
HIREMATE: Hierarchical Approach for Efficient Re-materialization of
Neural Networks

Julia Gusak * 1 Xunyi Zhao * 1 Théotime Le Hellard * 2 Zhe Li 1 Lionel Eyraud-Dubois 1 Olivier Beaumont 1

Abstract

Training deep neural networks (DNNs) on
memory-limited GPUs is challenging, as storing
intermediate activations often exceeds available
memory. Re-materialization, a technique that pre-
serves exact computations, addresses this by se-
lectively recomputing activations instead of stor-
ing them. However, existing methods either fail
to scale, lack generality, or introduce excessive
execution overhead. We introduce HIREMATE,
a hierarchical re-materialization framework that
recursively partitions large computation graphs,
applies optimized solvers at multiple levels, and
merges solutions into a global efficient train-
ing schedule. This enables scalability to signifi-
cantly larger graphs than prior ILP-based meth-
ods while keeping runtime overhead low. De-
signed for single-GPU models and activation re-
materialization, HiRemate extends the feasibil-
ity of training networks with thousands of graph
nodes, surpassing prior methods in both efficiency
and scalability. Experiments on various types
of networks yield up to 50-70% memory reduc-
tion with only 10-15% overhead, closely match-
ing optimal solutions while significantly reduc-
ing solver time. Seamlessly integrating with Py-
Torch Autograd, HiRemate requires almost no
code change to use, enabling broad adoption in
memory-constrained deep learning.

1. Introduction
Modern Neural Networks (NN) undergo several important
evolutions which have consequences on the computation
and memory requirements, from the first vision networks

*Equal contribution 1Inria Center at the University of Bordeaux
2École Normale Supérieure, PSL University, Paris. Correspon-
dence to: Julia Gusak <yulia.gusak@inria.fr>, Lionel Eyraud-
Dubois <lionel.eyraud-dubois@inria.fr>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Original graph

2. Partitioned graph

3. Solving bottom-level subgraphs
with different solvers & budgets

memory

time

4. Recursively solving
higher-level subgraphs

direct solvers

hierarchical solvers

5. Merging schedules
into final solution

Figure 1. HIREMATE takes a PyTorch nn.Module and creates a
nn.Module, which provides same outputs while satisfying peak
memory budget constraints B during training. (1) Obtain data-flow
graph G from the PyTorch module. (2) Recursively partition G
with H-Partition (Section 3.1) into small-size subgraphs. (3)-(5)
Obtain a re-materialization schedule from G with budget B using
H-Solver (Section 3.2). (6) Produce a new nn.Module whose
execution follows the schedule (Appendix).

like ResNet-50 (Wu et al., 2019) to Natural Language Pro-
cessing transformer-based models (Vaswani et al., 2017)
like GPT. On the one hand, the size of the models and the
resolution of the data are increasing, which raises problems
for the storage of both weights and activations. On the
other hand, the first models had chain-like structures (se-
quence of convolution layers) and then moved to chains of
complex blocks (chains of Transformer blocks for GPT-like
models). Finally, recent NN exhibit arbitrarily complex
dependency graph structures between layers of the neural
network: for example, UNO (Wen et al., 2022) is struc-
tured as a U-Net of complex blocks, and encoder-decoder
transformers (Vaswani et al., 2017) feature very long skip
connections.

1

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

Re-materialization is a well known and efficient technique
to limit the memory requirements related to activations dur-
ing training. The idea is to avoid storing all the necessary
activations because of the subsequent dependencies during
the Forward phase and the Backward phase (those related
to the Stochastic Gradient Descent mechanism). Some ac-
tivations are computed and then deleted to make room in
memory, and they will have to be re-computed later when
needed. In the case of simple chains (Beaumont et al., 2019)
and in the case of chains of complex blocks (Zhao et al.,
2023), re-materialization has shown its efficiency: it is of-
ten possible to save 50% of memory for a computational
overhead of about 10 to 15%.

From a theoretical point of view, the problem is to minimize
the computational time required to execute the forward and
backward passes under a predefined memory budget. It has
been proven NP-Hard in (Naumann, 2008) for the case of
general dependency graphs represented as general data-flow
graphs. Some solutions such as TW-REMAT (Kumar et al.,
2019) or CHECKMATE (Jain et al., 2020) have nevertheless
been designed to deal with the case of general graphs, but
both suffer from a number of limitations. These limitations
stem either from the computational cost and the scalability
of the algorithm that generates the re-materialization strat-
egy, or from the overhead of that re-materialization strategy
during the training phase, as discussed in Section 2. Another
line of research is to propose re-materialization strategies
whose computational cost and overhead are controlled, as
in ROTOR (Beaumont et al., 2019) and ROCKMATE (Zhao
et al., 2023), however at the cost of generality, by propos-
ing solutions only for limited classes of dependency graphs
where a chain structure (of potentially complex blocks) can
be identified.

The work presented here is at the convergence of these re-
search lines and we propose a computationally efficient,
low-overhead solution that can address general graphs. Our
framework HIREMATE is based on a hierarchical decom-
position approach of the computation graph, to find a re-
materialization strategy for any graph of dependencies
between layers. In the case where the graph is too large to
be addressed directly by an approach based on Integer Lin-
ear Programming, we propose to decompose it into a graph
of complex blocks, with potentially several levels in the hier-
archy to handle very large graphs. Efficient solutions for dif-
ferent memory budgets are generated for each of the blocks
at the bottom of the hierarchy, using different approaches
from the literature. Then, we provide a new Integer Linear
Programming (ILP) formulation to efficiently recombine
these low-level solutions into candidate solutions for the
higher levels of the hierarchy. Furthermore,HIREMATE is
fully compatible with the autograd mechanism of Py-
Torch, so that no modification of the code is required to
use it. With a single line, the user can automatically con-

trol the memory usage of their neural network: model =
HRockmate(model, sample, memory budget).

To achieve this result, we rely on the following main contri-
butions:

• A data-flow graph decomposition algorithm H-
Partition that builds a hierarchy of blocks of reason-
able sizes (to keep an acceptable computational com-
plexity) while minimizing the memory size of the in-
terfaces between the blocks

• A new linear programming solver H-ILP adapted to
this hierarchical decomposition.

• A general framework for integrating any existing (or
future) re-materialization strategy at any level of the
hierarchy, and combining their strengths.

The rest of the paper is organized as follows. In Section 2,
we review the related work on memory saving strategies for
DNN training. HIREMATE is presented in Section 3 which
covers graph decomposition, partial problems resolution and
global re-materialization strategy reconstruction. Section 4
demonstrates the efficiency of the proposed method on a
large number of networks, and provides an evaluation of
the computational overhead induced by re-materialization.
Finally, concluding remarks are proposed in Section 5.

Forward

Backward

Forward subgraph

Backward subgraph

Loss, between

forward & backward

Data

Figure 2. HIREMATE recursively finds schedules for each sub-
graph. Different schedules correspond to different memory budget
constraints and hence have different values for memory/time ratio,
peak memory, size of allocated tensors, and execution time.

2. Related Work
We mostly cover the contributions that rely on the exclu-
sive use of re-materialization. Memory footprint of ac-
tivations might also be reduced via data parallelism (Das
et al., 2016; Zhang et al., 2013) (by distributing mini-batches
across several computational resources) and offloading (Rhu
et al., 2016; Wang et al., 2018) (which offloads and later
retrieves activations from GPU memory to CPU memory).
Gradient accumulation can also reduce memory usage by
splitting a large batch into smaller sub-batches and accu-
mulating gradients across them, but is limited by the low
GPU utilization because of smaller sub-batches, and re-
quires that one smaller sub-batch fits in memory. Model

2

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

Table 1. Comparison of Different Re-Materialization Strategies in terms of (i) Generality (ability to handle complex models with arbitrary
dependencies), (ii) Scalability (ability to handle models with many operations), (iii) Quality (ability to generate a re-materialization
strategy with low overhead during training), and Ease of use (in terms of modifications to be made to the original PyTorch model). Scores
range from ”-” (true limitation) to ”++” (excellent).

GENERALITY SCALABILITY QUALITY EASE OF USE
CHECKMATE (JAIN ET AL., 2020) ++ - ++ 0
TW-REMAT (KUMAR ET AL., 2019) ++ ++ 0 -
MOCCASIN (BARTAN ET AL., 2023) ++ ++ + -
ROCKMATE (ZHAO ET AL., 2023) + + ++ +
HIREMATE (PRESENT PAPER) ++ ++ ++ ++

parallelism (Huang et al., 2019; Narayanan et al., 2019),
in particular in its pipelined version, can be used to mini-
mize the memory requirements by storing weights across
several devices. The optimal combination of all these strate-
gies with re-materialization, discussed by (Beaumont et al.,
2021) in the context of sequential models, is left for future
work.

TW-Remat (Kumar et al., 2019), based on a tree-width de-
composition of the dependency graph, was initially designed
for the case where all computational costs and activation
sizes have a unitary weight. A greedy heuristic was later pro-
posed to generalize the algorithm to the cases of non-unitary
weights, but without guarantee. (Kusumoto et al., 2019)
proposed an optimal dynamic programming algorithm re-
stricted to a special class of solutions, where each node is
computed at most twice. The XLA framework (xla) contains
a re-materialization feature based on a greedy heuristic de-
scribed in Kumar et al. (2019), and shown to be less efficient
than TW-Remat. CHECKMATE (Jain et al., 2020) is based
on the solution of an Integer Linear Program (ILP), and com-
putes a generic optimal solution under a set of reasonable
assumptions, but the computation cost becomes prohibitive
as soon as the number of nodes in the network exceeds 70-
90 nodes. Moccasin (Bartan et al., 2023) is a constraint
programming based solution we show that HIREMATE does
actually outperform Moccasin, both in terms of solution
time and the quality of the solution produced.

Other approaches have been proposed to find efficient solu-
tions for limited classes of dependency graphs. (Beaumont
et al., 2024 (accepted for publication) relies on dynamic
programming in the case of networks whose graph is a se-
quence of basic operations, covering ResNet-like networks
(considering one ResNet block as one operation). This
extends in a proven framework the heuristic techniques pro-
posed by (Chen et al., 2016). Then, the case of graphs
for which the forward graph is a sequence of complex
blocks has been addressed in the ROCKMATE framework
in (Zhao et al., 2023), which covers most Transformer-based
networks (where one Transformer block is considered as
a complex block). However, for architectures with long
skip connections (like U-Net (Ronneberger et al., 2015)

or encoder-decoder Transformer (Vaswani et al., 2017)),
ROCKMATE degenerates to CHECKMATE and inherits its
difficulties to handle large data-flow graphs.

Such static rematerialization strategies are very efficient
for models with fixed computation graphs, where memory
usage can be optimized offline for efficient execution. Nev-
ertheless, they struggle to handle models with dynamic or
input-dependent control flow. In contrast, dynamic remateri-
alization strategies (Kirisame et al., 2020) adapt to runtime
behavior by making decisions on-the-fly, allowing them to
support a broader range of model architectures. However,
this flexibility often comes at the cost of higher runtime
overhead and less predictable performance. Notably, dy-
namic approaches such as POET (Patil et al., 2022) and
MegTaiChi (Hu et al., 2022) combine rematerialization
with additional mechanisms like paging.

In this paper, we focus specifically on static strategies and
we design an algorithm and a framework to address
any kind of network with a static data-flow graph, with
reasonable solving time on networks with up to 2000 nodes.

In the experimental evaluation of Section 4, we compare
HIREMATE with the state-of-the-art strategies: CHECK-
MATE, MOCCASIN, TW-REMAT, and ROCKMATE. Table 1
summarizes the comparison of these re-materialization tech-
niques.

In the experimental evaluation of Section 4, we compare
HIREMATE with the state-of-the-art strategies: CHECK-
MATE, TW-Remat, and ROCKMATE. Table 1 summarizes
the comparison of these re-materialization techniques with
several metrics. Generality denotes the ability to handle
complex models with arbitrary dependencies, scalability
denotes the ability to handle models with many operations.
Quality measures the ability to generate a re-materialization
strategy with low overhead during training, and ease of use
is expressed in terms of modifications to be made to the
original PyTorch model.

3

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

3. HIREMATE

Problem statement We associate each neural network with
a data-flow graph, where each node represents a tensor-
level computation. A schedule is a sequence of elementary
computations and tensor deletions that performs the forward
and backward passes for one training iteration.

Let Fi and Bi denote the forward pass and backward pass
associated with layer i and Di denotes the deletion of
the output of Fi. Then, for a model that is a sequence
of 3 layers, a schedule corresponding to the standard au-
todiff training can be written as F1F2F3B3B2B1, while
F1F2D1F3B3D3F1F2B2D2F1B1 is another valid sched-
ule, yielding a smaller peak memory since it does not require
storing all intermediate activations simultaneously. The
re-materialization optimization problem (2) is to find a
schedule whose peak memory is below a given budget
and whose execution time is as small as possible.

Figure 1 describes the main steps of the HIREMATE ap-
proach. In the first step, using the graph building tool
adapted from (Zhao et al., 2023), a data flow graph of
the input module is obtained. In the second step, the H-
partition algorithm (see Section 3.1) recursively partitions
the graph into subgraphs of manageable sizes. This parti-
tioning is done recursively to ensure that all parent graphs
are also of manageable size. Steps 3, 4, and 5 of Figure 1
describe the H-Solver algorithm (see Section 3.2), which
builds a training schedule. Starting at the lowest level of
the decomposition, the algorithm computes schedules for
each subgraph (Figure 2) with different memory budgets to
explore different time-memory tradeoffs, providing several
options (i.e ways to (re)compute operations and store ac-
tivations during forward and backward passes through the
subgraph) for the nodes at higher levels. This procedure
continues until the top-level graph is solved (i.e schedule
is found) for a single memory budget corresponding to the
overall memory available for activations. It is important to
emphasize that the current implementation of the general
scheme described above and in Figure 1 is fully modular.
Thus, HIREMATE allows the injection of custom parti-
tioners as well as solvers at any level of the graph.

3.1. H-Partition

The goal of HIREMATE’s partitioning step is to reduce the
size of the problems to be solved without compromising
the quality of the overall solution. The result of this step
is a decomposition into a hierarchy of subgraphs, where
a node at a given level represent an entire subgraph at the
level below (see Figure 7 in Appendix). Note that the orig-
inal graph is partitioned without requiring a topological
order; topological sorting is only performed later, within
each subgraph, during the schedule generation phase (see
Section 3.2). The subgraph sizes are bounded by two main

Algorithm 1 H-Partition Bottom-to-Top algorithm
1: Input: data-flow graph G
2: Result: a recursive partition of G
3: Parameters: max high-level size M t, max lower-level

size M l, score parameter α
4: while G has more than M t nodes do
5: C ← ⋃

x∈G candidate group containing all nodes
between x and a(x)

6: while C is non empty and G has more than M t nodes
do

7: Select candidate C which minimizes sα (eq. 1)
8: Wrap the nodes of C into a group
9: Update C

10: end while
11: Consider all groups as subgraphs
12: Update G so that each subgraph is considered as a

node
13: end while
14: return partitioned graph

parameters: M l denotes the maximum number of nodes
in a lower-level subgraph, and M t denotes the maximum
number of nodes in the top-level graph. Since it is advanta-
geous to allow a longer solution time for the top-level graph,
we use M t ≥ M l. Our partitioning algorithm is a greedy
bottom-to-top heuristic described in Algorithm 1. Each
iteration has three main steps: forming candidate groups,
selecting the best candidate according to our evaluation cri-
terion, merging the selected candidate, and updating the
candidates. Each step is described below.

Forming candidate groups For each node x in G, we
consider a(x), the closest common ancestor of all direct
predecessors of x (a common global ancestor is added in
case G has multiple entries). We create four candidate
groups with all nodes on all paths from a(x) to x, depending
on whether x and/or a(x) are included. Any candidate group
with more than M l nodes is discarded.

Selecting the best candidate When selecting the best group
among all candidates, our goal is to avoid incurring too
much memory pressure when the group is used as a sub-
graph. The memory pressure depends directly on the size of
the input and output values. It also depends, although not
as directly, on the length of the schedule during which they
will be alive, which we evaluate by the number of compute
nodes in the group. We use the following score function
s(C) for a candidate C:

sα(C) =

 ∑
x input or output

value of C

memory size
of x

 · (# of compute
nodes in C

)α
, (1)

where α is a hyperparameter whose default value is 0.5.

4

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

Updating the candidates Once the best candidate C is
chosen, it becomes a group: all its nodes are considered
together from now on. However, it is not yet a subgraph:
if it is not too large, it can be merged with other groups
later in the same phase to reduce the number of groups. The
remaining candidates are updated: in each candidate C ′

whose intersection with C is not empty, we add all other
vertices of C to ensure that all vertices of C are kept together.
If this union contains more than M l nodes, this candidate
C ′ is no longer acceptable and is removed.

Section A in Appendix contains a proof that this procedure
always leads to a valid decomposition, in the sense that
no subgraph contains a directed cycle. After partitioning,
HIREMATE identifies subgraphs that correspond to the exe-
cution of the same piece of code to avoid solving the same
optimization problem multiple times.

3.2. H-Solver

3.2.1. SOLVING FRAMEWORK

The idea of hierarchical re-materialization is that re-
materialization schedules can be computed for each sub-
graph independently, with multiple possible memory bud-
gets. The resulting re-materialization schedules for a given
subgraph are called options, and each corresponds to a differ-
ent tradeoff between computation time and required mem-
ory. Once all subgraphs at a given level of hierarchy
have been resolved, a schedule for the upper level can
be computed with our proposed H-ILP. H-ILP is an In-
teger Linear Program (ILP) formulation that provides an
optimal schedule within a given memory budget. It can
be used on a subgraph of arbitrary structure, but using it
on large subgraphs can lead to unreasonably long solution
times. Therefore, it is only applied to subgraphs with a
sufficiently small number of nodes. This algorithm is in-
spired by RK-CHECKMATE (Zhao et al., 2023) and CHECK-
MATE (Jain et al., 2020). The general idea of extending an
ILP-based approach to a graph of arbitrary size and struc-
ture, which is hierarchically decomposed into subgraphs of
manageable size, is one of the major contributions of the
present work and is described in detail in Section 3.2.2.

For significantly large graphs, partitioning with only two
levels would result in the top-level graph still being too large
to be solved with this technique. Our hierarchical approach
makes it possible to introduce more than two levels into the
hierarchy and compute schedules for the levels from bottom
to top, handling graphs of arbitrary size while keeping each
subproblem of manageable size.

The H-ILP solver we propose is very generic and efficient,
and it provides very good quality solutions on all types of
neural networks. Thanks to the genericity and extensibil-
ity of the HIREMATE framework, it allows combining

different solvers, which further improves the quality of the
solutions. All solvers can be used at any level, but those
not acting hierarchically ignore the underlying partition.
Each solver comes with an applicability criterion to decide
whether it is suited for a given graph. For each subgraph, all
applicable solvers are used to produce schedules.

The HIREMATE framework currently includes two ad-
ditional algorithms. First, H-TWREMAT is a wrapper
around the TW-REMAT implementation (Shepperd, 2021)
of a heuristic based on a treewidth decomposition ap-
proach (Kumar et al., 2019). This wrapper and the
HIREMATE framework allow this heuristic to be used with
PyTorch where previously it was only available for Tensor-
Flow. Second, RK-ROTOR is the dynamic programming
algorithm from (Zhao et al., 2023), which also provides very
good schedules in the case of (forward) graphs consisting
of a sequence of possibly complex subgraphs. It is therefore
limited in genericity, but its computational time is low. The
RK-ROTOR solver is only activated when we detect that the
graph can be decomposed into a sequence.

3.2.2. HIERARCHICAL ILP FORMULATION

Consider an arbitrary graph H , where each computation
node represents a subgraph (Figure 2), and where dependen-
cies are carried by data nodes representing values that can
be stored in memory. The H-ILP formulation computes the
minimum runtime schedule whose peak memory remains
below a given memory budget. The computation nodes are
numbered in topological order.

In the linear programming formulation of H-ILP, the sched-
ule is divided into phases, and the goal of phase t is to
compute node t for the first time. For the sake of brevity,
we describe here only the main ideas that allow H-ILP to
be used in a hierarchical setting, but refer the reader to the
Section B of Appendix for a complete description of the
H-ILP formulation.

Compute options and phantom nodes The innovation of
H-ILP is that each compute node can represent a subgraph
of the original graph. Such a compute node can be com-
puted with one of several options. Each of these options
represents a possible schedule for the forward and backward
phases of the associated subgraph. There is a tight coupling
between the forward computation and its corresponding
backward computations, and each backward computation
should be performed with the same option as its correspond-
ing forward computation. The H-ILP formulation contains
additional variables and constraints to specify which option
is used for each computation node within each phase.

In H-ILP, we also introduce an explicit representation of
the data stored in memory between a forward computation
and its corresponding backward computation. We call them

5

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

phantom nodes, and we update the formulation by consider-
ing them as special data nodes, with two specificities. First,
a phantom node is always created by its forward computa-
tion, always deleted after its backward computation, and is
not used by any other computation node. In the formulation,
we take advantage of this by not including additional vari-
ables expressing whether the phantom node is deleted or not.
Second, the values stored in a phantom node (and thus the
associated memory size) depend on the option used for the
forward and backward computations. For this reason, the
formulation includes additional variables that specify which
option of each phantom node is in memory at each stage.

Objective Let Rt
i,o equals 1 if node i is computed with

option o during phase t and 0 otherwise. Then the objective
is to minimize the total execution time expressed as

min
∑
i,t,o

Rt
i,o ∗ time of computing option o for node i (2)

subject to constraints on auxiliary variables specified in
Section B.3 of Appendix.

1
2
3
1
4
3
5
6
2
3
4
7
1
4
6
8

Rt
i,o: compute operation i

during phase t
using option o

operation i

tim
e

phase 1
phase 2

. . .

phase 7

phase 8

Figure 3. Example of the solution. Rt
i,o equals 1 if node i is com-

puted with option o during phase t.

Correction terms for memory usage In (Zhao et al.,
2023), to achieve good performance, the input values of
a block are deleted as soon as they are no longer needed,
instead of being kept until the end of the block. This is
possible due to the sequential structure, where each block
is the only user of its input values. In the more general
context of this paper, a subgraph may share its input values
with other subgraphs. To achieve good performance, H-ILP
allows subschedules to delete their input values and the
gradients associated to their outputs; however, if another
subgraph needs these values, the higher-level algorithm
adjusts the subschedules. This decision has an impact on
the memory consumption of the corresponding subgraphs.

We have added constraints to the formulation to ensure that
the memory peak is correctly evaluated in all cases. These
constraints are introduced only when solving the top-level
graph, since they make the ILP harder to solve, and only
the top-level graph solution is required to fulfill accurately

the GPU memory bound. For each computation node k,
the number of these constraints for node k is bounded in
the worst case by min(lk,o, 2

degree of node k), where lk,o is the
number of operations of the schedule associated to option o
for node k. In practice, this number of constraints remains
small enough so that the H-ILP formulation can be solved
in reasonable time.

Schedule selection The number of binary variables in the
H-ILP formulation depends linearly on the total number
of options of all nodes. To avoid wasting resources when
several very similar options are available for a given node,
we include in H-ILP a hyperparameter No that imposes a
limit on the total number of options. To stay within this
limit, we may need to select only a few options from all the
schedules generated at the lower level. To do so, we split
No to assign a number of options to each node proportional
to the number of basic operations within the associated
subgraph. Then, we greedily select the schedules whose
memory peaks are farther apart from each other: starting
with the schedule with the highest memory peak, then the
one with the lowest memory peak, then the one closest to
the middle, and so on.

3.3. Complexity Analysis

The complexity of using the H-ILP solver depends mostly
on the number N of nodes in the graph. Obtaining the
dataflow graph with RK-GB has a complexity O(N) and
is very fast in practice. With our current implementation,
recursively partitioning the graph with H-partition has a
complexity of O(N2 logN). This step is also fast for graph
sizes up to N = 1000, but handling very large graphs would
require more work on the graph algorithms: recursively
partitioning a graph of size N = 105 takes 2 hours on an
Intel Xeon Gold processor.

The most time-consuming step is the computation of re-
materialization schedules with H-ILP. Thanks to our hierar-
chical approach, this step actually has linear complexity. In
fact, the hierarchical decomposition has a logarithmic depth,
and the total number of subgraphs is O(N/M t). Solving a
subgraph of size M l for a number O of budget options only
requires solving O Integer Linear Programs, whose sizes
and solving times do not depend on N . Moreover, all ILPs
at the same level are completely independent and can be
run in parallel. As detailed in the Appendix, even without
parallelization, our current implementation is able to han-
dle the largest versions of neural networks used in practice:
the forward-backward graphs of GPT with 96 layers and
a Transformer with 36 encoders and decoders have 2500
nodes and are solved in 15 and 150 minutes, respectively.

6

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

1 2 4 8 16 36

1

1.1

1.2

1.3

Overhead for Transformer

Number of Layers (logscale)

Re
la

tiv
e

Ite
ra

tio
n

Ti
m

e
(%

)

Algorithm
Checkmate
H-ILP
Moccasin
Rockmate

1 2 4 8 16 36

1

10

100

1000

Solving time for Transformer

Number of Layers (logscale)

So
lv

in
g

Ti
m

e
(m

in
, l

og
sc

al
e)

Algorithm
Checkmate
H-ILP
Moccasin
Rockmate

Figure 4. Experiments for varying graph size: (top) iteration time
(bottom) solving time

4. Experimental Evaluation
Experimental settings The HIREMATE framework is de-
signed to be used for end-to-end training. Since re-
materialization guarantees that all computed values (includ-
ing the gradients) are the same as without any recomputation,
we focus in our experiments on measuring peak memory
usage and iteration time for a single training iteration. We
perform a warm-up phase consisting of five initial runs; the
subsequent ten runs are used to evaluate the peak memory
and computation time, providing reliable estimates of per-
formance. Measurements show that the standard error of
the iteration time is at least two orders of magnitude smaller
than the mean. As a result, error bars are not shown in
the plots. The experiments were performed on an NVIDIA
Quadro RTX8000 GPU with 48 GB of memory and an
NVIDIA V100 GPU with 16 GB of memory, using PyTorch
2.0.1, CUDA 11.6, and Gurobi 9.5.0. We intentionally
report performance on settings where the experimental plat-
form can run the original model, so that we can compare our
results with the training time obtained with regular PyTorch
Autodiff. All experiments can be scaled up by increasing
image or batch size, to a point where training requires using
HIREMATE. Additional experiments including an ablation
study, varying batch sizes and sequence lengths, as well as a
dozen different architectures are available in the Appendix.

Efficiency In Figure 4 we compare the solving time and

performance of ROCKMATE, CHECKMATE, MOCCASIN,
and H-ILP. Since solving an ILP has exponential complex-
ity, it is important to limit the size of the problem. A clear
disadvantage of ROCKMATE is that it needs to see the graph
as a sequence of blocks, which for general neural networks
means that some blocks are very large, leading to unac-
ceptable solving times for graphs that do not follow this
structure. This is typically the case in the encoder-decoder
transformer (Vaswani et al., 2017), as shown on the bottom
of Figure 4. Specifically, ROCKMATE takes 15 hours to
obtain a solution for a 4-layer encoder-decoder structure
transformer, while H-ILP achieves better results within 12
minutes. Note that H-ILP is run once before the entire model
training, so 12 minutes is clearly acceptable. By controlling
the total number of nodes in each graph with the H-partition
algorithm, H-ILP is able to efficiently limit the solving time
without compromising solution quality. It is important to
note that though MOCCASIN claims to beat CHECKMATE, it
does not provide an optimal solution in general, because the
number of rematerializations is bounded in practice (to 2, to
limit complexity), and the time allocated to the constraint
programming solver is also bounded (to 1h, because the
time to reach a solution can be arbitrarily long).

Performance Figure 5 shows that H-ILP consistently out-
performs TW-REMAT in iteration time for a given bud-
get. On the encoder-decoder (Figure 5(c)), TW-REMAT is
able to find schedules for smaller memory budgets than
H-ILP, but for UNet the situation is the reverse. The
HIREMATE algorithm refers to the complete framework,
including the RK-ROTOR and TW-REMAT solvers. By inte-
grating TW-REMAT, HIREMATE overcomes this limitation
of H-ILP and provides efficient solutions over the entire
range of memory budgets. Figures 5(a) and 5(b) show that
while H-ILP may perform slightly worse than ROCKMATE,
H-ILP achieves similar performance to ROCKMATE, a base-
line approach specifically tailored for such architectures.

Overall, HIREMATE acts as a general solution that includes
H-ILP, ROTOR, ROCKMATE, and CHECKMATE. Our exper-
imental results consistently show that HIREMATE performs
on par with these baseline algorithms, demonstrating its ver-
satility and effectiveness in optimizing memory utilization
for a wide range of network architectures.

Controlling Sub-Optimality With our hierarchical ap-
proach, the H-ILP solver does not compute an optimal so-
lution to the re-materialization problem. We compare our
results with RK-CHECKMATE, which provides an optimal
solution for a given topological order of operations. The
selected results in Table 2 show that H-ILP achieves perfor-
mance close to this optimal solver on a network size where
it remains tractable to compute. In another experiment, we
investigate the impact of hierarchy depth in the H-partition
by restricting the size of each subgraph, thereby increas-

7

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

2 3 4 5 6 7
Peak Memory (GiB)

450

500

550

600

650

It
er

at
io

n
Ti

m
e

(m
s)

HiRemate (H-Ilp only)
Rockmate
TW-Remat
HiRemate
Autodiff

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative Peak Memory

0.95

1.00

1.05

1.10

1.15

1.20

1.25

R
el

at
iv

e
Av

er
ag

e
Ti

m
e

GPT2-medium

4 6 8 10 12 14 16
Peak Memory (GiB)

800

900

1000

1100

1200

It
er

at
io

n
Ti

m
e

(m
s)

HiRemate (H-Ilp only)
Rockmate
TW-Remat
HiRemate
Autodiff

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative Peak Memory

1.0

1.1

1.2

1.3

1.4

1.5

R
el

at
iv

e
Av

er
ag

e
Ti

m
e

Resnet101

2 4 6 8 10 12 14
Peak Memory (GiB)

500

600

700

800

900

1000

1100

1200

1300

It
er

at
io

n
Ti

m
e

(m
s)

HiRemate (H-Ilp only)
HiRemate
TW-Remat
Autodiff

0.2 0.4 0.6 0.8 1.0
Relative Peak Memory

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
R

el
at

iv
e

Av
er

ag
e

Ti
m

e

Encoder-Decoder Transformer

7 8 9 10 11 12 13
Peak Memory (GiB)

600

650

700

750

800

850

900

It
er

at
io

n
Ti

m
e

(m
s)

HiRemate (H-Ilp only)
HiRemate
TW-Remat
Autodiff

0.5 0.6 0.7 0.8 0.9 1.0
Relative Peak Memory

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R
el

at
iv

e
Av

er
ag

e
Ti

m
e

Unet

Figure 5. Experiments on different network architectures: (top) sequential-like neural networks (bottom) non-sequential neural networks,
which ROCKMATE cannot solve efficiently.

ing the depth. As shown in Figure 6, the solution quality
achieved by H-ILP shows only a slight degradation as the
hierarchy becomes deeper. This indicates that HIREMATE
effectively preserves performance despite deeper partition-
ing. It is important to note, however, that increasing the
depth significantly affects the complexity and tractability
of the problem as shown in Section 3.3, making this re-
sult particularly notable: H-ILP manages to avoid quality
degradation in settings where solving the problem becomes
considerably more challenging. The HIREMATE framework
allows the user to use several trade-offs between solution
quality and solving time, by adjusting the partition gran-
ularity, the number O of memory budget levels used in
lower-level subgraphs, or the number No of options retained
when solving one subgraph.

5. Discussion and Conclusion
This paper introduces the HIREMATE framework, which
offers both theoretical and practical advances in re-
materialization for PyTorch models. HIREMATE provides
a solution that can find very effective solutions in terms

Table 2. Comparison of H-ILP and RK-CHECKMATE overhead in
terms of iteration time

Network Budget (GB) Checkmate H-ILP
UNet 7.1 5.32% 5.44%
2-layer Tformer 7.0 5.32% 5.34%
MLP-Mixer 6.0 2.47% 2.44%
5-layer GPT2 1.25 6.02% 9.24%

of overhead during training, comparable to those of the
literature for problems of small size or with a particular
graph structure, but without these limitations. On the prac-
tical side, HIREMATE integrates seamlessly with PyTorch,
improving the memory-time tradeoff and efficiency, and
is fully compatible with PyTorch Autograd. The theoret-
ical contributions include a hierarchical approach and an
original linear programming formulation H-ILP. Although
HIREMATE focuses on computational graphs with primitive
operations, the hierarchical approach with linear complexity
is potentially applicable to other intensive tasks targeting

8

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

4 6 8 10 12 14
Peak Memory (GiB)

350

360

370

380

390

400

410

It
er

at
io

n
Ti

m
e

(m
s)

Encoder-Decoder Transformer (6 encoders/6 decoders)
HiRemate (2-levels)
HiRemate (3-levels)
HiRemate (4-levels)
HiRemate (5-levels)
Memory budgets

Figure 6. Experiments on 6-layer encoder-decoder Transformer
with different depth of hierarchical structure.

graphs resulting from tiling. The framework also incorpo-
rates previous approaches, ensuring state-of-the-art results.
The remaining limitation of HIREMATE is that it is not
adapted to dynamic neural network architectures, where the
the structure of the computational graph changes based on
runtime inputs. However, HIREMATE can be extended to
support mildly dynamic graphs by unrolling fixed-length
control flow, precomputing schedules for a small number
of known variants, or applying scheduling locally to sub-
modules with static behavior. A critical point is that the
code is fully modular, and it is possible for external con-
tributors to introduce a new graph partitioner or solver at
any level of the hierarchical decomposition. We hope that
this modularity will stimulate research and further improve-
ment of HIREMATE. Future research may include exploring
how to integrate offloading into the optimization problem
to reduce the need for recomputation, and how to optimally
combine rematerialization with pipelined model parallelism.
Advances in these areas hold promise for improving the
performance and efficiency of deep learning systems.

Acknowledgments
The research has been partially supported by the EUPEX
(European Pilot for Exascale) project, which received fund-
ing from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement No 101033975.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
XLA. http://www.tensorflow.org/xla.

Bartan, B., Li, H., Teague, H., Lott, C., and Dilkina, B.
Moccasin: Efficient tensor rematerialization for neural
networks. In International Conference on Machine Learn-
ing, pp. 1826–1837. PMLR, 2023.

Beaumont, O., Eyraud-Dubois, L., Hermann, J., Joly, A.,
and Shilova, A. Rotor, 2019. URL https://gitlab.
inria.fr/hiepacs/rotor.

Beaumont, O., Eyraud-Dubois, L., and Shilova, A. Efficient
combination of rematerialization and offloading for train-
ing dnns. Advances in Neural Information Processing
Systems, 34:23844–23857, 2021.

Beaumont, O., Eyraud-Dubois, L., Hermann, J., Joly, A.,
and Shilova, A. Optimal checkpointing for heterogeneous
chains: how to train deep neural networks with limited
memory. ACM Transactions on Mathematical Software
(TOMS), 2024 (accepted for publication). URL https:
//arxiv.org/abs/1911.13214.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016.

Das, D., Avancha, S., Mudigere, D., Vaidynathan, K., Srid-
haran, S., Kalamkar, D., Kaul, B., and Dubey, P. Dis-
tributed deep learning using synchronous stochastic gra-
dient descent. arXiv preprint arXiv:1602.06709, 2016.

Hu, Z., Xiao, J., Deng, Z., Li, M., Zhang, K., Zhang, X.,
Meng, K., Sun, N., and Tan, G. Megtaichi: Dynamic
tensor-based memory management optimization for dnn
training. In Proceedings of the 36th ACM International
Conference on Supercomputing, pp. 1–13, 2022.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. In Advances in Neural Information Process-
ing Systems, pp. 103–112, 2019.

Jain, P., Jain, A., Nrusimha, A., Gholami, A., Abbeel, P.,
Gonzalez, J., Keutzer, K., and Stoica, I. Checkmate:
Breaking the memory wall with optimal tensor remateri-
alization. Proceedings of Machine Learning and Systems,
2:497–511, 2020.

Kirisame, M., Lyubomirsky, S., Haan, A., Brennan, J., He,
M., Roesch, J., Chen, T., and Tatlock, Z. Dynamic ten-
sor rematerialization. arXiv preprint arXiv:2006.09616,
2020.

Kumar, R., Purohit, M., Svitkina, Z., Vee, E., and Wang, J.
Efficient rematerialization for deep networks. Advances
in Neural Information Processing Systems, 32, 2019.

9

http://www.tensorflow.org/xla
https://gitlab.inria.fr/hiepacs/rotor
https://gitlab.inria.fr/hiepacs/rotor
https://arxiv.org/abs/1911.13214
https://arxiv.org/abs/1911.13214

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

Kusumoto, M., Inoue, T., Watanabe, G., Akiba, T., and
Koyama, M. A graph theoretic framework of recompu-
tation algorithms for memory-efficient backpropagation.
Advances in Neural Information Processing Systems, 32,
2019.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2010.08895, 2020.

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Za-
haria, M. PipeDream: generalized pipeline parallelism
for DNN training. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles, pp. 1–15, 2019.

Naumann, U. Call tree reversal is np-complete. In Advances
in automatic differentiation, pp. 13–22. Springer, 2008.

Patil, S. G., Jain, P., Dutta, P., Stoica, I., and Gonzalez, J.
Poet: Training neural networks on tiny devices with inte-
grated rematerialization and paging. In International Con-
ference on Machine Learning, pp. 17573–17583. PMLR,
2022.

Rahman, M. A., Ross, Z. E., and Azizzadenesheli, K.
U-no: U-shaped neural operators. arXiv preprint
arXiv:2204.11127, 2022.

Rhu, M., Gimelshein, N., Clemons, J., Zulfiqar, A., and
Keckler, S. W. vdnn: Virtualized deep neural networks
for scalable, memory-efficient neural network design. In
The 49th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 18. IEEE Press, 2016.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Confer-
ence, Munich, Germany, October 5-9, 2015, Proceedings,
Part III 18, pp. 234–241. Springer, 2015.

Shepperd, N. Fine tuning on custom datasets,
2021. URL https://github.com/nshepperd/
gpt-2/tree/finetuning/twremat.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, L., Ye, J., Zhao, Y., Wu, W., Li, A., Song, S. L., Xu,
Z., and Kraska, T. Superneurons: Dynamic gpu memory
management for training deep neural networks. SIGPLAN
Not., 53(1):41–53, February 2018. ISSN 0362-1340. doi:
10.1145/3200691.3178491.

Wen, G., Li, Z., Azizzadenesheli, K., Anandkumar, A.,
and Benson, S. M. U-fno—an enhanced fourier neural
operator-based deep-learning model for multiphase flow.
Advances in Water Resources, 163:104180, 2022.

Wu, Z., Shen, C., and Van Den Hengel, A. Wider or deeper:
Revisiting the resnet model for visual recognition. Pattern
Recognition, 90:119–133, 2019.

Zhang, S., Zhang, C., You, Z., Zheng, R., and Xu, B. Asyn-
chronous stochastic gradient descent for dnn training.
In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 6660–6663. IEEE,
2013.

Zhao, X., Le Hellard, T., Eyraud-Dubois, L., Gusak, J., and
Beaumont, O. Rockmate: an Efficient, Fast, Automatic
and Generic Tool for Re-materialization in PyTorch. In
ICML 2023, Honolulu (HI), United States, July 2023.
URL https://hal.science/hal-04095305.

10

https://github.com/nshepperd/gpt-2/tree/finetuning/twremat
https://github.com/nshepperd/gpt-2/tree/finetuning/twremat
https://hal.science/hal-04095305

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Large
Neural Networks

Appendix

A. H-Partition algorithm

Algorithm 2 H-Partition algorithm
1: Input: data-flow graph G
2: Result: a recursive partition of G
3: Parameters: max high-level size M t, max lower-level size M l, score parameter α
4: while G has more than M t nodes do
5: C ← ⋃

x∈G candidate group containing all nodes between x and a(x)
6: while C is non empty and G has more than M t nodes do
7: Select candidate C which minimizes sα (eq. 1)
8: Wrap the nodes of C into a group
9: Update C

10: end while
11: Consider all groups as subgraphs
12: Update G so that each subgraph is considered as a node
13: end while
14: return partitioned graph

Original graph

Build small groups

Consider groups as nodes

Build small groups

High-level graph

Hierarchical decomposition

Figure 7. Visualization of recursive partitioning of the forward graph with 3 levels of hierarchy

In this section, we analyze the H-Partition algorithm, whose description is reproduced in Algorithm 2. We prove that the
partition computed by this algorithm is always valid, in the sense that the resulting subgraphs do not contain any cycle.
When merging a subgraph into a node for the higher level, all edges entering or exiting a vertex of the subgraph are attached
to the resulting node. To ensure that this does not result in a cycle, we guarantee that all of the subgraphs are convex in the
graph theoretic sense, as defined below.

Convexity We first provide some graph notations. Given two nodes a and b, we write a→ b if there is a direct edge from
a to b, and a⇝ b if there is a path of any length from a to b. Paths of length 0 are also valid, so that a⇝ a is always true.
With these notations, we can define the convexity of a subgraph:

Definition A.1. A subgraph C of a graph G is convex if for any two elements a, b in C, C contains all nodes of G on any

11

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

path from a to b. This can be written as:

∀a, b ∈ C, ∀u ∈ G, (a⇝ u and u→ b)⇒ u ∈ C

Merging a convex subgraph C into a node n does not create new cycles into the graph: such a new cycle would be a path
starting at n and going back to n, going through another node u /∈ C. If C is convex, any path from a node of C to another
node of C only goes through nodes of C, which ensures the absence of cycles.

Candidate groups The candidate groups Cx formed on line 5 of Algorithm 2 contain all nodes on all paths from a(x) to x,
where a(x) is the common ancestor to all direct predecessors of x. They have the following property, where h(Cx) = a(x):
Property 1. A subset C of nodes is a valid candidate group, if and only if there exists a head h(C) such that:

If u ∈ C and v → u, then v ∈ C or v = h(C) (3)
If u ∈ C, then h(C)⇝ u (4)

This property ensure their convexity:
Lemma A.2. Any candidate group C which satisfy Property 1 is convex.

Proof. Consider a and b in C, and u in G such that a⇝ u and u→ b. There are two cases:

• If u ̸= h(C), then since b ∈ C and u→ b, according to (3) we have u ∈ C.

• If u = h(C), then since a ∈ C, by (4), we have u⇝ a. Since G is acyclic, this implies u = a ∈ C.

Update of candidates Once the best candidate C is chosen, it becomes a group: all its nodes will be considered together
from now on. The remaining candidates are updated: in any candidate C ′ whose intersection with C is nonempty, we add
all the other nodes of C to ensure that all nodes of C remain together. The following results show that the resulting set of
nodes is still a valid candidate group; in particular it is also convex.
Lemma A.3. If C and C ′ are valid candidate groups with C∩C ′ ̸= ∅, then h(C)⇝ h(C ′) or h(C ′)⇝ h(C). Furthermore,
if h(C) ̸= h(C ′), then the first case implies h(C ′) ∈ C and the second case implies h(C) ∈ C ′.

Proof. Let u ∈ C ∩ C ′, and consider v ∈ G such that v → u. If no such v exists, then u is the source of G and
u = h(C) = h(C ′). If v ∈ C ∩ C ′, we can start over with u = v.

We now have u ∈ C ∩ C ′, and v /∈ C ∩ C ′ with v → u. We have three cases:

• If v ∈ C and v /∈ C ′: from (3) applied to C ′, we have v = h(C ′) ∈ C, and from (4) applied to C we get
h(C)⇝ h(C ′).

• Symmetrically, if v /∈ C and v ∈ C ′, we get h(C ′)⇝ h(C).

• If v /∈ C and v /∈ C ′: from (3) applied to both C and C ′, we get v = h(C) = h(C ′).

Theorem A.4. If C and C ′ are valid candidate groups with C ∩ C ′ ̸= ∅, then D = C ∪ C ′ is a valid candidate group.

Proof. From Lemma A.3, we know that h(C)⇝ h(C ′) or h(C ′)⇝ h(C). We define the head of D as h(D) = h(C) in
the first case, and h(D) = h(C ′) otherwise. For simplicity, we assume in the following that h(C)⇝ h(C ′); the other case
is symmetrical.

It is clear that D satisfies (4): consider any u ∈ D. If u ∈ C, then h(D) = h(C)⇝ u by (4) applied to C. If u ∈ C ′, then
h(D)⇝ h(C ′) by assumption and h(C ′)⇝ u by (4), so that in both cases h(D)⇝ u.

We now show that D satisfies (3). Let u ∈ D and v → u with v /∈ D. We distinguish two cases:

12

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

• If u ∈ C ′, then since v /∈ C ′, by (3) applied to C ′ we get v = h(C ′); and since v /∈ C, the contrapositive of Lemma A.3
yields h(C ′) = h(C) = h(D). Thus v = h(D).

• If u ∈ C, then v /∈ C and (3) applied to C yield directly v = h(C) = h(D).

This completes the validity proof of Algorithm 2: all candidate groups in C satisfy Property 1 all along the execution of the
algorithm, both when they are created (line 5) and when they are updated (line 9). This implies that all subgraphs created
line 11 are convex.

Identification of identical subgraphs To further improve efficiency of HIREMATE, we rely on and improve an idea from
(Zhao et al., 2023): once the graph is partitioned, we identify all identical subgraphs that correspond to the execution of
exactly the same code on values with the same shape1. A schedule computed for one of these identical subgraphs can be
used for any of them, that significantly reduces the solving time on networks with a large number of identical blocks, such
as GPT. This is performed in a more efficient way than in ROCKMATE, by expressing each graph in a canonical way and by
relying on a hash table.

B. H-ILP hierarchical formulation
In this section, we provide details on H-ILP formulation, the hierarchical re-materialization approach based on solving
linear programming problem.

B.1. Context

We assume that we have an arbitrary graph H , where each compute node represents a subgraph. Similar to RK-CHECKMATE
from (Zhao et al., 2023), dependencies are carried by data nodes, that represent values that can be saved in memory. A value
is said to be alive at some time in a schedule if it is stored in memory at that time. The memory usage at a given time in a
schedule is the sum of the memory sizes of all values alive at that time, and the peak memory of a schedule is the largest
memory usage over the length of the schedule. The H-ILP formulation computes the schedule with minimum running time
whose peak memory remains below a specified memory budget B. We denote by T the number of compute nodes, by I the
number of data nodes. Compute nodes are numbered in a topological order.

B.1.1. COMPUTE OPTIONS AND PHANTOM NODES

The novelty of H-ILP compared to RK-CHECKMATE is that each compute node can represent a subgraph of the original
graph. Such a compute node can be computed with one of several options. Each of these options represents a possible
schedule for the forward and backward phases of the subgraph (Figure 8). There is a strong link between the forward and
the respective backward computations, and each backward computation should be performed with the same option as its
corresponding forward computation. A pair of a forward and the corresponding backward nodes are called a layer. For a
layer j, its forward and backward compute nodes are denoted Fj and Bj respectively.

In H-ILP, we also introduce an explicit representation of the data saved in memory between a forward computation and its
corresponding backward. We call them phantom nodes, and we update the formulation by considering them as special data
nodes, with two specificities:

• a phantom node is always created by its forward computation, can only be deleted by its backward computation, and is
not required by any other computing node. In the formulation, we can take advantage of this by not including additional
variables expressing whether the phantom node is deleted or not.

• values saved in an phantom node (and thus the associated memory size) depend on the option used for the forward and
backward computations. For this reason, the formulation contains additional variables that specify which option of
each phantom node exists in memory during each phase.

1This does not require to solve the difficult graph isomorphism problem, since we can order nodes according to their execution in the
original code.

13

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

Forward Backward Data

Forward
subgraph

Backward
subgraph

Loss, between forward & backward

Figure 8. HIREMATE recursively finds schedules for each subgraph. Different schedules correspond to different memory budget constraints
(options) and hence have different values for memory/time ration, peak memory, size of the saved data, and time for the backward
computation.

In this formulation, we consider schedules in which for a given phantom node, only one option is present in memory at a
given time. However, it is possible that a phantom node is produced several times with different options during the course of
the schedule.

B.1.2. NOTE ABOUT INPUT DEPENDENCIES

Option-specific dependencies An output value of the forward computation (i.e., a data node which is computed during
forward and used by another compute node) is never included in the phantom node. However, it happens that an output
value is also used within the forward computation to produce other results. An example could be:

def compute(a):
x = f(a)
y = g(x)
return x, y

In this example, the value x is both an output of the layer and used to produce y. In that case, the backward schedule might
choose either to use x as input to be able to perform the backward of g() (if having it in memory between forward and
backward fits in the budget), or to recompute it during backward. The implication is that for a given layer, each option leads
to specific dependencies for the backward compute node, depending on which inputs is used by the corresponding schedule.
If option o of a computation node k depends on value d, we denote this as d o−→ k.

Multiple predecessors A data node can have several predecessors. This happens in backward when computing gradients:
each computation is a contribution to the same memory slot (gradients are accumulated). A successor of such a data node
can only be processed if all its contributions have been computed.

B.2. Formulation

The schedule is divided into T phases. The goal of phase t is to compute node t for the first time. In the following, we
denote compute nodes with index k, data nodes with index d, options with index o, phases with index t and layers (a pair of
forward and corresponding backward nodes) with index j.

F is the set of final data nodes. The graph contains a specific loss node which represents the computations that takes
place between the forward and backward passes of our graph. If G is the main highest-level graph, this represents the
computations of the loss for the training; if G is any subgraph (Figure 8), this also contains other computations from the rest
of the graph. The index of the loss node is l.

14

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

Variables The H-ILP formulation only contains binary variables, which can take the value 0 or 1.

Rt
k,o is 1 if and only if node k is computed with option o during phase t.

P t
d is 1 if and only if data node d is present in memory before phase t.

St
k,d for k predecessor of d is 1 if and only if the contribution of compute node k has been included in data node d before

phase t.

Sptj,o is 1 if and only if the phantom node of layer j is saved with option o before phase t.

Ct
k,d is 1 if and only if data node d is created when computing node k during phase t

Dt
k,d is 1 if and only if data node d is deleted after computing node k during phase t

1
2
3
1
4
3
5
6
2
3
4
7
1
4
6
8

Rt
i,o: compute operation i

during stage t
using option o

operation i

Spti,o: keep saved data of op. i
between stage t− 1 and stage t
with option o

operation i

tim
e

Figure 9.

Objective The objective is to minimize the total running time, expressed as

min
∑
i,t,o

Rt
i,o ∗ time of computing option o for node i

B.3. Constraints of H-ILP

Constraints for Options H-ILP formulation contains constraints relative to the choice of options and the management of
phantom nodes. Namely:

∀t, ∀k,
∑
o

Rt
k,o ≤ 1 at most one option for each computation (5)

∀t, ∀j,
∑
o

Sptj,o ≤ 1 only one option of a phantom node is in memory (6)

∀t, ∀j, ∀o, Spt+1
j,o ≤ Sptj,o +Rt

Fj ,o a phantom node is only be created by its Fj (7)

∀t, ∀j, ∀o, Spt+1
j,o ≥ Sptj,o +Rt

Fj ,o −Rt
Bj ,o a phantom node is only deleted by its Bj (8)

∀t, ∀j, ∀o, Rt
Bj ,o ≤ Sptj,o +Rt

Fj ,o computing Bj requires the phantom node (9)

For any compute node k and any phase t, we denote by CRt
k =

∑
o R

t
k,o the equivalent of the R variable of RK-CHECKMATE

(Zhao et al., 2023), which is equal to 1 if node k is computed during phase t (with any option).

15

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

Validity constraints

∀t, ∀k > t, CRt
k = 0 Node k > t can not be computed in phase t

∀t, ∀j s.t. Fj > t,∀o, Sptj,o = 0 No phantom j from node Fj > t is saved before phase t

∀k → d, ∀t ≤ k, St
k,d = 0 No result of node k can be saved in any phase before phase k

∀d, ∀t ≤ min{k|k → d}, P t
d = 0 Data node d is not in memory before any of its predecessors

∀d ∈ F ,∀k → d, ST
k,d + CRT

k = 1 After the last phase, all final data nodes should be in memory

∀t, CRt
t = 1 Node t is executed in phase t∑

t

CRt
l = 1 The loss node is executed only once

Data dependencies

∀t, ∀k → d, St
k,d ≤ P t

d Data node d with at least one contribution k is alive

∀t < T,∀k → d, St+1
k,d ≤ St

k,d + CRt
k New contribution k to node d only appears by being computed

∀t, ∀k → d→ k′, CRt
k′ ≤ CRt

k + St
k,d Computing node k′ requires all contributions k to input node d

∀t, ∀j, ∀o, ∀k → d
o−→ Bj Rt

Bj ,o ≤ CRt
k + St

k,d Option-specific dependencies

Alive status of values A computing node k is related to a data node d if k → d or d→ k. We denote this with k ↔ d.
For a data node d, only computing nodes k that are related to d can affect its alive status. For any t, if k is related to d, we
denote with At

k,d the alive status of node d during phase t after computing node k (and also after performing all deletions
mandated by variables D). In phase t after computing node k, a data node d is alive if it was stored before phase t or created
in phase t before node k, and not deleted until then, so that we can write:

∀t, ∀k ↔ d, At
k,d

.
= P t

d +
∑

k′→d,k′≤k

Ct
k′,d −

∑
k′↔d,k′≤k

Dt
k′,d

In the above equation and in the following, we use .
= to denote an alias definition, so that At

k,d can be replaced by the
right-hand side in any constraint, whereas the = sign is used to denote a constraint that is added to the formulation.

Constraints relative to liveness

∀t, ∀k ↔ d, 0 ≤ At
k,d ≤ 1 Data node d is either alive or not

∀t, ∀k → d, At
k,d ≥ CRt

k −Dt
k,d d is alive if computed and not deleted

∀t, ∀k → d, Ct
k,d ≤ CRt

k value d can only be created by a node k that is really computed

∀t < T,∀d, P t+1
d = At

max{k|k↔d},d Value d is alive after phase t iff it is alive after its last related node k

One additional constraint states that a value d is deleted after computing node k in phase t if it is not used afterwards: neither
by later computing nodes k′ > k in the same phase t, nor in the next phase t+ 1. This can be stated as:

∀t, ∀k ↔ d, Dt
k,d = 1 if and only if CRt

k = 1 and P t+1
k = 0 and

∑
d→k′,k′>k

CRt
k′ = 0

However, this constraint is not linear. It can be linearized in the similar way as in the original CHECKMATE paper (Jain
et al., 2020, Section 4.5): if we denote by hk,d = 2+ |{k′|d→ k′, k′ > k}| the number of equalities in the above statement,
it is equivalent to:

∀t, ∀k ↔ d, Dt
k,d ≥ CRt

k − P t+1
k −

∑
d→k′,k′>k

CRt
k′

∀t, ∀k ↔ d, hk,d(1−Dt
k,d) ≥ 1− CRt

k + P t+1
k +

∑
d→k′,k′>k

CRt
k′

16

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

Evaluating memory usage In contrast to RK-CHECKMATE, the memory budget constraints of H-ILP are updated to take
into account the memory sizes of the phantom nodes where appropriate. For this purpose, we denote by U t

k the memory
usage after computing node k in phase t. For any value d, let sd be the amount of memory required to store d; and for any
layer j and option o, let pj,o be the amount of memory required to store option o of the phantom node of layer j.

Then U t
k can be expressed as a linear combination of the formulation variables. Indeed, the memory usage before starting

phase t is:
Mt

.
=

∑
d

sd · P t
d +

∑
j,o

pj,o · Sptj,o.

Then, the increment when computing a forward node k = Fj is:

IFk
.
=

∑
k→d

sd · Ct
k,d −

∑
k↔d

sd ·Dt
k,d +

∑
o

pj,oR
t
k,o.

When computing a backward node k = Bj , the increment is:

IBk
.
=

∑
k→d

sd · Ct
k,d −

∑
k↔d

sd ·Dt
k,d −

∑
o

pj,o

(
Rt

Fj ,o + Sptj,o − Spt+1
j,o

)
The expression within the parenthesis is equal to 1 if the allocated node j is deleted, and 0 otherwise. Indeed, since Bj is
the only compute node that can use it, Spt+1

j,o = 0 means that phantom node j can be deleted right after Bj . Constraint (8)
ensures that if Rt

Bj ,o
= 0, then the expression within the parenthesis is also 0.

Finally, we can express U t
k iteratively (similar to CHECKMATE and RK-CHECKMATE formulations):

∀t, U t
0
.
= Mt + IF0

∀t, ∀k = Fj , U t
k

.
= U t

k−1 + IFk

∀t, ∀k = Bj , U t
k

.
= U t

k−1 + IBk

Memory budget constraints Thanks to the U t
k definitions, we can express constraints to ensure that the memory usage is

always within the memory budget B. If we detail a single step k of some phase t, it corresponds to: (a) allocating memory
for the newly created values (according to Ct

k,d variables), (b) computing node k, (c) freeing the memory of the deleted
values (according to variables Dt

k,d). The highest memory usage in this sequence is during (b), but the memory usage U t
k

corresponds to after (c). In addition, the computation of node k with some option o might incur a memory overhead (by
allocating temporary values), which we denote by mk,o. In total, in RK-CHECKMATE, the memory budget constraints are
written as:

∀t, ∀k, U t
k +

∑
o

mk,o ·Rt
k,o +

∑
k↔d

sd ·Dt
k,d ≤ B (10)

However, in H-ILP each compute node k represents not a single basic computation, but a sequence of basic computations
(defined by the corresponding schedule). After the H-ILP formulation is solved, the actual schedule is modified: the memory
deallocations for the values freed in step (c) above are performed as early as possible, possibly during the schedule of node
k (in the middle of step b).

This means that the memory overhead mk,o during the computation of option o of node k might depend on whether some
values are alive before or after computing node k. For example, if the corresponding schedule deletes a value in the middle
of computation, its memory overhead mk,o assumes that the deletion is delayed until the end of the schedule. If that value is
actually not needed later in the higher-level schedule computed by H-ILP, it will be deleted within the schedule, which may
or may not change the memory overhead.

In the following, we present how we modify the memory budget constraint to account for this kind of situation. Consider
a specific phase t, and an option o (and thus a schedule) for node k. For simplicity of presentation, let us consider only
inputs; the situation with outputs is similar and symmetric. Consider a sub-step i of the schedule. We compute the memory
overhead at this sub-step as mi

k,o, assuming that value deletion happens after the computation of this schedule of node k. We
denote by Fi the set of values which are not used in the following sub-steps of that schedule. Within the schedule computed

17

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

by H-ILP, values in Fi are deleted after sub-step i if and only if they are deleted after step k. Hence, the actual memory
usage of sub-step i is mi

k,o −
∑

d∈Fi
sd ·Dt

k,d. The corresponding memory constraint is:

∀t, ∀k, ∀o,∀i, U t
k +mi

k,o ·Rt
k,o +

∑
k↔d

sd ·Dt
k,d −

∑
d∈Fi

sd ·Dt
k,d ≤ B

We write one constraint for each option and each sub-step. Since all the correction terms are negative, and all mk,o are at
least 0, if Rt

k,o is 0, this constraint is weaker than (10). We write such a constraint for each sub-step of the schedule, and this
provides a more precise assessment of the memory usage of the solution. The case of output values is the same, except that
we care whether the output value is created during the computation of node k, which is represented with variable Ct

k,d.

An interesting remark is that it is not necessary to write one constraint for each sub-step: if the set of inputs not needed
after sub-steps i and j are the same (Fi = Fj), we can keep only one of both constraints (the one with the larger memory
usage mi

k,o). The number of constraints is thus bounded by min(number of sub-steps, 2|{inputs}|+|{outputs}|). In practice, the
number of different constraints remain low enough. In addition, these constraints are only introduced when solving the
top-level graph, where the constraint to remain under budget B is required to be as accurate as possible.

C. Implementation details of the HIREMATE framework
We provide here some implementation details about our framework, and in particular on the differences compared to
ROCKMATE. In addition to the partitioning and solving steps, described in detail above, there are two other steps in
HIREMATE: the graph building procedure, and the execution process.

C.1. Graph builder

In HIREMATE, we use the same RK-GB module as in ROCKMATE to obtain a data-flow graph from an arbitrary PyTorch
nn.Module. This module has four steps:

1. obtain the forward basic graph with torch.jit, in which each node represents exactly one computational operation

2. obtain a simplified graph in which all operation which do not produce a new Tensor are merged with the operation that
produced the involved Tensor. Typically, all view and size calls, and all in-place operations have this behavior.

3. building the backward graph, and

4. measuring the time and memory requirements of each operation.

In ROCKMATE, there is another step where the simplified forward graph is decomposed into a sequence of blocks (so that
each block can be solved with RK-CHECKMATE, and the sequence can be solved with RK-ROTOR). Once all blocks are
identified, ROCKMATE performs pairwise comparisons to identify the blocks with similar structure, so that RK-CHECKMATE
is only applied once for all identical blocks.

In HIREMATE, the H-Partition step is a replacement for this “sequence-building” step. In the following, we provide technical
details about three parts of RK-GB which were adapted (and sometimes improved) for the HIREMATE framework: the
identification of identical subgraphs, the management of “soft” dependencies, and the dependencies on the inputs of the
model.

C.1.1. EFFICIENT IDENTICAL GRAPHS RECOGNITION

Instead of pairwise comparison as is done in ROCKMATE, in the HIREMATE framework the identical subgraphs are identified
by using a canonical representation and a hash table. As a reminder, in both cases, identifying identical graphs is made
possible by the fact that we can rely on the order of execution of the code; and the main use case of this feature is to identify
when the same code is executed several times in the model. RK-GB is designed to be fully deterministic, so that it provides
the same result on the same executed code.

We provide now a description of the identical subgraph recognition in HIREMATE:

18

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

• We first identify identical compute nodes from the original (not partitioned) graph. Two nodes are identical if they have
the same code (modulo variable renaming) and if all inputs and parameters have the same characteristics (shape, type,
...). Each compute node is thus associated with an equivalence class.

• Subgraphs are determined by the list of nodes they contain. To obtain the canonical representation of a subgraph, we
go through this list of nodes, in the topological ordering inferred from the code execution. Each node is represented by
its equivalence class, and by the indices (in the subgraph) of their predecessor nodes. The canonical representation of
the subgraph is the concatenation of the representation of all its nodes.

• The obtained representation is inserted in a hash table: if a subgraph with the same representation exists, they will be
identified as identical. Only one of these identical subgraphs is solved within H-Solver; it is called the representative.

• HIREMATE also features a “translation” function that renames variables appropriately to convert a schedule for the
representative into a schedule for each of the subgraphs in the class.

This procedure can be performed in linear time, and is thus very efficient in practice.

C.1.2. SOFT DEPENDENCIES

Consider a situation where a computation node k′ does not depend on the Tensor x computed by a previous node k, but it
depends on the characteristics of x (typically, the result of a size(x) call). In the simplification process, the size() call
is merged within the node k. But having node k′ depend on node k would result in undesired behavior in a situation where
k has been computed once and removed from memory: k would be recomputed to enable computing k′, whereas k′ only
requires the size of k.

The solution introduced by ROCKMATE is to consider this particular situation a soft dependency during the simplification
process. These soft dependencies are used to produce consistent topological orderings. After the simplification process, for
solving the blocks with RK-CHECKMATE, all soft dependencies are removed from the graph. The dependency of k′ on the
size of x is ensured by the topological ordering: the first computation of k will take place before any computation of k′.
Since the data carried by a soft dependency is not a Tensor, it does not occupy any memory space, and is never removed.

Soft dependencies with H-partition However, in HIREMATE, the H-Partition algorithm has to take the soft dependencies
into account for the convexity considerations. Without the soft dependency from k to k′, the predecessor j of k might be
placed in the same subgraph as k′, but without k. This subgraph would be executed before the subgraph of k (since j → k),
which would break the soft dependency. For this reason, the soft dependencies are retained all through the H-Partition
algorithm, and ignored only during the H-Solver part.

C.1.3. DEPENDENCIES ON INPUTS OF THE MODEL

The Tensor values provided as input to the model have to remain in memory throughout the whole execution, for any
possible schedule. It is not useful to take into account their memory sizes, since they cannot be managed by HIREMATE.
In addition, if such an input value has requires_grad=False, then no backward computation is associated either.
In HIREMATE, unlike ROCKMATE, the corresponding dependency is ignored. This enables HIREMATE to have a more
efficient discovery of sequential sub-parts of the model.

Consider for example the torch.nn.Transformer model, with 6 encoder and 6 decoder layers. This model has two
inputs, src used at the first encoder layer, and tgt used at the first decoder layer. Since ROCKMATE takes into account
the dependency carried by the tgt value, it is unable to identify the sequential structure of the encoding part: there is a
dependency from the input node to the first node of the decoder. As a result, ROCKMATE sees this model as one large block
of 219 computing nodes.

In contrast, with this change in the HIREMATE framework, the same model can be decomposed into 24 blocks, the
biggest of which contains 131 nodes (corresponding to the decoder part). This is still too large to be solved directly with
RK-CHECKMATE, but this change enables HIREMATE to run the ROCKMATE algorithm on a nn.Transformer with 4
layers. Beyond the benefit for ROCKMATE, having fewer dependencies also provides more opportunities for partitioning in
the H-Partition algorithm.

19

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

C.2. Execution of the schedule

Once a schedule has been computed by the H-Solver, the HIREMATE framework generates a new nn.Module which
follows that execution schedule. For performance and compatibility reasons, this part of HIREMATE is completely new and
not based on the corresponding ROCKMATE package RK-EXEC.

C.2.1. THE EXECUTION PROCEDURE

The RK-EXEC package converts the complete schedule produced by RK-ROTOR into a single very large string of Python
commands, which is then executed with the exec() built-in function. This has significant complexity in the code, and
results in significant overhead for the running time. For example, running the nn.Transformer model with this approach
results in almost doubling the execution time.

We use a different approach in HIREMATE, where the schedule is interpreted on the fly and each operation is performed in a
controlled environment. This enables HIREMATE to efficiently execute schedules for large models, as demonstrated in the
experimental section.

C.2.2. AUTOGRAD COMPATIBILITY

The result of ROCKMATE does not respect the PyTorch convention for nn.Module: the backward phase must be explicitly
triggered, and the produced module can not be safely re-used with different inputs. In addition, ROCKMATE schedules have
the possibility to delete the output Tensor during the backward pass, which might break the code of the user if they need
to re-use it afterwards.

This possibility is removed in HIREMATE, and the implementation provided by HIREMATE is completely compatible with
the autograd mechanism of PyTorch. For example, the following code works as expected:

rematMod = HRockmate(model,sample,budget)
inp, tgt = next(dataset)
y = linear(inp)
z1 = rematMod(y)
z2 = rematMod(x)
z = z1 + z2
loss = loss_function(z, tgt)
loss.backward()

20

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

6000 7000 8000 9000 10000 11000 12000 13000
Peak Memory

430

440

450

460

470

480

Ite
ra

tio
n

Ti
m

e

Encoder-Decoder Transformer
alpha

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a) Encoder-Decoder Transformer, batch size 64

6000 7000 8000 9000 10000 11000 12000
Peak Memory

360

380

400

420

440

Ite
ra

tio
n

Ti
m

e

UNet
alpha

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(b) UNet, batch size 64

Figure 10. Experiments with H-ILP for different graph partitioning defined by α hyper-parameter

D. Ablation Study
Through this ablation study, we aim to shed light on the key factors influencing the performance of HIREMATE and highlight
its superiority over existing approaches in terms of peak memory - training time trade-off across different batch sizes and
input data resolutions. The findings of this study contribute to a deeper understanding of the underlying mechanisms and
efficacy of HIREMATE, further solidifying its position as a leading solution in the field of re-materialization.

D.1. HIREMATE hyper-parameters

In this section, we conduct an ablation study to examine the influence on the performance of HIREMATE of the α hyper-
parameter, which impacts the quality of the partitioning. By systematically varying the value of α, we aim to gain insights
into its effects on the overall performance of HIREMATE. This analysis provides valuable information for optimizing the
hyper-parameter configuration to achieve the best possible results in different scenarios.

On Figure 10, we observe that the parameter α has a small but measurable impact on the quality of the solution returned
by HIREMATE. However, the value which provide the most efficient solution depends on the graph of the model, and we
can not conclude on an optimal value for α. In the rest of the plots in this paper, we use the default α = 0.5 which provide
reasonable results in most cases.

D.2. Performance for Different Input Sizes

Furthermore, we show performances of our module HIREMATE, across different batch sizes and input data resolutions. We
focus on the Transformer and UNet models, and we vary the batch sizes and the input size (in terms of sequence length for
Transformer, and in terms of image resolution for UNet). Figure 11 reports results for sequence length 200 and varying
batch sizes. Figure 12 reports results for batch size 64 and varying sequence lengths. Figure 13 reports results for fixed
resolution 256x256, and varying batch sizes. Figure 14 reports results for fixed batch size 64 and varying resolutions. In
addition, we also provide on Figure 15 the results for the MLPMixer model with batch size 64 and resolution 256x256. The
behavior of HIREMATE is consistent across all cases, and significantly outperforms TW-Remat.

21

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

2 4 6 8 10 12 14
Peak Memory (GiB)

500

600

700

800

900

1000

1100

1200

1300

It
er

at
io

n
Ti

m
e

(m
s)

HiRemate--batch_size: 64
TW-Remat--batch_size: 64
autodiff

0.0 0.2 0.4 0.6 0.8 1.0
Relative Peak Memory

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
Av

er
ag

e
Ti

m
e

Encoder-Decoder Transformer

(a) Batch size 64

5 10 15 20 25
Peak Memory (GiB)

1200

1400

1600

1800

2000

2200

2400

2600

It
er

at
io

n
Ti

m
e

(m
s)

HiRemate--batch_size: 128
TW-Remat--batch_size: 128
autodiff

0.0 0.2 0.4 0.6 0.8 1.0
Relative Peak Memory

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
Av

er
ag

e
Ti

m
e

Encoder-Decoder Transformer

(b) Batch size 128

10 15 20 25 30 35
Peak Memory (GiB)

3000

4000

5000

6000

It
er

at
io

n
Ti

m
e

(m
s)

HiRemate--batch_size: 256
TW-Remat--batch_size: 256
autodiff

0.0 0.2 0.4 0.6 0.8 1.0
Relative Peak Memory

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
Av

er
ag

e
Ti

m
e

Encoder-Decoder Transformer

(c) Batch size 256

Figure 11. Experiments Encoder-Decoder Transformer with different batch sizes

1 2 3 4 5
Peak Memory (GiB)

300

400

500

600

700

It
er

at
io

n
Ti

m
e

(m
s)

HiRemate--resolution: 100
TW-Remat--resolution: 100
autodiff

0.0 0.2 0.4 0.6 0.8 1.0
Relative Peak Memory

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
Av

er
ag

e
Ti

m
e

Encoder-Decoder Transformer

(a) Sequence length 100

2 4 6 8 10 12 14
Peak Memory (GiB)

500

600

700

800

900

1000

1100

1200

1300

It
er

at
io

n
Ti

m
e

(m
s)

TW-Remat--resolution: 200
HiRemate--resolution: 200
autodiff

0.0 0.2 0.4 0.6 0.8 1.0
Relative Peak Memory

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
Av

er
ag

e
Ti

m
e

Encoder-Decoder Transformer

(b) Sequence length 200

5 10 15 20 25 30 35 40
Peak Memory (GiB)

1400

1600

1800

2000

2200

2400

It
er

at
io

n
Ti

m
e

(m
s)

HiRemate--resolution: 400
TW-Remat--resolution: 400
autodiff

0.0 0.2 0.4 0.6 0.8 1.0
Relative Peak Memory

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
Av

er
ag

e
Ti

m
e

Encoder-Decoder Transformer

(c) Sequence length 400

Figure 12. Experiments Encoder-Decoder Transformer with different sequence lengths

3.5 4.0 4.5 5.0 5.5 6.0 6.5
Peak Memory (GiB)

275

300

325

350

375

400

425

450

It
er

at
io

n
Ti

m
e

(m
s)

HiRemate--batch_size: 32
TW-Remat--batch_size: 32
autodiff

0.0 0.2 0.4 0.6 0.8 1.0
Relative Peak Memory

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
Av

er
ag

e
Ti

m
e

Unet

(a) Batch size 32

7 8 9 10 11 12 13
Peak Memory (GiB)

600

650

700

750

800

850

900

It
er

at
io

n
Ti

m
e

(m
s)

HiRemate--batch_size: 64
TW-Remat--batch_size: 64
autodiff

0.0 0.2 0.4 0.6 0.8 1.0
Relative Peak Memory

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
Av

er
ag

e
Ti

m
e

Unet

(b) Batch size 64

14 16 18 20 22 24 26
Peak Memory (GiB)

1200

1300

1400

1500

1600

1700

1800

It
er

at
io

n
Ti

m
e

(m
s)

HiRemate--batch_size: 128
TW-Remat--batch_size: 128
autodiff

0.0 0.2 0.4 0.6 0.8 1.0
Relative Peak Memory

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
Av

er
ag

e
Ti

m
e

Unet

(c) Batch size 128

Figure 13. Experiments UNet with different batch sizes and resolution 256x256

22

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75
Peak Memory (GiB)

170

175

180

185

190

195

200

It
er

at
io

n
Ti

m
e

(m
s)

TW-Remat--resolution: 128
HiRemate--resolution: 128
autodiff

0.0 0.2 0.4 0.6 0.8 1.0
Relative Peak Memory

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
Av

er
ag

e
Ti

m
e

Unet

(a) Resolution 128x128

7 8 9 10 11 12 13
Peak Memory (GiB)

600

650

700

750

800

850

900

It
er

at
io

n
Ti

m
e

(m
s)

HiRemate--resolution: 256
TW-Remat--resolution: 256
autodiff

0.0 0.2 0.4 0.6 0.8 1.0
Relative Peak Memory

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
Av

er
ag

e
Ti

m
e

Unet

(b) Resolution 256x256

Figure 14. Experiments on UNet with batch size 64 and different resolutions

1 2 3 4 5
Peak Memory (GiB)

200

220

240

260

280

300

320

340

It
er

at
io

n
Ti

m
e

(m
s)

HiRemate (H-Ilp only)
TW-Remat
HiRemate
Autodiff

0.2 0.4 0.6 0.8 1.0
Relative Peak Memory

1.1

1.2

1.3

1.4

1.5

1.6

R
el

at
iv

e
Av

er
ag

e
Ti

m
e

MLP Mixer

Figure 15. Experiments MLPMixer

23

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

Network Budget Checkmate H-ILP
ResNet34 5.0e9 1.0138 1.0184

4.0e9 1.0360 1.0394
3.5e9 1.0517 1.0554
3.0e9 1.0712 1.0761

UNet 9.1e9 1.0090 1.0090
8.1e9 1.0293 1.0317
7.1e9 1.0532 1.0544
6.1e9 1.0776 1.0830

2-layer Tformer 9.0e9 1.0195 1.0194
8.0e9 1.0355 1.0356
7.0e9 1.0532 1.0534
6.0e9 1.0700 1.0702

MLP-Mixer 8.0e9 1.0050 1.0044
7.0e9 1.0137 1.0137
6.0e9 1.0247 1.0244
5.0e9 1.0466 1.0545

5-layer GPT2 1.4e9 1.0113 1.0117
1.25e9 1.0602 1.0924

1.1e9 1.1515 1.1929
1.0e9 1.2593

Table 3. Comparison of H-ILP and the optimal solution of RK-CHECKMATE: overhead in terms of iteration time compared to Autodiff
for different models and different budget values

E. Comparison with optimal solvers
We evaluate the quality of the solution returned by H-ILP by comparing with the optimal solver RK-CHECKMATE on small
graphs, where the optimal solver is tractable to compute. We provide in Table 3 a broad comparison over several different
models and different budget values. We observe on a wide variety of networks and budgets that the quality of the solution
produced by H-ILP remains very close to the optimal value provided by RK-CHECKMATE when it is possible to compute it.

24

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

F. Broad study on a variety of models
We assess the robustness of our approach by analyzing its behavior on a variety of models. Table 4 provides results on
GPT-medium and GPT-largest (which have 24 and 96 layers), UNet, MLPMixer, RegNet32, ResNet101, Transformer with 6
encoder and decoder layers, Transformer with 36 encoder and decoder layers, 1D and 3D FNO (Li et al., 2020) models,
UFNO (Wen et al., 2022) and UNO (Rahman et al., 2022).

Table 4(a) describes the computational graphs of each model:

• the number of nodes of the computational graph before simplification;

• the number of nodes in the forward computational graph, after simplification, which is the input to the H-Partition
algorithm;

• the number of nodes in the forward-backward computational graph;

• the total number of computation and data nodes in the final computational graph, which is the input to the H-Solver
algorithm.

Table 4(b) describes the result of the H-Partition algorithm:

• the depth of the hierarchical decomposition. The top-level count as the first level, so CHECKMATE, which works
directly takes the whole graph, corresponds to a depth 1, and ROCKMATE, that takes a chain of blocks, corresponds to a
depth of 2.

• the number of subgraphs;

• the number of unique subgraphs after identifying identical subgraphs;

• the size of the largest subgraph (in terms of number of nodes).

Table 4(c) describes the result of HIREMATE on each model:

• the total execution time of the HIREMATE framework (including building the graph, partitioning and solving);

• the budget provided to HIREMATE;

• the relative memory usage (compared to the peak memory of the autodiff solution) of the resulting nn.Module
created by HIREMATE, as measured in a real execution;

• the “predicted” value of the running time of the computed schedule, which is the sum of the measured execution times
of all operations in the schedule, expressed relatively to the execution time of the autodiff solution;

• the execution time measured from running the nn.Module created by HIREMATE, also expressed relatively to the
execution time of the autodiff solution.

We can see that HIREMATE obtains robust results on all these very different models: it is able to reduce memory usage by a
factor 2, for a cost in execution time that varies between 7% (for RegNet32) and 22% (for UNO). All graphs except for
UNet, FNO 1d and FNO 3d are much too large for CHECKMATE to solve. The Transformer, U-FNO and UNO models
can not be meaningfully sequentialized, so that ROCKMATE also fails on these graphs. In contrast, the solving time of
HIREMATE remains below one hour for most graphs, and below three hours for the largest Transformer network, which is
totally acceptable.

25

HIREMATE: Hierarchical Approach for Efficient Re-materialization of Neural Networks

Table 4. Test of HIREMATE over 12 models, with a memory budget around half the autograd memory usage. All models passed a
sanity check: both forward and backward passes produce the exact same result as the original module. Experiments are done on a NVIDIA
P100 GPU with 16GB. See column headers and model definitions on previous page.

(a) Size of the computation graphs
SIZE BEFORE SIZE FWD SIZE FWD SIZE COMPUTATION

SIMPLIFICATION ONLY AND BWD AND DATA NODES
GPT 24 (MEDIUM) 1858 367 734 1614

GPT 96 (LARGEST) 7402 1447 2894 6366
UNET 73 50 101 205

MLPMIXER 203 125 250 549
REGNET32 245 173 347 721

RESNET101 346 211 423 851
TRANSFORMER 6-6 1030 224 417 991

TRANSFORMER 36-36 6160 1334 2457 5851
FNO 1D 71 42 82 167
FNO 3D 317 64 121 257
U-FNO 567 118 221 467

UNO 997 129 229 495

(b) Results of H-partition
NUMBER OF NUMBER OF # UNIQUE LARGEST

LEVELS = DEPTH SUBGRAPHS SUBGRAPHS SUBGRAPH
GPT 24 (MEDIUM) 3 28 8 15

GPT 96 (LARGEST) 4 61 21 10
UNET 2 9 9 15

MLPMIXER 2 15 6 10
REGNET32 2 15 10 15

RESNET101 2 19 10 15
TRANSFORMER 6-6 3 23 20 17

TRANSFORMER 36-36 16 128 67 19
FNO 1D 2 10 5 8
FNO 3D 2 12 12 10
U-FNO 2 11 9 17

UNO 4 12 12 19

(c) Solving time and performances
TOTAL MEMORY OBSERVED PREDICTED OBSERVED

SOLVING TIME BUDGET RELATIVE RELATIVE RELATIVE
(MIN) (GB) PEAK MEMORY AVERAGE TIME AVERAGE TIME

GPT 24 (MEDIUM) 7.9 1.7 36.6% 122.3% 120.3%
GPT 96 (LARGEST) 15 4.5 47.2% 119.6% 126.0%

UNET 9 5 51.3% 113.5% 113.3%
MLPMIXER 1.5 4.5 53.3% 107.3% 109.0%
REGNET32 5 3.5 41.1% 107.0% 105.8%

RESNET101 5.5 4.5 42.6% 115.3% 115.3%
TRANSFORMER 6-6 20 3.5 46.9% 117.6% 114.8%

TRANSFORMER 36-36 147 4.9 44.6% 118.4%
FNO 1D 2.5 5 53.1% 114.7% 111.0%
FNO 3D 5.3 4 47.2% 117.4% 104.1%
U-FNO 16.3 5.2 56.7% 116.3% 116.5%

UNO 46 5.2 58.5% 121.9% 116.7%

26

