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Abstract

Multi-Agent Path Finding (MAPF) is the one-shot problem
of finding collision-free paths in a shared environment while
minimizing the sum of the agents’ travel times. Since solv-
ing MAPF optimally is NP-hard, w-optimal algorithms such
as Explicit Estimation Conflict-Based Search (EECBS) have
been used to speed up the search while providing a guarantee
on the solution quality. However, the scalability of EECBS
is limited in large-scale MAPF instances. While EECBS can
be accelerated for regularly structured environments, such as
Kiva warehouses, by utilizing specialized guidance heuris-
tics, these heuristics are ineffective in more general and large-
scale environments. To fill this gap, we propose the Flow-
Based Guidance Framework (FBGF), a general two-phase
process that simulates a list of paths and then generates the
Flow-Based Guidance Heuristic (FH) without making prior
assumptions about the environment’s structure. We identify
features that distinguish w-optimal MAPF from other MAPF
variants and propose strategies to enhance its effectiveness for
guidance, complemented by the flex distribution technique
from EECBS. The empirical evaluation demonstrates that our
FH significantly reduces collisions, thereby achieving higher
success rates than the state-of-the-art within 60 seconds.

1 Introduction

Multi-Agent Path Finding (MAPF) is the one-shot problem
of finding collision-free paths in a shared environment, al-
lowing each agent to move from its start to its target lo-
cation. An optimal solution for a MAPF instance is a list
of collision-free paths with a minimal sum of travel time
for each agent. MAPF has numerous applications, including
autonomous warehouses (Wurman, D’ Andrea, and Mountz
2008), traffic management (Li et al. 2023), and drone con-
trol (Ho et al. 2019). Since finding optimal MAPF solutions
is NP-hard (Yu and LaValle 2013), researchers have been
motivated to trade off solution quality with runtime. One di-
rection is to find a w-optimal (i.e., bounded-suboptimal) so-
lution whose sum of travel time deviates from the optimum
by at most a user-specified factor w > 1. Explicit Estima-
tion Conflict-Based Search (EECBS) (Li, Ruml, and Koenig
2021) is the leading w-optimal MAPF algorithm. Derived
from a two-level framework, EECBS first finds paths for
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Figure 1: Average runtime between the state-of-the-art and
our approach (in red) over all MAPF instances on each graph
with number of vertices |V |. The MAPF instances here are
the same as those in Figure 3.

agents individually on the low level and then resolves col-
lisions on the high level while maintaining the best-known
sum of lowerbounds on the sum of travel time of the optimal
solution.

Although EECBS is the state-of-the-art approach for find-
ing a w-optimal solution for a MAPF instance, it still ex-
hibits limited scalability for large-scale MAPF instances
where many agents move in a large environment. Prior
guidance approaches either specialize in particular environ-
ment structures or require a lifelong setting, where guid-
ance heuristics can be computed online, without further
guarantees on the solution quality. Nevertheless, it is non-
trivial to directly apply these lifelong approaches to one-
shot tasks, and efficiently generating heuristics that can ef-
fectively guide the agents while guaranteeing w-optimality
in large-scale environments remains challenging. This is be-
cause, unlike lifelong MAPF, w-optimal MAPF is a one-shot
problem with the following features:

(F1) Agents wait at their target locations permanently,
(F2) SOC must be guaranteed w-optimal, and
(F3) A finite time budget is specified w.r.t. resources.

Here, feature (F2) also determines the difference between

w-optimal MAPF and (unbounded) suboptimal MAPF.
Thus, to improve the efficiency of EECBS in finding

w-optimal solutions, we propose the Flow-Based Guid-



ance Framework as a general pre-processing technique,
which outputs the Flow-Based Guidance Heuristic (FH) that
guides the agents while guaranteeing w-optimality. Given a
MAPF instance, our framework generates flows by simulat-
ing agents’ paths with strategies targeting w-optimal MAPF.
Next, it constructs the Flow-Based Guidance Graph (FGG)
to coordinate flows and compute FH as guidance without
further prior assumptions about the environment structure.
Our contributions are as follows:

* We introduce a two-phase Guidance Framework as a
general pre-processing technique for w-optimal MAPF.

* We propose the Flow-Based Guidance Framework (see
Figure 2) that contains strategies exploiting observations
from w-optimal MAPEF, resulting in Flow-Based Guid-
ance Heuristics (FH) that guides the agents to find guar-
anteed w-optimal solutions.

* Our Flow-Based Guidance Framework can efficiently
output FH to speed up EECBS effectively while provid-
ing the w-optimality guarantee, outperforming the state-
of-the-art guidance heuristics in runtime (see Figure 1).

2 Background
2.1 Multi-Agent Path Finding

A MAPEF instance (Stern et al. 2019) (Russell and Norvig
2010) consists of an undirected graph G = (V, E') and a set
of k agents {ay,...,ax}. Each agent a; has a unique start
vertex s; and a unique target vertex [;,. A path of an agent,
starting at its start vertex and ending at its target vertex, is
a sequence of vertices indicating where the agent is at each
timestep. Each agent permanently waits at its target vertex
after it completes its path. The cost of a path is the number
of timesteps needed by the agent to move from its start ver-
tex to its target vertex, ignoring subsequent timesteps after
reaching its target vertex. When a pair of agents respectively
follow their paths, a vertex conflict occurs iff they reach the
same vertex at the same timestep. An edge conflict occurs
iff these two agents traverse the same edge in opposite di-
rections at the same timestep. A solution is a list of conflict-
free paths, one for each agent. A solution is optimal iff its
sum of (path) costs (SOC) is minimum, denoted as C*, and
w-optimal iff its SOC is at most w - C*, where w > 1is a
user-specified suboptimality factor.

2.2 Explicit Estimation Conflict-Based Search

Explicit Estimation Conflict-Based Search (EECBS) (Li,
Ruml, and Koenig 2021) is a two-level w-optimal algorithm
for MAPF. Its strategy is to iteratively resolve a conflict by
introducing constraints on the high level and then finding
the paths on the low level to satisfy the constraints. On the
high level, EECBS constructs a Constraint Tree (CT), where
a constraint indicates that an agent is not allowed to reach a
vertex or traverse an edge at a particular timestep. A CT node
N contains a set of constraints and a list of paths, one for
each agent, that satisfy its set of constraints. EECBS then
runs Explicit Estimation Search (EES) (Thayer and Ruml
2011), a w-optimal heuristic search algorithm, on CT. It
maintains a set of lists that contain all the generated but not
yet expanded CT nodes, denoted as LISTs.

On the low level, to find a path for an agent a; in a CT
node N, EECBS constructs a search tree with each vertex-
timestep (v-t) node n containing a tuple (v, t) that indicates
an agent staying at vertex v at timestep ¢. For a v-t node n =
(v, 1), we define a priority function f;(n) = g;(n) + h;(v),
where g;(n) = t is the number of timesteps for agent a;
to move from its start vertex s; to vertex v and h;(v) is
an admissible heuristic that underestimates the number of
timesteps needed to move from vertex v to its target ver-
tex ;. The number of conflicts z;(n) is computed with the
paths of the other agents. EECBS runs focal search (Pearl
and Kim 1982) to find an individually w-optimal path. Focal
search maintains two lists: OPEN;, and FOCAL . OPEN
sorts all the generated but not yet expanded v-t nodes n in
increasing order of priority function f;(n). FOCAL,, con-
tains those v-t nodes in OPEN, whose f;(n) are less than
or equal to a threshold 7, = w - finin,i (IV), where fiin i (V)
is the minimum f-value among all v-t nodes in OPEN/,. Fo-
cal search sorts these v-t nodes n € FOCAL, in increasing
order of their number of conflicts z;(n), tie-breaking with
a secondary heuristic h(n) (Cohen et al. 2016). At each it-
eration, focal search expands the top v-t node in FOCAL,
that has the minimum x; value. Since f;(n) of any v-t node
n in FOCAL [, is at most threshold 7;, the focal search al-
ways finds an individually w-optimal path that satisfies con-
straints, i.e., ¢;(N) < w - 1b;(N),Vi € [k] holds. The SOC
of the CT node N thus satisfies

C(N)= > ¢;j(N)<w- Y Ibj(N)=w-LB(N). (1)
jelk] j€lk]
EECBS keeps track of the minimum sum of lowerbounds
(SOLB) among all the CT nodes in LISTs, which indicates
the best-known SOLB LB on the SOC of the optimal solu-
tion.

2.3 Flex Distribution

EECBS finds a w-optimal solution by requiring each path
in a CT node to be individually w-optimal, i.e., ¢;(N) <
w - 1b;(N), Vi € [k]. However, as long as the SOC of a CT
node is w-optimal, EECBS can still find a w-optimal solu-
tion without forcing each path to be individually w-optimal.
Suppose that EECBS expands CT node N and generates one
of its child CT nodes V. To find a path for agent a; in CT
node NN via focal search while remaining the paths of other
agents ajex)\ {4} fixed, Chan et al. (2022) uses flex distribu-
tion, which is an approach that relaxes the threshold 7;(N)
by adding 3 43 (0 10; (V) — ¢;(IV)), where the range
w-1b;(N) —¢;(IN) is defined as flex from the path for agent
a;. In this case, although each path in a CT node is no longer
individually w-optimal, the SOC of each CT node remains
w-optimal toward its SOLB. Meanwhile, with the relaxed
threshold, the paths in the generated CT nodes can further
reduce the number of conflicts and thus speed up the search.

3 Related Work
3.1 Highway Heuristics

Given the graph G = (V| E) of a MAPF instance, Cohen
et al. (2016) constructs a weighted directed graph for com-



puting the highway heuristics. For each edge (u,v) € FE
(where u,v € V), a pair of directed edges, €,, = u — v
and e,, = v — u, are added to the set of edges in the
weighted directed graph. The weight w,, of each directed
edge e, is determined as

Wy = {1, if e, E'hlghways, @
w, otherwise,

where highways is a subset of directed edges. When com-
puting the heuristics, edges not belonging to highways are
penalized by increasing their weights to w.

When finding a path for agent a;, for each v-t node n =
(v, ), the highway heuristic is defined as the minimum dis-
tance from vertex v to its target vertex /; in the weighted
directed graph. Then, the highway heuristic is used as the
secondary heuristic for the low-level focal search, breaking
ties between two v-t nodes with the same number of conflicts
in FOCAL, with a lower highway heuristic value. That is,
agents tend to move along the paths following more edges
belonging to highways.

To select the subset of highways, Cohen et al. (2016) pro-
poses separate approaches: the Criss-Cross (CC) and the
Heat-Map (HM). The CC-based approach selects highways
via handcrafted rules. However, it strongly depends on the
geometry of the graph, which limits its generality. On the
other hand, the HM-based approach is an iterative process.
At each iteration, it randomly selects a pair of start and target
vertices (that may not belong to the given MAPF instance)
and then finds a minimum-cost path on a weighted directed
graph, with the cost of each directed edge e, being a func-
tion of the numbers that e, and e,, appeared in the previous
paths. When the process terminates, it selects a subset of di-
rected edges with low weights as the highways. In general,
the HM-based approach encourages agents to follow the pre-
viously planned paths with lower edge weights involved.

3.2 Guidance Heuristics of Other MAPF Variants

To the best of our knowledge, the highway heuristics ap-
proach is the only work that aims to guide agents while
guaranteeing the finding of w-optimal solutions. Still, this
approach motivated researchers to explore ideas of guiding
agents for coordinated movements in two other MAPF vari-
ants: lifelong MAPF and (unbounded) suboptimal MAPF.
For lifelong MAPF, where agents receive a sequence of
target vertices, Chen et al. (2024) proposed traffic flow op-
timization (TFO) that coordinates paths by updating the
heuristics based on the traffic flows of the simulated time-
independent paths (i.e., agents are not allowed to perform
wait actions). However, as shown in the empirical evalua-
tion, directly applying traffic flow optimization from lifelong
MAPF results in inefficiency for w-optimal MAPF. On the
other hand, Zhang et al. (2024) uses a model-based approach
to build a guidance graph representing the estimated action
costs per vertex. However, their model is graph-dependent,
which limits its generality. Also, as the number of vertices
increases, the number of variables grows, which causes huge
overhead regarding time and data, and is thus limited in
scalability. In this paper, we target large graphs with more
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Figure 2: The block diagram of the Flow-Based Guidance
Framework, which takes a MAPF instance as input and re-
turns the Flow-Based Guidance Heuristics for each agent
on each vertex. The shortest paths from vertices s; to [; in
graphs G and G are marked in red.

than 5K vertices, which are intractable with their approach.
For suboptimal MAPF, where the solution quality is un-
bounded, Han and Yu (2022) proposed space-utility opti-
mization (SUO) that estimates the space utility in the graph
of the MAPF instance. Their approach guides the agents
with the paths that traverse the vertices/edges with low con-
gestion. That is, their approach optimized the space utility by
finding paths that avoid congestion. However, since their ap-
proach targets suboptimal MAPF without any guarantees on
the solution quality, agents following their guidance when
aiming for a w-optimal path may inevitably encounter con-
flicts, which causes overhead to resolve (see Table 1).

4 Guidance Framework for MAPF

Pre-processing MAPF instances to avoid conflicts or con-
gestion while finding paths for agents has become popu-
lar. Based on the related work, we thus introduce a general
framework called Guidance Framework, which contains two
phases: the path-simulation phase (P1) and the heuristic-
calculation phase (P2). In the path-simulation phase (P1),
given a graph G = (V,E) from a MAPF instance, the
guidance framework constructs a weighted directed graph
G' = (V,E',W'), known as the guidance graph (Zhang
et al. 2024). For each undirected edge ¢ = {u,v} € E,
there is a pair of directed edges €,, = (u — V), €y =
(v — u) € E’ with respective weights w,,,,, w,, € W'. The
guidance framework then finds paths from graph G’ and up-
dates its weights accordingly. Since the guidance graph G’
is different from the original graph G in the MAPF instance,
we term finding a path in G’ to be simulation. After the
path-simulation phase (P1), the guidance framework moves
to the heuristic-calculation phase (P2) to generate guidance
heuristics for each agent a; by calculating the shortest-path
distances in the guidance graph G’ from each vertex v € V
to its target vertex [;.

The related works can be viewed as instantiations of our
guidance framework. For example, the heat map-based ap-
proach (Cohen et al. 2016) is an instantiation that (P1) se-
quentially selects a start vertex and a target vertex and sim-
ulates the shortest paths on a directed weighted graph with



edge weights taking into account the simulated paths, and
(P2) calculates the highway heuristics from the weighted
graph as guidance. The guidance framework can also be
applied to approaches used to solve other MAPF vari-
ants. For example, the traffic flow optimization for lifelong
MAPF (Chen et al. 2024) is an instantiation that (P1) selects
all the agents in the lifelong MAPF instance and simulate (or
refine) their time-independent paths on a weighted graph,
where the weights are from the handcrafted functions that
consider the simulated paths, and (P2) calculates the guid-
ance heuristics via backward breadth first search.

5 Flow-Based Guidance Framework (FBGF)

To guide the agents and improve the efficiency of one-
shot w-optimal MAPF, we follow our two-phase guidance
framework and propose the Flow-Based Guidance Frame-
work (FBGF) as a general pre-processing technique before
running EECBS. Figure 2 shows the block diagram of the
framework. In the path-simulation phase (P1), we simulate
paths to construct the Flow-Based Guidance Graph (FGG)
G r, which is an instantiation of the guidance graph G’ in
the guidance framework. Next, in the heuristic-calculation
phase (P2), we rely on FGG and calculate the Flow-Based
Guidance Heuristic (FH) for each agent on each vertex.

5.1 Path-Simulation Phase (P1)

In the path-simulation phase (P1), we simulate one path for
each agent sequentially. Before finding the simulated path
for an agent a;, we run the backward Dijkstra algorithm
from its target vertex [; on the graph G to get the shortest-
path distance for each vertex v, which serves as an admis-
sible heuristic /;(v). To handle the features (F1), (F2), and
(F3) (see Introduction section) when simulating a path for
FGG, we develop the following strategies, respectively:

(S1) View other agents’ target vertices as static obstacles,

(S2) Use a two-stage process with flexible bounded-cost
search (FBCS) to find paths sequentially, and

(S3) Limit the number of simulated paths.

For feature (F1), after an agent waits at its target ver-
tex permanently, it may encounter numerous conflicts with
other agents that traverse through, known as farget conflicts,
which may cause computational overhead to resolve, even
when advanced approaches are used (Li et al. 2020). Thus,
we develop our strategy (S1) that guides agents to avoid tar-
get conflicts. When finding a simulated path for an agent
a;, we view other agents’ target vertices [;cx)\ (i} as static
obstacles, defined as target obstacles. That is, the simulated
paths we use for constructing FGG never traverse any target
vertices except their own.

As we introduce additional target obstacles from strategy
(S1), focal search may expand v-t nodes whose f; values
exceed the threshold. Thus, to handle feature (F2), instead
of running focal search sequentially, we propose our strat-
egy (S2), which is a two-stage process that simulates paths.
At stage (I), we run bounded-cost search (BCS), modified
from Haslum (2013), sequentially, attempting to simulate
one path for each agent that considers target obstacles from

Algorithm 1: Flexible Bounded-Cost Search (FBCS)

1: procedure FBCS(s;, I;, P)
2: > P[j] is the simulated path of agent a;. N
4: for j from 1 to kdo > Skip the for loop for BCS.
5: if j = i or P[j] is empty then
6: | continue
7 ¢; < cost of path P[j]
8: Ti <= Ti + (w- f5((55,0)) — ¢5)
9: root v-t node r <— (s;,0)
10: FOCAL}, and CLOSED/, < empty sets
11: Insert v-t node » to FOCAL ,
12: while FOCAL 1, not empty do
13: ng < top v-t node in FOCAL
14: Remove v-t node n, from FOCAL,
15: Insert v-t node n,, to CLOSED/,
16: if ISGOAL(n,,) then
17: | return EXTRACTPATH(n)
18: neighbors < EXPANDNODE(n)
19: for n’ = (v, t') € neighbors do
20: ifv' € {lje[k]\{z}} or f;(n') > 7; then
21: | continue > Use strategies (S1) and (S2).
22: Find 7 with the same (v’,¢') in CLOSED/,
UFOCALp
23: if 7 not found then
24: Insert v-t node n’ to FOCAL,
25: _ continue
26: if ISDOMINANT(n/, ) then
27: islnCLOSED < true if n € CLOSED,
28: 9i(n) <= g;(n'), @i(n) < x;(n')
29: if isinCLOSED is true then
30: Remove n from CLOSED,
31: Insert v-t node n to FOCAL,
32: else
33: .| || Update the priority of 7 in FOCAL[,
34: | return No path exists

strategy (S1). BCS maintains only one list, FOCALy, that
contains all the generated but not yet expanded v-t nodes
n, sorted in increasing order of their number of collisions
x;(n), tie-breaking with a smaller h; value for v-t nodes
in FOCAL}. To start BCS, we generate a root v-t node
ng = (s;,0) and add it to FOCAL L, where f;(ng) = h;(s;)
is the lowerbound on the cost of the optimal path for agent
a; since h;(s;) is admissible. At each iteration, to deploy
our strategies (S1) and (S2), we expand the top v-t node n
from FOCAL}, (which has the minimum number of colli-
sions) and only generate its child v-t nodes n’ = (v, ') if
v ¢ {l; | ajz € A} and fi(n') < w- f;(ny). We terminate
BCS either when a target v-t node (I;,¢;) is expanded, where
t; is the timestep reaching target vertex /; (i.e., a bounded-
cost path is found) or when FOCAL [, is empty (i.e., no such
bounded-cost path exists). If a simulated path is found, it is
guaranteed to have cost at most w - f;(ng), where f;(ng)
is the lowerbound on the cost of the optimal path for agent
a;. Thus, the simulated path found by BCS is individually
w-optimal under the situation where no constraint is intro-



Algorithm 2: Flow-Based Guidance Framework (FBGF)
procedure FBGF(MAPF instance, k,qy)

1:

2 ke < 0

3 P+ > A list of simulated paths
4: A’ + SORT(A) > A list of sorted agents
5: for i from 1 to k do > Ireratively find path with BCS
6: a; + A'li] > Agent in the i-th order of A’
7 p;ir < BCS(sy/, lir, P)

8: if Jp;/ then

9: L P[i'] + pyr
10: kcnl — kcnt +1
11: if k.r = Ko then > Use strategy (S3)
12: .| break

13: > Iteratively find the rest of the paths with FBCS <
14: for i from 1 to k do

15: a; + A'li) > Agent in the i-th order in A
16: if P[i'] # ¢ then > Simulated path for a;r exists
17: | continue

18: pir < FBCS(sy7, l;1, P) > Use Alg. 1
19: if Jp;/ then

20: L P[i'] < pyr

21: ket < ket + 1

22: if k.. = Kjax then > Use strategy (S3)
23: _ _ break

24: Er + ey, ey, Ve ={u,v} € E

25: We+ 0 > Set of weight values
26: for e,, € Er do

27: | ®,, + number of agents traversing e,,

28: Drnax — max{®,, | Ve,, € Ep}

29: for e,, € Er do

30: Compute w,, via Eq. (5)

31: Insert w,, to Wg

32: return Gp = (V, Ep, Wp)

duced, which can be used as the initial paths for EECBS
(i.e., paths in its root CT node).

Due to the target obstacles and the bounded-cost con-
straint, BCS may not find a path within the fixed threshold.
However, since EECBS is guaranteed to find a w-optimal
solution as long as the SOC of each CT node is w-optimal,
we can further increase the threshold by introducing the
flex from other simulated paths. Thus, in our stage (II) of
the path-simulation phase, we propose the flexible bounded-
cost search (FBCS) to sequentially find simulated paths for
agents that failed in stage (I). As shown in Alg. 1, when find-
ing a simulated path for an agent a; that does not have a path
after stage (I), FBCS increases the threshold 7; by adding the
flex from other simulated paths, i.e.,

n=w-fi((s,0)+ Y (w-f((55,0) = ¢;), 3)

{d|Pl]#}

where ¢; is the cost of the simulated path P[j]. Thus, the
range w - f;((s;,0)) — ¢; is the flex from the simulated path
Plj]. After finding a simulated path for agent a; with FBCS,
if it exists, we add it to the simulated path list P. Let J' =

{j"| 7/ #i N P[j'] # ¢} The SOC of P thus becomes

Z CjSTi+ZCj/

UI1PL1#6} jre
=w- fi((s5,0) + Y (w- fir(sy) —cj)+ Y ¢
j'eg’ j'ed’
=w- Y fills;,0)),
{1 Pli1 %0}

“4)

which is still w-optimal toward its SOLB. Thus, the simu-
lated path list P can be used as the (initial) paths for the
root CT node of EECBS. On the other hand, simulating
paths for all the agents can result in huge runtime overhead
(see Table 2). Thus, to handle feature (F3), instead of ran-
domly selecting a fixed subset of agents and simulating their
paths, our strategy (S3) is to first sort the agents in increas-
ing order according to their shortest-path distance in G, i.e.,
hi(s:),Vi € [k], and then sequentially find their simulated
paths until a user-specified path-found threshold k... By
controlling k., we can split the time budget into the pre-
processing and MAPF problem-solving.

After simulating paths with our strategies (S1), (S2), and
(S83), we determine the edge weights of the FGG via linear
interpolation of their flows. The flow of a directed edge is de-
fined as the number of agents traversing through it when fol-
lowing their simulated paths. Based on the flow of a directed
edge, we normalize its weight in the range [1, ¢,|, where ¢,
is defined as the maximum penalty cost. Given a directed
edge ey, € Ep with the number of agents @, traversing
it among all the simulated paths, its weight w,, € Wp is
determined as
cbmax - éuv

kj )
where &, is the maximum flow among all the simulated
paths. According to Eq. (5), the weights of the directed edges
have a negative correlation with their flows: the weights of
directed edges with the maximum flow are set to 1, and those
with zero flow are set to ¢, if ®nax = K holds. That is,
we promote the directed edges with higher flow (i.e., more
agents traversing) by giving them lower weight values. Thus,
we coordinate the agents during the search by encouraging
them to follow the directed edges that have been optimized
by the flows from the simulated paths. The rationale is as
follows: the FGG is already based on (F)BCS, which aims
to minimize the number of conflicts (with the previously
simulated paths). Thus, following such flows can result in
fewer conflicts (see Table 1). Alg. 2 shows the process of
our path-simulation phase (P1), which includes simulating
paths via BCS [lines 2-14] in stage (I) and via FBCS [lines
15-26] in stage (II), and calculating edge weights E' [lines
27-34]. The output is the FGG G that will be passed into
the heuristic-calculation phase (P2).

W =14 (¢ — 1) - 5)

5.2 Heuristic-Calculation Phase (P2)

In the heuristic-calculation phase (P2), we calculate the
Flow-Based Guidance Heuristic (FH) for each agent from
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Figure 4: Comparisons between EECBS-MFD and EECBS-
MFD-FH in (a) runtime among all MAPF instances and (b)
suboptimality among all solutions.

the FGG constructed in phase (P1). The value of FH hg ; (v)
is defined as the minimum distance from vertex v to the tar-
get vertex /; in the FGG G, which can be obtained by run-
ning the backward Dijkstra algorithm on FGG G from tar-
get vertex [;. Given a vertex v, its FH hy ; (v) for an agent a;
serves as a “guidance” that indicates which vertex v to ex-
plore during EECBS search. We follow Cohen et al. (2016)
and use FH as the secondary heuristic.

Theorem 1. EECBS is complete and w-optimal if any arbi-
trary heuristics are used as the secondary heuristics for the
low-level focal search.

Proof. Since the secondary heuristic is only used to break
ties when two v-t nodes in FOCAL}, have the same number
of conflicts, the v-t nodes in FOCAL}, have their f values at
most the threshold, resulting in a path with cost at most the
threshold, and the SOC of each CT node is w away from its
SOLB. Thus, EECBS still finds a w-optimal solution when
expanding a CT node with zero conflicts. This is also valid
when flex distribution is introduced (Section 2.3). O

6 Empirical Evaluation
6.1 Experiment Setup
We evaluate our approach on four large four-connected grid
graphs, from the MAPF benchmark suite (Stern et al. 2019):
a city graph (Boston_0-256), two game graphs, which

are den520d and ost003d, and a warehouse graph
(warehouse-10-20-10-2-1) with corridor widths of one. We

use the available 25 random scenarios under each number of
agents listed on the x-axis of Figure 3. For the warehouse
graph, we follow Cohen et al. (2016) and set the start and
target vertices on two sides. Since we set up 5 different num-
bers of agents for each of the four graphs, we have 500
MAPF instances in total. For MAPF instances with more
than 1000 agents, we generate agents with random start
and target vertices in addition to the existing 1000 agents
from each random scenario. We set the suboptimality factor
w = 1.1 and the time budget of 60 seconds, following Li,
Ruml, and Koenig (2021). The enhancements for EECBS
include bypassing conflicts, prioritizing conflicts, and sym-
metric reasoning (Boyarski et al. 2015; Chan et al. 2022;
Li et al. 2020). We use Mixed-Strategy Flex Distribution
(MFD) (Chan et al. 2025) as our flex distribution mecha-
nism. All the experiments are run on CentOS Linux, Intel
Xeon 2640v4 CPUs, and 64 GB RAM.

6.2 Performance Comparison

We set the path-found threshold &y, = 0.75 and the max-
imum penalty cost ¢, = 20 across different ranges. As
shown in Figure 3, we use the success rate as the met-
ric to evaluate the efficiency of each approach. Used as
the secondary heuristics in the low-level focal search of
EECBS-MFD, we compare our FH with the state-of-the-
art guidance heuristics, including Traffic-Flow Optimiza-
tion (TFO) (Chen et al. 2024), Space-Utility Optimization
(SUO) (Han and Yu 2022), Heat-Map (HM) (Cohen et al.
2016), and Criss Cross (CC) (Cohen et al. 2016). While CC
can only be applied in the well-constructed warehouse
graph, our FH reaches the same success rates of 1.00 as
CC. Also, since our FBGF contains strategies targeting w-
optimal MAPF, the resulting EECBS-MFD using FH out-
performs all the state-of-the-art guidance heuristics in large-
scale MAPF instances on more general graphs other than the
warehouse.

Figure 4(a) shows the instance-wise runtime comparison
between EECBS-MFD with and without FH. Among all
the 500 MAPF instances, 437 of them show that EECBS-
MFD-FH is faster than EECBS-MFD, 172 of them show
that EECBS-MFD-FH is 5 times faster than EECBS-MFD,
and 34 of them show that EECBS-MFD-FH is 10 times
faster than EECBS-MFD. To evaluate the solution quality,
we define the suboptimality as the ratio between SOC and
SOLB. Figure 4(b) shows the instance-wise suboptimality



Xo | Xt | #Runs T | To
EECBS 170 | 1.53 | 252 0| 843
EECBS-MFD | 1.71 | 1.53 1.79 0| 735
TFO 170 | 1.54 | 1.87 | 1578 | 3.20
SUO 1.64 | 1.52 1.66 0| 779
HM 170 | 1.52 | 1.80 | 18.51 | 5.82
FH (ours) 0.16 | 0.07 | 0.39 | 6.45 | 3.07

Table 1: The numbers (in thousands) of conflicts A{; and tar-
get conflicts Xé of the root CT node, the number (in thou-
sands) of low-level focal search runs #Runs, and the runtime
(in seconds) of calculating guidance heuristics 7" and gener-
ating root CT node T}, averaging over all MAPF instances.
Numbers in bold are the minimum among all approaches.
TFO, SUO, HM, and FH (ours) are based on EECBS-MFD.

0.25k | 0.50k | 0.75k | 1.00k

city, k: 2000 0.29 1.80 4.11 | 4475
den520d, k : 2000 0.19 1.49 3.68 | 52.17
ost003d, k : 800 0.04 0.37 | 17.11 | 22.88

warehouse, k : 700 0.19 0.67 0.90 10.46

Table 2: The average runtime (in seconds) of calculating FH
for different k,,x among 25 MAPF instances with k agents.

L] - " O ::‘ r 'l:.! - -
(b) EECBS-MFD

"

(a) Target vertices (c) EECBS-MFD-FH

Figure 5: The (a) target vertices of an MAPF instance in the
center of the den520d graph and the heatmaps of paths (in
blue) and conflicts (in red) from the root CT nodes of (b)
EECBS-MFD and (c) EECBS-MFD-FH (ours). For (b) and
(c), the darker the color, the higher the value a grid contains.
The green circles show examples of avoiding target vertices
when the agents are guided by FH.

comparison between EECBS-MFD and EECBS-MFD-FH,
ignoring those when one of the approaches cannot find a
solution within the 60-second time budget. Compared to
EECBS-MFD, EECBS-MFD-FH has lower suboptimality
for MAPF instances in ost003d and warehouse graphs
and reaches similar suboptimality for those in city and
den520d graphs. That is, EECBS-MFD, guided by our FH,
can significantly reduce runtime while finding w-optimal so-
lutions that are close to optimal.

6.3 Results Analysis

As shown in Table 1, in our FBGF, since (F)BCS prioritizes
v-t nodes in FOCAL ;, by the minimum number of conflicts,
the resulting FH finds paths in the root CT node with fewer
conflicts &)y than other approaches. Furthermore, since we
deploy strategy (S1) via target obstacles, EECBS-MFD-FH
finds paths in the root CT node with fewer target conflicts X}

—EECBS-MFD —EECBS-MFD-FH

x103
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Figure 6: Starting from expanding the root CT node when
solving the same MAPF instance as Figure 5, (a) the number
of conflicts of the expanded CT node versus runtime, and (b)
the cumulative number of low-level focal search runs.

than other approaches and thus reduces the number of low-
level focal search runs #Runs to find a w-optimal solution.
Meanwhile, our FH results in a lower runtime 7" than other
approaches in calculating guidance heuristics. Also, since
we deploy strategy (S2) by using (F)BCS, we can reuse the
simulated paths from FBGF as the paths for the root CT node
for EECBS, resulting in a lower runtime 7} in generating the
root CT node than other approaches. As for strategy (S3),
we show in Table 2 that increasing the path-found threshold
kmax can significantly increase the runtime of FBGF, espe-
cially in large graphs like city and den520d, where the
runtime of generating FH can take most of the 60-second
time budget when considering 2000 agents. Figure 5 vi-
sualizes the center of a MAPF instance with 2000 agents
on den520d graph. With the guidance from our FH, the
paths from EECBS-MFD-FH avoid conflicts by following
the flows, resulting in dark-blue lines with higher values on
their heatmap (Figure 5(c)). The paths also avoid target con-
flicts due to our strategy (S1), resulting in blank grids in
their heatmap. When guided by our FH in the root CT node,
the number of conflicts significantly reduces from 4838 to
287, where the number of target conflicts reduces from 4653
to 179. When solving this MAPF instance, due to fewer
conflicts and reusing simulated paths in the root CT node,
EECBS-MFD-FH, with fewer low-level focal search runs,
finds a w-optimal solution even before EECBS-MFD starts
its expansion, as shown in Figure 6.

7 Conclusion

We presented the Flow-Based Guidance Framework, a gen-
eral pre-processing technique that generates FH to guide
agents for speeding up EECBS. Combined with flex dis-
tribution and our strategies targeting w-optimal MAPF,
our Flow-Based Guidance Framework uses the (Flexible)
Bounded-Cost Search to simulate paths for agents and then
calculates FH based on the flow of the simulated paths. We
show that guiding agents via FH can significantly reduce
collisions and accelerate the search. The empirical evalua-
tion shows that guiding agents via our FH outperforms state-
of-the-art approaches in terms of success rate within 60 sec-
onds, yielding w-optimal solutions close to optimal. Future
work includes developing a more advanced guidance frame-
work to efficiently adaptively fine-tune the heuristics.
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