ..., lrm) code:360

nls = (max(n,m) − lev(lo, lr))/max(n,m),361

where lev(lo, lr) is the line-level Levenshtein dis-362

tance. If the original code is functionally correct,363

we set qcode = nls; otherwise, qcode = nls/2. If364

no code snippet is present, we assign qcode = 0.5365

if yi is judged correct, and 0.0 otherwise.366

To evaluate this scoring method, we use a 1K-367

sample test set from LiveCodeBench (Jain et al.,368

2024a), containing coding problems and LLM-369

generated responses.2 Using Qwen/Qwen2.5-370

Coder-14B-Instruct as the reviewing model, our371

framework achieves 70% accuracy and a 0.412372

Pearson correlation with binary correctness labels373

(see Appendix A.3 for details).374

Instruction-following scorer. Taking inspiration375

from the IFEval benchmark (Zhou et al., 2023b)376

which defines “verifiable constraints” such as377

length (“400 or more words”) and keyword (“with-378

out using the word sleep”) constraints, we design a379

response quality scorer based on the fraction of ex-380

pressed constraints (Cexp) adhered by the response381

(Ctrue). First, we use an LLM annotator to iden-382

tify Cexp, which comprises (span, constraint type)383

pairs {(si, ci)}
nexp

i=1 , with si represents the textual384

span found and ci is the corresponding constraint385

label. For example, given the prompt “Write a386

funny blog post with 400 or more words about the387

benefits of sleeping in a hammock, without using388

the word sleep.”, Cexp = {(400 or more words,389

length), (without using the word “sleep”, keyword390

avoided), (funny blog post, writing type)}. A list391

of considered constraint types is shown in Figure392

14 (Appendix A.4). Next, Cexp is passed to a con-393

straint checker module, which performs two steps:394

1. Heuristic verification: We verify length, letter395

case, punctuation and keyword constraints, by396

adapting the IFEval verification script.397

2. LLM-judge verification: We ask an LLM judge398

to assess constraints that cannot be verified399

heuristically (e.g., “Does the following text fol-400

low the [writing type] constraint of [funny blog401

post]?”).402

This yields Ctrue = {(sj , cj)}ntrue
j=1 , with which403

we compute the quality score as qif = ntrue ∗404

(ntrue/nexp), giving more incentives to responses405

adhering to more constraints. If Cexp is empty, we406

ask an LLM judge to evaluate whether the response407

i) addresses the user’s intent, while ii) respecting408

2https://huggingface.co/spaces/livecodebench/
code_generation_samples

any constraints expressed in the prompt, and to pro- 409

vide a final score (1–10), which we use to compute 410

the score as qif = score/10. 411

Our analysis with the IFEval benchmark dataset 412

containing sample responses from ten models as 413

our test bed (see Table 8, Appendix A.4), shows 414

that Qwen3-14B (Team, 2025) outperformed other 415

medium-sized Instruct-LLMs as both LLM anno- 416

tator and judge (see Table 9, Appendix A.4). It 417

achieved a macro F1-score of 0.86 for identifying 418

expressed constraints, a Pearson correlation coef- 419

ficient of 0.523 at the instance-level, and 0.995 at 420

the model-level, where it effectively replicated the 421

IFEval model ranking. 422

Overall preference scores. For each (xi, yi) ∈ 423

D, we compute the preference score pi = fi · qi, 424

where fi and qi are the difficulty and quality scores, 425

respectively. Each of them is normalized using min- 426

max scaling, with the 1st and 99th percentiles as the 427

minimum and maximum values across all samples 428

in D. The quality scores are normalized per scorer 429

(qmath, qcode, qif and qdeita) as they have differ- 430

ing ranges. For multi-turn conversations, where 431

each data point di consists of a sequence of turns 432

{(x0, y0), ..., (xT , yT )}, we assign a category lt to 433

each turn and determine the conversation-level cat- 434

egory li by either selecting the most frequent cat- 435

egory or defaulting to the first one. We then com- 436

pute turn-level difficulty and quality scores, ft and 437

qt, based on their respective categories lt. These 438

are averaged across all turns to yield the overall 439

conversation-level scores fi and qi.3 440

3.3 Sampling 441

Greedily choosing the highest-scoring samples of- 442

ten leads to redundancy in some domains and under- 443

representation in others. Thus, maintaining diver- 444

sity in the final dataset D′ is essential. Since diver- 445

sity is a property of the dataset as a whole—not 446

of individual samples—selection should consider 447

the dataset globally (e.g., Ge et al., 2024), rather 448

than relying on iterative, sample-by-sample strate- 449

gies (e.g., Liu et al., 2024b; Bukharin et al., 2024). 450

Diversity can be promoted top-down by balanc- 451

ing category proportions (see e.g. Grattafiori et al., 452

2024b; Dong et al., 2024), or bottom-up by en- 453

suring sufficient semantic dissimilarity among se- 454

lected samples (e.g., Liu et al., 2024b; Ge et al., 455

2024; Lu et al., 2024). 456

3For a given conversation, quality scores are averaged
separately for each category; qi is then selected according to
the main category li.
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Dataset #samples
(#turns)

HuggingFaceH4/ifeval-like-data 5K
vicgalle/alpaca-gpt4 52K
nvidia/OpenMathInstruct-25 52K
ai2-adapt-dev/flan_v2_converted 90K
openbmb/UltraInteract_sft (Coding) 115K
WizardLMTeam/WizardLM_evol_instruct_V2_196K 143K
theblackcat102/sharegpt-english 50K (392K)
microsoft/orca-agentinstruct-1M-v16 200K (903K)

all 707K (1.75M)

Table 2: Instruction tuning dataset overview.

As they are complementary, we propose a com-457

bination of both approaches: First, we determine458

the number of samples per category l ∈ L, de-459

noted ml, ensuring balanced proportion of Math,460

Coding, Generation and others. Next, we embed461

all candidate samples within each category using462

a state-of-the-art sentence encoder (Reimers and463

Gurevych, 2019; Zhang et al., 2025a), and cluster464

them into J groups using k-means (Lloyd, 1982),465

with J = ml. Let K = {K1,K2, . . . ,KJ} de-466

note the resulting clusters. From each cluster K467

in K, we select the sample with the highest pref-468

erence score pmax(K) = maxi∈K pi. To improve469

robustness to clusters with very low pmax(K) val-470

ues, we discard clusters whose best sample falls471

below a predetermined threshold, which is set to472

be the γth-percentile of {qi}Nl
i=1 where Nl is the473

number of samples within the category l.4 To reach474

the target of ml samples per category, we select475

the highest-scoring samples from the remaining476

candidates within that category.477

4 Experiments478

4.1 Experimental Setup479

Datasets. We use the IT datasets detailed in Table480

2. In our experiments, the full IT dataset D is the481

aggregation of all listed datasets.482

Models. While most experiment results483

use finetuned Mistral-7B-v0.3, we also484

demonstrate generalization across models of485

varying sizes and families: i) tiiuae/Falcon3-486

10B-Base, ii) meta-llama/Llama-3.1-8B, iii)487

mistralai/Mistral-7B-v0.3, iv) Qwen/Qwen2.5-3B488

and v) HuggingFaceTB/SmolLM2-1.7B.489

Finetuning. We fine-tune each base model using490

the SFTTrainer from the Transformer Reinforce-491

4γ is a hyperparameter and set to 75.
5Without augmented problems.
6Randomly sampled.
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Figure 2: Category proportions of different sampling
strategies for 100k samples.

ment Learning (TRL) library7 (von Werra et al., 492

2020). Model-specific hyperparameters (e.g., learn- 493

ing rate) are selected for each model family and 494

detailed in Appendix A.6. We also employ NEF- 495

Tune (Jain et al., 2024b), a technique that improves 496

the performance of chat models by injecting noise 497

into embedding vectors during training. 498

Baselines. We compare against the following 499

baseline methods for constructing D′ ⊂ D: (i) 500

Random, where we sample uniformly at random, 501

(ii) Longest (Zhao et al., 2024a), where we in- 502

clude samples having the longest responses and 503

(iii) Deita (Liu et al., 2024b), which ranks data 504

points according to complexity and quality scores 505

(odeita and qdeita, resp.), and iteratively builds D′ 506

by adding samples that are dissimilar to those al- 507

ready selected. 508

Evaluation. We evaluate the success of our in- 509

struction tuning experiments by testing Models on 510

a suite of benchmarks, covering a broad spectrum 511

of model capabilities and giving a holistic picture 512

of the tuning success. All tested benchmarks are 513

listed in Table 11 in Appendix A.7. 514

4.2 Main Results 515

For every selection strategy we construct a sub- 516

set D′ = dmi=1 ⊂ D with size m = 100, 000 and 517

subsequently fine-tune each of the five base mod- 518

els on D′. In addition to the baseline strategies 519

described in Section 4.1, we investigate four princi- 520

pled variants that exploit the pipeline components 521

introduced in Section 3.2: 522

i) Quality—sort D by qi and select the top m 523

items; 524

ii) Difficulty—sort by fi and select the top m 525

items; 526

7https://huggingface.co/docs/trl/sft_trainer
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Figure 3: Performance gains over the base model for different sampling strategies with 100k samples. We aggregate
the results (a) across all 5 tested models and all 13 benchmarks; (b) across all benchmarks separated by models; (c)
across all models separated by benchmarks.

iii) Combination—sort by the preference score527

pi = fi · qi and select the top m items;528

iv) Combination++—as in combination, but with529

sampling via the clustering-and-quota proce-530

dure from Section 3.3.531

Figure 2 shows task-type distributions across sam-532

pling strategies, including baselines. Figure 3a re-533

ports average performance gains over the untuned534

base model for all evaluation benchmarks. The535

full pipeline (combination++) achieves the highest536

overall performance, surpassing every baseline and537

even the model trained on the entire source set with538

|D| > 707k.539

To examine robustness, we break the results540

down by model size (Figure 3b). Combination++541

yields the most consistent gains of all tested con-542

ditions for all five bases and is outperformed by543

full-data training in only two cases, confirming544

that the proposed sampling approach transfers well545

across models. A benchmark-wise analysis (Fig-546

ure 3c) shows similarly stable improvements, with547

combination++ delivering consistent performance548

throughout.549

5k 25k 100k
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Figure 4: Performance on LLM-as-a-judge benchmarks.

For completeness, we also evaluate our approach550

on benchmarks using LLM-as-a-judge. Due to the551

high cost of the proprietary LLM-judges, we limit 552

ourselves to evaluating models trained on Mistral- 553

7B-Base under a single experimental condition. As 554

shown in Figure 4, for m = 100, 000, combina- 555

tion++ performs best in the length-controlled Al- 556

pacaEval 2.0 (Dubois et al., 2024), and matches ran- 557

dom sampling on MT-bench (Zheng et al., 2023b). 558

1k 5k 10k 25k 50k 100k 700k
0.00

0.02

0.04

0.06

S
co

re
 g

ai
n

all data random (baseline) longest (baseline) deita (baseline) combination++

Figure 5: Average benchmark score gains over the base
model, when finetuning Mistral-7B-Base with different
dataset sizes sampling using various strategies.

Robust downscaling We next test whether the 559

full pipeline’s benefits persist when the target 560

size m is varied. Fixing the base model to 561

Mistral-7B-Base, we sample additional datasets 562

D′ of 1k, 10k, 25k, 50k items with combination++ 563

and all baselines. Figure 5 demonstrates that our 564

method outperforms the alternatives across every 565

scale: notably, with only m = 50, 000 (7% of the 566

source data), it surpasses the performance result- 567

ing from full-data training. For benchmark-specific 568

plots, see Appendix A.8.1. 569

We, again, evaluate on LLM-as-a-judge bench- 570

marks under limited setups. As before, combina- 571

tion++ performs comparably to other strategies on 572

MT-bench, while outperforming them on AlpacaE- 573

val for m = 5, 000 and on average performance for 574
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Figure 6: (a) Category proportions of Dskewed and the 25k subsets sampled with various selection strategies; (b)
Average benchmark scores, when finetuning Mistral-7B-Base with data sampled from the skewed distribution using
various strategies.

m = 25, 000.575

The surprising insensitivtiy of MT-Bench to sam-576

pling strategies may stem from the consistent pres-577

ence of GPT-4-generated responses in every sam-578

pled datasets (see Figure 10, Appendix A.5), which579

is known to strongly influence MT-Bench outcomes580

(Panickssery et al., 2024; Stureborg et al., 2024;581

Wataoka et al., 2024).582

Robustness to skewed data distributions We583

now probe how selection strategies perform when584

the candidate pool D is itself highly imbalanced.585

To simulate this, we create a skewed source set586

Dskewed ⊂ D by randomly selecting two categories587

l1, l2 ∈ L and retaining only items with labels588

li ∈ l1, l2, along with a small (4%) residue from all589

other categories. This yields a strongly biased data590

distribution of size Nskewed = 366k (see Figure 6a591

bottom, for the resulting category distribution).592

From Dskewed, we sample m = 25k items with593

the same strategies as previously and fine-tune594

Mistral-7B-Base on each D′
skewed. We expected595

diversity-aware sampling strategies like Deita and596

combination++ to mitigate bias by enforcing ei-597

ther semantic spread and explicit quotas. However,598

none of the strategies show a clear advantage, with599

random sampling performing with a slight, insignif-600

icant edge. On closer inspection of the category601

distributions of the sampled data in Figure 6a, we602

find that sampling strategies without explicitly en-603

couraging diversity, such as quality and difficulty,604

mostly maintain the bias of Dskewed, while Deita605

exacerbates it. Combination++ successfully debi-606

ases the sample; however, this balancing does not607

translate into improved model performance.608

5 Discussion and Conclusion 609

Effective data selection for instruction tuning is in- 610

creasingly important as we handle the increasing 611

amount of available data of mixed quality. Never- 612

theless, the results of data selection pipelines have 613

often been brittle, struggling to generalise across 614

training setups (Diddee and Ippolito, 2025; Zhao 615

et al., 2024a). 616

In this paper, we address this challenge by ex- 617

plicitly covering the whole spectrum of possible 618

instruction domains and tailoring scoring strate- 619

gies that are apt to judge the utility of samples in 620

those domains. We show the robustness of our ap- 621

proach by testing it across diverse settings (model 622

families, scales, and sample sizes) and evaluating 623

it on a wide range of common benchmarks. Our 624

experiments provide further evidence for the ne- 625

cessity of data selection, as our sampling not only 626

significantly reduces the amount of data required 627

for training, but also outperforms setups trained 628

on the full source data. Despite its more elaborate 629

design—including multiple scoring methods—our 630

pipeline remains computationally efficient due to 631

targeted scoring. 632

While our pipeline outperforms baselines in al- 633

most all settings, it shows no significant gains when 634

applied to a strongly skewed source distribution. 635

We caution against over-interpreting this outcome, 636

as we only evaluate on a single type of distribu- 637

tional bias (toward two of seven categories). A 638

more complete robustness assessment would re- 639

quire testing across various bias configurations, 640

which is computationally infeasible and thus left 641

for future work. 642
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Limitations643

Difficulty scorer. A major issue in collecting644

data for our difficulty scorer is a certain unrelia-645

bility in the evaluation of model responses. Pre-646

vious research shows that evaluations oftentimes647

have weak robustness to e.g. the prompt format-648

ting (Sclar et al., 2024; Weber et al., 2023a,b; Polo649

et al., 2024), bias of LLMs-as-a-judge (Panickssery650

et al., 2024; Stureborg et al., 2024; Wataoka et al.,651

2024) or errors in post-processing (such as issues652

in extracting the answer from the model response).653

For example, GPT4o showed overall weaker per-654

formance on some of our evaluated subsets than655

some small open-source models. Upon closer in-656

spection, we encountered that – while providing657

the correct answer – GPT4o generally tends not to658

follow the formatting of the given few-shot exam-659

ples and rather responds in an open-form manner,660

resulting in failing the tight response search masks661

of the used evaluation frameworks. While we try662

to mitigate this issue as much as possible, we can-663

not guarantee that difficulty scores exactly reflect a664

model’s capacity to solve a given data point.665

Quality scorer. We did not develop nor have666

dedicated quality scorers for samples belonging to667

Reasoning, Factual QA and Extraction categories.668

However, we hypothesis that process reward mod-669

els (PRMs) could be adapted to Reasoning tasks670

beyond math, such as spatial (e.g., Wu et al., 2024)671

and deductive reasoning (e.g., Seals and Shalin,672

2024), given appropriate training data. Factual-673

ity assessment is a long-standing research prob-674

lem that has become more relevant in the era of675

LLMs. Wei et al. (2024) introduced SAFE (Search-676

Augmented Factuality Evaluator), an LLM-agent-677

based method for automatically assessing long-678

form factuality in model response. Although signif-679

icantly cheaper than human annotators (up to 20×),680

SAFE still incurs costs of $20–$40 per 100 prompt-681

response pairs. For Extraction tasks, future work682

might draw inspiration from recent advances in683

RAG evaluation (Yu et al., 2025). These directions,684

however, are beyond the scope of this paper.685

Robustness to skewed data. Our results indicate686

that we cannot get performance gain in setups with687

very skewed data. However, the experimental setup688

is very limited, testing only skew in a single vari-689

ation and more experiments are needed to draw690

conclusions. Further, there are many other skews691

that can occur in practice that we did not evaluate692

our sampling pipeline against.693
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A Appendix1236

A.1 Instruction Categorization – details1237

We present the zero-shot prompt for classifying in-1238

structions in Figure 12. As for training the SetFit1239

classifier, we leverage the training data detailed in1240

Table 3, and we employ the following hyperparam-1241

eters. Note that training with SetFit consists of two1242

phases behind the scenes: finetuning embeddings1243

and training a differentiable classification head. As1244

a result, some of the training arguments can be tu-1245

ples, where the two values are used for each of the1246

two phases, respectively.1247

• batch_size=(16, 2)1248

• num_epochs=(1, 15)1249

• end_to_end=True (train the entire model end-to-1250

end during the classifier training phase)1251

• body_learning_rate=(2e-5, 1e-5), the second1252

value is the learning rate of the Sentence Trans-1253

former body during the classifier training phase1254

• head_learning_rate=1e-41255

• max_steps=5001256

A.2 Difficulty Scorer – details1257

A.2.1 Correlations of difficulty/complexity1258

metrics with input length1259

As the length of an instruction might in some cases1260

reflect the difficulty of the datapoint, there is no1261

causal relationship between the two. A scorer that1262

is trained to predict difficulty should therefore not1263

rely on input length as a feature to rely its predic-1264

tion upon. We show in Figure 7 how deita complex-1265

ity is strongly correlated with input length, while1266

the difficulty scorer we present in this paper is not.1267

While this is not conclusive evidence that the com-1268

plexity scorer is relying on input length as a feature1269

in its prediction, these results are an indicator that1270

it might. Further investigation is required to deter-1271

mine whether this relationship is causal.1272

A.2.2 Data generation difficulty scorer –1273

details1274

Figure 8 show the proportions of different1275

instruction-response pairs that we use a training1276

data for our difficulty scorer. The subsequent Ta-1277

ble 4 shows the respective data source from which1278

we obtained the data, as well as the type of evalu-1279

ation metric that we use to evaluate the 18 LLMs1280

from Table 5.1281

During the data collection for the difficulty1282

scorer, we collect training sets from different bench-1283

marks as well as data points from OpenAssistent1284

Figure 7: Relation between complexity/difficulty scores
and length of the input sequence. The length of the
input sequence should, in most cases, be unrelated to
the difficulty of resolving it. Any correlation is therefore
spurious.

Figure 8: Setfit proportions of training data for difficulty
scorer

(Köpf et al., 2023) for examples of open-ended 1285

generation. We evaluate these samples using the 1286

existing evaluation frameworks LM-evaluation har- 1287

ness (Gao et al., 2024), big-code evaluation harness 1288

(Ben Allal et al., 2022) and FastChat (Zheng et al., 1289

2023b). For the LLM-as-a-judge evaluation, we 1290

use GPT4o as a judge and evaluate only a sub- 1291

set of 4 LLMs from Table 5 that we deem repre- 1292

sentative in terms of capabilities (gpt-4o-2024-08- 1293

06, Mistral-Small-24B-Instruct-2501, Mistral-7B- 1294

Instruct-v0.3 and SmolLM2-1.7B-Instruct). 1295
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Category Training data (subset) #Samples

Math nvidia/OpenMathInstruct-2, AI-MO/NuminaMath-CoT 250

Coding openbmb/UltraInteract_sft (Coding), microsoft/orca-agentinstruct-1M-v1 (code), 253
HuggingFaceH4/no_robots (Coding), lissadesu/codeqa_v3

Generation HuggingFaceH4/no_robots (Generation, Rewrite, Summarize), HuggingFaceH4/ifeval-like-data, 250
declare-lab/InstructEvalImpact (Creative, Professional), iamketan25/roleplay-instructions-dataset

Extraction HuggingFaceH4/no_robots (Closed QA, Extract) 250

Factual QA HuggingFaceH4/no_robots (Open QA), basicv8vc/SimpleQA 255

Brainstorming declare-lab/InstructEvalImpact (Informative, Argumentative), HuggingFaceH4/no_robots (Brainstorming, Classify), 250
matt-seb-ho/WikiWhy

Reasoning renma/ProofWriter, hitachi-nlp/ruletaker, lucasmccabe/logiqa, lucasmccabe/logiqa, tasksource/strategy-qa 250

Table 3: Training data overview for SetFit classifier.

Dataset Subset Split n samples Eval. metric

GSM8K (Cobbe et al., 2021) Default train 1192 exact match
Math (Hendrycks et al., 2021c) Algebra train 322 exact match

Counting & Probability train 264 exact match
Geometry train 220 exact match
Intermediate Algebra train 233 exact match
Number Theory train 314 exact match
Prealgebra train 348 exact match
Precalculus train 238 exact match

IFEval-like Default - 1990 instance level loose acc
MBPP (Austin et al., 2021) Default train & val 448 pass@1
OpenBookQA (Mihaylov et al., 2018) Default train 299 acc
ARC (Clark et al., 2018) Challenge train 464 acc
bAbI (Dodge et al., 2016) Default train 224 exact match
CommonsenseQA (Talmor et al., 2019) Default train 248 acc
CoQA (Reddy et al., 2019) Default train 380 F1
DROP (Dua et al., 2019) Default train 383 F1
FLD (Morishita et al., 2023) Default train 739 exact match

Logical Formula Default train 750 exact match
HeadQA (Vilares and Gómez-Rodríguez, 2019) English train 689 acc

Spanish train 703 acc
JSONSchemaBench (Geng et al., 2025) Easy train 200 schema compliance & json validity

Medium train 198 schema compliance & json validity
Hard train 179 schema compliance & json validity

LogiQA (Liu et al., 2020) LogiEval train 490 exact match
LogiQA2 train 416 acc

MLQA (Lewis et al., 2019) 49 lang. combinations val 715 F1
TriviaQA (Joshi et al., 2017) Default train 1389 exact match
OpenAssistent (Köpf et al., 2023) Default train 5318 LLM-as-a-judge
APPS (Hendrycks et al., 2021a) introductory train 422 pass@1

interview train 303 pass@1
competition train 289 pass@1

CONALA (Yin et al., 2018) Default train 97 Bleu

Table 4: Datasets used in difficulty scorer training.

A.2.3 Training the difficulty scorer – details1296

We equip regular CausalLLMs with a regression1297

head by pooling the final dense layers and adding1298

a linear projection to a scalar output, and fine-1299

tune these models on the difficulty scoring prob-1300

lem. During finetuning, we use the hyperparam-1301

eters detailed in Table 6. We finetune four differ-1302

ent base models as difficulty scorer (Llama-3.1-1303

8B (Grattafiori et al., 2024a), Qwen-2.5-7B (Team,1304

2024a), Qwen3-4B and Qwen3-8B (Team, 2025))1305

and converge on Qwen3-8B as it produces the best1306

performance on our i.i.d. evaluation data. 1307

A.3 Code-quality Scorer – details 1308

The prompt used by LLM-annotator/judge for de- 1309

riving code-quality scores can be found in Fig- 1310

ure 13. Table 7 presents the evaluation results of 1311

various LLMs as the code reviewer. 1312

A.4 Instruction-following Scorer – details 1313

Prompts used by LLM-annotator/judge for deriving 1314

instruction-following scores can be found in Figure 1315
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Model Type Size

SmolLM2-135M-Instruct (Allal et al., 2025) Univ. 135M
SmolLM2-360M-Instruct (Allal et al., 2025) Univ. 360M

Qwen2.5-0.5B-Instruct (Team, 2024a) Univ. 0.5B

Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024) Math 1.5B
Qwen2.5-Coder-1.5B-Instruct (Hui et al., 2024) Code 1.5B
Qwen2.5-1.5B-Instruct (Team, 2024a) Univ. 1.5B
SmolLM2-1.7B-Instruct (Allal et al., 2025) Univ. 1.7B

Qwen2.5-Math-7B-Instruct (Yang et al., 2024) Math 7B
Qwen2.5-Coder-7B-Instruct (Hui et al., 2024) Code 7B
Qwen2.5-7B-Instruct (Team, 2024a) Univ. 7B
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) Univ. 7B

Qwen2.5-14B-Instruct (Team, 2024a) Univ. 14B

Mistral-Small-24B-Instruct-2501 (Mistral AI, 2025) Univ. 24B

Qwen2.5-32B-Instruct (Team, 2024a) Univ. 32B
Qwen2.5-Coder-32B-Instruct (Hui et al., 2024) Code 32B
Qwen3-32B (Team, 2025) Univ. 32B

gpt-4o-mini-2024-07-18 (Hurst et al., 2024) Univ. unk
gpt-4o-2024-08-06 (Hurst et al., 2024) Univ. unk

Table 5: Models that were evaluated to obtain difficulty
scores for our difficulty scorer training set.

Hyperparameter Value

batch_size 1
gradient_accumulation 16
learning_rate 1e-5
lr_scheduler_type linear
num_train_epochs 8
warmup_steps 100
max_seq_length 2048
weight_decay 0.01
neftune_noise_alpha 10

Table 6: Hyperparameter details for training the diffi-
culty scorer

LLM reviewer acc Pearson’s r

deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct 0.64 0.278
deepseek-ai/DeepSeek-R1-Distill-Qwen-14B 0.66 0.389
Qwen/Qwen2.5-Coder-14B-Instruct † 0.70 0.412

Qwen/Qwen3-14B (non-coding LLM) 0.70 0.411

Table 7: Evaluation results of various LLMs as code
reviewer (acc), and Pearson correlation coefficient (r)
of resulting code quality scores with LiveCodeBench
benchmarks binary correctness labels. † denotes the cho-
sen LLM annotator/judge for our instruction-following
scorer.

14, 15 and 16. As our test dataset, we collected1316

responses from 10 LLMs on the IFEval benchmark1317

(see Table 8), available on open-llm-leaderboard’s1318

dataset collection of evaluation details.8 Table 91319

presents the evaluation results of various LLMs as1320

the annotator/judge.1321

8https://huggingface.co/open-llm-leaderboard

Model IFEval score

meta-llama/Llama-3.3-70B-Instruct 0.90
Qwen/Qwen2.5-14B-Instruct-1M 0.84
allenai/Llama-3.1-Tulu-3-70B-SFT 0.81
tiiuae/Falcon3-7B-Instruct 0.76
ibm-granite/granite-3.1-8b-instruct 0.72
microsoft/Phi-3-medium-128k-instruct 0.60
abacusai/Smaug-34B-v0.1 0.50
Qwen/Qwen2.5-32B 0.41
google/gemma-1.1-2b-it 0.31
databricks/dolly-v2-7b 0.20

Table 8: Performance of 10 considered LLMs on the
IFEval benchmark.

LLM annotator/judge macro Pearson’s r
F1 instance-level model-level

Qwen/Qwen2.5-7B-Instruct 0.80 0.503 0.986
meta-llama/Llama-3.1-8B-Instruct 0.83 0.454 0.982
tiiuae/Falcon3-10B-Instruct 0.84 0.515 0.969
Qwen/Qwen3-14B † 0.86 0.523 0.995

Table 9: Evaluation results of various LLMs as annota-
tor/judge on identifying expressed constraints (macro-
F1), and Pearson correlations coefficient (r) of resulting
instruction-following scores with IFEval benchmarks
scores at both instance-level and model-level. † denotes
the chosen LLM annotator/judge for our instruction-
following scorer.
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Figure 9: Category proportions of IT datasets used in
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Figure 10: Source dataset proportions of different sam-
pling strategies for 100k samples.

A.5 Datasets – details 1322

Figure 9 shows SetFit classification results for 1323

IT datasets used in the experiments. Whereas 1324

Figure 10 shows the composition of source datasets 1325

for various sampling strategies. Deita is basically 1326
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Hyperparameter falcon-10B llama-8B mistral-7B qwen-3B smollm-1.7B

batch_size 4 8 8 8 8
gradient_accumulation 16 8 8 8 8
learning_rate 2.0e-05 1.0e-05 5.0e-06 5.0e-06 5.0e-06
lr_scheduler_type cosine
num_train_epochs 2
attn_implementation flash_attention_2
warmup_ratio 0.03
max_seq_length 2048
weight_decay 0.1
neftune_noise_alpha 5
use_liger True

Table 10: Hyperparameter details for finetuning.

Benchmark Category (L) Evaluation details

IFeval (Zhou et al., 2023b) Generation 0-shot; prompt level strict acc
GPQA (Rein et al., 2024) Multiple 0-shot
BBH (Suzgun et al., 2022) Reasoning 3-shot; multiple-choice
MuSR (Sprague et al., 2024) Reasoning 0-shot; multiple-choice
Math (Hendrycks et al., 2021c) Math 4-shot
ARC-C (Clark et al., 2018) Multiple 0-shot; multiple-choice
GSM8k (Cobbe et al., 2021) Math 5-shot
Hellaswag (Zellers et al., 2019) Multiple 0-shot; multiple-choice
MMLU (Hendrycks et al., 2021b) Factual QA 0-shot; multiple-choice
TruthfulQA (Lin et al., 2021) Factual QA 0-shot; multiple-choice
Winogrande (Keisuke et al., 2019) Multiple 0-shot; multiple-choice
MBPP (Austin et al., 2021) Coding 3-shot; pass@1
OpenBookQA (Mihaylov et al., 2018) Extraction 0-shot; multiple-choice

Table 11: List of used benchmarks with associated cate-
gory and evaluation details.

dominated by only two datasets: microsoft/orca-1327

agentinstruct-1M-v1 (200k sampled) and Wiz-1328

ardLMTeam/WizardLM_evol_instruct_V2_196K.1329

A.6 Finetuning – details1330

We finetune all models in our experiments on one1331

node of 4 x NVIDIA H100-SXM5 Tensor Core-1332

GPUs (94 GB HBM2e). Table 10 details the hyper-1333

parameters used for finetuning.1334

A.7 Evaluation – details1335

In the following, we list the benchmarks and the1336

respective evaluation details, such as few-shot set-1337

tings and other information about formatting and1338

response extraction.1339

A.8 Results – details1340

A.8.1 Results – scaling by benchmark1341

We present here the results of our scaling experi-1342

ments, without aggregating them across evaluation1343

benchmarks.1344
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(e) GPQA (Rein et al., 2024)
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(g) Math (Hendrycks et al., 2021c)
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(h) MuSR (Sprague et al., 2024)
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(i) MBPP (Austin et al., 2021)
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(j) MMLU (Hendrycks et al., 2021b)
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(k) TruthfulQA (Lin et al., 2021)
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(l) Winogrande (Keisuke et al., 2019)

Figure 11: Results scaling across all benchmark datasets
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Given the following categories:
- Math (math questions and math reasoning problems)
- Coding (programming tasks or coding questions)
- Generation (creative generation tasks with constraints, including roleplaying)
- Reasoning (logical deductive reasoning tasks that are neither math nor coding)
- Brainstorming (information-seeking or recommendation questions requiring explanation, or classification tasks)
- Factual QA (simple factual questions, without any context)
- Extraction (extraction tasks, including QA, from a given textual passage)

What is the category of the following task? Please respond only in JSON format (e.g., {{"answer": "Generation"}})

### Task ###
{input}

Figure 12: Zero-shot prompt for instruction categorization.

### Task ###
1. Given the following user's PROMPT and system's RESPONSE, please review the code snippet in the RESPONSE.
2. Focusing on functional correctness, give the final verdict: 'correct' vs 'incorrect'.
3. Extract the original code snippet, write "no code" if there's no code snippet.
4. If the original code is correct, simply write "no revision", otherwise propose a code revision to improve the code.
5. Provide your answer in JSON format, with "review", "final_verdict", "code_original" and "code_revision" as keys.

### User's PROMPT ###
{instruction}

### System's RESPONSE ###
{output}

Figure 13: Zero-shot prompt for code review and code revision.

### Task ###
1. Given a USER's prompt, decide whether the constraints from the list below are expressed in the USER's prompt (yes/no).
2. Provide the expressed constraints in JSON format with the expressed constraint as the key

and the constraint type as the value if the respective constraint is expressed.

### List of Constraints ###
- letter_case, e.g., lowercase, all capitals
- placeholder_and_postscript
- repeat_prompt, e.g., repeat the request
- output_combination, e.g., multiple responses, separate the response
- choose_output, e.g., choose answer from given options
- output_format, e.g., json format, markdown format, bulleted list, formatted title, highlighted sections
- keyword_included, e.g., included words
- keyword_avoided, e.g., avoided words
- keyword_frequency, e.g., five hashtags, 'but' two times, letter 'r' at least 3 times
- language, e.g., english, two languages
- length, e.g., number of words, number of sentences, number of paragraphs
- punctuation, e.g., no commas, quotation
- start_and_ending, e.g., start with 'Hello', end with 'Thank you!'
- writing_style (e.g., shakespeare, easy-to-read, 5-year-old, persuasive)
- writing_type (e.g., letter, email, proposal, poem)
- topic (e.g., love)

### Examples ###
{few-shot_examples}

### Question ###
USER: {instruction}

Figure 14: Few-shot prompt for constraint identification.

### Task ###
Answer the following questions. Provide the answer in JSON format with the question number as the key and the answer as
the value (true/false).
Questions:
{questions}

ASSISTANT:
{output}

Figure 15: Zero-shot prompt for constraint verification.
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### Task ###
Given the USER's prompt and ASSISTANT's response below, analyze whether the response addresses USER's intents properly,
while respecting any constraints expressed in the prompt. Based on these judgments, provide the final score of response
quality in the range of 1 to 10, in JSON format ('score' as key and quality score as value).

USER: {instruction}
ASSISTANT:
{output}

Figure 16: Zero-shot prompt for response evaluation.
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