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Abstract

Motivation: Traditional image attribution methods struggle to satisfactorily explain pre-
dictions of neural networks. Prediction explanation is important, especially in medical
imaging, for avoiding the unintended consequences of deploying AI systems when false
positive predictions can impact patient care. Thus, there is a pressing need to develop
improved models for model explainability and introspection.
Specific problem: A new approach is to transform input images to increase or decrease
features which cause the prediction. However, current approaches are difficult to implement
as they are monolithic or rely on GANs. These hurdles prevent wide adoption.
Our approach: Given an arbitrary classifier, we propose a simple autoencoder and gra-
dient update (Latent Shift) that can transform the latent representation of a specific input
image to exaggerate or curtail the features used for prediction. We use this method to
study chest X-ray classifiers and evaluate their performance. We conduct a reader study
with two radiologists assessing 240 chest X-ray predictions to identify which ones are false
positives (half are) using traditional attribution maps or our proposed method.
Results: We found low overlap with ground truth pathology masks for models with rea-
sonably high accuracy. However, the results from our reader study indicate that these
models are generally looking at the correct features. We also found that the Latent Shift
explanation allows a user to have more confidence in true positive predictions compared
to traditional approaches (0.15±0.95 in a 5 point scale with p=0.01) with only a small
increase in false positive predictions (0.04±1.06 with p=0.57).

1. Introduction

It is important to understand why a neural network model is making a prediction to
ensure that it is using features that we would expect as well as discovering what unknown
features a model is using. Typically 2D attribution maps are used which are based on
a 1st order approximation of the neural network (Simonyan et al., 2014) but these have
limitations as they may just represent edges (Adebayo et al., 2018) or simply not indicate
the features that are really being used (Viviano et al., 2020; Arun et al., 2020a,b).
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Gifsplanation via Latent Shift

Recently, the idea to visualize predictions via exaggerating features that change the
predictions of a model has been discussed by Singla et al. (2020, 2021). This exaggera-
tion is the result of a neural network’s ability to hallucinate features (Cohen et al., 2018;
Baumgartner et al., 2018) which is known to be controllable (Mirza and Osindero, 2014;
Wang et al., 2020). Instead of simply generating images of a specific class, these exaggera-
tion methods can explain the specific features used by a classifier to make each prediction.
This is valuable in detecting when a model predicts using incorrect spurious correlates to
ensure it is right for the right reasons (Ross et al., 2017; Zech et al., 2018). While most
image pathology prediction models have expected causal relationships where specific image
regions explicitly lead to the classification label (Enlarged heart → Cardiomegaly), models
predicting future risk (e.g. 5 year mortality) do not have such a known causal relationship.
In these scenarios, we can learn which features are being used with these methods and
viewing the counterfactual image.

However, there are two major downsides to existing approaches to this task which limit
their adoption. 1) They are based on GANs (Goodfellow et al., 2014) which can be very
difficult and time consuming to train because of loss function stability and hyperparameter
sensitivity. 2) They are monolithic models that require the generative and discriminative
components to be trained together which prevents working with existing pretrained models.

One would prefer an approach which is modular, as simple as possible to implement,
and able to work with any existing classifier as a drop in replacement for gradient based
attribution maps.

Our approach requires a latent variable model, such as a simple autoencoder D(E(x))
where E is the encoder and D is the decoder, and a classifier f which predicts a target y as
follows: y = f(x). The latent variable model and the classifier are trained independently
without any special considerations except for being differentiable. We specifically use an
autoencoder because it is simple to implement and train and we believe this will increase
adoption of this method.

Once these models are trained, an explanation can be computed as follows. An input
image x is encoded using E(x) producing a latent representation z. Perturbations of the
latent space are computed for a classifier f in Eq 1 which is then used to produce λ-shifted
samples shown in Eq 2.

zλ = z + λ
∂f(D(z))

∂z
(1) x′λ = D(zλ) (2)

The image x′λ now is expected to produce a higher prediction such that f(x′λ) > f(x).
From here we can generate multiple x′λ images to exaggerate or remove features which result
in a prediction (explored in §4.2). These images can be stitched together into short videos
(gifs) that help to explain why a prediction was made and what representation the classifier
had about the concept. Examples available online1.

An overview of this method is shown in Figure 1. With this approach it is important to
keep in mind that this method is limited by the latent representation of the autoencoder.
If the decoder is not expressive enough then it will not be able to correctly represent the
features used by the classifier. Fortunately, this approach allows multiple classifiers to be

1. https://mlmed.org/gifsplanation/
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Figure 1: A) Overview of the Latent Shift method. The encoder and decoder parts of the autoen-
coder are shown in gray. The classifier f predicts if the CXR has a ‘Mass’. The image is input from
the left and multiple different versions are reconstructed. B) Optical flow computed on a sequence
of generated images to visualize what is changing. C) The prediction of ‘Mass’ changes as the λ
value changes the reconstructed image.

compared with a fixed autoencoder (or the choice of latent variable model) and allows a
clear understanding about the different representations between the models.

In essence we want the exact opposite of an adversarial attack. If we were just modifying
the image using the gradient ∂f(x)

∂x , which is a traditional adversarial attack, the modification
would be imperceivable and distort the image by selecting spurious pixels which happen to
have an impact on the target variable. Our approach regularizes this process using a fixed
decoder to keep the image on the data manifold and prevent these spurious pixels from
changing. Overall, we seek to modify only the most semantically meaningful pixels that
lead to a particular classification output. The contributions of our work follow:

1. Propose a simple and elegant approach to counterfactual generation as well as a way
to calculate a replacement for a traditional 2D attribution map.

2. Explore the attribution of chest X-ray predictions using this method compared to
traditional methods in terms of IoU overlap with expert masks and cascading ran-
domization analysis.

3. Study how this method impacts a radiologist’s ability to interpret the prediction of a
model compared to traditional attribution methods when presented with false positive
predictions.

2. Related Work

The idea of decoupling models was raised before and these approaches are similar in
spirit to our approach in how they walk around the latent space although they have different
formulations and utilize GANs. Schutte et al. (2020) learned a small function to map the
latent variable to a predicted target and use it to transform the latent variable. Joshi et al.
(2018) moves in the latent space based on the classifiers loss function in order to change
the class of the image. They recursively modify the latent variable until the class changes.
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3. Protocol and Materials

3.1. Chest X-ray classifiers

Three DenseNet121-based classifiers from existing publications were used. There is no
requirement for this specific architecture but there are not many publicly available chest X-
ray models. Two models are from the paper (Cohen et al., 2020a) referred to as the XRV-all
and XRV-mimic ch. The XRV-all model is jointly trained on 7 CXR datasets (NIH, PC,
CheX, MIMIC-CXR, Google, OpenI, RSNA which are described in Appendix §A). The
XRV-mimic ch model is trained on only MIMIC-CXR (Johnson et al., 2019). The other
model is from the JF Healthcare group (Ye et al., 2020) which was built for the CheXpert
challenge (Irvin et al., 2019) and at one point was ranked 1st on the leaderboard.

3.2. Generating 2D attribution maps

There are a few ways to generate a 2D Latent Shift attribution map which would be
comparable to a typical attribution map. Here we will discuss the latentshift-max method
which was found to work best. This method takes a sequence of x′λ images between a
specific λ range (discussed in §4.2). First the absolute difference between the non-shifted
reconstruction x′ and each of the shifted x′λ images is computed. Then the maximum
difference at a per pixel level is computed to produce the final attribution map. Intuitively,
this captures the maximum change as the result of the shift. More options for this conversion
are discussed in Appendix §B.

3.3. Baseline attribution methods

The baseline method of input gradients (referred to as grad) computes the absolute
gradient of the input with respect to the prediction made for all images of the positive
class |∂ŷ1∂x | (Simonyan et al., 2014). The method Guided Backprop (Springenberg et al.,
2015) (referred to as guided) tries to ignore gradients that cancel each other out by only
backpropagating positive gradients. The method Integrated Gradients (Sundararajan et al.,
2017) (referred to as integrated) works by integrating gradients between the input image xi
and an all-zero baseline image.

3.4. Mask annotation datasets and IoU calculation

Expert mask annotations were used to evaluate attribution maps. Bounding boxes from
the NIH dataset (Wang et al., 2017) were used for Atelectasis, Cardiomegaly, Effusion, and
Mass. Segmentation masks from the RSNA Pneumonia Challenge (Shih et al., 2019) were
used for Lung Opacity. Segmentation masks from the SIIM-ACR Pneumothorax Challenge
(Filice et al., 2020) were used for Pneumothorax. Additional details in Appendix §A.3.

To fairly compute an IoU value (intersection over union; IoU(mask, img) = mask∩img
mask∪img) for

the 2D attribution methods we followed (Viviano et al., 2020) where a binarized attribution
map is created such that the top p percentile pixels were set to 1, where p is dynamically
set to the number of pixels in the ground truth mask that it is being compared to.

4. Experiments
All source code2 and datasets (see §A) are publicly available. The classifiers, autoencoder

and their respective pre-trained weights as used in this work are available in TorchXRayVi-
sion 0.0.24 (Cohen et al., 2020b). PyTorch 1.6.0 (Paszke et al., 2017) and Captum 0.3.0
(Kokhlikyan et al., 2020) were used for model training and feature attribution, respectively.

2. https://github.com/mlmed/gifsplanation
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Figure 2: The latentshift-max method to generate 2D attribution maps is applied to the same image
using autoencoders which vary in bottleneck size. The top 95% of explanation pixels are shown.

Figure 3: Example of the pathology prediction as λ is moved along the latent shift axis for 3
different classification models on the same image. The same autoencoder is used in all cases. At
λ=0 the prediction is the classifiers output on the unmodified reconstructed image.

4.1. Autoencoder architecture and training

Keeping with our goal to build the most straightforward model, a ResNet (He et al.,
2016) convolutional autoencoder was used as it is able to achieve high fidelity image recon-
struction and is relatively easy to implement. An elastic (squared + absolute) loss was used
to capture both large and small features. This model was trained on 4 large datasets NIH,
PC, RSNA, and MIMIC.

The bottleneck of the autoencoder is a major variable in the quality of the explanations.
In Figure 2 the bottleneck size is varied and latentshift-max images are computed using
the XRV-all model to predict Cardiomegaly (an enlarged heart). Looking qualitatively at
the generated image explanations and their corresponding videos we observe that a large
bottleneck results in spotty changes in the region of interest but they don’t appear to
clearly vary the pathology. At smaller bottleneck sizes the size if the heart appears to be
controlled. However, if it is too small then small features, such as the ribs, are lost. In
further experiments a ResNet101 with a bottleneck size of 4608 is used.

Unexpectedly we find that larger bottleneck sizes have a higher IoU but they do not
result in a better explanation when viewed qualitatively. The shifted images do not ap-
pear to have a smooth transition between each other and changes appear unrelated to the
pathology. This brings to question how well the IoU analysis captures the quality of these
approaches. During training we find that as validation MAE decreases later in training the
IoU also goes down. This indicates that the specific reconstruction error seems sufficient
only initially in training. Likely towards the end of training, minimizing the small details
hurts the ability to control major features of the images. See Appendix §D for more plots.

4.2. Determining the λ range

When making changes to the latent representation it is important to control the extent
of the change. Too little and the difference between the images won’t be significant enough
to change the prediction of the model. Too large and the image will become too distorted
and won’t represent the pathology.

In Figure 3 the latent representation is varied by different λ values for three different
models on four different tasks. Here the direction of the change in the latent space is defined
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Figure 4: The XRV-all and jfhealthcare models make positive predictions on images for Car-
diomegaly. These predictions are explained using multiple 2D attribution maps. A expert bounding
box is shown for Cardiomegaly in yellow. No Gaussian blur is applied to these attribution maps.

by the gradient computed for each model. We observe there is variation between how the
prediction changes for each model. The smoothness here is a sign that the representation is
good. Surprisingly the dynamic range of the predictions between these tasks is similar. We
observed that this range is decoder specific and different decoders will have much larger or
smaller dynamic ranges. When creating sequences of images we utilize a simple iterative
search algorithm to determine the lower and upper λ values (see Appendix §C). The lambdas
are chosen such that the prediction decreases by 30% and increases by 5%. We find the
pathologies seem most clear when the image sequence removes the pathology in contrast to
prior work which exaggerates it.

4.3. Qualitative 2D attribution map comparison

In Figure 4 qualitative results are shown when varying the model and pathology across
multiple attribution methods. One very notable difference is that this method produces a
smoother attribution map without blurring. The gradient based approaches have a speckled
pattern which is typically alleviated using Gaussian blur. Between the two models evaluated
we can see that similar regions are highlighted but they also have distinct differences. This
variability is a powerful aspect of this method because we can study the different features
used between models. Here it appears that the JF Healthare model mostly looks at the
right side (chest right = image left) of the heart while the XRV-all model looks at both
sides. This is also confirmed by looking at the generated videos. 2D images only present
a small amount of information that this method provides. Videos and images can be seen
side by side at this URL3

4.4. Quantitative IoU comparison

The different 2D attribution maps are compared based on their IoU in Table 1. This ex-
periment confirms that this method produces similar attributions as other methods. While
two models achieve reasonable AUC scores for Pneumothorax their IoU scores are extremely
low which indicates either the pathology is predicted using spurious features, the bounding
boxes are wrong, or that the model is predicting using some confounding pathology. The
overall low scores yet high AUC bring into question the validity of using bounding box or
mask information to evaluate attribution methods.

3. https://mlmed.org/gifsplanation/
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Table 1: The IoU and AUC is evaluted for 4 attribution methods are studied over 3 models. For
each task the IoU was calculated as the mean over 80 samples. The AUC was calculated as the
mean over 2048 samples from the same dataset. Note that we compute the best case IoU (see §3.4).

Model → XRV-all XRV-mimic ch JF Healthcare
Task Dataset Example 2D Method AUC IoU AUC IoU AUC IoU

Atelectasis NIH

grad 0.07±0.07 0.06±0.07 0.13±0.10
guided 0.09±0.08 0.04±0.04 0.10±0.07
integrated 0.05±0.05 0.04±0.05 0.10±0.09
latentshift-max

0.78

0.11±0.12

0.70

0.08±0.11

0.77

0.09±0.09

Cardiomegaly NIH

grad 0.35±0.05 0.25±0.09 0.45±0.04
guided 0.28±0.06 0.15±0.06 0.31±0.05
integrated 0.27±0.08 0.15±0.08 0.36±0.09
latentshift-max

0.90

0.33±0.07

0.69

0.21±0.09

0.90

0.35±0.09

Effusion NIH

grad 0.12±0.09 0.08±0.08 0.18±0.10
guided 0.15±0.09 0.06±0.05 0.14±0.07
integrated 0.11±0.08 0.05±0.06 0.14±0.09
latentshift-max

0.87

0.16±0.11

0.80

0.11±0.11

0.87

0.16±0.10

Mass NIH

grad 0.16±0.14

- -
guided 0.19±0.16 Model does Model does
integrated 0.13±0.13 not predict not predict
latentshift-max

0.82

0.14±0.17

Lung Opacity RSNA

grad 0.21±0.11 0.13±0.09

-
guided 0.21±0.12 0.09±0.07 Model does
integrated 0.17±0.10 0.08±0.07 not predict
latentshift-max

0.84

0.20±0.13

0.75

0.15±0.14

Pneumothorax SIIM-ACR

grad 0.01±0.02 0.01±0.02

-
guided 0.03±0.05 0.02±0.03 Model does
integrated 0.01±0.02 0.01±0.01 not predict
latentshift-max

0.78

0.02±0.04

0.67

0.03±0.07

4.5. Cascading randomization analysis

Figure 5: Correlation between attribution
generated by different methods when layers
in the network are reset.

Adebayo et al. (2018) showed that even visu-
ally convincing attribution maps could be mis-
leading and only weakly dependent on the net-
work parameters. We replicate their proposed
cascading randomization evaluation. Starting at
the classifier end of the network, layer weights
are randomized, and the attribution is reeval-
uated and the correlation computed between
the resulting attribution and the original. Intu-
itively, one expects that the attribution should
rapidly become decorrelated. As shown in Fig-
ure 5, the correlation with the final attribution
drops off most rapidly with latentshift-max. Similarly to the findings in Adebayo et al., the
guided backprop method produces a very similar attribution even as a significant fraction
of the model is reinitialized. The patterns for other pathologies were extremely similar and
are shown along with some further details in Appendix H.

4.6. Improvement in false positive detection

We performed a reader study to determine if our method can improve the ability to
detect false positive predictions (examples in Appendix §J) as well as if the features utilized
are correct. For this study we recruited two radiologists (A.J. and E.Z., with 2 and 12
years of experience, respectively). They were presented with 240 images twice, each being
predicted as having one of 6 pathologies by the XRV-all model (Atelectasis, Cardiomegaly,
Effusion, Lung Opacity, Mass, Pneumothorax). Examples were selected such that 50% were
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Figure 6: A) Responses to the survey questions split by each pathology. B) Regression lines
comparing the IoU for each true positive image with the reader responses.

predicted incorrectly by the model (false positives). An incorrect prediction is defined by
having a negative label and a >50% prediction by the model which was calibrated such that
a 50% prediction is the operating point of the AUC curve on validation data.

Each sample is viewed using traditional attribution methods (Method A) and the Latent
Shift method (Method B). For Method A the radiologist can see all traditional methods
at once (Input gradients, Guided Backprop, and Integrated Gradients). For Method B
the radiologist can see both the 2D latentshift-max image as well as a gif annimation side
by side. Radiologists were asked the following questions on a 5 point Likert scale: “How
confident are you in the model’s prediction? (1-5)” and “Is the model looking at the correct
feature? (1-5)”.

The primary study results are shown in Figure 6 and more details can be found in
Appendix §F. Overall, for true positive predictions there is a 0.15±0.95 confidence increase
using the Latent Shift method (p=0.01 using the Wilcoxon signed-rank test). For false
positive predictions there is a 0.04±1.06 increase which is not significant (p=0.57). We
expected false positives to be scored less so these results raise concerns in overconfidence
based on model predictions. Although there is the possibility that some of the ground truth
labels were wrong.

In the radiologist’s feedback (verbatim in Appendix §F.1) they believed that the Latent
Shift method was more intuitive and they felt it increased their confidence that the model
is looking at the correct feature. They observed that this method looks at the boundaries
of the abnormality. One radiologist believed that the model was using the chest tube to
predict Pneumothorax instead of looking at the correct area (examples in Appendix §I).
This observation is consistent with the IoU analysis and likely because the model input is
too low resolution (224x224) to see the small features at the edge of the lung.

5. Conclusion
We presented Latent Shift, a simple to implement approach to explain the predictions of

models by simulating changes to the input images which increase and decrease the prediction
of a classifier. Our approach is designed to be easy to implement in order to increase
adoption in other domains and work with existing pre-trained classifiers.

We evaluated Latent Shift and other attribution methods in how well they aligned with
ground truth spatial mask information. We found very low IoU values for models with
reasonably high AUCs, but with this we cannot conclude which one is in error. The results
from our reader study indicate that higher IoU values are correlated with correct features.

We find that the Latent Shift explanation allows a user to have more confidence in
true positive predictions compared to traditional approaches. However, we also found that
detecting false positive predictions was challenging, which highlights the need for a stronger
radiologist-algorithm symbiosis.
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Appendix A. Datasets

A.1. Autoencoder datasets

NIH, PC, RSNA, and MIMIC

A.2. Classifier datasets

• XRV-all: NIH, PC, CheX, MIMIC-CXR, Google, OpenI, RSNA

• XRV-mimic ch: MIMIC-CXR using the CheXpert labeller

• JF Healthcare: CheX

Table A.1: Details of datasets used
ID Name From Citation Geographic Region

RSNA RSNA Pneumonia Challenge RSNA Shih et al. (2019) Northeast USA
CheX CheXpert Stanford University Irvin et al. (2019) Western USA
NIH ChestX-ray8 National Institutes of Health Wang et al. (2017) Northeast USA
Google Google Labelling of NIH data Google Majkowska et al. (2019) Northeast USA
MIMIC CH MIMIC-CXR with CheX Labels MIT Johnson et al. (2019) Northeast USA
PC PadChest University of Alicante Bustos et al. (2019) Spain
OpenI OpenI National Library of Medicine Demner-Fushman et al. (2016) USA
SIIM SIIM-ACR Pneumothorax Challenge SIIM-ACR Filice et al. (2020) Northeast USA

Table A.2: Counts of images in each dataset with a positive label for the pathology listed.

Dataset Atelectasis Cardiomegaly Effusion Lung Opacity Mass Pneumothorax

NIH 5728 1563 6589 0 3567 3407
PC 3981 8420 3342 0 806 223
RSNA 0 0 0 1348 0 0
SIIM 0 0 0 0 0 3576
MIMIC CH 10076 9831 12064 13825 0 2350
CheX 3195 2909 8078 9736 0 1802
Google 0 0 0 221 0 46
OpenI 271 185 120 327 6 14

Table A.3: Full listing of counts for bounding boxes and masks available

Dataset Task Mask Type Count

NIH Atelectasis Bounding Box 180
NIH Effusion Bounding Box 153
NIH Cardiomegaly Bounding Box 146
NIH Infiltration Bounding Box 123 (not used)
NIH Pneumonia Bounding Box 120 (not used)
NIH Pneumothorax Bounding Box 98 (not used)
NIH Mass Bounding Box 85
NIH Nodule Bounding Box 79 (not used)
RSNA Lung Opacity Segmentation 6012
SIIM-ACR Pneumothorax Segmentation 3576
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Appendix B. 3D to 2D Construction

Figure B.1: Examples of the different methods to convert the sequence of images into a 2D. It is
hard to find any differences even though they are generated in unique ways.

• latentshift-mean: Take the average of all xλ images.

• latentshift-max: Take the max distance for each spatial location of all xλ from the
image when λ = 0.

• latentshift-minmax: Subtract the lowest xλ from the highest: |xλmin
− xλmax |.

• latentshift-sliding interval: compute the difference between each λ step and then
average them together.
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Appendix C. Lambda Search

lbound = 0

last_pred = classifier(img)

while True:

img’ = compute_shift(img, lbound)

last_pred = classifier(img’)

if last_pred < cur_pred

or initial_pred-0.5 > cur_pred

or lbound <= -1000

break

last_pred = cur_pred

lbound = lbound - 10
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Appendix D. Autoencoder Parameters

Figure D.1: Varying bottleneck size of the autoencoder. The reconstruction is shown using each
autoencoder on the top rows and the latentshift-max method is used to construct a 2D attribution
map overlaid on the inout image in the bottom rows.
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Figure D.2: In A, B, and C each point represents an evaluation of the XRV-all model with a
specific autoencoder configuration. The color of each point represents the epoch during training
when the evaluation was performed. The model is evaluated on a fixed set of 10 images which
contain Cardiomegaly as indicated by NIH bounding boxes. The epoch of training is shown as the
color to more fairly compare these networks which converge at different rates. We can see that a
larger bottleneck produces a smaller MAE but no strong trend for IoU. In B ResNets of different
depths are evaluated and no major trend is found except that potentially a ResNet151 can achieve
better IoUs than a ResNet101. However the computational cost is significantly higher and makes
this model harder to train.
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Appendix E. Extra IoU Comparisons

There was not space to add this comparison into the main text. We also benchmark the
attribution method Iterative Delete (Bordes et al., 2018). This approach removes the top
first order gradients from the image and reprocesses the image iteratively. This evaluation
is performed to serve as a more modern baseline to the baseline attribution methods used
in this paper.

Figure E.1: This is an extension of Figure 4. The XRV-all and jfhealthcare models make positive
predictions on images for Cardiomegaly. These predictions are explained using multiple 2D attri-
bution maps. A expert bounding box is shown for Cardiomegaly in yellow. No Gaussian blur is
applied to these attribution maps.

Table E.1: IoU evaluation of the Iterative Delete method. Mean is taken over the same 80
samples used in Table 1

Model XRV-all XRV-mimic ch JF Healthcare
Target Method

Atelectasis grad 0.07±0.07 0.06±0.07 0.13±0.10
iterativedelete 0.05±0.06 0.04±0.05 0.06±0.07

Cardiomegaly grad 0.35±0.05 0.25±0.09 0.45±0.04
iterativedelete 0.30±0.05 0.26±0.09 0.30±0.09

Effusion grad 0.12±0.09 0.08±0.08 0.18±0.10
iterativedelete 0.08±0.07 0.09±0.09 0.10±0.07

Lung Opacity grad 0.21±0.11 0.13±0.09 -
iterativedelete 0.17±0.09 0.13±0.10 -

Mass grad 0.16±0.14 - -
iterativedelete 0.13±0.12 - -

Pneumothorax grad 0.01±0.02 0.01±0.02 -
iterativedelete 0.01±0.02 0.01±0.03 -
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Appendix F. Reader Study

Figure F.1: Screenshots of the primary interface used in the reader study which lists all the images
to be studied.

Figure F.2: Screenshots of the per image interface used in the reader study. On the left is the
interface with Traditional methods and on the right is when using the Latent Shift method.

F.1. Reader study feedback

Reader 1 Some general observations would be that the new prediction method is more
intuitive and for most pathologies increases the confidence that the model is looking at
the feature a radiologist would look at to make the diagnosis (except for pneumothorax).
There were some clear examples where the model made the correct prediction but missed
salient findings (e.g., cases 199, 200- predicted mass but did not detect some large masses).
Also is interesting that the model in many cases seems to look at the boundaries of an
abnormality rather than the actual abnormality or everything else except the abnormality
(e.g., contralateral lung) in making predictions so may be a different “interpretation” style.”
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Reader 2

• Latent Shift (B) does much better than gradients (A) approach.

• Within the gradients methods: Image Gradient and Guided Backprop does well, while
the highlighted pixels for Integrated Gradients seem to be all over the place (i.e. not
good)

• There is a clear correlation between high output prediction probability and better
highlighting of important pixels.

• The model is really struggling with pneumothorax - both in terms of prediction and
in terms of highlighting correct pixels. This goes for both method A and B. FYI, I
did not ”count” a resolved pneumothorax as a ”positive pneumothorax”. I am sure
the model sometimes predicts pneumothorax just because there is a chest tube.”

Figure F.3: The relationship between the answers compared between the two methods on both
true positive and false positive examples. The x mark indicates the mean score.

Figure F.4: A different view of the study results showing the counts of survey results.
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Appendix G. Robustness

Figure G.1: We study how robust the methods are when adding random noise to the input image
at different scales. 80 images are used for evaluation. Images are in the range of [-1024,1024]. Top:
Random noise, Bottom: Gaussian Blur.
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Appendix H. Cascading Randomization

Figure H.1: The cascading randomization sanity check recommended by Adebayo et al. (2018). The
test computes Spearman rank correlation between importance of pixels generated by the attribution
map as the network is progressively reinitialized. Atelectasis shown in 5, other patterns are very
similar. The value is computed over 40 images from the NIH dataset, error bars show standard
deviation of the correlation across these images. As the latentshift-max method inherently produces
an absolute value map, absolute values are taken of all attribution maps before using this method.
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Appendix I. Example Explanations

Figure I.1: Extra images of the Latent Shift method applied to different pathologies
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Figure I.2: Example Pneumothorax predictions of both true and false positives.
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Appendix J. False Positive Examples

Figure J.1: Examples of false positive examples used in the reader study. The images are from the
NIH dataset.

25



Gifsplanation via Latent Shift

Appendix K. AE Impact on Classifier Predictions

When the classifier makes a prediction based on the reconstructed image it is often less
compared to the input image. The autoencoder reconstruction seems to remove some image
features which cause a high prediction.

In order to study the extent of this issue, images for each pathology are evaluated using
the classifier and then transformed with the autoencoder (without any λ shift) and evaluated
using the classifier again. In Table K.1 the results are shown. Each row corresponds to 500
samples. On average predictions were reduced by 0.12 for images with a positive label and
reduced by 0.04 for images with a negative label.

Table K.1: Impact of AE transformation on classification prediction.

Mean Mean
Label Model Target f(x) f(D(E(x))) diff

Positive XRV-all Atelectasis 0.45 0.32 0.13
Cardiomegaly 0.53 0.40 0.13
Effusion 0.55 0.45 0.09
Lung Opacity 0.64 0.53 0.11
Mass 0.61 0.49 0.12
Pneumothorax 0.49 0.43 0.06

XRV-mimic ch Atelectasis 0.55 0.42 0.13
Cardiomegaly 0.60 0.57 0.03
Effusion 0.60 0.48 0.12
Lung Opacity 0.59 0.39 0.20
Pneumothorax 0.54 0.45 0.09

jfhealthcare Atelectasis 0.47 0.36 0.11
Cardiomegaly 0.70 0.50 0.19
Effusion 0.54 0.32 0.22

Negative XRV-all Atelectasis 0.33 0.22 0.11
Cardiomegaly 0.19 0.13 0.07
Effusion 0.22 0.19 0.03
Lung Opacity 0.29 0.28 0.01
Mass 0.41 0.37 0.05
Pneumothorax 0.34 0.28 0.06

XRV-mimic ch Atelectasis 0.45 0.37 0.08
Cardiomegaly 0.42 0.40 0.02
Effusion 0.33 0.26 0.07
Lung Opacity 0.38 0.24 0.14
Pneumothorax 0.46 0.40 0.06

jfhealthcare Atelectasis 0.30 0.34 -0.04
Cardiomegaly 0.29 0.36 -0.08
Effusion 0.18 0.22 -0.04
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Appendix L. Limitations

The autoencoder was developed and trained with the goal of representing specific chest
X-ray pathologies. Hyperparameters such as the bottleneck size were specifically tuned to
represent the pathologies we studied. We would expect that the resulting autoencoder may
not represent other pathologies as well.

The images chosen for the reader study were sampled randomly and may contain mul-
tiple different pathologies. Readers are instructed to only consider the specific pathology
they are told the model predicted and ignore others.

The models are calibrated such that 0.5 is the operating point of the AUC but often their
predictions are lower once they are transformed by the autoencoder. We have performed
an analysis to study the extent of this issue in Appendix K. We find on average predictions
were reduced by 0.12 for images with a positive label and reduced by 0.04 for images with
a negative label.
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