Under review as a conference paper at ICLR 2026

TOWARD NEURAL STREAMING SCHEDULING:
A MEMORY-AUGMENTED REINFORCEMENT LEARN-
ING MODEL WITH CRITICAL STRUCTURE ENCODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Many large-scale data analytics and Al systems execute jobs structured as Di-
rected Acyclic Graphs (DAGs), which encode precedence constraints among in-
terdependent stages. Efficient DAG scheduling is crucial for maximizing system
throughput, especially in streaming settings where diverse jobs arrive continu-
ously and require real-time decisions. Despite progress by heuristic and learning-
based scheduling methods, capturing execution-critical structures and leveraging
historical scheduling context remain key challenges. Building on this motivation,
we propose MACE, a Memory-Augmented reinforcement learning model with
Critical structure Encoding, which implements a scheduling policy for streaming
jobs by sequentially selecting runnable stages and assigning parallelism based on
cluster state. The policy is trained to minimize average job completion time us-
ing defined rewards. Specifically, MACE consists of two core components: (i)
CSformer builds hierarchical embeddings that integrate stage-job-global informa-
tion, capturing execution-critical structures through critical-path-aware positional
encodings and a tunable attention field. This design guides the policy toward
latency-sensitive and structurally related stages. (ii) A memory-augmented sched-
uler then uses the learned embeddings and a job memory to exploit historical con-
texts for the final stage and parallelism selection. Extensive experiments on Spark
using the TPC-H benchmark demonstrate that MACE outperforms state-of-the-art
baselines by up to 9.38% under diverse workload conditions.

1 INTRODUCTION

The explosive growth of large-scale data analytics and Artificial Intelligence (AI) workloads has
spurred the evolution of distributed processing systems such as Spark (Zaharia et al.l [2012) and
Flink (Carbone et al.,|2015). In these systems, cluster schedulers play a central role in coordinating
execution and optimizing efficiency (Grandl et al., [2014), and their effectiveness becomes increas-
ingly critical as clusters and job volumes scale (Verma et al., 2015; Moritz et al., 2018)).

Many computational workloads are structured as Directed Acyclic Graphs (DAGs), where nodes
denote processing stages and edges encode precedence constraints (Topcuoglu et al.,[2002; Sinnen,
2007). The goal of scheduling is to assign stages to a limited pool of identical executors to satisfy
dependencies and minimize average Job Completion Time (JCT). Static scheduling (Kwok & Ah-
mad, |1999; Jeon et al.||2023; [Shahout & Mitzenmacher} 2024)) assumes all DAGs are known upfront
and plans execution ahead of time. Various heuristic methods have been proposed for this setting,
such as fair scheduling (Isard et al.| |2009) and list scheduling (Topcuoglu et al.,|2002). Relying on
fixed rules or cost metrics, these approaches often overlook the structural complexity of DAGs and
lack adaptability to dynamic environments.

A more practical setting is streaming scheduling, where DAGs arrive continuously with varying
structures and job characteristics, requiring real-time decisions under dynamic workloads and lim-
ited resources. To tackle this, learning-based methods have gained attention by framing scheduling
as a reinforcement learning problem. As a representative work, Decima (Mao et al.,2019) employs
Graph Neural Networks (GNNs) (Kipf & Welling, 2017 |Velickovi¢ et al., [2018) to encode cluster
states, and learns a scheduling policy via interaction with the environment and received rewards.

Under review as a conference paper at ICLR 2026

Follow-up studies extend this framework to heterogeneous resources (Lin et al.| 2022; |Wang et al.,
20235)) and incorporate techniques like task duplication (Zhou et al., 2022).

Despite remarkable progress, existing methods neglect two key factors for efficient scheduling. (i)
Lack of explicit modeling for execution-critical structures, such as critical paths and long-range
dependencies. Stages on the critical path determine the earliest possible JCT (Kelley Jr & Walker,
1959)), and long-range dependencies affect when stages can run and how resources are shared (Anan-
tharam| [1999). Recent methods (Gagrani et al., 2022} |Luo et al.l 2023)) either omit them or only
consider direct children (Xu et al., 2018} |[Wu et al.l 2020), rendering them ill-suited for complex
scheduling cues. (ii) Absence of a mechanism to incorporate historical scheduling contexts. Real-
world workloads often exhibit recurring patterns (Liu et al., [1987), and past scheduling decisions
offer valuable context for future ones (Sutton, |1984; Sutton et al.,|1998)). Yet, neural models trained
via gradient descent are inherently short-sighted (Kirkpatrick et al.l [2017; [Kemker et al., |2018),
limiting their ability to retain long-term scheduling trajectories.

To fill this gap, we propose MACE, a Memory-Augmented reinforcement learning model with Criti-
cal structure Encoding for streaming scheduling. MACE adopts a reinforcement learning framework
to learn a scheduling policy that sequentially selects runnable stages and assigns parallelism (num-
ber of executors) based on the cluster state. The policy is trained end-to-end via policy gradient
to minimize average JCT, using rewards derived from observed job completions in the Spark envi-
ronment. Specifically, MACE consists of two core components: (i) CSformer encodes the cluster
state into hierarchical embeddings capturing stage-job-global information. It emphasizes execution-
critical structures via critical-path-aware positional encodings and a tunable attention field, helping
the policy prioritize latency-sensitive stages. (ii) A memory-augmented scheduler selects stages and
parallelism by jointly attending to the learned embeddings and a compact job memory, which stores
historical scheduling decisions and outcomes to support more context-aware decision-making.

In summary, our contributions are three-fold:

* We propose a novel reinforcement learning model MACE for streaming scheduling. It incorpo-
rates execution-critical structures and historical scheduling contexts, allowing the scheduler to
account for structural priorities and prior decisions in dynamic cluster environments.

* We design two key components within MACE: (i) CSformer, which captures execution-critical
structures using critical-path-aware positional encodings and a tunable attention field; and (ii) a
memory-augmented scheduler, which integrates a compact job memory with learned embeddings
to guide decision-making based on recent scheduling decisions and outcomes.

» Extensive experiments on Spark with the TPC-H benchmark demonstrate that MACE reduces av-
erage job completion time by up to 9.38% over state-of-the-art baselines across diverse workloads.

2 RELATED WORK

Heuristic Scheduling Heuristic algorithms have long underpinned DAG scheduling, generat-
ing execution plans from manually crafted rules and cost models. They are typically catego-
rized into list-based (Bittencourt et al., |2010; |/Arabnejad & Barbosa, 2013} /AlEbrahim & Ahmad),
2017), cluster-based (Yang & Gerasoulis, [1991; |Bajaj & Agrawall [2004), and task duplication-
based (Ranaweera & Agrawal, 2000; [Shin et al., 2008)) strategies. List-based methods rank tasks
by static or dynamic metrics and assign them via heuristics such as the earliest finish time. No-
table examples include HEFT (Topcuoglu et al., |2002), which uses upward rank to estimate task
criticality, and DLS (Sih & Leel [2002), which selects task-processor pairs based on level-based
scoring. Cluster-based methods (Kim, |1988; |Park et al.,|1997) group interdependent tasks to reduce
communication but risk load imbalance when clusters misalign with resource availability. Task
duplication-based methods (Darbha & Agrawal| [2002; He et al., 2018)) replicate parent tasks across
nodes to mitigate data transfer delays. While easy to implement and interpretable, these heuristics
rely on fixed rules, making them inflexible in dynamic environments.

Learning-based Scheduling The advent of deep learning (LeCun et al. 2015} [Vaswani et al.,
2017) has spurred growing interest in learning-based scheduling beyond static heuristics. Among
them, deep reinforcement learning (Mnih et al.| 2015} [Lillicrap et al., 2015) has emerged as a dom-
inant paradigm, framing scheduling as a Markov Decision Process (MDP) optimized through inter-
action with the environment. A seminal work is Decima (Mao et al.,|2019), which leverages graph

Under review as a conference paper at ICLR 2026

neural networks to encode DAG structure and learn sequential scheduling decisions. Building on this
foundation, LACHESIS (Zhou et al., |2022) incorporates task duplication heuristics, DREAM (N1
et al., [2020) learns throughput-aware embeddings for dynamic placement, and DeepWeave (Sun
et al.l 2021) improves coflow-level scheduling via transmission modeling. These approaches of-
fer improved adaptability and generalization over heuristics, particularly in dynamic environments.
However, they often struggle to capture execution-critical structures and long-range dependencies,
both of which are crucial for efficient scheduling.

3 PROBLEM DESCRIPTION

Streaming Scheduling Modern data pro-
cessing systems (Zaharia et al., 2012} |Carbone
et al.L|2015; |Rocklin et al., 2015) like Spark and
Flink represent complex jobs as DAGs of com-
putation stages and dependencies. These sys-
tems operate in a streaming mode, where jobs
are submitted at irregular intervals over time,
as illustrated in Figure [T} and require real-time
scheduling over a shared resource pool. 1, 1 1, 1, Timeline

@ Number of Tasks O Estimated Duration <«— Critical Paths
Job G, Job G, Job G,

Formally, a job stream is denoted as J = Figure 1: Job DAGs arrive over time at irregular
{J1, Ja, ...}, where job J; is defined by a DAG intervals. Each node represents a stage with task
Gi = (Vi,&). A stage v € V; has process- count and duration, while red paths highlight criz-
ing time p,, and an edge (u,v) € & imposes a ical paths that dominate JCT.

precedence constraint that « must finish before

v starts. Jobs are executed on a cluster of m identical executors M = {M;, ..., M,,}, where stage
execution is exclusive and non-preemptive.

At each scheduling decision step, the scheduler must (i) select a runnable stage to execute from
active jobs, and (ii) allocate a number of executors to determine its parallelism. A key factor in
these decisions is the critical path of job DAGs, defined as the longest path in terms of cumulative
processing time CP(G;) = maxp), pp,, Where P = {vy,...,vx} is a valid path such that
(vi,vi+1) € &;. As the critical path (Kelley Jr & Walker, |1959) sets the earliest possible completion
time of a job, emphasizing its stages is crucial to achieve low-latency execution. Let s, and ¢, =
Sy + Py be the start and completion timestamps of stage v, and define the completion time of job G;
as C; = maxy,ey, ¢y. The goal is to learn a scheduling policy 7 that respects precedence constraints
and resource limits while minimizing average JCT across all jobs:

. 1
min m Z Cy(m). (D

J.€TJ

Graph Features To support effective policy learning, hierarchical features are extracted for each
DAG G; = (V;, ;). At the job level, three features summarize the global scheduling state of job G;:
(i) resource occupancy: the number of executors assigned to G;; (ii) priority indicator: a binary flag
indicating whether G; is currently selected by the scheduler; (iii) resource availability: the number
of idle executors in the cluster. At the stage level, each stage v € V; inherits job-level features from
its corresponding job and appends two stage-specific features: (i) remaining workload: the total
estimated duration of unexecuted tasks of v; (ii) task progress: the number of unexecuted tasks.

4 MACE METHODOLOGY

This section presents the novel MACE model designed for streaming scheduling. It begins with
an architectural overview, and then details CSformer capturing execution-critical structures. The
memory-augmented scheduler is introduced next, followed by training procedures.

4.1 OVERVIEW

MACE formulates streaming scheduling as a Reinforcement Learning (RL) problem as illustrated in
Figure 2] where scheduling decision steps are triggered by events such as job arrivals or stage com-

Under review as a conference paper at ICLR 2026

l

State Update l

Reward

State

B

Exccutor M; Executor M,

(D Exceuted Stages (Q) Unexecuted Stages

Exccutor My,

MACE

Schedulable

Stage ;

Stage/Job/Global ’ T =y

1. v =

CSformer 5

(a) Hierarchical E g

Job Gy Job G; Embeddings Parallelism -

(a) Stage Level
i
Q

Job Level

Global Level \
CP-aware PE

Tunable Neighbors —() Schedulable
@ Stage
—z|2 >@ -)
I
et = 0
s —{ | +—Q
.
v ‘\I Parallelism Selection
E N A mijget
2 i E: tably
P a s . xecutable
JEe |8 i miljglet i __ Parallclism
z 2 —>
= Stage Embeddings g 2. . @ @
% Job Embeddings e | 5[3 miptet nra
Global Embedding it

nljflet

1w —
it et

5155

Stage Selection
Distribution

~

[Execution Parallelism at Time t

N >
\ @ Reward at Time ¢t EEEH Memory Embedding

/

Figure 2: Overview of MACE’s architecture. MACE takes the cluster state as input, including
job DAGs and executor availability, and learns a policy to schedule streaming jobs. It first uses
(a) CSformer to extract hierarchical embeddings at stage-job-global levels, where execution-critical
structures are emphasized through critical-path-aware positional encodings and a tunable attention
field. The (b) memory-augmented scheduler fuses the learned embeddings with job memory to select
a schedulable stage and its executable parallelism. The environment updates the cluster state based
on these scheduling decisions and returns rewards, which are used to train the policy end-to-end via
policy gradient to minimize average JCT.

pletions. At each step, the cluster state, including job DAGs and executor availability, is represented
as graphs with topology and associated features (see Section [3), serving as input to the model.

To encode the cluster state, CSformer learns hierarchical embeddings at stage-job-global levels.
Specifically, to emphasize execution-critical structures, it computes critical-path-aware positional
encodings based on the depth of each stage along the critical path, and defines a tunable attention
field using shortest-path distances to capture long-range dependencies. These structural cues are
aggregated through multi-layer attention to obtain stage-level embeddings. To support cross-level
information exchange, virtual job and global nodes are added as parent nodes, from which job-level
and global-level embeddings are derived via aggregation from their respective children. Based on
these learned embeddings, the memory-augmented scheduler scores candidate stages and selects one
for execution. It then determines the executable parallelism for the selected stage’s job by retrieving
job memory using the job-level embedding and recent reward signals, where the memory stores
historical scheduling decisions and outcomes to provide temporal context.

The environment updates the cluster state according to scheduling decisions and computes rewards
based on job completion times, repeating this process until all runnable stages are scheduled or all
executors are assigned. The entire model is trained end-to-end using policy gradient. Without loss
of generality, all subsections below describe the model at scheduling decision step .

4.2 CSFORMER

Based on the graph topologies and features derived from the current cluster state, CSformer builds
hierarchical embeddings at stage-job-global levels. These embeddings capture execution-critical
structures, supporting downstream scheduling with structural and contextual awareness.

Stage Level Each stage v is initialized with a feature vector x!, € R®, encoding runtime attributes
as defined in Section 3] To capture execution-critical structures, we first compute critical-path-
aware positional encodings and define the tunable receptive field. Particularly, each stage is assigned

Under review as a conference paper at ICLR 2026

a positional embedding based on its critical-path depth CP,(v), representing the distance from the
DAG’s entry point along the critical path (set to O for non-critical-path stages). Following the original
Transformer formulation (Vaswani et al.l 2017)), the positional encoding is computed as:

. CPd(’U) CPd(”U)
PE(u,Qi) = Sl <1000022—/d) PE(1),2'L+1) = CO8 100002i/d |

where d is the embedding dimension and ¢ indexes the dimensions. Each stage attends to a tunable
receptive field defined by:

NP (v) = {u € V : dist(v,u) < k and u is unexecuted} , 3)

2

where dist(v, u) is the shortest path between v and u, computed without regard to edge direction.
This design captures multi-hop parent-child relations that shape scheduling priorities while restrict-
ing attention to active neighbors.

In each layer of the CSformer encoder stack, the model performs the following multi-head attention.
For each head h, we compute the query, key, and value vectors as:

al) =Wy (<, + PE,), kY = Wi (<l + PE,), v = WV (xl, + PE.), ()

where {Wc(gh), W1(<h), W‘(/h)} € R¥*dn are learnable projection matrices. The attention weights and
output for head h are:

(h) 1.(R)
ex v, Ky Vd
all) = » ((a /) coa =) all) v, 5)
ST exp ((qw, k(M) /\/ﬂ) wENToe ()

weN e (v)

Outputs from all H heads are concatenated and projected to form the stage-level embedding:
B, = Wo |2 ||| 2], (©)
where Wy € RZ*(H:dn) is the output projection matrix.

Job and Global Level To obtain job- and global-level embeddings, virtual nodes are added on top
of stage-level embeddings: each job node connects to all stages v € V; in its DAG G;, and all job
nodes connect to a shared global node.

t
J
and cluster-wide availability (Section . Its embedding ji € R? is computed by aggregating stage-
level embeddings h! from the unexecuted stages within the corresponding DAG:

Each job node is initialized with a raw feature vector x € R3, encoding resource-related attributes

=g | D i)) +xh, (7

unexec
veEV]

where V"¢ C V; denotes the unexecuted stages in job G;, and f;(-) and g;(-) are learnable non-
linear transformations. The global-level embedding ef € RY summarizes all job-level embeddings:

el =g (Z fe(j$)> , (8)

with f.(-) and g.(-) as transformation functions. This hierarchical design enables CSformer to
abstract stage-level dynamics into job- and global-level embeddings, supporting informed decisions.

4.3 MEMORY-AUGMENTED SCHEDULER

The scheduler leverages the learned stage-job-global embeddings and a compact job memory to
makes two decisions: (i) selecting a runnable stage and (ii) determining execution parallelism for
that stage’s job. The memory stores recent scheduling trajectories, helping the scheduler incorporate
historical contexts into current decisions.

Under review as a conference paper at ICLR 2026

Stage Selection Based on the stage-job-global hierarchical embeddings, the scheduler selects a
stage for execution by scoring stages in the runnable set S;, where a stage is runnable if all its parent
stages have completed execution within the current job DAGs.

For each stage v € S; belonging to job G;, the priority score s! is computed via a learnable function
s(-) over stage-level embedding h!, job-level embedding j!, and global-level embedding e':

sy =s ([|15 [e']), ©)
where s(-) is a multi-layer perceptron that maps the concatenated embedding to a scalar. The selec-
tion probability of stage v is computed via softmax over all runnable stages:
exp(sy,)

> exp(st)’

uES,

Pv|8,) = (10)

Parallelism Selection To determine the execution parallelism, the scheduler retrieves job memory
using the job-level embedding and the last reward signal, where the job memory stores historical
scheduling decisions and outcomes to provide temporal context for adaptive decision-making.

The action space for job-level execution parallelism is defined as £ = {1,2,..., L}, where L is the
total number of available executors. For each job G;, the scheduler determines its parallelism ¢! € £
by attending to a shared memory M;_; € R%m*dm Specifically, let G7 denote the job associated
with the selected stage at decision step j. The memory is constructed by applying a transformation
function f,,(-) over previous decision trajectories:

P . -1
Mt—l = f'rn <{(j]a €J717 le)};_1> . (11)

Each triplet encodes the scheduler’s observation at step j, along with the previous action £i=1 and
its resulting reward 7/ ~1. This allows the memory to retain temporal experience, forming a com-
pact representation of how prior decisions influenced observed job dynamics. To retrieve relevant
memory at step ¢, the scheduler first forms a query vector:

of = [). (12)
This query is passed through a learnable query network ¢(-) to attend over the memory matrix and
obtain a memory-informed embedding:
m! = M;_; - g(o}). (13)
For each candidate parallelism £ € L, a score is computed via a learnable function J(-) that consumes
both memory and current context:

0;(6) = o([mi [3; [l '], ©). (14)
The final parallelism decision is sampled from a softmax distribution over the score space:
5;(£))
P(] of) = P . 15
100 = 5 e o) >
el

We compute the softmax only over parallelisms admissible for job G;. The criterion for admissibility
and the projection to an executable allocation are detailed in Appendix [A]

After selecting the next stage to execute, the scheduler updates the job memory using the con-
text triplet 6! = (jt, =1, *=1) from its associated job. Following prior work on memory writ-
ing (Katharopoulos et al.,[2020; Morad et al.| 2023} [Le et al.| 2024)), the update is computed as:

M, = M;_1 © Cy(6") + Uy(0"), (16)

where ® denotes element-wise Hadamard multiplication. The calibration matrix Cy(6!) modulates
the retention of past memory, while the update matrix U (6") introduces new information based on
the current observation. These two matrices are computed as:

Cy(6") =1+ tanh(8; @ v:(6")), Uy(6") = 14(0") [vu(6") ® ku(8")] . (17)

Here, {v¢, vy, k, } are learnable projections mapping the context vector into memory space. The
vector 8; € R% is randomly sampled from a trainable matrix € R!28%d¢ for stability. The
function 74 outputs a scalar update gate, and ® denotes the outer product.

Under review as a conference paper at ICLR 2026

4.4 MODEL TRAINING

Training proceeds over multiple episodes, each consisting of a sequence of scheduling decision
steps. Ateach stept € {1,...,n}, where n is the total number of steps in the episode, the policy
probability 7(t) represents the likelihood of selecting the executed scheduling decision given the
current cluster state. After executor allocation, a scalar reward r? is received, based on the average
JCT (Chhajed & Lowe,|2008). Specifically, let T* be the wall-clock time at step ¢, and J t the number
of jobs in the cluster during interval [T*~1, T'*). The reward is given by:

rt=—(T" =T)J" (18)

All modules in MACE are differentiable and jointly parameterized by ©. To optimize these param-
eters, we adopt the REINFORCE algorithm (Williams}, |1992):

O« O+7) Velogme(t) (Zrt’—bt), (19)

t=1 t'=t

where 7 is the learning rate, and b’ is a baseline to reduce variance in gradient estimation (Weaver
& Taol, [2001). A common choice sets b* as the cumulative reward from step ¢t onward (Greensmith
et al.,|2004), averaged across episodes. To ensure robustness under stochastic job arrivals, we gradu-
ally increase the episode length during training and terminate each episode at a random step sampled
from an exponential distribution. This strategy discourages pathological behaviors and promotes the
learning of generalizable scheduling policies.

5 EXPERIMENTS

Datasets We leverage the TPC-H benchmar (Mao et al.;|2019)), a gold-standard dataset for Spark
stream-processing scheduling. Each DAG encodes the stage dependency graph for a job, with per-
stage task counts and task-duration distributions estimated from empirical runs. We consider seven
data scales {2g, 5g, 10g, 20g, 50g, 80g, 100g}, where g denotes gigabytes of raw data, and 22 query
templates. Training episodes are generated online: each starts with V%" pre-arrived jobs, followed
by N4n jobs arriving via a Poisson process with mean inter-arrival A™". For each arrival, we
uniformly sample a scale-template pair. The executor budget during training is fixed at L"™"=50,
with defaults N{in=10, Nain —100, and A™"=25s. Test episodes adopt the same DAG genera-

: test test test test :
tion process and vary the four-tuple (N5, N, A, L'*") to evaluate performance under diverse

cluster capacities and workload intensities.

Evaluation Protocol We compare MACE with the following baselines: FIFqﬂ SJF-CP (Shortest
Job First with a Critical-Path proxy) (Kwok & Ahmad, |1999), WFS (naive Weighted Fair Schedul-
ingﬂ HEFT (Heterogeneous Earliest Finish Time) (Topcuoglu et al.| [2002), DRF (Dominant Re-
source Fairness) (Ghodsi et al. 2011), SRPT (Shortest Remaining Processing Time) (Harchol-
Balter}, |2013)), and Decima (Mao et al., 2019). Our evaluation reports average job completion time,
a universally accepted metric for scheduling efficiency in systems and queueing theory (Harchol-
Balter, [2013)). For details of experiments, including implementation and hyperparameters, refer to
Appendix B| To ensure comparability, we exclude learning-based schedulers like LACHESIS (Zhou
et al.| 2022) and DeepWeave (Sun et al., [2021)), as their problem formulation (e.g., task duplication
and coflow-level objectives) are incompatible with our streaming setting under identical executors.

5.1 MAIN RESULTS AND ANALYSIS

Robustness under Diverse Streaming Conditions Table [T| reports the average JCT across four
stress-testing scenarios, each varying a single parameter while keeping others fixed. Specifically, we
test: (i) backlog robustmess by varying the number of pre-arrived jobs N[t € {0, 30} to examine

init

"https://www.tpc.org/tpch/

https://spark.apache.org/docs/latest/job-scheduling.html

3https ://hadoop.apache.org/docs/current /hadoop-yarn/hadoop-yarn—-site/
FairScheduler.html

https://www.tpc.org/tpch/
https://spark.apache.org/docs/latest/job-scheduling.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html

Under review as a conference paper at ICLR 2026

Table 1: Quantitative results (avg. JCT =+ standard deviation in seconds) under diverse streaming
scheduling conditions. Bold: best; underline: runner-up. Each scenario evaluates schedulers by
varying one stress axis (backlog, stream length, load, or capacity) while keeping the others fixed at
the default configuration N{®'=10, N2t =100, A*'=25s, and L**'=50.

init stream
Backlog Robustness Statistical Stability Load Sensitivity Capacity Scaling
Algorithm Default
NS =0 Nt =30 N, =50 Niw, =200 A =125s A =50s L' =25 L'*'=75

FIFO 310.4+41345 201.2+1384 684.1+2881 277.1+1019 388.5+2841 827.6+2221 76.7+s519 931.6+4040 195.8+1629
SJF-CP 8424387 69.3+2790 166.7+7238 86.41458 79.44289 230.3+937 46.3+149 2789+1211 52.84231

WES 148341112 107.14681 401.242082 170.5+1320 120.5+544 622.2+3834 69.6+376 1120.8+7968 74.8+417
HEFT 129.24712 11044539 332.7+1302 141.8+s83 12514453 567.2+13846 584424 695.6+3625 78.6+4340
DRF 448343783 434240546 515843879 355441227 215241941 434241010 17544875 516.41865 4724514758
SRPT 143. 14849 113. 74515 284.84996 14534771 156.6+95 375.3+1099 61.5+234 412.9+1648 80.7+360
Decima 63.1+22 56.2+147 9711313 6744255 58.7+111 119.1+469 51.6+127 18524902 46.9+126
MACE 58.6+£147 5311110 100.64320 64.7 1210 552484 118.3 1430 49.0+103 183.9+735 425130

Average JCT: 40.9 sec Average JCT: 43.5 sec Average JCT: 37.0 sec

Average JCT: 63.2 sec

0 St 50 " 50 - 50
40 ot L, 40 ,, 40 , 40
2 k=1 =} I
> 30 > 30 @ 30 7 30
- - -~ -
@ 20 @ 20 @ 20 o 20
& & & &

S
>

10

>

| —
0 80 160 240 320 40C 0 80 160 240 320 400

Time (seconds) Time (seconds) Time (seconds) Time (seconds)

0 80 160 240 320 40C

0 80 160 240 320 40C

(a) SJF-CP (b) SRPT (c) Decima (d) MACE
Figure 3: Scheduling traces for a streaming workload. Each subfigure illustrates task execution over
time across 50 task slots, where each slot corresponds to an executor running one task at a time.
Different DAGs are colored differently. Red vertical lines indicate job completion times, and purple
regions denote idle slots.

cold-start congestion; (ii) statistical stability by changing stream length N3 € {50,200} to eval-
uate consistency under varying workload durations; (iii) load sensitivity by adjusting inter-arrival
times A" € {12.5s,50s} for different load intensities; and (iv) capacity scaling by modifying
available executors L' € {25, 75} to test adaptability under varying resource level.

MACE achieves the lowest average JCT in 7 out of 9 test settings and outperforms state-of-the-art
baselines by up to 9.38%, demonstrating robustness across diverse workload conditions. Its advan-
tage over Decima arises from combining awareness of execution-critical structures with memory-
based temporal context, enabling effective prioritization of critical stages and adaptive parallelism
control. SJF-CP performs competitively under heavy load, underscoring the importance of critical-
path information in guiding scheduling decisions. Static schedulers such as FIFO and WFS degrade
substantially under stress due to their inability to respond to dynamic workloads and fluctuating re-
sources. Appendix [C|shows that MACE incurs acceptable scheduling latency per decision across all
baselines, supporting its practical efficiency.

Streaming Trace Analysis To understand scheduler behavior under streaming workloads, we vi-
sualize the execution traces of 15 DAGs submitted via a Poisson arrival process with a mean inter-
arrival time of 25 seconds. Figure [3| compares MACE with three competitive baselines: SJF-CP,
SRPT, and Decima. MACE exhibits densely packed execution and early job completions, reflect-
ing efficient task slot usage and the lowest average JCT. SRPT, which prioritizes short jobs based
on remaining processing time, often defers long jobs and causes resource underutilization. SJF-CP
performs competitively by accelerating critical-path tasks, but its lack of global temporal awareness
results in scattered execution and delayed completions. Decima, while improving upon heuristics,
still shows inefficiencies with tasks piling up in later stages and earlier slots remaining idle.

Job-Level Scheduling Dynamics Figure] compares MACE and Decima, examining job-level
scheduling dynamics. In subplot (a), we increase job pressure by extending the stream length from
100 to 750, keeping other settings unchanged. MACE maintains fewer concurrent jobs, indicating
faster queue clearance and higher throughput. Subplot (b) plots job duration versus total work (i.e.,

Under review as a conference paper at ICLR 2026

15 AZOO o 50
—— MACE Z ® MACE G
8 12 Decima § 1601 e Decima 2 40
2 2 »
=9 2120 830
E g S |
g 6 g 80 220
5 5 re; i}
3 2 40 m & S 10 o MACE
= z ® Decima
0 1 2 3 4 0 400 800 120016002000 0 600 1200 1800 2400 3000
Time (hours) Total Work (seconds) Total Work (seconds)

Figure 4: Job-level scheduling behavior of MACE and Decima. (a) Concurrent jobs over time. (b)
Job duration versus total work. (c) Executors per job versus total work. MACE completes jobs faster
with lower concurrency and more efficient executor use, adapting better to dynamic workloads.

Table 2: Ablation studies of MACE, reporting average JCT (in seconds). Bold: best. Each ablated
variant removes one key component: memory, positional encoding, or long-range neighbors.

Scenario Full MACE w/o Memory w/o CP-aware PE w/o Tunable RF
Default 49.7 55.6 58.2 53.8
High Load 76.6 89.0 94.2 82.0
Limited Capacity 120.2 167.9 197.8 137.6

the sum of task runtimes per job). MACE forms a compact cluster near the lower-left corner, indicat-
ing that jobs complete faster with less variance. Subplot (c) shows the number of executors allocated
per job versus its total work. MACE concentrates more points in the upper-left, meaning that jobs
receive more executors. These patterns show that MACE reveals responsiveness by allocating par-
allelism more effectively, whereas Decima’s scattered allocations result in slower completions and
higher variance.

5.2 ABLATION STUDIES

To assess the contributions of MACE’s core components, we conduct an ablation study under three
representative scenarios: the default configuration, a high-load setting with A™' = 12.5s, and a
limited-capacity setting with L'**' = 25. We compare the full model against three variants, each dis-
abling one design: the memory mechanism, the Critical-Path-aware Positional Encoding (CP-aware
PE), or the tunable Receptive Field (RF). As shown in Table |Z[, removing CP-aware PE causes the
greatest performance drop, highlighting its central role in identifying bottleneck stages. Disabling
memory also substantially hurts performance, as it limits the model’s use of historical scheduling
context. Fixing the receptive field to aggregate only from immediate children moderately increases
JCT, indicating the benefit of flexible structural information in adaptive decision making. These
results underscore the complementary roles of memory, critical-path encoding, and receptive field
control in effective scheduling. We further investigate the impact of memory dimension dy and
receptive field size & in Appendix D} showing the sensitivity of MACE to these hyperparameters.

6 CONCLUSION

In this study, we present MACE, a memory-augmented reinforcement learning model with critical
structure encoding for streaming scheduling. By designing the CSformer encoder and the memory-
augmented scheduler, MACE jointly captures execution-critical structures and incorporates histor-
ical scheduling contexts, enabling informed and adaptive scheduling decisions. Extensive experi-
ments show that MACE significantly outperforms strong baselines on Spark workloads. For infor-
mation about the use of large language models during paper preparation, please refer to Appendix [E}

Limitations and Broader Impact Despite the encouraging results, MACE does not yet account
for heterogeneous resources or inter-executor communication costs, which pose more complexi-
ties in real-world cluster environments. Our future work will address these limitations and extend
the framework to broader and more practical scheduling scenarios. This research may inspire the
Al4System community to pay greater attention to these challenges and promote continued advance-
ment in effective DAG scheduling.

Under review as a conference paper at ICLR 2026

REFERENCES

Shaikhah AlEbrahim and Imtiaz Ahmad. Task scheduling for heterogeneous computing systems.
The Journal of Supercomputing, 73(6):2313-2338, 2017.

Venkat Anantharam. Scheduling strategies and long-range dependence. Queueing systems, 33(1):
73-89, 1999.

Hamid Arabnejad and Jorge G Barbosa. List scheduling algorithm for heterogeneous systems by
an optimistic cost table. IEEE Transactions on Parallel and Distributed Systems, 25(3):682—-694,
2013.

Rashmi Bajaj and Dharma P Agrawal. Improving scheduling of tasks in a heterogeneous environ-
ment. IEEE Transactions on Parallel and Distributed Systems, 15(2):107-118, 2004.

Luiz F Bittencourt, Rizos Sakellariou, and Edmundo RM Madeira. Dag scheduling using a looka-
head variant of the heterogeneous earliest finish time algorithm. In PDP, pp. 27-34. IEEE, 2010.

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas
Tzoumas. Apache flink: Stream and batch processing in a single engine. The Bulletin of the
Technical Committee on Data Engineering, 38(4), 2015.

Dilip Chhajed and Timothy J Lowe. Building intuition: insights from basic operations management
models and principles, volume 115. Springer Science & Business Media, 2008.

Sekhar Darbha and Dharma P Agrawal. Optimal scheduling algorithm for distributed-memory ma-
chines. IEEE Transactions on Parallel and Distributed Systems, 9(1):87-95, 2002.

Mukul Gagrani, Corrado Rainone, Yang Yang, Harris Teague, Wonseok Jeon, Roberto Bondesan,
Herke van Hoof, Christopher Lott, Weiliang Zeng, and Piero Zappi. Neural topological ordering
for computation graphs. In NeurIPS, volume 35, pp. 17327-17339, 2022.

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and Ion Stoica.
Dominant resource fairness: Fair allocation of multiple resource types. In NSDI, 2011.

Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and Aditya Akella.
Multi-resource packing for cluster schedulers. ACM SIGCOMM Computer Communication Re-
view, 44(4):455-466, 2014.

Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient
estimates in reinforcement learning. Journal of Machine Learning Research, 5S(Nov):1471-1530,
2004.

Mor Harchol-Balter. Performance modeling and design of computer systems: queueing theory in
action. Cambridge University Press, 2013.

Kun He, Xiaozhu Meng, Zhizhou Pan, Ling Yuan, and Pan Zhou. A novel task-duplication based
clustering algorithm for heterogeneous computing environments. IEEE Transactions on Parallel
and Distributed Systems, 30(1):2—14, 2018.

Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and Andrew Goldberg.
Quincy: fair scheduling for distributed computing clusters. In SIGOPS, pp. 261-276, 2009.

Wonseok Jeon, Mukul Gagrani, Burak Bartan, Weiliang Will Zeng, Harris Teague, Piero Zappi, and
Christopher Lott. Neural dag scheduling via one-shot priority sampling. In /CLR, 2023.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In /CML, pp. 5156-5165. PMLR,
2020.

James E Kelley Jr and Morgan R Walker. Critical-path planning and scheduling. In IRE-AIEE-ACM,
pp. 160-173, 1959.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan. Measuring
catastrophic forgetting in neural networks. In AAAI, volume 32, 2018.

10

Under review as a conference paper at ICLR 2026

SJ Kim. A general approach to mapping of parallel computations upon multiprocessor architectures.
In ICPP, volume 3. IEEE Computer Society, 1988.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences,
114(13):3521-3526, 2017.

Yu-Kwong Kwok and Ishfag Ahmad. Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys, 31(4):406-471, 1999.

Hung Le, Kien Do, Dung Nguyen, Sunil Gupta, and Svetha Venkatesh. Stable hadamard
memory: Revitalizing memory-augmented agents for reinforcement learning. arXiv preprint
arXiv:2410.10132, 2024.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436-444,
2015.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Ziniu Lin, Chen Li, Lihua Tian, and Bin Zhang. A scheduling algorithm based on reinforcement
learning for heterogeneous environments. Applied Soft Computing, 130:109707, 2022.

Jane WS Liu, Kwei-Jay Lin, and Swaminathan Natarajan. Scheduling real-time, periodic jobs using
imprecise results. Technical report, 1987.

Yuankai Luo, Veronika Thost, and Lei Shi. Transformers over directed acyclic graphs. In NeurIPS,
volume 36, pp. 47764-47782, 2023.

Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Mohammad
Alizadeh. Learning scheduling algorithms for data processing clusters. In SIGCOMM, pp. 270-
288, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

Steven Morad, Ryan Kortvelesy, Stephan Liwicki, and Amanda Prorok. Reinforcement learning
with fast and forgetful memory. In NeurIPS, volume 36, pp. 7200872029, 2023.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed frame-
work for emerging ai applications. In OSDI, pp. 561-577, 2018.

Xiang Ni, Jing Li, Mo Yu, Wang Zhou, and Kun-Lung Wu. Generalizable resource allocation in
stream processing via deep reinforcement learning. In AAAI, volume 34, pp. 857-864, 2020.

Gyung-Leen Park, Behrooz Shirazi, and Jeff Marquis. Dfrn: A new approach for duplication based
scheduling for distributed memory multiprocessor systems. In IPPS, pp. 157-166. IEEE, 1997.

Samantha Ranaweera and Dharma P Agrawal. A task duplication based scheduling algorithm for
heterogeneous systems. In IPDPS, pp. 445-450. IEEE, 2000.

Matthew Rocklin et al. Dask: Parallel computation with blocked algorithms and task scheduling. In
SciPy, pp. 126-132, 2015.

Rana Shahout and Michael Mitzenmacher. Skippredict: When to invest in predictions for schedul-
ing. In NeurIPS, volume 37, pp. 105663-105701, 2024.

11

Under review as a conference paper at ICLR 2026

KwangSik Shin, MyongJin Cha, MunSuck Jang, JinHa Jung, WanOh Yoon, and SangBang Choi.
Task scheduling algorithm using minimized duplications in homogeneous systems. Journal of
Parallel and Distributed Computing, 68(8):1146-1156, 2008.

Gilbert C Sih and Edward A Lee. A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures. IEEE Transactions on Parallel and Dis-
tributed Systems, 4(2):175-187, 2002.

Oliver Sinnen. Task scheduling for parallel systems. John Wiley & Sons, 2007.

Penghao Sun, Zehua Guo, Junchao Wang, Junfei Li, Julong Lan, and Yuxiang Hu. Deepweave:
Accelerating job completion time with deep reinforcement learning-based coflow scheduling. In
1JCAL pp. 3314-3320, 2021.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
Press Cambridge, 1998.

Richard Stuart Sutton. Temporal credit assignment in reinforcement learning. University of Mas-
sachusetts Amherst, 1984.

Haluk Topcuoglu, Salim Hariri, and Min-You Wu. Performance-effective and low-complexity task
scheduling for heterogeneous computing. I[EEE Transactions on Parallel and Distributed Systems,
13(3):260-274, 2002.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, volume 30, 2017.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In /CLR, 2018.

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune, and John
Wilkes. Large-scale cluster management at google with borg. In EuroSys, pp. 1-17, 2015.

Zhi Wang, Wenhan Zhan, Hancong Duan, Geyong Min, and Hualong Huang. Deep reinforcement
learning-based continuous workflows scheduling in heterogeneous environments. IEEE Internet
of Things Journal, 2025.

L Weaver and Nigel Tao. The optimal reward baseline for gradient-based reinforcement learning. In
UAI, pp. 538-545. Morgan Kauffman Publishers, 2001.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3):229-256, 1992.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4-24, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2018.

Tao Yang and Apostolos Gerasoulis. A fast static scheduling algorithm for dags on an unbounded
number of processors. In SC, pp. 633-642, 1991.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly,
Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In NSDI, pp. 15-28, 2012.

Yunfan Zhou, Xijun Li, Jinhong Luo, Mingxuan Yuan, Jia Zeng, and Jianguo Yao. Learning to
optimize dag scheduling in heterogeneous environment. In MDM, pp. 137-146. IEEE, 2022.

12

Under review as a conference paper at ICLR 2026

A FEASIBILITY CONSTRAINTS AND PARALLELISM ASSIGNMENT

At decision step t, the scheduler selects a runnable stage v € S; and a job-level parallelism ¢ €
L={1,..., L} forits job G;(,), where j(v) indexes the job containing v. Let C},, F'*, and R'(v)
denote the executors held by Qj(v), the free executors, and the remaining schedulable tasks on v.

Admissible Parallelism Set For Qj(,,) at step ¢, the admissible parallelisms are
ﬁvalid(gj(v)7t) = {f eLlL: 0> C;(v) — Ft + 1} (20)

The threshold C’; (v) ~ F' 4 1 is the minimal parallelism that ensures a strictly positive increase for

the acted job given the current pool of free executors. The parallelism is sampled with a masked
softmax over this set:

_ exp((%(v) (0))
Z@’ €Lva1ia(Gj(v),t) eXp((S;(“) (El))
Invalid parallelisms are assigned logits of —oo and therefore receive zero probability.

P(e] 0;'(1)))

21

Capacity-Aware Projection Given the sampled parallelism ? for Gj(v), define the job-level in-
crease allowed by the chosen parallelism and the current free pool as

t _) t t
Ajw) == Gy T 17 (22)
The executed allocation to stage v at step ¢ is
min{ R*(v), A§(v), F'Y. (23)

This projection, together with the masked sampling of admissible parallelisms, ensures each decision
respects stage, job, and per-step capacity constraints.

B ADDITIONAL EXPERIMENTAL DETAILS

Baselines FIFO (First-In First-Out) schedules jobs strictly in the order of submission. SJF-CP
(Shortest Job First with a Critical-Path proxy) ranks jobs by estimated execution time, calculated
from the longest path in the DAG using per-stage durations (Kwok & Ahmad, [1999). WES (naive
Weighted Fair Scheduling) allocates executors proportionally without lookahead or priority adjust-
ments. HEFT (Heterogeneous Earliest Finish Time) selects tasks based on upward rank and assigns
them to minimize earliest finish time using insertion-based placement (Topcuoglu et al.|[2002). DRF
(Dominant Resource Fairness) balances dominant resource shares and reduces to fair sharing in
single-resource environments (Ghodsi et al [2011). SRPT (Shortest Remaining Processing Time)
serves the job with the smallest remaining workload (Harchol-Balter} 2013). Decima is a graph-
based scheduler trained with reinforcement learning to minimize average JCT (Mao et al.| [2019).
Heuristic baselines (FIFO/SJF-CP/WFS/HEFT/DRF/SRPT) are implemented following their stan-
dard definitions, share the same empirical task-duration statistics as our method, and have no train-
able components. Decima follows the official implementation E] and training recipe provided by the
authors, initialized as described in the original paper. Its hyperparameters are carefully tuned on
held-out validation seeds to select the best checkpoint, and evaluation is conducted in inference-
only mode. For fair comparison, we apply episode parity by generating identical episodes for each
evaluation seed, ensuring that all methods face the same job arrivals, DAG identities, and resource
settings, with only the scheduling policy varying.

Implementation We train MACE using REINFORCE with the Adam optimizer. The learning
rate is selected from {1 x 1074, 5 x 107%, 1 x 1073, 2 x 1073}, with gradient clipping set to 1.0
and entropy regularization to 10~3. CSformer is configured with depth ranging from 2 to 6 layers,
neighborhood radius k € {1,2,3,4,5}, attention heads H € {2,4,8}. The memory dimension dg
is selected from {8, 16,32, 64,128}, and includes a learned query projection with a multiplicative
update gate. Training uses a fixed batch size of 64, and episodes terminate stochastically. Hyperpa-
rameters are tuned via grid search on held-out validation seeds to select the best checkpoint for final
evaluation. The environment where we run experiments is:

4(MIT license) https://github.com/hongzimao/decima-sim

13

https://github.com/hongzimao/decima-sim

Under review as a conference paper at ICLR 2026

Table 3: Average scheduling latency and standard deviation (in milliseconds) per decision under the
default configuration N{&' = 10, N = 100, At = 25s, L't = 50,

init stream

Metric FIFO SJF-CP WFS HEFT DRF SRPT Decima MACE

Avg. Latency (ms) 0.025 2602 0.670 7.734 4268 1.285 5.470 5.529
Std. Deviation (ms) 0.131 6.682 3.086 17.181 12993 5.108 7.435 7.844

* Operating system: Ubuntu 20.04.6 LTS
¢ CPU information: Intel(R) Xeon(R) Platinum 8378 A CPU @ 3.00GHz
* GPU information: NVIDIA A100-SXM4-40GB

C SCHEDULING LATENCY ANALYSIS

To assess the practical responsiveness of different schedulers, we measure the average scheduling
latency per decision under the default configuration, where NS = 10, NE% = = 100, A = 25s,
and L'' = 50. Scheduling latency refers to the wall-clock time required to make a scheduling
decision once runnable tasks become available. This includes neural inference and decision logic

for learning-based methods, and rule evaluation for heuristic policies.

As shown in Table [3] heuristic schedulers such as FIFO, WFS, and SRPT incur minimal overhead,
with average latencies under 1.5 ms. SJF-CP remains relatively lightweight at 2.602 ms, while HEFT
incurs the highest latency due to its recursive ranking procedure. Learning-based approaches intro-
duce additional cost: Decima averages 5.470 ms per decision, while MACE incurs slightly higher
latency at 5.529 ms with its more expressive model. Nevertheless, both remain responsive enough
for real-time scheduling, with latency well below the inter-arrival interval.

D HYPERPARAMETER SENSITIVITY ANALYSIS

We evaluate the sensitivity of MACE
to two key hyperparameters: the
memory dimension dy and the recep-
tive field size k. All experiments
use the default evaluation setup with
Ntesl — 10, Ntest — 100’ Atest —

init stream

25s, and Lt = 50.

v
=
[
wn

v
b
%
=)

v
S

Average JCT (seconds)
3

Average JCT (seconds)
g 2
PSS

S
%
s
©
n

§ 16 32 64 128 o2 3 4 5
Effect of Memory Dimension We Memory Dimension dg Receptive Field k
vary dy from 8 to 128 and report the (a) Memory Dimension (b) Receptive Field
resulting average JCT. As shown in Figure 5: Hyperparameter sensitivity of MACE with vary-
Figure [3 (a), performance degrades ing (a) memory dimension dy and (b) receptive field size k
as dy increases beyond 16, indicating under the default setting.
that a moderate memory size is suffi-
cient. Larger dimensions do not yield further improvements and may introduce redundancy.

Effect of Receptive Field We vary the receptive field size k from 1 to 5. As shown in Figure[5(b),
the average JCT decreases consistently as k increases, with the best performance achieved at k = 5.
This clear downward trend highlights the effectiveness of incorporating long-range structural context
when scheduling streaming jobs.

E USE OF LARGE LANGUAGE MODELS

In the preparation of this paper, we utilized ChatGPT—4(ﬂ a large language model developed by
OpenAl, to assist in polishing the writing. The model was particularly helpful in refining sentence
structure, enhancing clarity, and improving the overall flow of the text. We would like to express
our gratitude to the researchers dedicated to both the development and research of large language
models, whose work has significantly advanced tools that support and enhance the research process.

Shttps://openai.com/chatgpt

14

https://openai.com/chatgpt

	Introduction
	Related Work
	Problem Description
	MACE Methodology
	Overview
	CSformer
	Memory-augmented Scheduler
	Model Training

	Experiments
	Main Results and Analysis
	Ablation Studies

	Conclusion
	Feasibility Constraints and Parallelism Assignment
	Additional Experimental Details
	Scheduling Latency Analysis
	Hyperparameter Sensitivity Analysis
	Use of Large Language Models

