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Ana Marasović∗ Iz Beltagy∗ Doug Downey Matthew E. Peters

Allen Institute for AI, Seattle, WA, USA
{anam,beltagy,dougd,matthewp}@allenai.org

Abstract

Self-rationalization models that predict task la-
bels and generate free-text elaborations for their
predictions could enable more intuitive interac-
tion with NLP systems. These models are, how-
ever, currently trained with a large amount of
human-written free-text explanations for each
task which hinders their broader usage. We
propose to study a more realistic setting of
self-rationalization using few training exam-
ples. We present FEB—a standardized collec-
tion of four existing English-language datasets
and associated metrics. We identify the right
prompting approach by extensively exploring
natural language prompts on FEB. Then, by us-
ing this prompt and scaling the model size, we
demonstrate that making progress on few-shot
self-rationalization is possible. We show there
is still ample room for improvement in this task:
the average plausibility of generated explana-
tions assessed by human annotators is at most
51% (with GPT-3), while plausibility of human
explanations is 76%. We hope that FEB and
our proposed approach will spur the commu-
nity to take on the few-shot self-rationalization
challenge.

1 Introduction

Models constrained to be more understandable to
people are easier to troubleshoot and more useful
in practice (Rudin et al., 2021). For instance, con-
straining a model that answers the question “Which
linguist invented the lightbulb?” with “none” to
also provide the reason—“Thomas Edison is the
inventor of the lightbulb and he was not a linguist”—
makes the model easier to control and interact with
(Kim et al., 2021). Models that jointly predict
task labels and generate free-text explanations for
their predictions (as in the previous example) are
known as self-rationalization models (Wiegreffe
et al., 2021). Their explanations are arguably more
faithful and stable than post-hoc explanations since
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they are intrinsic to the model (Melis and Jaakkola,
2018). The free-text format is essential for ex-
plaining tasks requiring reasoning about unstated
knowledge such as commonsense (Marasović et al.,
2020), and it makes explanations more intuitive to
people compared to highlights of individual words
(Camburu et al., 2018). Despite these benefits, self-
rationalization models are not widely used, in part
because their training currently requires an abun-
dance of human-authored explanations for each
task (Narang et al., 2020). A possible solution
is few-shot learning, which has shown promising
results in recent years. To help the research com-
munity begin tackling self-rationalization with only
a few examples, we present (i) FEB—a standard-
ized collection of four existing English-language
datasets and associated metrics, and (ii) the first ap-
proach for the task established through an extensive
evaluation of natural language prompts.1

One approach to few-shot learning is prompt-
based finetuning with natural language prompts.
Such prompts are produced by formatting finetun-
ing instances using a format similar to that used
in pretraining, based on the idea that finetuning
examples that look similar to pretraining ones will
be more informative in the fewshot setting. A few
prompts are then used for finetuning. In this paper,
we explore whether prompt-based finetuning can
be extended to induce few-shot self-rationalization
behavior in addition to few-shot prediction. To
measure our progress, we first introduce FEB as a
benchmark dataset consisting of human authored
free-text explanations across four distinct end tasks
including natural language inference and common-
sense tasks (§2). Since finding appropriate prompts
is often challenging (Gao et al., 2021), we then
extensively explore natural language prompts for
few-shot self-rationalization. In our experiments,
we fine-tune the T5 and UNIFIEDQA pretrained
encoder-decoder transformers (Raffel et al., 2020;
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Khashabi et al., 2020), and show that versatile
question-answering prompts (defined in §3.1) out-
perform prompts based on span infilling by 8.7
accuracy points, as well as prompts designed by
following the most similar T5’s supervised pretrain-
ing task by 3.2.

We then study the impact of model size on few-
shot self-rationalization to investigate whether the
quality of generated explanations scales with the
size as good as the accuracy of predicting task la-
bels. To this end, we also evaluate GPT-3’s (Brown
et al., 2020) self-rationalization behavior. Our ex-
periments show that explanation plausibility scored
by human annotators (which range from 0–100)
and end-task accuracy improve with increasing
model size. Specifically, the difference in plausibil-
ity scores between the BASE and 3B model ranges
from [6.2, 24.8] (on average 14.8). The average
plausibility across datasets is 43.4 (UNIFIEDQA-
3B) and 50.6 (GPT-3). While encouraging, our
results show that there is still a large gap between
model and human performance (25.7 for GPT-
3), and we hope this work will help enable the
research community to take on the few-shot self-
rationalization challenge.

Our code for producing data splits, prompt con-
struction, model training/evaluation, and human
evaluation templates are publicly available.2

2 FEB Benchmark

There has been an explosion of interest in generat-
ing free-text explanations and in few-shot learning
in the last 1–2 years. However, appropriate datasets
and metrics for few-shot self-rationalization have
not yet been established. We thus introduce
the FEB benchmark—a suite of existing English-
language datasets with human-authored free-text
explanations and associated metrics for few-shot
self-rationalization. We expect that FEB will sim-
plify future model comparison and lower barriers
to entry for those interested in working on this task.

Datasets in FEB To identify available datasets
suitable for few-shot self-rationalization, we start
with a recent overview of datasets with free-text ex-
planations (Wiegreffe and Marasović, 2021) and fil-
ter them according to the following criteria: (i) the
input is textual, (ii) the explanation consists of one
sentence or 2–3 simple sentences, (iii) the task has
a fixed set of possible labels, (iv) the explanation is

2https://github.com/allenai/feb

FEB Tasks # Shots

E-SNLI Classify the entailment relation be-
tween two sequences

16

ECQA Select the correct answer to a given
question from five answer choices

48

COMVE Select one of two sequences as more
nonsensical

24

SBIC Classify a post as offensive or not 24

Table 1: Tasks that we have included in FEB. The num-
ber of shots is the number of training instances per label.
Training sets for all classification tasks are balanced and
contain 48 instances. Sources: E-SNLI (Camburu et al.,
2018), ECQA (Aggarwal et al., 2021), COMVE (Wang
et al., 2019), SBIC (Sap et al., 2020).

human-authored, and (v) the dataset has at least 389
instances. We use the second and third criteria to
narrow the scope to easier self-rationalization since
we expect that few-shot self-rationalization is very
challenging. The last requirement is introduced to
have 48 training and 350 evaluation examples.

This gives us 5 datasets, 4 of which are included
in FEB and overviewed in Table 1. These datasets
span 4 different tasks: natural language inference,
multiple-choice commonsense QA, nonsensical
sentence selection, and offensiveness classification.
We exclude COS-E (Rajani et al., 2019) as it is
too noisy to be useful for modeling and evaluating
self-rationalization (Narang et al., 2020), but we do
not support using COS-E in the future, especially
since ECQA is introduced.3

ECQA contains not only justifications of the
correct answer, but also justifications that refute
the incorrect answer choices. We use only the for-
mer since they answer “why is [input] assigned
[label]?”, just as explanations in other datasets that
we have included in FEB. The SBIC dataset con-
tains annotations of frames representing the social
biases that are implied in language. We format
these frames as a self-rationalization task as fol-
lows. We allow only two labels: “offensive” and
“not offensive”. If a post is not offensive, we assign
it the explanation: “This post does not imply any-
thing offensive.” A post can be offensive because
it targets an individual or a demographic group. In
the former cases, a post is assigned the explana-
tion: “This post is a personal attack.” Otherwise,
we define a set of rules to transform SBIC annota-

3Since COS-E is still actively used, we report COS-E
results in Tables 8 and 9 in Appendix.
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tions of which identity-based group is targeted and
what stereotypes of this group are referenced or im-
plied into a single, coherent sentence; e.g., group:
women, stereotype: can’t drive → “This post
is offensive because it implies that women can’t
drive”.

This is, to the best of our knowledge, the most
comprehensive collection of self-rationalization
tasks with textual inputs that could also be used
even when working in a high-resource setting.

Automatic Evaluation Evaluating self-
rationalization (predicting task labels and
generating explanations for the predicted labels)
requires end-task evaluation and assessing the
explanation plausibility. We use accuracy as
our end-task evaluation metric. Explanation
plausibility may be described as a subjective
satisfaction with how a given explanation justifies
a label/answer (Yang et al., 2019). Kayser et al.
(2021) present the largest currently available study
on the correlation of 10 NLG metrics with human
judgments of free-text explanation plausibility and
report that BERTscore (Zhang et al., 2020) is most
correlated (although the correlation is still weak).
Thus, we use BERTscore to evaluate the similarity
between gold and generated explanations. Follow-
ing Kayser et al., we assign zero BERTscore to
explanations of incorrectly predicted instances.4

We follow recent recommendations for reliable
few-shot evaluation (Bragg et al., 2021). Specif-
ically, we fix hyperparameters (HPs) and use 60
random train-dev splits with 350 examples in each
dev set. For classification tasks, the number of
shots (examples per label) is chosen such that we
construct a balanced training set of size 48.5 See
Table 1 (col. 3) for exact values; for ECQA we
sample 48 training examples. For each model, we
report the mean and standard error of 60 mean ac-
curacy/BERTscore values calculated on 60 dev sets
of 350 examples.6 Our HPs are reported in Table 7
in Appendix.

4Kayser et al. (2021): “An explanation is expected to be
false when the answer is predicted incorrectly (as it is expected
to justify a wrong answer).”

5In early studies, we found that 48 gives models that are at
least slightly above the random baseline across all four tasks.

6To calculate the standard error for accuracy/BERTscore
we use n = 60. The training (and likewise, dev) sets across
splits can overlap, so this error reflects the variability expected
in average scores when repeating our experiment with 60 new
random splits of the same data sets.

Human Evaluation For our final models (§4),
we conduct a human evaluation of plausibility
of generated explanations following prior work
(Kayser et al., 2021; Marasović et al., 2020). For
each model evaluation, Kayser et al. (2021) take the
first 300 dev examples that are correctly predicted
by the model. This means that the dev set subsets
used for human evaluation differ across models that
are evaluated. However, the overlap between the
evaluation sets is maximized by fixing the order of
dev instances and taking the first 300.

Prior work used a single train-dev split, while
FEB has 60 train-dev splits. Multiple splits pro-
vides the opportunity to account for the variance
caused by changing the random seed to produce
a reliable estimate of plausibility of explanations
produced with only a few examples. Therefore,
we take the first 6 correctly predicted examples
per train-dev split, i.e., 6*60=360 total instances.
Moreover, for classification tasks, we propose to
take the first 6/#labels correctly-predicted examples
per label to have a balanced evaluation set.

Following Kayser et al. (2021), we conduct the
human evaluation in two steps:

• Step1: Select the correct label/answer.
• Step2: Assess whether two explanations (gold

and generated) justify the label/answer above.

The first step makes sure the annotators understood
the task correctly and they are not able to sub-
mit their annotations if the answers are wrong.7

Ground-truth explanations are evaluated to implic-
itly influence annotators with a gold reference point
when they evaluate generated explanations, and to
measure the quality of explanation datasets. To
evaluate explanations, annotators are asked “Does
the explanation justify the answer?” and given the
options {“yes”,“weak yes”,“weak no”,“no”}.
These options are mapped to plausibility scores of
{1,2

3,
1
3,0}, respectively. For each of the 360 ex-

amples, we calculate the mean plausibility score
of 3 annotators and report the mean and the stan-
dard error of 360 mean scores. We also report the
inter-annotator agreement calculated with Fleiss’
kappa. Finally, models are evaluated independently
to avoid penalizing worse models in the presence
of explanations generated by a better model.

7We skipped this step for ECQA because we could not
teach crowdworkers sufficiently well to select the most likely
answer out of multiple likely answer candidates in ECQA.



3 Prompting for Self-Rationalization

We approach few-shot self-rationalization with
prompt-based finetuning using natural language
(NL) prompts. The key idea behind NL prompts is
that a pretrained language model (LM) is already
well-positioned to solve the end-task if we format
finetuning end-task examples as similar as possible
to the format used in the LM’s pretraining. Follow-
ing that principle, in this section, we describe our
prompting approach with T5 (Raffel et al., 2020)
and comprehensively evaluate three distinct prompt
types with FEB. Our results show that a unified
question-answering (QA) prompt combined with a
T5 variant that includes additional supervised mul-
titask QA training (UNIFIEDQA; Khashabi et al.,
2020) performs the best overall across tasks, when
compared to three different alternative prompts as
described below.

Self-rationalization models (Narang et al., 2020;
Wiegreffe et al., 2021) are currently based on T5 for
at least two reasons. First, T5 has been pretrained
with many supervised tasks including classification
and generation tasks, and self-rationalization in-
volves both classification and generation. Second,
T5 is one of the largest open-sourced and widely
studied pretrained models, and higher LM perfor-
mance is correlated with larger model size (Kaplan
et al., 2020). Thus, all of our experiments are based
on T5 (and the UNIFIEDQA variant when evaluat-
ing prompts based on a QA format). In this section,
all results are obtained with the base version of
these models and in §4 we scale model size.

When a LM is pretrained with masked language
modeling (Devlin et al., 2019) only, an appropriate
NL prompt is constructed by adding and infilling
masked tokens (Jiang et al., 2020). T5, however,
has been pretrained with span infilling and a suite
of supervised tasks whose instances were formatted
in various ways. One of these supervised tasks in-
cludes SQUAD 1.1 (Rajpurkar et al., 2016) which
allows us to experiment with prompts based on QA
templates. As a result, we were able to design sev-
eral different types of NL prompts for T5 consistent
with different aspects of its pretraining:

1. QA prompts ( SQUADT5 , QASIMPLE ).
2. span-filling prompts ( INFILLING ),
3. prompts designed by following the format-

ting of the most similar T5’s pretraining task
(≈T5 ; see Table 6 in Appendix),

We illustrate these prompt types for COMVE in
Table 11 in Appendix. The following sections de-

scribe these formats in detail and compare their
performance using FEB.

3.1 QA Prompts

Formatting new instances as QA pairs has been
shown to be useful for transfer learning from a
QA model (Gardner et al., 2019). We first eval-
uate options for a versatile QA NL prompt for
self-rationalization of tasks in FEB before com-
paring this approach with the other two prompt
types ( INFILLING and ≈T5 ) in §3.3. As alterna-
tive QA models, we investigate two models: T5
(which has been pretrained with QA supervision
from SQUAD 1.1), and UNIFIEDQA (a T5 variant
described in detail below). Since UNIFIEDQA was
trained on a multitask mixture of many different
QA datasets, these T5 variants allow us to examine
the extent to which additional QA supervision can
transfer to the few-shot self-rationalization setting.

Prior work (Bragg et al., 2021) introduced
UNIFEW, a model based on UNIFIEDQA, that is
finetuned on a few task-specific instances posed
as QA. Despite its simplicity, UNIFEW achieves
competitive few-shot learning performance with
strong baselines for classification tasks. However,
Bragg et al.’s prompts do not cover all task types
in FEB, and the question structure in their prompts
is highly task-specific (see Appendix A.1).

Alternatively, we propose to design QA prompts
with a simple principle in mind: Given a non-QA
task, construct an equivalent QA task in the form
of short “Is...?” or “What is...?” questions. Here,
“Is...?” questions have yes/no answers (sometimes
“maybe”), and task labels verbatim are answers to
“What is...?” questions (e.g., “offensive” and “not
offensive”). Given such question-answer pairs, we
develop prompts following the formats proposed in
UNIFIEDQA (see Appendix A) and prompt UNI-
FIEDQA. We denote these prompts as QASIMPLE .
For T5, we develop prompts following the SQUAD
format for the T5’s pretraining ( SQUADT5 ; see
Appendix A).

There is another factor to consider. We need
to decide whether to add tags—a single descrip-
tion of each input element. Examples of tags are
“premise:” and “hypothesis:” before the first
and second sentence in the E-SNLI input. Without
these tags the task seems impossible to understand,
but UNIFIEDQA has not been trained with any tags.

The output always takes the form of “[an-
swer/label] because [explanation]”. See Table



11 (Appendix) for examples of our various QA
prompts.

Results We present the results of UNIFIEDQA
with QASIMPLE in Table 2, and due to space limits,
T5’s results with SQUADT5 prompts in Table 10
in Appendix.

We observe that for E-SNLI and COMVE it is
crucial to add tags (“premise:”/“hypothesis:”;
“choice1:”/“choice2:”).8 This result is intuitive—
it should be difficult to pick one of the two sen-
tences, or classify a relation between them, if sen-
tences are not marked. On the other hand, adding
label choices is not beneficial and in some cases
can even decrease the performance. When tags are
included, we see that across all the tasks the “What
is...?” question performs the best. This also holds
for T5 and SQUADT5 prompts (see Table 10). Fi-
nally, the prompt with the “What is...?” question
and tags in the input outperforms UNIFEW for both
tasks UNIFEW can be applied to. This result shows
that this prompt is both versatile and effective.

Finally, we compare the best performing
prompts we get with UNIFIEDQA with QASIMPLE

and T5 wtih SQUADT5 . See prompts “ SQUADT5

× WHAT IS...? + TAGS” and “ QASIMPLE × WHAT

IS...? + TAGS” in Table 11. For ECQA and
COMVE, we observe notable improvements from
using UNIFIEDQA, and minor improvements for
SBIC. For E-SNLI, T5 is better, presumably be-
cause UNIFIEDQA has lost some useful informa-
tion from NLI after extensive continued pretraining
for QA. These results suggest that UNIFIEDQA is
a better model for prompting self-rationalization
with QA prompts.

To recap, the analysis presented in this sec-
tion suggests that QA prompting for inducing self-
rationalization behavior is best done when UNI-
FIEDQA is combined with the NL prompt below.
For true QA tasks, we use the original UNIFIEDQA
formats.9

Input:
explain what is this/more...? \\n tag1:
[sequence1] tag2: [sequence2] ...</s>

Output:
[answer/label] because [explanation]

8Performance on COMVE with “Is...?” is close to ran-
dom regardless of tags which suggests that this question form
hinders the performance and tags cannot make a difference.

9Following Hendrycks et al. (2021), we add </s> to the
end of our QASIMPLE prompts.

Prompt Accuracy BERTscore

E
-S

N
L

I

UNIFEW 61.70.6 55.80.5
+ tags 63.60.4 57.30.4

Is...? 47.50.5 42.70.5
+ tags 66.60.5 60.00.5
+ tags & choices 64.40.5 58.20.5

What is...? 40.70.4 36.50.4
+ tags 75.00.3 67.50.3
+ tags & choices 69.30.7 62.50.6

RANDOM BASELINE 33.3 -

E
C

Q
A UNIFIEDQA 41.40.3 36.70.3

RANDOM BASELINE 20.0 -

C
om

V
E

Is...? 52.70.3 47.70.3
+ tags 52.50.3 47.50.3
+ tags & choices 52.20.3 47.30.3

What is...? 50.60.2 45.70.2
+ tags 67.30.7 61.00.6
+ tags & choices 62.60.6 56.70.6

RANDOM BASELINE 50.0 -

SB
IC

UNIFEW 66.10.4 63.80.4

Is...? 63.50.4 61.20.4
+ tags 62.60.4 60.40.4
+ tags & choices 63.60.4 61.30.4

What is...? 67.30.4 65.00.4
+ tags 67.50.4 65.30.4
+ tags & choices 65.40.6 63.10.6

RANDOM BASELINE 50.0 -

Table 2: Prompting UNIFIEDQA with QASIMPLE with
“Is...?” and “What is...?” questions, and UNIFEW. See
§3.1 for descriptions of these prompts. For ECQA we
use the original UNIFIEDQA format for multiple-choice
QA. We also inspect the effects of adding label choices
and tags (defined in §3.1) to the input.

3.2 INFILLING Prompts

The simplest way to design an infilling prompt
for self-rationalization with T5 is to add the span
“<extra_id_0> because <extra_id_1>” to the
input. A model should then replace <extra_id_0>
with a label/answer and <extra_id_1> with an
explanation. Besides being similar to T5’s span
infilling pretraining task, another benefit of this
prompt is that it is very flexible—the span above
can be added to any task input. This basic infill-
ing prompt could be easily made more natural by
prepending phrases such as: “The answer is”
(ECQA), “Less common is” (COMVE), or “This



E-SNLI ECQA COMVE SBIC

B 75.20.4 22.30.3 50.40.3 61.60.4
N 75.10.4 27.60.4 49.00.3 64.70.5

(a) Accuracy.

E-SNLI ECQA COMVE SBIC

B 67.70.3 19.80.3 45.50.3 59.20.5
N 67.50.4 24.50.3 44.30.3 62.00.5

(b) BERTscore.

Table 3: A comparison of the basic infilling prompt
(B; “<extra_id_0> because <extra_id_1>”) with
its more natural sounding version (N; see §3.2).

is” (E-SNLI, SBIC). We hypothesize that these
additional phrases could be beneficial because they
suggest which subset of the vocabulary is the right
word for filling in <extra_id_0>. We test whether
it is beneficial to make the infilling prompt more
natural-sounding.

Results T5 results are shown in Table 3. The out-
come is mixed—while we observe notable benefits
for ECQA/SBIC, for E-SNLI/COMVE there is a
minor difference in favor of the basic prompt. A
way to explain this is that T5 learned about NLI la-
bels from MNLI during pretraining, so it does not
an need additional phrase to nudge it in the right
direction. COMVE results are comparable to the
random performance, and the model could not learn
the task from the infilling prompt, with or without
the additional phrases. Thus, we recommend using
the more natural version as it is not detrimental to
E-SNLI/COMVE performance while it leads to
big improvements for ECQA/SBIC.

3.3 INFILLING vs. ≈T5 vs. QA
We have established appropriate QA and IN-
FILLING prompts in §3.1 and §3.2. We now
turn to a comparison between all three prompt
types: (i) INFILLING (natural), (ii) ≈T5 , and
(iii) QASIMPLE (“What is...?” with tags). The first
two are used to prompt T5 and the last type UNI-
FIEDQA. To construct ≈T5 prompts, for each task
in FEB, we identify the most similar T5’s pretrain-
ing task (see Table 6, Appendix) and use that task’s
formatting (see, e.g., ≈T5 × COPA in Table 11).

Results A comparison of the three prompt types
is presented in Table 4. The QASIMPLE prompt
outperforms other prompt types for all tasks ex-

Task Accuracy BERTscore

IN
FI

L
L

IN
G E-SNLI 75.10.4 67.50.4

ECQA 27.60.4 24.50.3
COMVE 49.00.3 44.30.3
SBIC 64.70.5 62.00.5

Average 54.1 49.6

≈
T

5

E-SNLI 79.20.3 71.30.3
ECQA 38.30.3 33.90.3
COMVE 55.90.3 50.40.3
SBIC 65.10.6 62.80.6

Average 59.6 54.6

Q
A

SI
M

PL
E

E-SNLI 75.00.3 67.50.3
ECQA 41.40.3 36.70.3
COMVE 67.30.7 61.00.6
SBIC 67.50.4 65.30.4
Average 62.8 57.6

Table 4: A comparison between three prompt types:
INFILLING , ≈T5 , and QASIMPLE prompts. See §3 for
descriptions of these prompts.

cept E-SNLI for which unsurprisingly ≈T5 is the
best. Finally, this brings us to the end of our exten-
sive exploration of natural language prompts for a
prompt-based finetuning approach to few-shot self-
rationalization. We identify the QASIMPLE prompt
as the most effective and we use it to study how
few-shot self-rationalization performance scales
with the size of the UNIFIEDQA model.

4 Improving Self-Rationalization with
Increasing Model Size

In §3, we discovered that a QA prompt com-
bined with the base UNIFIEDQA model version
is as an effective combination for few-shot self-
rationalization through prompt-based finetuning.
In this section, we provide two additional evalu-
ations to establish the first approach to few-shot
self-rationalization.

First, we assess how plausible the generated ex-
planations are when evaluated by annotators on
Amazon MTurk. Details of how we conduct hu-
man evaluation of plausibility are given in §2. One
HIT contains 10 instances and we pay $1 per HIT.

Next, we investigate how self-rationalization per-
formance changes with the model size since larger
pretrained language models typically give better
few-shot performance (Brown et al., 2020). We
wonder whether the same trend will hold for a com-
plex generation task of self-rationalization where



Plausibility
All Label1 Label2 Label3

Model Accuracy BERTscore Score κ Score κ Score κ Score κ

E
-S

N
L

I

BASE 79.20.3 71.30.3 16.71.5 0.73 15.62.3 0.67 17.52.9 0.79 17.12.7 0.72
LARGE 84.80.3 76.60.3 32.71.9 0.57 27.32.9 0.43 33.93.4 0.64 36.83.6 0.64
3B 87.40.2 79.10.2 41.62.1 0.62 27.12.8 0.52 46.83.8 0.70 50.93.6 0.64

GPT-3 65.40.5 59.80.5 42.42.2 0.54 27.32.9 0.48 66.04.4 0.71 43.83.5 0.51

GOLD 77.41.6 0.63 63.53.0 0.44 87.91.8 0.74 82.52.4 0.72
RAND 33.3

E
C

Q
A

BASE 41.40.3 36.70.3 25.51.2 0.32
LARGE 57.20.4 51.00.3 30.31.5 0.38
3B 65.90.4 59.00.3 34.21.6 0.35

GPT-3 60.61.5 54.41.3 45.11.4 0.12

GOLD 70.91.5 0.45
RAND 20.00

C
O

M
V

E

BASE 67.30.7 61.00.6 13.81.3 0.45
LARGE 81.30.4 73.90.4 25.61.7 0.52
3B 89.00.4 81.00.3 33.41.7 0.63

GPT-3 74.01.4 67.61.3 42.21.8 0.73

GOLD 77.21.3 0.55
RAND 50.0

S
B

IC

BASE 67.50.4 65.30.4 58.02.2 0.68 21.42.1 0.54 94.61.1 0.82
LARGE 71.10.4 68.50.4 61.82.2 0.66 27.22.2 0.43 96.50.9 0.89
3B 71.70.5 68.90.5 64.22.1 0.68 33.82.6 0.55 94.61.0 0.81

GPT-3 74.21.4 71.51.4 72.71.7 0.53 52.62.5 0.34 92.71.0 0.72

GOLD 79.81.6 0.67 64.92.7 0.52 94.71.0 0.81
RAND 50.0

Table 5: The first results on the FEB benchmark using T5/UNIFIEDQA (BASE, LARGE, 3B) and GPT-3. T5
with ≈T5 prompt is used only for E-SNLI, and UNIFIEDQA + QASIMPLE prompt is used for other datasets.
The descriptions of these prompts are given in §3 and details of how evaluation metrics are calculated in §2.
RAND stands for a random baseline and GOLD for human-authored explanations. Label1/Label2/Label3 are
entailment/neutral/contradiction in E-SNLI and offensive/not offensive in SBIC. The number of parameters is:
200M (BASE), 770M (LARGE), 2.8B (3B), and 175B (GPT-3).

it is conceivable that an enormous model could
overfit on a few examples. To this end, we evalu-
ate three versions of UNIFIEDQA (BASE, LARGE,
3B) and GPT-3 (Brown et al., 2020). We use
davinci-instruct-beta which is a beta version
of the INSTRUCTGPT model (Ouyang et al., 2022).

We evaluate GPT-3 using its API and “in-
context demonstrations” (Brown et al., 2020). We
pack as many training examples (demonstrations)
as we can fit in the input, followed by the input
of the test example, then run GPT-3 to generate
its output. The number of demonstrations we are
able to fit ranges from [28,45] which are randomly

selected from the 48 used for UNIFIEDQA. Since
evaluation using a single prompt costs us $1,050,
we do not do prompt search for GPT-3. We use
the prompts shown in Fig. 1 in Appendix.

A detailed description of evaluation metrics is
given in §2. The dev set size (of each out of 60
dev sets) for GPT-3 is 18 instead of 350 (because
of the API cost). Ground-truth explanations are
evaluated together with explanations generated by
4 models. Therefore, for GOLD explanations, we
report the average of 4 plausibility scores, std. er-
rors, and κ values calculated with 4 Mturk batches
(corresponding to 4 models).



4.1 Results
Results are shown in Table 5. Note that we use
T5 with the ≈T5 prompt for E-SNLI, and UNI-
FIEDQA with QASIMPLE (§3) for other datasets
to establish the best possible performance for
each dataset. The exact prompts for each task
are given in Appendix A.2. We observe that all
metrics—accuracy, BERTscore, and plausibility—
monotonically increase with the model size for all
datasets. That is, larger models learn to predict
task labels and generate explanations from a few
examples better. UNIFIEDQA-3B has a higher ac-
curacy/BERTscore than GPT-3 for all datasets ex-
cept SBIC, but GPT-3 generates explanations that
are notably more plausible.

The following observations suggest that few-shot
self-rationalization is a promising research direc-
tion. The difference in plausibility scores between
the BASE and 3B model versions ranges from [6.2,
24.8] (on average 14.8). In other words, since it is
possible to generate more plausible explanations
by only increasing the model size, it is conceivable
that further progress could be made with more cre-
ative approaches. Next, the plausibility score of
the best model (GPT-3) ranges from [42.2, 72.7]
([42.2, 52.6] if we consider only SBIC “offensive”
(Label1) subset. This shows that a moderate plausi-
bility can already be achieved with current models
without any task-specific enhancements.

Despite that, the gap between our best models
and human-authored explanations remains large.
The average plausibility score across datasets is
43.4 (UNIFIEDQA-3B), 50.6 (GPT-3), and 76.3
(GOLD). In other words, the difference in plausibil-
ity scores between UNIFIEDQA-3B’s and human
explanations is 33.0, and between GPT-3’s and hu-
man explanations is 25.7. We expect that the FEB
benchmark, our UNIFIEDQA approach, and first
results, present a good starting point to tackle this
challenge.

Performance w.r.t. Labels For E-SNLI and
SBIC, we can inspect the metrics with respect to la-
bels. In E-SNLI part of the Table 5, Label1 marks
“entailment”, Label2 “neutral”, and Label3 “con-
tradiction”. There are notable differences between
the plausibility scores for each label. The plausi-
bility score for “entailment” does not scale with
the model size and it is much lower than scores for
other labels (the best score is 27.3 vs. 66.0/50.9).
This issue stems from the difficulty of explaining
the entailment label (Camburu et al., 2018). Even

people struggle with explaining “entailment” as
evident by the lower GOLD score for “entailment”
compared to the other two labels. An interesting
observation from the other two labels is that UNI-
FIEDQA-3B is explains “contradiction” instances
best and GPT-3 “neutral” instances.

In SBIC part of the Table 5, Label1 marks “of-
fensive” and Label2 “not offensive” instances. The
latter achieve almost perfect plausibility since the
models learn to generated “This post does not imply
anything offensive”. Thus, main plausibility scores
for SBIC are those of offensive instances. We can
observe that the relative differences between mod-
els for offensive instances are much larger than the
relative differences when examples of both labels
are accounted for (column “All / Score”). If we
had only looked into a single plausibility score we
would not notice these differences. This result is in
line with Carton et al. (2020) who also recommend
breaking down the evaluation of explanations w.r.t.
labels whenever possible.

Annotator Agreement Finally, we observe chal-
lenges in collecting human judgments of plausi-
bility. For all datasets except ECQA, Fleiss’ κ is
either moderate (between 0.41–0.6) or substantial
(between 0.61–0.8). One exception is GPT-3 on
SBIC (Label1; offensive) where κ is only 0.34. We
also observe that κ for GPT-3’s explanations is
lower than κ for UNIFIEDQA’s or GOLD explana-
tions, with the exception of COMVE. The most
concerning is ECQA where κ is on average 0.35
for UNIFIEDQA’s explanations, 0.34 for GOLD

explanations, and only 0.12 for GPT-3’s. Future
work should investigate the reasons behind these
differences more carefully.

5 Related Work

Few-Shot Self-Rationalization A standard ap-
proach to creating explanations in the form of
highlights is the select-then-predict method (Lei
et al., 2016) that does not use any human-author
input highlights. On the other hand, a standard
method for generating free-text explanations is to
use human-written explanations (Liu et al., 2019;
Wu and Mooney, 2019; Narang et al., 2020, among
others). To the best of our knowledge, prior to sub-
mitting our work only two prior works have gener-
ated free-text explanations in a weakly-supervised
way from the task prediction loss. Latcinnik and
Berant (2020) approach commonsense QA in that
fashion. Brahman et al. (2021) propose a distant



supervision approach to explaining a defeasible in-
ference task. In this paper, we introduce the FEB
benchmark to unify the evaluation of few-shot self-
rationalization and present the first approach and
results on FEB.

Concurrent to our work, Yordanov et al. (2021)
study self-rationalization transfer from a high-
resource task to a task with only a few human-
authored explanations. Wiegreffe et al. (2022) an-
alyze explanations obtained by prompting GPT-
3 multiple times to get multiple explanation can-
didates, and then filter these candidates using a
model trained to predict acceptability of explana-
tions. Their prompt consists of a few examples
with high-quality explanations written by the au-
thors and a new instance together with its gold
label. Wei et al. (2022) demonstrate end-task per-
formance improvements attained by prompting the
PaLM model (Chowdhery et al., 2022) to first gen-
erate an explanation behind its reasoning (“chain
of thought”) and then the task label. Zelikman et al.
(2022) extend this approach by using explanations
generated in a few-shot manner to refine the same
GPT-J (Wang and Komatsuzaki, 2021) model.

Few-Shot Learning We study natural language
prompts (Brown et al., 2020; Schick and Schütze,
2021) to establish the first approach to few-shot
self-rationalization. Alternatively, few-shot learn-
ing researchers are studying prompts in the form
of continuous/soft vectors that do not correspond
to real tokens (e.g., Qin and Eisner, 2021). Such
methods present a promising research direction for
few-shot self-rationalization. Namely, we show
that larger models generate notably more plausible
explanations, and “prefix tuning” (Li and Liang,
2021) has been show to learn two condition genera-
tion tasks using only 0.1% of the parameters, while
maintaining comparable performance. In practice,
such approaches still require a notable amount of
GPU memory. Thus, any efforts to reduce required
memory such as compression (Ganesh et al., 2021)
may be valuable for few-shot self-rationalization.

6 Conclusions

We draw attention to the task of few-shot self-
rationalization: predicting task labels and gener-
ating free-text explanations for the prediction using
only a few human-written explanations. We present
(i) the FEB benchmark, (ii) the first prompting ap-
proach for FEB established through a comprehen-
sive search of natural language prompts, and (iii)

results using models with a number of parameters
ranging from 220M to 175B. Our human evalua-
tion results show that progress is possible on this
task given that just scaling the model size increases
both the plausibility of generated explanations and
task accuracy by a very large margin. Despite that,
few-shot self-rationalization remains very challeng-
ing, with the plausibility of explanations generated
by the best model being 27.7 points behind that of
human-authored explanations. We hope that work
presented in this paper spurs the community to
work on this challenging problem to enable more
intuitive interaction with NLP systems.
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explain: A review of datasets for explainable nlp. In
Proceedings of the Advances in Neural Information
Processing Systems (NeurIPS).

Sarah Wiegreffe, Ana Marasović, and Noah A. Smith.
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A Appendix

A.1 Input Formats in Related Work
SQUADT5 (T5’s prompt for SQUAD)

• question: [question] context: [para-
graph]

UNIFIEDQA’s prompts (basis for QASIMPLE )
• Multiple-choice QA: [question] \\n (A)

[choice1] (B) [choice2]...
• Extractive QA: [question] \\n [paragraph]

UNIFEW
• Single text classification: Topic? \\n (A)

[class1] (B) [class2] (C) [class3] \\n [docu-
ment]

• Sentence-pair classification: [sentence1] Is
[sentence1] ? \\n (A) Yes (B) No (C)
Maybe

• Relation classification: [mention1] to
[mention1] ? \\n (A) [class1] (B) [class2]
(C) [class3]

• Entity recognition: What is the type of
the entity between the # marks? \\n
[text... #mention1# ...text... #mention2# ...text]

A.2 Prompts Used in §4
We use ≈T5 for E-SNLI, and QASIMPLE for other
datasets:

• E-SNLI explain nli hypothesis: [hy-
pothesis] premise: [premise]

• ECQA: explain [question] \\n (A)
[choice1] (B) [choice2] (C) [choice3] (D)
[choice4] (E) [choice5]

• COMVE: explain what is more
nonsensical? \\n choice1: [sentence1]
choice2: [sentence2]

• SBIC: explain what is this? \\n post:
[post]

Prompts for GPT-3 are given in Figure 1. The
output always takes the form of “[answer/label]
because [explanation]”.

SBIC:

Is the following post offensive? and why?
Post: [post]
Answer: [Yes | No]
Reason: [explanation]

E-SNLI:

Answer the question and provide a reason why
the answer is correct.
[premise]
Question: Is [hypothesis]?
Answer: [Yes | No | Maybe]
Reason: [explanation]

ECQA:

Answer the question from the provided
choices, and provide a reason why the answer
is correct.
Question: [question]
Choices: [choices]
Answer: [one of the choices]
Reason: [explanation]

COMVE:

Which of the two choices makes more sense?
and why?
Choice1: [choice1]
Choice2: [choice2]
Answer: [Choice1 | Choice2]
Reason: [explanation]

Figure 1: GPT-3 prompt templates for all datasets.

FEB Task Similar T5 Pretraining Tasks

E-SNLI MNLI
(Williams et al., 2018)

Classify the entailment relation
between two sequences

ECQA RECORD
(Zhang et al., 2018)

Answer a cloze-style query about
a passage given entities in it

COMVE COPA
(Roemmele et al., 2011)

Select one of two sequences as
the cause/effect of a premise

SBIC COLA
(Warstadt et al., 2019)

Classify a sentence as acceptable
or not

Table 6: The first column shows tasks that we have
included in FEB. Tasks on the right are included in
T5’s pretraining and they are similar to FEB’s tasks.
We explore self-rationalization prompts for FEB’s tasks
based on the tasks on the right, and compare them to
prompts designed as span infilling and QA (§3).



GPUs 8 NVIDIA A100s 48 GB on Google Cloud

Implementation https://github.com/allenai/feb

Hyperparameter Assignment

max step number 300

batch size 4 (1 for T5/UNIFIEDQA-3B)

grad. accumulation steps 1 (4 for T5/UNIFIEDQA-3B)

learning rate 3e-5

learning rate scheduler linear

warmup steps 0

decoding greedy

Table 7: Hyperparameters used in our experiments.

Accuracy BERTscore

C
O

S
-E

INFILLING (b) 34.30.4 29.60.3
INFILLING (n) 40.10.4 34.70.3
≈T5 51.70.4 44.60.4
SQUADT5 51.10.3 44.10.3
QASIMPLE 60.00.3 48.60.3

Table 8: A comparison of all prompt types introduced
in §3 on COS-E. We do not support using COS-E in the
future given the reported issues with it (Narang et al.,
2020; Wiegreffe and Marasović, 2021), especially since
ECQA is introduced.

Size Accuracy BERTscore

C
O

S
-E

BASE 58.30.3 50.40.2
LARGE 69.40.3 60.10.3
3B 75.40.3 65.30.3
GPT-3 68.41.3 59.51.2

Table 9: The effect of scaling the UNIFIEDQA model
size on self-rationalization of COS-E. We do not support
using COS-E in the future given the reported issues with
it (Narang et al., 2020; Wiegreffe and Marasović, 2021),
especially since ECQA is introduced.

Prompt Accuracy BERTscore

E
-S

N
L

I Is...? 38.70.4 34.70.4
+ tags 48.20.6 43.20.6

What is...? 60.70.8 54.70.8
+ tags 77.90.3 70.10.3

E
C

Q
A SQUADT5 36.50.3 32.40.3

RANDOM BASELINE 20.0 -

C
O

M
V

E Is...? 50.40.2 45.50.1
+ tags 50.20.1 45.30.1

What is...? 50.50.2 45.70.2
+ tags 54.50.5 49.20.4

S
B

IC

Is...? 63.40.6 61.10.6
+ tags 63.80.5 61.70.5

What is...? 66.70.5 64.30.5
+ tags 67.00.5 64.60.6

Table 10: A comparison between SQUADT5 prompts
with “Is...?” and “What is...?” questions. See §3.1
for more info. We also inspect the effects of adding
answer choices and tags to the input. Tags are a single
word descriptions of the input elements; e.g., E-SNLI’s
tags are “premise:” / “hypothesis:” before premise /
hypothesis.

https://github.com/allenai/feb


Sentence1: The stove was cleaned with a cleaner. Sentence2: The stove was cleaned with a mop.
Nonsensical Sentence: Sentence2 Explanation: A mop is too large to clean the stove.

Prompt: INFILLING × BASIC

Input: explain sensemaking choice1: The stove was cleaned with a cleaner. choice2: The stove was cleaned
with a mop. <extra_id_0> because <extra_id_1>
Output: <extra_id_0> choice2 <extra_id_1> A mop is too large to clean the stove. <extra_id_2>

Prompt: INFILLING × NATURAL SOUNDING

Input: explain sensemaking choice1: The stove was cleaned with a cleaner. choice2: The stove was cleaned
with a mop. It is <extra_id_0> that choice2 is less common because <extra_id_1>
Output: <extra_id_0> True <extra_id_1> A mop is too large to clean the stove. <extra_id_2>

Prompt: ≈T5 × COPA
Input: explain sensemaking choice1: The stove was cleaned with a cleaner. choice2: The stove was cleaned
with a mop. Less common is choice2
Output: True because a mop is too large to clean the stove.

Prompt: SQUADT5 × YES/NO + TAGS

Input: explain sensemaking question: Is choice2 more nonsensical? context: choice1: The stove was
cleaned with a cleaner. choice2: The stove was cleaned with a mop.
Output: Yes because a mop is too large to clean the stove.

Prompt: SQUADT5 × WHAT IS...? + TAGS

Input: explain sensemaking question: What is more nonsensical? context: choice1: The stove was
cleaned with a cleaner. choice2: The stove was cleaned with a mop.
Output: choice2 because a mop is too large to clean the stove.

Prompt: QASIMPLE × YES/NO

Input: explain is choice2 more nonsensical? \\n The stove was cleaned with a cleaner. The stove was cleaned
with a mop.</s>
Output: yes because a mop is too large to clean the stove.

Prompt: QASIMPLE × YES/NO + TAGS

Input: explain is choice2 more nonsensical? \\n choice1: The stove was cleaned with a cleaner. choice2:
The stove was cleaned with a mop.</s>
Output: yes because a mop is too large to clean the stove.

Prompt: QASIMPLE × YES/NO + TAGS + CHOICES

Input: explain is choice2 more nonsensical? \\n (A) yes (B) no \\n choice1: The stove was cleaned
with a cleaner. choice2: The stove was cleaned with a mop.</s>
Output: yes because a mop is too large to clean the stove.

Prompt: QASIMPLE × WHAT IS...?
Input: explain what is more nonsensical? \\n The stove was cleaned with a cleaner. The stove was cleaned
with a mop.</s>
Output: choice2 because a mop is too large to clean the stove.

Prompt: QASIMPLE × WHAT IS...? + TAGS

Input: explain what is more nonsensical? \\n choice1: The stove was cleaned with a cleaner. choice2:
The stove was cleaned with a mop.</s>
Output: choice2 because a mop is too large to clean the stove.

Prompt: QASIMPLE × WHAT IS...? + TAGS + CHOICES

Input: explain what is more nonsensical? \\n (A) choice1 (B) choice2 \\n choice1: The stove was
cleaned with a cleaner. choice2: The stove was cleaned with a mop.</s>
Output: choice2 because a mop is too large to clean the stove.

Table 11: COMVE self-rationalization prompts that we design and test. INFILLING marks span-filling prompts;
≈T5 prompts made by following the most similar T5 pretraining task (Table 1); SQUADT5 prompts designed
following SQUAD’s formatting in T5 pretraining; and QASIMPLE prompts made following UNIFIEDQA. This table
shows variations of these prompt types. We refer to spans “choice1:”/“choice2:” as TAGS, and to “(A) yes (B)
no”/“(A) choice1 (B) choice2” as CHOICES. YES/NO and WHAT IS...? refer to a question type. Following Hendrycks
et al. (2021), we add </s> to the end of our QASIMPLE prompts. More info in §3.


