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Abstract

Conversational Recommender Systems (CRS)
aims to perform recommendations through in-
teractive conversations. Prior work on CRS
tends to incorporate more external knowledge
to enhance performance. Given the fact that
too much extra knowledge introduces the dif-
ficulty to balance among them and degener-
ates the generalizability, we propose to fully
discover and extract the internal knowledge
from the context. We capture both entity-level
and contextual-level representations to jointly
model user preferences for the recommenda-
tion, where a time-aware attention is designed
to emphasize the recently appeared items in
entity-level representations. We further use the
pre-trained BART to initialize the generation
module to alleviate the data scarcity and en-
hance the context modeling. Experiments on
two public CRS datasets show that our model
achieves comparable performance with less ex-
ternal knowledge and generalizes well to other
domains. Further analyses demonstrate the ef-
fectiveness of our model in different scenarios.

1 Introduction

Conversational Recommender Systems or CRS (Li
et al., 2018; Chen et al., 2019; Zhou et al., 2020a;
Lu et al., 2021) have recently attracted many re-
searchers due to the booming of e-commerce plat-
forms. A CRS aims to provide high-quality rec-
ommendations to users through engaged conversa-
tions. Different from the traditional recommender
systems, it focuses on learning users’ preferences
through natural language interaction with users,
and has a high impact in e-commerce.

An effective CRS is expected to be able to clar-
ify user intents, learn user preferences, recommend
high-quality items and reply to users with suitable
responses. Previous studies on CRS generally di-
vide it into two parts: a recommendation module
and a generation module. To improve the recom-
mendation performance, previous efforts (Zhou

et al., 2020a; Lu et al., 2021) focus on includ-
ing more and more external knowledge into the
system, as most of the available CRS datasets are
relatively small (due to the expensive annotation
process) (Li et al., 2018; Moon et al., 2019) and
hard to extract meaningful features based on the
context alone. For example, to improve the perfor-
mance in conversational movie recommendation,
entity-level knowledge graph (Chen et al., 2019),
word-level knowledge graph (Zhou et al., 2020a)
and item reviews (Lu et al., 2021) are successively
introduced into the system.

However, there are three issues existing in the de-
velopment of the previous methods. First, though
the performance is improved by introducing more
external knowledge, how to balance them in a sin-
gle system becomes a new challenge. Second, the
collection and annotation of the external knowledge
needs much human effort. Third, the collected ex-
ternal knowledge may lack generalizability when
facing broader application scenarios. On the other
hand, for generation, most of the previous methods
employ a general encoder-decoder framework and
train the model from scratch. It also suffers from
the overfitting issue on the relatively small dataset.

In this work, instead of exploring more external
knowledge to assist the learning of user preferences,
we choose to fully discover and extract the internal
knowledge from the context. Concretely, we cap-
ture both entity-level and contextual-level represen-
tations to model the user preferences. The entity-
level representations summarize user preferences
with the appeared items in the context. Rather than
applying a learnable matrix to let the model learn
the importance of each item on its own (Chen et al.,
2019; Lu et al., 2021), we design a new time-aware
attention to organize the appeared items for empha-
sizing the more recently appeared items. As one of
the goals of CRS is to guide the users to express
their preferences explicitly through conversations,
we believe that more recently appeared items can



reflect users’ interests better. As for the contextual-
level representations extracted by a context encoder,
they reflect the semantic- and discourse-level user
preferences, which cannot be captured by entity-
level ones. These two representations complement
each other to enhance the final recommendation
results. Besides, to alleviate the data scarcity effect
in capturing meaningful context features, we use
the pre-trained BART (Lewis et al., 2020) model to
initialize our generation module.

We conduct experiments on two public and popu-
lar CRS datasets ReDial (Li et al., 2018) and Open-
DialKG (Moon et al., 2019). The results show that
our model can achieve high-quality and compa-
rable performance when assisted with less exter-
nal knowledge, and validate that our model gen-
eralizes well to other domains. Further analyses
also demonstrate the effectiveness of our proposed
methods in different scenarios.

The main contributions of this work can be sum-
marized as follows:

* We propose to combine both entity-level and
contextual-level representations for conversa-
tional recommendation, which achieves compa-
rable performance with less external knowledge
and generalizes well to other domains.

* We point out the limitation of the previous en-
tity modeling method and design a time-aware
attention to enhance entity modeling for recom-
mendation.

* We examine the effects of BART pre-training and
also conduct extensive experiments to show that
our model is effective in different scenarios.

2 Related Work

Various task formulations with different hypothe-
ses and application scenarios in CRS have been
proposed in recent years. We summarize them into
three categories and introduce them as below.

Question Driven Systems. As the rating or click
feedback in traditional recommender systems is
limited in that they do not exactly tell why users
like or dislike an item, the feedback from the user
may be very sparse. Question driven systems are
proposed to effectively understand users’ prefer-
ence and improve the recommendations over time
by asking clarifying questions. Christakopoulou
et al. (2018) propose question-based video recom-
mender system. Zhang et al. (2018) build systems
based on aspect-centered questions. Aliannejadi

et al. (2019) formulate the task of asking clarify-
ing questions in open-domain information-seeking
conversational systems. More recent works focus
on asking attribute-central questions and develop
reinforcement learning based approaches (Lei et al.,
2020a; Ren et al., 2020; Deng et al., 2021) or graph
based approaches (Xu et al., 2020; Lei et al., 2020b;
Ren et al., 2021; Xu et al., 2021).

Strategies Learning in Multi-turn CRS. Some
works focus on balancing the trade-off between
exploration (i.e., asking questions) and exploita-
tion (i.e., making recommendations), especially for
cold-start users. They study the trade-off strategies
to achieve engaging and successful recommenda-
tions. Some of them (Li et al., 2010, 2016; Chris-
takopoulou et al., 2016; Li et al., 2020) leverage
bandit online recommendation methods and focus
on cold-start scenarios, while others work on strate-
gically asking clarification questions with fewer
turns (Lei et al., 2020a,b; Sun and Zhang, 2018).

Open-ended CRS. An open-ended CRS tends
to make recommendation in a more natural and
casual way compared with the task-oriented CRS.
Many datasets have been collected or built to push
forward the research of CRS, including ReDial (Li
et al., 2018), TG-ReDial (Chinese) (Zhou et al.,
2020b), GoRecDial (Kang et al., 2019), DuRec-
Dial (Chinese) (Liu et al., 2020), INSPIRED (Hay-
ati et al., 2020) and OpenDialKG (Moon et al.,
2019) datasets. Most of them consist of around
10,000 conversations that are focused on recom-
mendation and chit-chat on different domains. For
example, ReDial is about movie recommendation,
while OpenDialKG is concerned with several do-
mains, including movie, book, sports and music.
The follow-up studies based on the ReDial dataset
generally divide the CRS into recommendation and
generation modules. For the recommendation mod-
ule, the previous works tend to apply more and
more external knowledge to improve the recom-
mendation performance, e.g., entity-level knowl-
edge graph (Chen et al., 2019), word-level knowl-
edge graph (Zhou et al., 2020a) and item reviews
(Lu et al., 2021)). However, it’s difficult to man-
age so much external knowledge via an end-to-end
model. What’s more, some (like item reviews)
might need much effort to collect and annotate,
and are not generally applicable for all kinds of
domains (e.g., some items might lack reviews). For
generation module, most of the previous works



adopt encoder-decoder framework and train the
generation model from scratch. However, it’s dif-
ficult to learn diverse and valuable patterns from
relatively small datasets. Our work further explores
approaches for this category.

Different from the above methods, we are more
interested in capturing better user representations
from conversation context rather than adding more
external knowledge and utilizing the pre-trained
models (i.e., BART) to enhance our generation.

3 Methodology

In this section, we first formulate the task in §3.1,
followed by our generation module in §3.2, which
is finetuned with BART (Lewis et al., 2020). Then
we introduce how we produce recommendation
based on conversation context in §3.3. Finally in
§3.4, we describe how we integrate the above two
modules and produce the final responses.

3.1 Problem Formulation

A CRS generally consists of two modules, named
as generation module and recommendation module.
It takes a conversation context C' = (t1,...,%y) as
input, where ¢; is an utterance from the seeker (i.e.
the user) or the CRS itself and m is the number
of context utterances. The CRS uses its recom-
mendation module to recommend items Z; from a
candidate item set Z and embeds them into a re-
sponse R = (y1,...,Yn), a sequence of n tokens
generated by the generation module based on the
conversation context C.

3.2 BART-based Response Generation

Our response generation module follows a general
Transformer (Vaswani et al., 2017) sequence-to-
sequence framework. As most of the available
CRS datasets are relatively small and contain only
around 10K conversations (Li et al., 2018; Moon
et al., 2019), it is difficult to learn complex seman-
tic and discourse level dependencies only based
on the training corpus. To relieve the burden and
enhance context modeling, we choose to finetune
a pre-trained BART (Lewis et al., 2020) model for
our response generation. BART was trained with
several denoising objectives on large-scale books
and Wikipedia data, and has been shown to be
effective in many generation tasks including ab-
strastive QA, summarization, machine translation
at the sentence and document level, and persona-
based response generation.

Specifically, to enable BART to generate item-
related responses, we extend its original vocabulary
V with the item set Z to be V' = V U Z, and use
a CRS training corpus to finetune the model. Dur-
ing finetuning, we concatenate the utterances ¢; in
context C' with an appended (EOT') token in their
chronological order as the input, and maximize the
probability of the ground truth response R. The
whole process is summarized as follows:

HS = Transformer_Encoder(wc) €))
yx = Transformer_Decoder(y<r, HC) 2)
Loen =, —log(p(urly<, H)) 3)

where we = [t1; (EOT); tg;..; (EOT); ty], and
Y<k represents the target tokens before yy.

An integration operation is added to the gener-
ation output to make the generation aware of the
recommendation. We will discuss it later in §3.4.

3.3 Context-Time-Aware Recommendation

To fully understand user preferences over items
from a given context C', we propose to extract two
kinds of information for the recommendation. The
first is entity-level information, where we extract
the mentioned entities (including the items in the
item set 7) from C' and apply them to an external
related knowledge graph to perform entity link-
ing (Daiber et al., 2013). The second is contextual
information represented by BART representations
HC which is expected to capture information from
the perspectives of semantic and conversational dis-
course. We describe the details in the following.

Entity-level Representation. We employ a re-
lational knowledge graph (e.g. DBpedia) to en-
hance entity modeling. Specifically, we denote
a triplet in the knowledge graph with (e1,r, e2),
where e1, e5 € £ are entities from the entity set £
and r is an entity relation from the relation set k.

We use an R-GCN (Schlichtkrull et al., 2018) to
encode relation-aware entity representations. For-
mally, the representation of an entity e at the ([+1)-
th layer is calculated as follows:

RO+ _ Rel 1w 4

¢ R U(T;Rl ; 7 W) @
where hg) is the representation of entity e at the
[-th layer, and & denotes the set of neighboring
nodes of e under the relation 7; R’ = R U {rse}
contains all the relations including self loop; WT(Z)
is a learnable relation-specific transformation ma-
trix and Z., is a normalization factor. For sim-
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Figure 1: Our framework for conversational recommendation.

plicity, we represent the representations in the final
layer L as h. by omitting the superscript “L”.

Given a context C', we extract the entities as user
preference 7, = ey, €2, ..., €7, from two perspec-
tives: item entities (i.e., entities that appear in 7)
and other relevant contextual entities (mentioned
in utterances but not an item in Z, e.g., an actor
of a film item. We denote them as text entities).
The entities e; € & are sorted in the order of ap-
pearance. After looking up the entities in 7, from
H = {h}", we get (hi, ho, ..., hyr)).

To summarize the entity-level user representa-
tion, previous work mainly depends on the self-
attention mechanism (Zhou et al., 2020a; Lu et al.,
2021), where a learnable matrix is leveraged to
learn and derive each entity’s importance. Such a
mechanism might be sub-optimal as no supervised
signals are used to guide the model to learn knowl-
edge about entity importance. Instead, we propose
Time-aware Attention, where the entity-level user

representation h” is calculated as follows:
[Tul

)\ifl
. @
where A > 1 is a hyper-parameter to control the re-
cency effect. This means that the recently appeared
items will contribute more to the next item predic-
tion, which is consistent with the intuition to such
a system . Finally, the entity-level recommendation
probability is computed as follows:
pe = softmax(mask(h®H ")) (6)
where mask is an operation that sets all non-item
entities to —oo, and p, € RI€I,

Contextual-level Representation. Entity-level
representation and the resulting recommendation
only concern what entities have appeared in the
context but cannot fully reflect user preferences.
For example, if a user says “I do not like A!”. We
cannot capture such a negative opinion towards
“A” through entity-level representation alone. To

partly address the problem and to incorporate more
semantic- and discourse-level context for recom-
mendation, we further use the context representa-
tion HC computed in §3.2 to yield semantic-aware
prediction. Specifically, we average the context
representation over the sequence as context-level
representation for C' and put it through an MLP

layer to give the prediction:
IC|
pe = softmax(MLP () _ hY)) (7

=1
where h]C indicates the representation for the j-th
token in the context representation H, |C/| is the
total length of context C, and p, € RI¢!,

Joint Recommendation. The final recommenda-
tion based on the above two components is:

Drec = b Pe + (1 — p1) - Pe ®)
where 1 (0 < p < 1) is a hyper-parameter to bal-
ance between the two kinds of recommendations.

The learning objective for the recommendation

module can be summarized as:
M

Lrec ==y logpe(ri) +log pe(ri) ©
i=1

where M is the number of items that need to be
recommended and r; € 7 is the target item in
the i-th recommendation. p.(r;) and p.(r;) are
the corresponding prediction probabilities of the
target item from the entity-level and contextual-
level recommendation components, respectively.

3.4 Module Integration

We introduce an integration mechanism to incorpo-
rate the recommendation module’s knowledge and
guide the generation module to generate responses
that are more consistent with the user’s preference.
Inspired by Chen et al. (2019), we add a vocabulary
bias to the top decoder predictions. Different from
their work, our vocabulary bias directly comes from
the recommendation probabilities p;.. in Eq 8:

bu = [0;G(Prec)] (10)



where 0 is a V-dimensional zero vector, G(-) is
an index selection operation to select items from
entities(G : RI¢l — RIZI), and [;] means concate-
nation. This makes the bias the same dimension as
our generation output (i.e. |V'| = [V| + |Z]).

We dynamically add the bias b,, during genera-
tion based on the top predictions in each time stamp
t. The effect of this is that for a generation token
1 that is an item in Z, we add its recommendation
probability pye.(y:) to the original generation prob-
ability p(y;). In this way, the generation module
can generate recommendation-aware responses.

Finally, the total objective for our model is:

L= Lgen +YLrec an
where + is a hyper-parameter that balances the two
objectives.

4 Experimental Setup

Datasets. To empirically evaluate the proposed
approach, we conduct experiments on two datasets,
namely, ReDial (Li et al., 2018) and OpenDi-
alKG (Moon et al., 2019). ReDial is centered
around movie recommendation. OpenDialKG con-
sists of conversations that are mainly in four do-
mains: movie, book, sports and music. We split
them into training, validation and test at ratios of
80%:10%:10% and 75%:15%:15% by following Li
etal. (2018) and Moon et al. (2019). More statistics
about the datasets can be found in Appendix.

Parameter Setting. We implement our models
based on FAIRSEQ framework' (Ott et al., 2019),
and train on an NVIDIA 3090 GPU. For the RGCN-
based recommendation module, we set both the en-
tity embedding size and the hidden representation
size to 128. The layer number for R-GCN is 1 and
the normalization factor Z, , is set to 1 following
Chen et al. (2019). For the BART-based generation
module, we adopt a BART base model consisting
of 6 layers of encoder and decoder. The hidden
dimension of these encoders and decoders are set
to 768. We set the max tokens to 4096 with an
update frequency of 4. We adopt Adam optimizer
with a 5e-3 learning rate (and Se-5 learning rate
for BART-related modules) and 1000 warm-up up-
dates followed by a polynomial decay scheduler.
We adopt diverse beam search (Vijayakumar et al.,
2016) mechanism in generation with a beam size
of 4 and diverse beam group number of 2. All the
hyper-parameters are determined by grid-search

'https://github.com/pytorch/fairseq

based on validation performance. More detailed
parameter setting can be found in Appendix.

Baselines and Comparisons. For ReDial, we
compare several competitive baselines that include:
e ReDial (Li et al., 2018) consists of an HRED-
based (Sordoni et al., 2015) generation module, and
an auto-encoder based recommender module.
o KBRD (Chen et al., 2019) uses DBpedia to rec-
ommend and adopts a transformer based genera-
tion, where knowledge graph (KG) information
serves as word bias to assist the generation.
e KGSF (Zhou et al., 2020a) uses MIM (Viola and
Wells III, 1997) to align the semantic spaces of
word- and entity-level KGs. It adopts a transformer
encoder and a fused knowledge-enhanced decoder.
e RevCore (Lu et al., 2021) performs review-
enriched and entity-based recommendation and use
a review-attentive encoder-decoder for generation.
We do re-implementations of KBRD and
RevCore models, denoted as EM-SA and EM-SA-
Rev, where EM-SA means entity modeling with
self-attention”. We also test performance of the
variants to our model: BART, EM-TA, EM-TA-
BART. BART refers to model that uses contextual-
based recommendation (described in §3.3) only.
EM-TA means using entity-based recommenda-
tion with time-aware attention only. EM-TA-BART
means the joint model of the above two models.
For the OpenDialKG dataset, we compare the
models (seq2seq, Tri-LSTM, Ext-ED, DialKG
Walker) that are described in Moon et al. (2019)
and skip the introduction to them for saving spaces.
Please refer to Moon et al. (2019) for the details.

Evaluation Metrics. We evaluate the recommen-
dation and generation separately. For recommen-
dation, we adopt Recall@K scores: K =1, 10, 50
for ReDial by following Chen et al. (2019), and
K=1,3,5, 10, 25 for OpenDialKG by following
Moon et al. (2019). Recall@K indicates whether
the predicted top-K items contain the ground truth
recommendation items. For generation, apart from
Dist-n (n=2, 3, 4) and PPL scores reported in (Lu
et al., 2021), we also report the case-insensitive
BLEU-n (n=2, 4) scores>. For a fair comparison,
we calculate the PPL scores via a widely used off-
the-shelf package KenLM?*, as the PPL scores are
very different when using different vocabulary.

ts attention weights are calculated by a learnable matrix.

3We use NLTK package (https://www.nltk.org)
to calculate the BLEU scores.

*https://kheafield.com/code/kenlm/
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Models [Input |R@1 R@10 R@50
Baselines

ReDial C+Sentiment 24 140 320
KBRD C+TE+EK 3.1 150 336
KGSF C+TE+EK+WK| 39 18.3 37.8
RevCore C+TE+EK+Rev| 6.1 23.6 454
Re-implementation

EM-SA(KBRD) C+TE+EK 33 163 326
EM-SA-Revi(RevCore)|C+TE+EK+Rev| 3.3 16.6 33.8
Our Models

BART C 3.0 164 350
EM-TA C+EK 46 183 34.1
EM-TA-BART C+EK 55 212 400
EM-TA C+TE+EK 52 182 346
EM-TA-BART C+TE+EK 58 208 402

Table 1: Recommendation results (in %) on ReDial
dataset. “C”, “TE”, “EK”, “WK”, “Rev”, “EM-SA”
and “EM-TA” are short form for “Context”, “Text En-

tity”, “Entity-level Knowledge”, “Word-level Knowl-

edge”, “Review”, “Entity Modeling with Self-Attention”
and “Entity Modeling with Time-aware Attention”, re-
spectively. Rev' indicates the extracted items from the
retrieved reviews may be not the same as RevCore.

5 Experimental Results

In this section, we first report the main comparison
results on recommendation and generation in §5.1
and §5.2, respectively. Then we further analyze the
effectiveness of our model in §5.3.

5.1 Recommendation Result Comparisons

We first present the main comparison results on Re-
Dial in §5.1.1. To further verify the effectiveness
of our model in multi-domain dataset, we conduct
experiments on OpenDialKG and report the com-
parison results in §5.1.2.

5.1.1 Results on ReDial

Table 1 shows the recommendation results of our
models, the baselines and our re-implementation
of some baselines. We can draw the following
observations from the results:

o Adding more external knowledge can improve
the recommendation performance. We can see that
among the baselines, KBRD adds the entity-level
knowledge (EK), while KGSF and RevCore further
incorporate word-level knowledge (WK) and item
reviews (Rev). All the external knowledge intro-
duces considerable improvement, demonstrating
the efficiencies of the external knowledge.

o More external knowledge like the item reviews
introduces greater difficulty in reproduction and
less generalization. We have tried to re-implement
the results of KBRD and RevCore baselines (the re-

implementation results are also shown in Table 1).
We find that we can easily re-implement similar
results of KBRD but cannot achieve improvement
when further incorporating item review information
following RevCore. The reasons can be twofold.
First, incorporating multiple external knowledge
introduces more challenges to balance them. The
other is that the method introduced in RevCore
requires much extra effort to collect and annotate
the reviews (some items may even lack reviews)
and train a sentiment-aware retrieval model (Lu
et al., 2021), which makes it difficult to reproduce
similar results and become less generalizable to
other domains.

e Time-aware attention can better summarize
user preference than self-attention. Our models
with time-aware attention perform significantly bet-
ter than the models with self-attention. For exam-
ple, EM-TA achieves 1.9% higher Recall@1 com-
pared to EM-SA in the same input (C+TE+EK) sit-
uation. This validates our intuition that the recently
appeared items are more important for reflecting
user preference, as well as the effectiveness of our
designed time-aware attention.

e BART-based representations are helpful. We
are the first to finetune a pretrained BART model
and utilize the representations for recommenda-
tion. As we can see in Table 1, the simplest
BART model achieves 35.0% Recall@50 while
the KBRD model that incorporates external knowl-
edge graph gets 33.6 Recall@50. We can also find
that our models with time-aware attention show
good improvements in all metrics after being en-
hanced with BART representations. Both indicate
that contextual-level representations extracted by
BART can reflect user preference that entity-level
representations cannot capture. Fig. 2(a) shows
more detailed analysis.

e Text entities are effective in capturing most
relative items. Our models with additional text en-
tities (TE) as input can achieve better Recall@1
compared with the same models without TE, while
keeping similar Recall@10 and Recall@50. This
means that text entities help re-rank the top predic-
tions and find the most relative items.

5.1.2 Results on OpenDialKG

Apart from ReDial that focuses on movie recom-
mendation, we also examine our recommendation
performance in a multi-domain dataset, OpenDi-
alKG, to show the generalizability of our model.
The results are displayed in Table 2. Our model



Models R@1 R@3 R@5 R@10 R@25
Baselines

seq2seq 3.1 183 297 441 60.2
Tri-LSTM 32 142 226 363 56.2
Ext-ED 1.9 5.8 9.0 13.3 19.0
DialKG Walker | 13.2 26.1 353 479 62.2
Our Models

BART 5.8 19.7 31.0 455 57.8
EM-SA 109 212 303 41.6 53.2
EM-TA 16.0 289 343 45.1 57.9
EM-TA-BART | 18.0 335 415 50.0 64.8

Table 2: Recommendation results (in %) on Open-
DialKG. ‘EM-SA” and “EM-TA” are short form for
“Entity Modeling with Self-Attention” and “Entity Mod-
eling with Time-aware Attention”, respectively.

with time-aware attention and BART-enhanced rep-
resentations achieves the best performance com-
pared to all the other methods. We can observe
similar trends among the different variants as those
in ReDial, e.g., time-aware attention is better than
self-attention and BART representations help im-
prove all of the metrics. This validates that our
method generalizes well to other domains.

5.2 Generation Result Comparisons

Automatic Evaluation. We show the genera-
tion comparison results in Table 3. To investigate
the performance in different scenarios, we display
the results of our model with conventional beam
search (BS) and diverse beam search (DBS), respec-
tively, together with their results without BART
pre-training. We summarize our observations in
the following:

e Our model is able to generate more diverse
and fluent responses than the baselines. As can be
seen, our model with beam search achieves the best
BLEU and perplexity scores, and our model with
diverse beam search yields the highest Dist-n while
maintaining comparable BLEU and perplexity.

e [t is challenging to balance diversity and flu-
ency. The baselines perform differently in terms of
Dist-n and perplexity, e.g., KGSF achieves higher
Dist-n than KBRD, but its perplexity is worse. We
presume that higher diversity requires the models
to extract more different patterns to express the
content, but organizing them into a fluent response
may be challenging. Another example is our model
without BART pre-training achieves poor diversity,
as it may overfit on the training corpus and tend
to generate simple responses. But this also results
in its lowest perplexity. Our model with diverse
beam search achieves consistently better Dist-n,
and maintains relatively lower perplexity, demon-

Models \Dist-Z Dist-3 Dist-4 BLEU2 BLEU4\ PPL
Transformer | 14.8 15.1 13.7 - - -
ReDial 225 236 228 | 178 74 |61.7
KBRD 263 368 423 | 18.5 7.4 |58.8
KGSF 289 434 519 | 164 74 |131.1
RevCore 424 558 61.2 - - -
Ours+BS 358 499 57.7| 19.1 93 |52.1
-BARTPT| 85 109 123 | 18.6 8.7 130.7
Ours+DBS | 45.7 653 76.1 | 19.1 8.9 [54.8
-BARTPT| 139 19.8 238 | 18.6 8.2 1439

Table 3: Generation results (in %) on the ReDial
dataset. “BS” refers to beam search, “DBS” refers to
diverse beam search, and “PT” refers to pre-training.

Models

\Fluency Informativeness Coherence

HUMAN ‘ 1.95 1.71 1.71
ReDial 1.92 1.32 1.23
KBRD 1.95 1.39 1.31
KGSF 1.91 1.02 0.95
Ours+BS 1.95 1.54 1.66
Ours+DBS | 1.92 1.64 1.64

Table 4: Human evaluation of the generation results
on the ReDial dataset. “BS” refers to beam search,
“DBS” refers to diverse beam search. All the metrics
are in the scale of [0, 2]. The overall Cohen’s kappa
coefficient is larger than 0.65.

strating the superiority of our model.

e Dist-n scores highly depend on the search-
ing strategy. Our model performs much better in
terms of Dist-n when applying diverse beam search
compared with using conventional beam search.
What is more, different configuration (e.g., length
penalty) applied during generation also affects the
scores. More analysis can be found in Appendix.

Human Evaluation. We adopt a human evalua-
tion to examine the generation results from a differ-
ent perspective and display the results in Table 4.
The evaluation details are given in the Appendix.
From Table 4, all the models generate responses
with high fluency, but perform differently regard-
ing informativeness and coherence. The baselines
are more likely to produce safe responses (short
and repetitive) while our model can generate more
informative and coherent responses.

5.3 Further Analysis

Effectiveness of Contextual-level Representa-
tion. To investigate how contextual-level repre-
sentations influence recommendation, we show the
Recall@50 scores with varying mentioned items
numbers in context in Fig. 2(a). We can observe
that the BART model performs better than EM-TA
when the mentioned number is 0 or 1. Such phe-
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Figure 2: Recall@50 of the models and number of cases
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Figure 3: Change of Recall scores when using different
values of \, which controls the recency effect.

nomenon is desired, since when the item history
information is rare or even missing, entity-level rep-
resentations are not sufficient to produce reliable
recommendations while contextual-level represen-
tations can capture useful information from the text.
Then we find EM-TA performs consistently better
than BART when the mentioned number increases.
Because the increasing mentioned item number
also means the context becomes longer, and the
model might be not able to handle the long con-
text, especially when the mentioned item number
is larger than 10. This means that contextual-level
representations are useful in the cold-start scenario
(not a rare situation as shown in Fig. 2(b)), which
is a shortcoming for entity-level recommendation.
Therefore, combining the both representations (i.e.,
EM-TA-BART model) yields the best performance.

Effectiveness of Time-Aware Attention. We
present the Recall@1 and Recall@10 (Recall@50
shows similar trend with Recall@10) scores with
varying values of A, which can control the effect
of recency introduced in Eq. (5) of Fig. 3. A < 1
indicates the earlier appeared items are more im-
portant, which results in quick performance drops.
And the performance increases when A > 1 com-

Models |Inputs  |PT|R@1 R@10 R@50
BART c V|30 164 350
X| 26 145 317
EM.TA.BART | C+EK vV |55 212 400
X| 52 210 394
EM-TA-BART | C+TE+EK V|58 208 402
X| 54 204 390

Table 5: Recommendation results (in %) of our models
when using BART pre-training (PT) or not.

pared to A = 1. This validates the intuition that
more recently appeared items contribute more to
the recommendation. On the other hand, Recall@1
and Recall@ 10 present different trends when A in-
creases — Recall@1 consistently increases while
Recall@10 begins to drop when A > 2. This is
because when A is too large, time-aware attention
tends to concern with the most recently appeared
item. This is helpful in finding the most relative
items but hurts the overall recommendation.

Effects of BART Pre-training. We examine the
effects of BART pre-training (PT) for recommen-
dation and generation. For recommendation, we
list the recall scores of our different model variants
with and without BART PT in Table 5. As can be
seen, all the models perform worse when removing
PT, as PT on large-scale monolingual datasets helps
the models learn better semantic features. When
joint recommending with entity-level representa-
tions (i.e., EM-TA-BART model), the performance
degradation becomes less, demonstrating the two
kinds of information can complement each other.
For generation, we have listed the ablation with-
out PT in Table 3. As we can see, models without
PT show poor performance on Dist-n metric as
models tend to be overfitting and cannot generate
diverse responses based on a small dataset.

6 Conclusion

In this work, we propose to capture both entity-
level and contextual-level representations to im-
prove the conversational recommender system,
where a time-aware attention is designed to empha-
size the recently appeared items and a pre-trained
BART is used to enhance context modeling. Exper-
iments show that the proposed model can achieve
comparable performance with less external knowl-
edge and generalizes well to other domains. Fur-
ther analyses also examine the effectiveness of the
model in different scenarios.
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Appendix

A Datasets and Parameter Setting

| ReDial OpenDialKG
Number of conversations | 10,006 13,802
Number of utterances 182,150 91,209
Knowledge Graph DBpedia DBpedia
Domains Movie Movie, Book

Table 6: Statistics of ReDial and OpenDialKG datasets.

We first show the basic statistics of the two datasets
in Table 6. Then we show the detailed parame-
ter search space and best assignment in Table 7.
The parameter number of our model is 269M. The
training time of one epoch is around 22 minutes
when the model is trained an NVIDIA 3090 GPU
with a max token number of 4096 and an update
frequency of 4. The model needs around 5 epochs
to achieve the best performance on the validation
set.

B Human Evaluation Details

We randomly sampled 100 context-response pairs
from the test set and collected the corresponding
generation results of our models as well as the base-
line models. We then employ two crowd-workers
to score the results on the scale of [0, 1, 2], where
higher scores indicate better quality. Following
prior studies, we also evaluate three aspects:

* Fluency: whether a response is in a proper En-
glish grammar and easy to understand.

» Informativeness: whether a response contains
meaningful information. The “safe responses”
are treated as uninformative as they may be repet-
itive and meaningless.

* Coherence: whether a response is coherent with
the context, i.e., the discussion content should be
consistent.

The scoring details are shown in Table 8 following

one of the previous work.

C More Analysis

Limitation of Dist-n Metrics. As we find that
search strategies seriously affect the Dist-n metrics,
we present more analysis on them by setting dif-
ferent values of length penalty (a hyper-parameter
that can control the lengths of final generated re-
sults) when generating the responses. We display
the results of Dist-2 and BLEU2 for EM-TA-BART
model with beam search setting in Fig. 4 (other
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metrics are in similar trends). We can find that the
generated lengths also affect much on the Dist-n,
since longer responses allow more different tokens
to be generated. However, this is not expected as
not the longer the better. Therefore, other metrics
including human evaluation are desired to explic-
itly evaluate generation performance.

40

35

N oW
a S

e

+«BLEU2

Score (in %)
— 1]
wn (=]

S

<+Dist-2

[

0

01 05 09 13 17 21

Value of Length Penalty
Figure 4: Change of Dist-2 and BLEU?2 scores when

using different length penalty. Larger length penalty
(> 1) indicates allowing generating longer responses.
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Figure 5: Change of Recall@1 and Recall@50 scores
over different values of trade-off parameter .

Trade-off between Entity-level and Contextual-
level Representations. We examine the effects
of the hyper-parameter p in Eq. (8) by setting its
value from O (only entity-level representations) to 1
(only contextual-level representations) and display
the results of EM-TA-BART model with C+EK
input in Fig. 5. As can be seen, Recall@50 is sig-
nificantly improved when p changes from 0 to 0.1
(or 1 to 0.9). This validates that the two represen-
tations capture user preferences from a different
perspective and can complement each other. The
best result is achieved with p = 0.5, showing that
both representations are important.



Hyper-parameter

‘ Search Space

Best Assignment

RGCN entity embedding size {128, 256} 128
RGCN hidden representation size | {128, 256} 128
RGCN layer number 1 1
Normalization factor Z, 1 1
BART layer number 6 6
BART hidden dim 768 768
Max token number {2048, 4096, 8192, 10240} 4096
Update frequency {1,2,4, 8} 4
LR for recommendation [le-4, 2e-4, ..., 8e-3] 5e-3
LR for generation [1e-5, 2e-5, ..., Se-4] 5e-5
Warm-up updates {200, 400, 600, 800, 1000, 2000} 1000
Patience 5 5

w trade off ‘ [0,0.1,0.2, ..., 1.0] 0.5
beam size {2,4,6, 8} 4
diverse beam group number {2,4} 2
length penalty [0.1,0.2, ..., 3] 1.5

Table 7: Hyper-parameter Search Space and Best Assignment.

Score ‘ Fluency

The response has many grammar mistakes.
The response is hard to understand.

The response has minor grammar mistakes.
Some part of the response is hard to understand.

2 ‘ The response is in correct grammar and easy to understand.
Score | Coherence
The response is not related with the context.
The response simply repeats the context.
0 . . .
The response has obvious conflicts with the context.
1 The response has minor conflicts with the context.
There are some minor logic conflicts in the response.
2 ‘ The response is coherent with the context.
Score \ Informativeness
The response does not contain any information.
0 This response just repeats the context and fails to bring any addi-
tional information.
The information is invalid, as the coherence score is 0.
1 The information has conflicts with common sense.
There are factual errors in the response.
2 The response has appropriate and correct information.

Table 8: Scoring details for human evaluation.

12



