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Abstract

DP-means, a nonparametric generalization of K-
means, extends the latter to the case where the
number of clusters is unknown. Unlike K-means,
however, DP-means is hard to parallelize, a limita-
tion hindering its usage in large-scale tasks. This
work bridges this practicality gap by rendering
the DP-means approach a viable, fast, and highly-
scalable solution. First, we study the strengths
and weaknesses of previous attempts to parallelize
the DP-means algorithm. Next, we propose a new
parallel algorithm, called PDC-DP-Means (Paral-
lel Delayed Cluster DP-Means), based in part on
delayed creation of clusters. Compared with DP-
Means, PDC-DP-Means provides not only a major
speedup but also performance gains. Finally, we
propose two extensions of PDC-DP-Means. The
first combines it with an existing method, leading
to further speedups. The second extends PDC-DP-
Means to a Mini-Batch setting (with an optional
support for an online mode), allowing for another
major speedup. We verify the utility of the pro-
posed methods on multiple datasets. We also show
that the proposed methods outperform other non-
parametric methods (e.g., DBSCAN). Our highly-
efficient code can be used to reproduce our ex-
periments and is available at https://github.
com/BGU-CS-VIL/pdc-dp-means.

1 INTRODUCTION

In the age of “Big Data”, algorithms that scale poorly, even
if they offer desiderata of useful properties, are often dis-
carded in favor of faster and more scalable alternatives. This
phenomenon is exemplified, in clustering tasks, by the wide
popularity of the simple K-Means algorithm. One main rea-
son for that popularity is that, by the virtue of the ease in
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Figure 1: Convergence of the different algorithms (note
the logarithmic scale of the abscissa). MiniBatch PDC-DP-
Means converges before the completion of the first iteration
of PDC-DP-Means, which in turn converges before the com-
pletion of the first iteration of either DP-Means or P-DP-
Means. Data: 1 million 2D points generated from 50 Gaus-
sians. Results are average (solid lines) ± std. dev. (shaded
areas) of 5 runs. See § 5 for details.

which K-Means lends itself to parallelization and optimized
computations, its speed is unrivaled by most other methods.
Thus, in large-scale clustering tasks, K-Means is often the
weapon of choice.

In particular, in practice K-Means is usually preferred over
the more powerful and elegant DP-Means algorithm [Kulis
and Jordan, 2012] (and its variants). This is despite the
fact that with DP-Means, the user obtains K-Means-like
clustering with the added benefit of being free from having
to specify (or guess) the value of K, the number of clusters.

Although there are numerous cases where, at least in theory,
it would have made sense to use DP-Means instead of K-
Means, DP-Means has a major drawback that hinders its
applicability: at least in its original formulation, DP-Means
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cannot be parallelized as efficiently as K-Means. Bridging
this practical gap is the topic of this paper (see Figure 1).

We start by studying two existing methods that attempt to
parallelize DP-Means: DACE [Jiang et al., 2017] and Paral-
lel DP-Means (P-DP-Means) [Pan et al., 2013]. This study
then leads us to understand not only what makes DP-Means
hard to parallelize but also how to overcome this difficulty.
Based on those insights, we propose new algorithms, all
targeting the minimization of the DP-Means cost function.
The first proposed algorithm, on top of which the others
are built, is Delayed Cluster DP-Means (DC-DP-Means).
This serial algorithm is a new variant of the original (and
also serial) DP-Means algorithm. DC-DP-Means has two
important advantages over the vanilla DP-means: 1) it is
less prone to over-clustering and usually achieves better
clustering results; 2) it removes the limitation which halted
K-Means-like parallelization in DP-Means. That second ad-
vantage lets us propose our first parallel algorithm, Parallel
DC-DP-Means (PDC-DP-Means), which lends itself, by de-
sign, to an extremely-efficient implementation which rivals
the speed of popular and optimized K-Means implementa-
tions while having the same performance as DC-DP-Means.

Next, we extend PDC-DP-Means to two additional parallel
algorithms. The first, DACE-PDC- DP-Means, uses PDC-
DP-Means in conjunction with DACE, achieving greater
speed than either DACE or PDC-DP-Means. The second,
MiniBatch PDC-DP-Means, is for a Mini-Batch setting,
can be used in either an online or an offline mode, and offers
an additional major speedup over our already-fast PDC-DP-
Means. To put the speedup in perspective, our Mini-Batch
PDC-DP-Means clusters the entirety of ImageNet’s [Deng
et al., 2009] train-set (following dimensionality reduction,
via feature extraction, to 128) in as little as 13 seconds. This
is orders of magnitude faster than the competitors (who
were given the same 128-dimensional features as input).
The full comparison and details for that experiment appear
in § 5. Importantly: 1) such a large-scale task is outside the
scope of the original DP-Means; 2) while previous parallel
DP-Means methods can handle such large data, we do it
in a fraction of the time it takes them. More generally, we
are unaware of any nonparametric method (including ones
unrelated to DP-Means) that is even close to that speed.

To summarize, our main contributions are: 1) recognizing
what stymied previous DP-Means parallelization methods;
2) we propose the Delayed Cluster DP-Means algorithm,
and its parallel version, the PDC-DP-Means, offering a per-
formance gain and a major speedup over DP-Means. 3) we
propose two extensions of PDC-DP-Means (DACE-PDC-
DP-Means and MiniBatch PDC-DP-Means) that offer addi-
tional major speedups.

2 RELATED WORK

K-Means. The K-Means cost function is the sum of squared
ℓ2 norms of the residuals between the observations and the
mean of the cluster each of them is assigned to; i.e.,

K∑
k=1

∑
i:zi=k

∥xi − µk∥2ℓ2 (1)

where N is the number of points (or observations), K is
the number of clusters, xi ∈ Rd is data point i, µk ∈ Rd

is the mean (or center) of cluster k, and the label zi = k
if and only xi belongs to cluster k. Thus, cluster k, de-
noted by Ck, consists of the points whose assignment is k:
Ck = (xi)i:zi=k. The function is to be minimized w.r.t. both
(µk)

K
k=1 and (zi)

N
i=1. Importantly, the user must specify

K. Since initially proposed by Forgy [1965], many varia-
tions of K-Means have been developed. Today, the popular
approaches for performing K-Means inference are either
Lloyd’s algorithm [Lloyd, 1982] (usually referred to as the
K-Means algorithm) or Elkan’s [Elkan, 2003]. Both are easy
to parallel, thereby offering a very fast clustering method.
We remark that in this work we borrow from Lloyd [1982]
several ideas related to parallelization and mini-batches.

DP-Means. Proposed by Kulis and Jordan [2012], the DP-
Means is a nonparametric extension of K-Means, rooted in
Bayesian nonparametrics, and closely-related to the Dirich-
let Process Mixture model [Antoniak, 1974, West and Esco-
bar, 1993]. In the DP-Means algorithm, when an observa-
tion’s squared distance from the mean of its closest cluster
exceeds a user-defined parameter λ (λ > 0), a new cluster is
formed, and the observation is assigned to it. The associated
cost function is similar to K-Means, except that there is an
added penalty term and the minimization is also w.r.t. K:(

K∑
k=1

∑
i:zi=k

∥xi − µk∥2ℓ2

)
+ λK . (2)

Note that the penalty term, λK, penalizes the creation of
new clusters. As we will explain later, the DP-Means algo-
rithm is serial and thus is inherently slow.

Several works have extended the original DP-Means al-
gorithm. Bachem et al. [2015] use corsets to achieve fast
approximated inference; i.e., the entire dataset is efficiently
summarized by a small weighted subset of representative
points. That approach allows to use slow algorithms, such
as the original DP-Means, on large datasets. Odashima et al.
[2016] proposed several DP-Means-related algorithms. First,
they developed an Online DP-Means and a Batch DP-Means
algorithms, both based on the MiniBatch K-Means [Sculley,
2010]. In addition, they have developed Split-DP-Means
and Merge-DP-Means, and then combined them to a Split-
Merge DP-Means. The splits/merges moves are used in
order to try to escape poor local minima (for other Bayesian
nonparametric clustering methods using splits and merges,



see, e.g., Jain and Neal [2004], Chang and Fisher III [2013,
2014], Dinari and Freifeld [2020], Ronen et al. [2022]).
Kobayashi and Watanabe [2021] add another term to the
DP-Means cost function, making it more robust to outliers.
Paul and Das [2020] proposed the EWDP-Means, which
incorporates optimal feature weighting using Gibbs sam-
pling. While all the DP-Means methods above are serial,
two works which are of particular interest to us are the Par-
allel DP-Means, proposed by Pan et al. [2013], and DACE,
proposed by Jiang et al. [2017]. Both these methods use
parallelization and we will return to them later in this paper.

3 BACKGROUND

Below we review several well-known facts (of interest in
our context) about the K-Means and DP-Means algorithms.

Optimizing Lloyd’s Algorithm. Lloyd’s K-Means algo-
rithm (Algorithm 1) is simple enough so it can be both
optimized (in terms of efficiency of the computations) and
parallelized such that its speed is virtually unrivaled. In
terms of running time, the most expensive part is calculat-
ing the distance between each data point and each of the
K cluster means. To optimize this part, it is better to use
matrix multiplication than calculating such distances one by
one; e.g., with matrix multiplication the user can leverage
Basic Linear Algebra Subprograms (BLAS) [Lawson et al.,
1979] as much as possible. For that aim, note first that the
(squared) distance calculation has three parts:

||xi − µk||2ℓ2 = ||xi||2ℓ2 − 2xT
i µk + ||µk||2ℓ2 . (3)

In the RHS of Eq. (3), the first term, ∥xi∥2ℓ2 , is constant w.r.t.
k while the last term, ∥µk∥2ℓ2 , can be computed just once
per iteration (instead of N times per iteration). It follows
that the main effort lies with computing the middle term,
2xT

i µk. To make that computation efficient two things are
done. First, X is split into P parts, (Xp)

P
p=1, which can be

processed in parallel. Let Np denote the number of points
in part p, and let Xp =

[
x1,p . . . xNp,p

]T ∈ RNp×d

denote that part, written as a matrix. Second, instead of
computing Np ×K individual vector-vector multiplication
computations of xT

j,pµk (one for each (j, k) pair), a single
matrix-matrix multiplication is performed: XpM

T where
M =

[
µ1, . . . ,µK

]T
. The above steps are the root rea-

sons for the speedup that Lloyd’s algorithm achieves over a
naive implementation. However, it can be optimized even
further: once each part is processed, it can produce its rel-
ative contributions to the cluster means, which in turn can
be aggregated in the main process before the next iteration.

The DP-Means algorithm. There are obvious similari-
ties between the K-Means algorithm (Algorithm 1) and the
DP-Means algorithm (Algorithm 2). However, while in the
former K is assumed to be known and is predefined, in the
latter K evolves during the algorithm’s run and depends on:

Algorithm 1: Lloyd’s K-Means Algorithm [Lloyd,
1982]
Input: K
Data: X = (xi)

N
i=1 ⊂ Rd

1 (µk)
K
k=1 ← K randomly-chosen points from X

2 while Not Converged do
3 for i ∈ {1, . . . , N} do
4 zi ← argmink∈{1,...,K} ∥xi − µk∥2ℓ2
5 for k = 1 ∈ {1, . . . ,K} do
6 nk ← |{i : zi = k}|
7 µk ←

∑
i:zi=k xi

nk

Algorithm 2: DP-Means [Kulis and Jordan, 2012]
Input: λ
Data: X = (xi)

N
i=1 ⊂ Rd

1 K ← 1

2 µ1 ←
∑N

i=1 xi

N

3 (zi)
N
i=1 ← 1 // init. all labels to 1

4 while Not Converged do
5 for i ∈ {1, . . . , N} do
6 zi ← argmink∈{1,...,K} ∥xi − µk∥2ℓ2
7 if ∥xi − µzi∥2ℓ2 > λ then
8 K ← K + 1
9 µK ← xi

10 zi ← K

11 for k = 1 ∈ {1, . . . ,K} do
12 nk ← |{i : zi = k}|
13 µk ←

∑
i:zi=k xi

nk

1) the data; 2) λ; 3) the ordering in which one visits the ob-
servations. When assessing the convergence of Algorithm 2,
one can see that apart from the cluster creation (e.g. lines
7-10), it has the same guarantees as the classical K-Means
(meaning, every step in the algorithm cannot increase the
cost, which is bounded below by zero). When taking into ac-
count the addition of clusters, and examining the DP-Means
cost function, it can be noted that adding a cluster is done
only when all the squared distances between some observa-
tion xi and each of the K cluster means exceed λ. Thus, the
penalty term (i.e., λK) is smaller than the squared distance
between xi and any of the existing K clusters. Thus, the
creation of the cluster necessarily decreases the cost.

4 METHOD

In § 4.1 below, we explain why, unlike K-Means, the original
DP-Means algorithm [Kulis and Jordan, 2012] does not lend
itself to parallelization. In that section, we also describe two
previous works that tried, with only a partial success, to
attack that problem. Next, in § 4.2, we discuss our solution



and the resulting proposed algorithms.

4.1 WHY SCALING DP-MEANS IS DIFFICULT

A natural question arises: can the original DP-means algo-
rithm [Kulis and Jordan, 2012] be optimized and parallelized
as easily as it was in the K-Means case? Unfortunately, the
answer is negative, as we explain below.

When attempting to create a parallel version of DP-Means,
the main obstacle is the cluster creation. A naive solution
would be to try to simply mimic the steps that are performed
when parallelizing the K-Means algorithm: i.e., split the data
into P parts, and perform the iteration’s main loop (lines
5-10 in Algorithm 2) in parallel. However, when the pro-
cessing of each part is done, we will (usually) have multiple
new clusters and, with a high probability, many of them will
overlap with each other. This over-clustering problem has
two major negative implications. The first and most obvious
one is that it harms the results of the clustering. The second
ramification of the over-clustering problem is a significant
increase of the running time: as the latter grows with K, re-
dundant clusters translate directly into a longer running time.
Moreover, a second problem that stems from the same root
cause is that the efficient computation presented in § 3 for
optimizing the distance calculations cannot be done as ef-
ficiently as in the K-Means case: since K (usually) grows
during the main iteration, we cannot precompute, before
each iteration over the data, all of the ∥µk∥2ℓ2 and xT

i µk val-
ues. Rather, we would need to compute these values, on the
fly, separately for each new cluster. Consequently, this will
deprive us of the benefit of utilizing the maximal efficiency
of BLAS.

The remainder of this section reviews two smart existing
parallel methods that address the first problem. However,
neither of them addresses the second.

P-DP-Means, proposed by Pan et al. [2013], splits the data
into several parts and then processes them in parallel. The
core of that method is that when the calculation of each part
is done, the new clusters are not immediately added to the
existing clusters; rather, another subroutine, coined ‘DPVal-
idate’, is called. The additional subroutine consolidates the
results from the different parts, and adds the new clusters
one by one, as long as the new cluster is distanced by at
least

√
λ from all the current existing clusters. However, if

a new cluster is not far enough from the existing clusters,
then the subroutine will change all the relevant labels to the
closest existing cluster. That solution has many merits, and
it can indeed reduce the running time drastically without
harming the results. However, the ‘DPValidate’ subroutine
itself is serial and slow. This is especially evident in the first
iteration of the algorithm, where most of the clusters are
added. For example, consider Figure 1 which shows that the
first iteration of P-DP-Means is very slow, though after that

iteration it converges quite fast. This is also due to the fact
that once most of the clusters have been added in the first
iteration, one can optimize the distance calculations for all
existing clusters for the following iterations, considerably
improving the speed of each such iteration.

DACE was proposed by Jiang et al. [2017] for clustering
extremely-large sequence data in a specific application do-
main. However, DACE is also fairly easy to adapt to other
types of data as well. Jiang et al. [2017] have approached
the problem differently from how it was done in P-DP-
Means [Pan et al., 2013]. Instead of separating the data into
parts and consolidating the results after each iteration, they
consolidate only once, running a standard DP-Means algo-
rithm separately on each one of the parts until convergence.
Here, the core of the method lies with how the separation
into parts is done. Unlike in P-DP-Means, where the par-
titioning is done using some set heuristic (e.g., it could be
random, or according to the data ordering), DACE uses a
locality-sensitive hashing approach [Datar et al., 2004] for
partitioning the data such that the different parts should have
a minimal overlap with each other. This approach has sev-
eral benefits. First and foremost, it allows the parallelization
of DP-Means across the data parts. Second, recall that the
runtime grows linearly with K. When partitioning the data
such that the clusters have a minimal overlap with each other,
each part tends to have a low number of clusters. This is in
contrast to P-DP-Means, where computations in each part
must use all of the clusters. This difference allows DACE a
better speedup. DACE, however, has two main drawbacks.
The first is that each run of DP-Means has the same opti-
mization problems we have described earlier. The second
is that the final result is drastically affected by the initial
partitioning and in many cases this leads to the degradation
of the results.

4.2 THE PROPOSED ALGORITHMS

In § 4.1 we have identified that the main problem with scal-
ing DP-Means is related to cluster creation. This insight
leads us to our first proposal: deferring the cluster creation
to the end of the assignment step. Concretely, when the
squared distance between an observation xi and the center
of its nearest cluster exceeds λ, instead of opening a new
cluster, we save the index and distance of that observation
in imax and dmax, respectively. We update imax and dmax

whenever we find another observation whose associated dis-
tance is larger. Only when the assignment step is complete,
and provided that there was at least one observation whose
squared distance (from its nearest cluster) exceeds λ, do
we open a new cluster. In which case, that cluster is initial-
ized with the single point whose associated distance was the
maximal one across the entire dataset. Next, we continue to
update the means of all the existing clusters. We refer to that
algorithm, summarized in Algorithm 3, as DC-DP-Means
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(b) DP-Means: Bad Ordering
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(d) DC-DP-Means

Figure 2: DP-Means is more susceptible to over-clustering than PDC-DP-Means. A large number of points are sampled
from the bottom cluster (grey) while far fewer ones are sampled from the top cluster (green). Circles of radius

√
λ are drawn

around the mean and the instantiated clusters. Red dots mark the first observations visited in DP-Means.

Algorithm 3: DC-DP-Means
Input: λ
Data: X = (xi)

N
i=1 ⊂ Rd

1 K ← 1

2 µ1 ←
∑N

i=1 xi

N

3 (zi)
N
i=1 ← 1 // init. all labels to 1

4 while Not Converged do
5 jmax ← −1
6 dmax ← −1
7 for i ∈ {1, . . . , N} do
8 zi ← argmink∈{1,...,K} ∥xi − µk∥2ℓ2
9 if ∥xi − µzi∥2ℓ2 > dmax then

10 jmax ← i

11 dmax ← ∥xi − µzi∥2ℓ2
12 if dmax > λ then
13 K ← K + 1
14 µK ← xjmax

15 zjmax ← K

16 for k = 1 ∈ {1, . . . ,K} do
17 nk ← |{i : zi = k}|
18 µk ←

∑
i:zi=k xi

nk

(where DC stands for Delayed Cluster).

While the delayed cluster creation might seem as a mild
change, it has a remarkably-profound threefold effect: 1)
it facilitates the usage of all of the K-Means-related opti-
mizations from § 3; 2) DC-DP-Means’s results are (triv-
ially) invariant to the ordering of the observations and this
is in sharp contrast to the original DP-Means which might
severely over-cluster the data due to an unfortunate ordering
of the observations (see Figure 2); 3) while DC-DP-Means
takes more iterations to converge (since at each iteration at
most one cluster can be formed), most of the iterations are

much faster (due to, e.g., the fewer clusters and the avail-
ability of the aforementioned optimizations), resulting in
significantly-short running times.

4.2.1 Convergence Guarantees for DC-DP-Means

The proposed change (from Algorithm 2 to our proposed Al-
gorithm 3) does not break the convergence guarantees of
the original DP-Means. In the reassignment step, DC-DP-
Means is identical to K-Means as no new clusters are created
and the distance between a point and the assigned cluster
cannot exceed its pre-reassignment distance. During the
cluster creation step, it is guaranteed that d2max > λ and
thus the added penalty is smaller than d2max, which is the
contribution of the associated observation to the cost func-
tion. Finally, during the update of the means, the mean of
the observations assigned to a cluster minimizes its squared
distance between them and the cluster center. As for an
empirical evidence of convergence, see Figure 1.

4.2.2 PDC-DP-Means

Importantly, and by design, DC-DP-Means naturally lends
itself to parallelization. It follows that combining the K-
Means-related optimization and parallelization steps (de-
scribed in § 3) together with our proposed delayed cluster
creation lets us propose our first parallel algorithm, called
PDC-DP-Means and summarized in Algorithm 4. Where
at first sight Algorithm 4 seems longer and more complex
than either Algorithm 2 or Algorithm 3, this is mostly be-
cause of the added optimizations we have implemented (and
that were enabled by our delayed cluster creation). In other
words, while the parallelizable Algorithm 3 captures the
key conceptual details that allow for massive parallelization
and optimizations, the parallel (and optimized) Algorithm 4
also contains the needed technical/engineering details. We



Algorithm 4: PDC-DP-Means
Input: λ, P
Data: X =

[
x1 . . . xN

]T ∈ RN×d

1 K ← 1

2 µ1 ←
∑N

i=1 xi

N

3 (zi)
N
i=1 ← 1 // init. all labels to 1

4 (Xp)
P
p=1 ← Split X into P parts

5 (Np)
P
p=1 ← (#of points in Xp)

P
p=1 // Xp ∈ RNp×d

6 for p ∈ {1, . . . , P} do in parallel
7 sp ← (∥Xp[j, :]∥2ℓ2)

Np

j=1 // sp ∈ RNp

8 while Not Converged do
9 M ←

[
µ1 . . . µK

]T
// M ∈ RK×d

10 s̄← [ ∥µ1∥2
ℓ2

... ∥µK∥2
ℓ2 ] // s̄ ∈ RK

11 (jpmax)
P
p=1 ← −1 // init. argmax vals

12 (dpmax)
P
p=1 ← −1 // init. max vals

13 for p ∈ {1, . . . , P} do in parallel
14 Mp =

[
µ1,p . . . µK,p

]T ← 0K×d

15 (nk,p)
K
k=1 ← 0 // init. counts

16 Dp ← −2XpM
T +

[
s̄ . . . s̄

]︸ ︷︷ ︸
K copies of s̄

//

Dp ∈ RNp×K

17 zp ← row-wise argmin (Dp)
18 for j ∈ {1, . . . , Np} do
19 k ← zp[j]
20 Mp[k, :]←Mp[k, :] +Xp[j, :]
21 nk,p ← nk,p + 1
22 if Dp[j, k] + sp[j] > max(dpmax, λ) then
23 dpmax ←Dp[j, k] + sp[j]
24 jpmax ← j

25 pmax ← argmaxp(d
p
max)

P
p=1

26 [ n1 ... nK ]← [
∑P

p=1 n1,p ...
∑P

p=1 nK,p ]

27 M ←∑P
p=1 Mp

28 if pmax ̸= −1 then
29 j ← jpmax

max

30 k ← zpmax
[j]

31 M [k, :]←M [k, :]−Xp[j, :]
32 nk ← nk − 1
33 K ← K + 1
34 zpmax [j]← K
35 M [K, :]←Xp[j, :]
36 nK ← 1

37 for k ∈ {1, . . . ,K} do in parallel
38 µk ←M [k, :]/nk

now explain the details.

In lines 4-5, we split the data into P parts (where P is the
number of available computer processes), where Xp denotes
the observations in part p. Throughout the algorithm, we
use j as the running index within a part while i is used as
the running index within the entire dataset. In lines 6-7 we

pre-calculate sp, which stands for the squared norms of the
points, for each of the P parts. This sp will be used later for
comparing distances. In each of the iterations of the while
loop (line 8) we initially calculate the squared norms s̄ of
the cluster centers (to be used by all the P processes), and
initialize auxiliary variables (jpmax)

P
p=1, (d

p
max)

P
p=1 to hold

the index and distance of the observation with the maximal
distance (from the existing clusters) within each part.

We then process the data in parallel, where for each part
p of the data we initialize several auxiliary variables: Mp,
for storing the sum of the observations (in part p) assigned
to each cluster, and (nk,p)

K
k=1, for storing the number of

observations (in part p) assigned to each cluster. In Dp we
store the computed distances between the observations in
Xp and each of the K centers. Taking the argmin for each
row of Dp, we then procure the labels for the data in Xp.

Iterating over the observations, in lines 18-24 we update
the contribution of each observation to the cluster centers,
and update both Mp and (nk,p)

K
k=1 accordingly. While do-

ing so we also check for the maximal distance between an
observation and its assigned center in this data part, updat-
ing jpmax and dpmax accordingly. Finally, in lines 28-36 we
create a new cluster if necessary, using the farthest observa-
tion across all the P data parts, but only provided that the
squared distance exceeds λ. We then aggregate the results
from the parts and use them to update the cluster centers.

To declare convergence, we may choose one of three pos-
sible criteria: 1) no label switching between iterations; 2)
measuring the difference in the cost function values between
two iterations, and declaring convergence if it is smaller
than some pre-defined tolerance value; 3) measuring the
distances between the centers in two consecutive iterations,
and declaring convergence if they are smaller than some
pre-defined tolerance value. Criterion 1 is the strongest, and
usually takes longer to achieve than the others. While criteria
1 and 3 cannot be met if a new cluster has been introduced
in the latest iteration, criterion 2 can be met even if there is
a cluster which existed only in the last iteration.

4.2.3 DACE-PDC-DP-Means

Recall that a key property in DACE is that the vanilla DP-
Means is used as a subroutine: the data is partitioned accord-
ing to the desired parallelism, and the DP-Means subroutine
is used independently on each of the parts. We now pro-
pose replacing that subroutine with our proposed PDC-DP-
Means. This has several benefits over the original DACE.
First, we utilize all the pros of using PDC-DP-Means, which
include both parallelism and, which is more important in
this case, optimizations of the different calculations. Sec-
ond, this overcomes the main drawback of PDC-DP-Means,
where the delayed cluster creation can slow down conver-
gence on datasets presenting a very high number of clusters.



Splitting the calculation into several parts (especially if there
is little or no overlap of clusters between the parts – as is
the case with DACE), solves this problem. Moreover, it also
gives the user control over the pace at which K grows. That
is, the user can choose between maximal data-partition par-
allelism for an increased cluster-creation speed and a coarser
data partition that allows the PDC-DP-Means subroutine to
employ additional parallelism within each part.

4.2.4 MiniBatch PDC-DP-Means

The delayed creation also lets us extend PDC-DP-Means
to a Mini-Batch setting. The transition is similar to the
transition from K-Means to Mini-Batch K-Means [Sculley,
2010]. Instead of evaluating the entire dataset at once, we
randomly sample a subset (called a mini-batch) Xb of size
b from the dataset and run a PDC-DP-Means iteration on it,
without updating the centers. We parallelize the processing
of Xb across the available cores. In each batch Xb we
cache both the index and the distance of the most distances
observation xj , and if that observation is at a distance of at
least
√
λ from its nearest cluster, we instantiate a new cluster,

centered at xj . Unlike in PDC-DP-Means, however, here we
do not recalculate the cluster centers in each iteration; rather,
instead we take a step towards the observations assigned to
the cluster, using the following (gradient-based) formula,

µk ←
(
1− 1

nk

)
µk + 1

nk
xj , (4)

where µk is the current cluster center, xj is the new ob-
servation assigned to cluster k, and nk is the total number
of observations assigned to cluster k, including xj . We
present the full algorithm in Algorithm 5. To determine con-
vergence we need to modify some of the aforementioned
criteria. While the criterion regarding the distance between
the centers can remain the same (though the tolerance value
needs to be adjusted), the other two are no longer applicable
as they require the entire dataset to be processed. Instead
(and as is done in MiniBatch K-Means), we can evaluate
these two criteria on a pre-defined validation set.

Online Setting. As in the original MiniBatch K-Means, our
algorithm also supports an online setting, where the main
iteration (lines 6-33) is executed not on some sample from
the dataset, but on the current available data. When new data
arrives, we process it in the main iteration. Thus, there is no
need to store the previously-seen data at any point in time.

5 EXPERIMENTS AND RESULTS

To validate the utility of our methods, we have compared
them with various methods in different settings. All of our
experiments were run on an Ubuntu 20.4 machine with
64GB RAM and Intel® Core™ i9-11900K Processor.

Algorithm 5: MiniBatch PDC-DP-Means
Input: λ, P, b
Data: X =

[
x1 . . . xN

]T ∈ RN×d

1 K ← 1
2 µ1 ← Random point from X
3 n1 ← 1
4 while Not Converged do
5 Xb ← b random points from X

6 (Xp)
P
p=1 ← Split Xb into P parts

7 (Np)
P
p=1 ← (#of pts in Xp)

P
p=1 //Xp ∈ RNp×d

8 for p ∈ {1, . . . , P} do in parallel
9 sp ← (

∥∥Xb
p[j, :]

∥∥2
ℓ2
)
Np

j=1 // sp ∈ RNp

10 M ←
[
µ1 . . . µK

]T
// M ∈ RK×d

11 s̄← [ ∥µ1∥2
ℓ2

... ∥µK∥2
ℓ2 ] // s̄ ∈ RK

12 (jpmax)
P
p=1 ← −1 // init. argmax vals

13 (dpmax)
P
p=1 ← −1 // init. max vals

14 for p ∈ {1, . . . , P} do in parallel
15 Dp ← −2XpM

T + s̄ // Dp ∈ RNp×K

16 zp ← row-wise argmin (Dp)
17 for j ∈ {1, . . . , Np} do
18 if Dp[j, k] + sp[j] > max(dpmax, λ) then
19 dpmax ←Dp[j, k] + sp[j]
20 jpmax ← j

21 pmax ← argmaxp(d
p
max)

P
p=1

22 if pmax ̸= −1 then
23 j ← jpmax

max

24 K ← K + 1
25 zpmax [j]← K
26 nK ← 0
27 µK ←Xp[j, :]

28 z ← (z1, . . . ,zP )
29 for k ∈ {1, . . . ,K} do in parallel
30 Xb

k ← {xj ∈Xb : z[j] = k}
31 for xj ∈ Xb

k do
32 nk ← nk + 1

33 µk ← (1− 1
nk

)µk +
xj

nk

Methods and Implementations. The implementation of
our proposed methods is in Python and Cython, and we
have integrated it within the code base of Scikit-learn [Pe-
dregosa et al., 2011]. When writing the implementation we
had both efficiency and accessibility in mind. In particular,
we exploit Scikit-learn’s efficient codebase, while making
the use of our code an easy “drop-and-replacement”. That
is, a user that previously used Scikit-learn’s K-Means or
MiniBatch K-Means, can now simply change to our code
using the same interface (except that instead of passing K as
a parameter the user will pass λ). For the vanilla DP-Means
we have used the publicly-available R package ‘maotai’.
As public implementation of DACE [Jiang et al., 2017] is
aimed towards RNA sequence data, we have created our
version of it which is more general and can handle any



Table 1: Comparing running time and NMI of different algorithms on various datasets. Our proposed methods uniformly
have better results than the other DP-Means variants, and in most cases, better than the K-Means variants as well. Note that
the parametric methods (marked by †), which had to be given the true K so they had an unfair advantage, are included here

only for completeness. The important comparison, however, is between the nonparametric ones.

Dataset 2D Gaussian 10D Gaussian MNIST ImageNet100 ImageNet1K

Method NMI Time [sec] NMI Time [sec] NMI Time [sec] NMI Time [sec] NMI Time [sec]
K-Means† .872± .002 1.47± 0.01 .634± .003 1.35± 0.0 .492± .005 0.12± 0.00 .770± .001 1.53± 0.06 .736± .000 198± 17
MiniBatch K-Means† .875± .004 0.27± 0.11 .632± .013 0.04± 0.02 .451± .025 0.15± 0.04 .762± .002 0.29± 0.00 .727± .000 4.97± 0.28

DP-Means .883± .002 865± 9 .666± .001 459± 63 .534± .001 204± 57 .765± .001 205± 87 N/A N/A
DACE .890± .003 35.4± 6.5 .648± .003 9.92± 1.19 .506± .003 4.86± 0.64 .730± .003 34.5± 3.9 .720± .002 8501± 613
P-DP-Means .884± .002 117± 1 .686± .007 37.1± 7.33 .532± .000 17.5± 0.8 .765± .001 8.53± 0.65 .729± .000 424± 24
PDC-DP-Means (Ours) .891± .006 3.55± 0.25 .713± .000 10.8± 1 .540± .002 0.96± 0.03 .767± .000 2.47± 0.32 .734± .000 1232± 66
DACE -
PDC-DP-Means (Ours) .888± .006 9.96± 2.65 .663± .012 2.38± 0.12 .498± .001 0.51± 0.01 .749± .003 3.73± 0.20 .731± .005 123± 17

MiniBatch
PDC-DP-Means (Ours) .882± .010 1.07± 0.16 .645± .017 0.33± 0.01 .501± .004 0.43± 0.15 .758± .006 0.39± 0.23 .728± .000 12.9± 1.07

data type. Our pure DACE version uses the aforementioned
‘maotai’ package for the DP-Means subroutine, while in our
DACE+DCP version we have simply changed the subrou-
tine to our proposed PDP-DP-Means. For P-DP-Means [Pan
et al., 2013] there is no publicly-available implementation,
so we have created our own efficient implementation of
it, written in Python and utilizing Scikit-learn’s efficient
Cython subroutines. Finally, for K-Means and MiniBatch
K-Means, we have used the available optimized Scikit-learn
implementations.

Datasets. We have used several datasets: a synthetic
2D Dataset, with N = 106 points, sampled from a 50-
component Gaussian Mixture Model (GMM); a synthetic
10D Dataset, with N = 105 points, sampled from a 20-
component GMM; MNIST [LeCun, 1998] handwritten dig-
its dataset with dimensionality reduced to 16 using Princi-
pal Component Analysis (PCA); ImageNet100 [Deng et al.,
2009] (a subset of the entire ImageNet dataset), which con-
sists of 125K images that belong to 100 classes from the
entire ImageNet, where we also used SWAV [Caron et al.,
2020] to extract features from the images, followed by
PCA to reduce the dimensionality of the features to 64;
ImageNet1K [Deng et al., 2009], which is the the full IL-
SRVC2012 dataset train set, containing 1.2M images from
1000 classes and where we again used SWAV followed by
PCA to reduce the dimensionality, this time to 128. We em-
phasize that the dimensionality reduction was done mostly
for the benefit of the other methods (our methods, which
scale better, can handle higher dimensions).

Evaluation. We have split the data into Train-Validation-
Test sets, in proportions of 0.9, 0.02, 0.08, respectively. In
order to evaluate the results of the clustering, we have used
a model-independent metric, the Normalized Mutual Infor-
mation (NMI) score. While all DP-Means variants share the
same cost function, given the same λ, the expected cluster-
ing results differ by a lot: DACE and MiniBatch PDC-DP-
Means will usually output a higher number of clusters than
DP-Means and P-DP-Means, while the latter two usually
output a higher number of cluster than PDC-DP-Means. As

such, we have optimized the λ value independently for each
of the models, using the validation set, setting NMI as the
target function for the optimization and using [Knysh and
Korkolis, 2016] as the optimizer. The full results for this
setting appear in Table 1. From the table, it is observable
that PDC-DP-Means outperforms all DP-Means variants in
terms of NMI and that in most cases it outperforms even
the parametric methods, which had to be given the true K.
In terms of running time, our MiniBatch PDC-DP-Means
is always the fastest DP-Means-related method, usually by
a very large margin, despite having only a slight reduction
in the quality of the results. Also, in almost all cases it out-
performs the only-slightly faster MiniBatch K-Means, in
terms of NMI score. An interesting observation is that in
the ImageNet1K case (where the true K is high: 1000), our
proposed PDC-DP-Means is slower than P-DP-Means. This
is the only case where the delayed cluster creation harms
the running time due to the large number of clusters. P-
DP-Means instantiates most of the clusters in the first few
iterations, and this enables it optimizing the distance calcu-
lations for most of the clusters very early. However, both our
MiniBatch PDC-DP-Means and our DACE-PDC-DP-Means
do not suffer from the large K: while both use delayed clus-
ter creation, the MiniBatch PDC-DP-Means does so after
every MiniBatch, while DACE-PDC-DP-Means splits the
data into parts and thus can create multiple clusters at the
same time. As evident by the results, both methods converge
much faster than PDC-DP-Means, with a similar quality of
results.

Comparing with Nonparametric Algorithms. So far we
have focused on comparisons with either DP-Means, K-
Means, or their variants. However, there are other non-
parametric clustering algorithms (with existing efficient
implementations) that are unrelated to DP-Means. In par-
ticular, we have compared with the following popular algo-
rithms: DBSCAN [Ester et al., 1996], MeanShift [Comani-
ciu and Meer, 2002], Agglomerative Clustering [Maimon
and Rokach, 2005] and OPTICS [Ankerst et al., 1999]. All
the above implementations are available in Scikit-learn [Pe-
dregosa et al., 2011]. To compare with those algorithms, we



Table 2: Comparison with nonparametric clustering algorithms

Dataset 2D Gaussian MNIST ImageNet100
Method NMI Time [sec] NMI Time [sec] NMI Time [sec]
DBSCAN .69± .00 0.58± 0.03 .35± .00 0.96± 0.05 .580± .00 94± 14
MeanShift .74± .00 125± 2.0 .43± .00 781± 11 N/A N/A
Agglomerative Clustering .82± .00 37.7± 0.3 .50± .00 74.4± 1.9 N/A N/A
OPTICS .75± .00 27.2± 0.21 .02± .00 49.3± 0.46 N/A N/A
PDC-DP-Means (Ours) .83± .01 0.07± 0.00 .51± .00 0.84± 0.26 .76± .00 1.9± 0.29
MiniBatch PDC-DP-Means (Ours) .82± .03 0.04± 0.02 .45± .01 0.19± 0.04 .74± .00 0.52± 0.00

have used smaller versions of the 2D GMM and MNIST
datasets, the former with only 50K observations sampled
from 20 2D Gaussians, while the latter is MNIST train set
with dimensionality reduced to 8 via PCA. In addition to
those 2 datasets, we have used the previously-discussed Im-
ageNet100 for comparing with DBSCAN, the only other
nonparametric method which could scale to a dataset of
such a size. We note that while our method (and some of the
other methods) can gracefully handle very large datasets,
MeanShift’s [Comaniciu and Meer, 2002] runtime and Ag-
glomerative Clustering’s [Maimon and Rokach, 2005] mem-
ory consumption makes them impractical for large datasets.
Table 2 summarizes the results, showing that our approach
not only outperforms the others in terms of clustering re-
sults but also does it in a fraction of the time. Note that
for each method, we have optimized its parameters using
black-box optimization [Knysh and Korkolis, 2016] on the
data test set. This is in contrast to the previous experiment
where we have used the validation set. Here, however, some
algorithms (e.g., DBSCAN) cannot predict the labels of new
samples. Thus, we have evaluated the performance on the
clustering results of the train set (hence the discrepancy be-
tween the ImageNet100 results here of PDC-DP-Means and
the Minibatch and their counterparts in Table 1).

6 CONCLUSION

In this paper we have focused on the practical aspects of
parallelizing DP-Means. We have examined previous at-
tempts at that goal and proposed several algorithms which
are parallel, highly efficient, and usually achieve better clus-
tering results than their counterparts. Our main contribution,
the PDC-DP-Means, has one key limitation: as the num-
ber of clusters can only increase by one in each iteration,
in data with a large K (e.g., ImageNet1K), this can lead
to a large number of iterations. However, our other pro-
posed algorithms, DACE-PDC-DP-Means and MiniBatch
PDC-DP-Means, offer a remedy in those cases as the num-
ber of clusters can increase very fast, as is evident by our
results. To summarize, our recommendation is to use PDC-
DP-Means for datasets where one may expect to find only a
moderate K. This will usually yield the best results. If K is
expected to be large, using either DACE-PDC-DP-Means
or MiniBatch PDC-DP-Means is preferred (despite the mild

drop in the quality of the results) due to the major speedups.
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