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Abstract

Conversational Recommender Systems (CRS)001
aims to perform recommendations through in-002
teractive conversations. Prior work on CRS003
tends to incorporate more external knowledge004
to enhance performance. Given the fact that005
too much extra knowledge introduces the dif-006
ficulty to balance among them and degener-007
ates the generalizability, we propose to fully008
discover and extract the internal knowledge009
from the context. We capture both entity-level010
and contextual-level representations to jointly011
model user preferences for the recommenda-012
tion, where a time-aware attention is designed013
to emphasize the recently appeared items in014
entity-level representations. We further use the015
pre-trained BART to initialize the generation016
module to alleviate the data scarcity and en-017
hance the context modeling. Experiments on018
two public CRS datasets show that our model019
achieves comparable performance with less ex-020
ternal knowledge and generalizes well to other021
domains. Further analyses demonstrate the ef-022
fectiveness of our model in different scenarios.023

1 Introduction024

Conversational Recommender Systems or CRS (Li025

et al., 2018; Chen et al., 2019; Zhou et al., 2020a;026

Lu et al., 2021) have recently attracted many re-027

searchers due to the booming of e-commerce plat-028

forms. A CRS aims to provide high-quality rec-029

ommendations to users through engaged conversa-030

tions. Different from the traditional recommender031

systems, it focuses on learning users’ preferences032

through natural language interaction with users,033

and has a high impact in e-commerce.034

An effective CRS is expected to be able to clar-035

ify user intents, learn user preferences, recommend036

high-quality items and reply to users with suitable037

responses. Previous studies on CRS generally di-038

vide it into two parts: a recommendation module039

and a generation module. To improve the recom-040

mendation performance, previous efforts (Zhou041

et al., 2020a; Lu et al., 2021) focus on includ- 042

ing more and more external knowledge into the 043

system, as most of the available CRS datasets are 044

relatively small (due to the expensive annotation 045

process) (Li et al., 2018; Moon et al., 2019) and 046

hard to extract meaningful features based on the 047

context alone. For example, to improve the perfor- 048

mance in conversational movie recommendation, 049

entity-level knowledge graph (Chen et al., 2019), 050

word-level knowledge graph (Zhou et al., 2020a) 051

and item reviews (Lu et al., 2021) are successively 052

introduced into the system. 053

However, there are three issues existing in the de- 054

velopment of the previous methods. First, though 055

the performance is improved by introducing more 056

external knowledge, how to balance them in a sin- 057

gle system becomes a new challenge. Second, the 058

collection and annotation of the external knowledge 059

needs much human effort. Third, the collected ex- 060

ternal knowledge may lack generalizability when 061

facing broader application scenarios. On the other 062

hand, for generation, most of the previous methods 063

employ a general encoder-decoder framework and 064

train the model from scratch. It also suffers from 065

the overfitting issue on the relatively small dataset. 066

In this work, instead of exploring more external 067

knowledge to assist the learning of user preferences, 068

we choose to fully discover and extract the internal 069

knowledge from the context. Concretely, we cap- 070

ture both entity-level and contextual-level represen- 071

tations to model the user preferences. The entity- 072

level representations summarize user preferences 073

with the appeared items in the context. Rather than 074

applying a learnable matrix to let the model learn 075

the importance of each item on its own (Chen et al., 076

2019; Lu et al., 2021), we design a new time-aware 077

attention to organize the appeared items for empha- 078

sizing the more recently appeared items. As one of 079

the goals of CRS is to guide the users to express 080

their preferences explicitly through conversations, 081

we believe that more recently appeared items can 082
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reflect users’ interests better. As for the contextual-083

level representations extracted by a context encoder,084

they reflect the semantic- and discourse-level user085

preferences, which cannot be captured by entity-086

level ones. These two representations complement087

each other to enhance the final recommendation088

results. Besides, to alleviate the data scarcity effect089

in capturing meaningful context features, we use090

the pre-trained BART (Lewis et al., 2020) model to091

initialize our generation module.092

We conduct experiments on two public and popu-093

lar CRS datasets ReDial (Li et al., 2018) and Open-094

DialKG (Moon et al., 2019). The results show that095

our model can achieve high-quality and compa-096

rable performance when assisted with less exter-097

nal knowledge, and validate that our model gen-098

eralizes well to other domains. Further analyses099

also demonstrate the effectiveness of our proposed100

methods in different scenarios.101

The main contributions of this work can be sum-102

marized as follows:103

• We propose to combine both entity-level and104

contextual-level representations for conversa-105

tional recommendation, which achieves compa-106

rable performance with less external knowledge107

and generalizes well to other domains.108

• We point out the limitation of the previous en-109

tity modeling method and design a time-aware110

attention to enhance entity modeling for recom-111

mendation.112

• We examine the effects of BART pre-training and113

also conduct extensive experiments to show that114

our model is effective in different scenarios.115

2 Related Work116

Various task formulations with different hypothe-117

ses and application scenarios in CRS have been118

proposed in recent years. We summarize them into119

three categories and introduce them as below.120

Question Driven Systems. As the rating or click121

feedback in traditional recommender systems is122

limited in that they do not exactly tell why users123

like or dislike an item, the feedback from the user124

may be very sparse. Question driven systems are125

proposed to effectively understand users’ prefer-126

ence and improve the recommendations over time127

by asking clarifying questions. Christakopoulou128

et al. (2018) propose question-based video recom-129

mender system. Zhang et al. (2018) build systems130

based on aspect-centered questions. Aliannejadi131

et al. (2019) formulate the task of asking clarify- 132

ing questions in open-domain information-seeking 133

conversational systems. More recent works focus 134

on asking attribute-central questions and develop 135

reinforcement learning based approaches (Lei et al., 136

2020a; Ren et al., 2020; Deng et al., 2021) or graph 137

based approaches (Xu et al., 2020; Lei et al., 2020b; 138

Ren et al., 2021; Xu et al., 2021). 139

Strategies Learning in Multi-turn CRS. Some 140

works focus on balancing the trade-off between 141

exploration (i.e., asking questions) and exploita- 142

tion (i.e., making recommendations), especially for 143

cold-start users. They study the trade-off strategies 144

to achieve engaging and successful recommenda- 145

tions. Some of them (Li et al., 2010, 2016; Chris- 146

takopoulou et al., 2016; Li et al., 2020) leverage 147

bandit online recommendation methods and focus 148

on cold-start scenarios, while others work on strate- 149

gically asking clarification questions with fewer 150

turns (Lei et al., 2020a,b; Sun and Zhang, 2018). 151

Open-ended CRS. An open-ended CRS tends 152

to make recommendation in a more natural and 153

casual way compared with the task-oriented CRS. 154

Many datasets have been collected or built to push 155

forward the research of CRS, including ReDial (Li 156

et al., 2018), TG-ReDial (Chinese) (Zhou et al., 157

2020b), GoRecDial (Kang et al., 2019), DuRec- 158

Dial (Chinese) (Liu et al., 2020), INSPIRED (Hay- 159

ati et al., 2020) and OpenDialKG (Moon et al., 160

2019) datasets. Most of them consist of around 161

10,000 conversations that are focused on recom- 162

mendation and chit-chat on different domains. For 163

example, ReDial is about movie recommendation, 164

while OpenDialKG is concerned with several do- 165

mains, including movie, book, sports and music. 166

The follow-up studies based on the ReDial dataset 167

generally divide the CRS into recommendation and 168

generation modules. For the recommendation mod- 169

ule, the previous works tend to apply more and 170

more external knowledge to improve the recom- 171

mendation performance, e.g., entity-level knowl- 172

edge graph (Chen et al., 2019), word-level knowl- 173

edge graph (Zhou et al., 2020a) and item reviews 174

(Lu et al., 2021)). However, it’s difficult to man- 175

age so much external knowledge via an end-to-end 176

model. What’s more, some (like item reviews) 177

might need much effort to collect and annotate, 178

and are not generally applicable for all kinds of 179

domains (e.g., some items might lack reviews). For 180

generation module, most of the previous works 181
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adopt encoder-decoder framework and train the182

generation model from scratch. However, it’s dif-183

ficult to learn diverse and valuable patterns from184

relatively small datasets. Our work further explores185

approaches for this category.186

Different from the above methods, we are more187

interested in capturing better user representations188

from conversation context rather than adding more189

external knowledge and utilizing the pre-trained190

models (i.e., BART) to enhance our generation.191

3 Methodology192

In this section, we first formulate the task in §3.1,193

followed by our generation module in §3.2, which194

is finetuned with BART (Lewis et al., 2020). Then195

we introduce how we produce recommendation196

based on conversation context in §3.3. Finally in197

§3.4, we describe how we integrate the above two198

modules and produce the final responses.199

3.1 Problem Formulation200

A CRS generally consists of two modules, named201

as generation module and recommendation module.202

It takes a conversation context C = (t1, . . . , tm) as203

input, where ti is an utterance from the seeker (i.e.204

the user) or the CRS itself and m is the number205

of context utterances. The CRS uses its recom-206

mendation module to recommend items Ii from a207

candidate item set I and embeds them into a re-208

sponse R = (y1, . . . , yn), a sequence of n tokens209

generated by the generation module based on the210

conversation context C.211

3.2 BART-based Response Generation212

Our response generation module follows a general213

Transformer (Vaswani et al., 2017) sequence-to-214

sequence framework. As most of the available215

CRS datasets are relatively small and contain only216

around 10K conversations (Li et al., 2018; Moon217

et al., 2019), it is difficult to learn complex seman-218

tic and discourse level dependencies only based219

on the training corpus. To relieve the burden and220

enhance context modeling, we choose to finetune221

a pre-trained BART (Lewis et al., 2020) model for222

our response generation. BART was trained with223

several denoising objectives on large-scale books224

and Wikipedia data, and has been shown to be225

effective in many generation tasks including ab-226

strastive QA, summarization, machine translation227

at the sentence and document level, and persona-228

based response generation.229

Specifically, to enable BART to generate item- 230

related responses, we extend its original vocabulary 231

V with the item set I to be V ′ = V ∪ I, and use 232

a CRS training corpus to finetune the model. Dur- 233

ing finetuning, we concatenate the utterances ti in 234

context C with an appended ⟨EOT ⟩ token in their 235

chronological order as the input, and maximize the 236

probability of the ground truth response R. The 237

whole process is summarized as follows: 238

HC = Transformer_Encoder(wC) (1) 239

yk = Transformer_Decoder(y<k,H
C) (2) 240

Lgen =
∑n

k=1
− log(p(yk|y<k,H

C)) (3) 241

where wC = [t1; ⟨EOT ⟩; t2; ..; ⟨EOT ⟩; tm], and 242

y<k represents the target tokens before yk. 243

An integration operation is added to the gener- 244

ation output to make the generation aware of the 245

recommendation. We will discuss it later in §3.4. 246

3.3 Context-Time-Aware Recommendation 247

To fully understand user preferences over items 248

from a given context C, we propose to extract two 249

kinds of information for the recommendation. The 250

first is entity-level information, where we extract 251

the mentioned entities (including the items in the 252

item set I) from C and apply them to an external 253

related knowledge graph to perform entity link- 254

ing (Daiber et al., 2013). The second is contextual 255

information represented by BART representations 256

HC , which is expected to capture information from 257

the perspectives of semantic and conversational dis- 258

course. We describe the details in the following. 259

Entity-level Representation. We employ a re- 260

lational knowledge graph (e.g. DBpedia) to en- 261

hance entity modeling. Specifically, we denote 262

a triplet in the knowledge graph with ⟨e1, r, e2⟩, 263

where e1, e2 ∈ E are entities from the entity set E 264

and r is an entity relation from the relation set R. 265

We use an R-GCN (Schlichtkrull et al., 2018) to 266

encode relation-aware entity representations. For- 267

mally, the representation of an entity e at the (l+1)- 268

th layer is calculated as follows: 269

h(l+1)
e = ReLU(

∑
r∈R′

∑
e′∈Er

e

1

Ze,r
W (l)

r h
(l)

e′ ) (4) 270

where h
(l)
e is the representation of entity e at the 271

l-th layer, and Er
e denotes the set of neighboring 272

nodes of e under the relation r; R′ = R∪ {rself} 273

contains all the relations including self loop; W (l)
r 274

is a learnable relation-specific transformation ma- 275

trix and Ze,r is a normalization factor. For sim- 276
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U1: Hello!

S1: What kind of movies do you 
like?

U2: I am looking for a movie 
recommendation. When I was 
younger, I really enjoyed the A 
Nightmare on Elm Street.

S2: Oh, you like horror movie? I 
recently watched Happy Death 
Day.

U3: I also enjoyed watching 
dramedy like Silver Linings 
Playbook.
… Conversation Context 𝑪 Emb SA FFN

Transformer Encoder
Transformer Decoder

6x 6x

DBpedia

l A Nightmare … Street 
l Happy Death Day
l Silver Linings Playbook

l horror movie
l dramedy

Item Entities

Text Entities (TE)

Lookup
Table

X Time-aware
Attention (TA)

RGCN

…
…

MLP

Multiplication

+

…

Liar Liar

Bruce Almighty

Fargo

Lady Bird

…

…
…

…

I
would
recommend
Liar Liar
…

Emb SA CA FFN

+Bias

Recommendation
Module

Generation
Module

Context 𝑪

Context 𝑪

𝒑𝒆

𝒑𝒄

Figure 1: Our framework for conversational recommendation.

plicity, we represent the representations in the final277

layer L as he by omitting the superscript “L”.278

Given a context C, we extract the entities as user279

preference Tu = e1, e2, ..., e|Tu| from two perspec-280

tives: item entities (i.e., entities that appear in I)281

and other relevant contextual entities (mentioned282

in utterances but not an item in I, e.g., an actor283

of a film item. We denote them as text entities).284

The entities ei ∈ E are sorted in the order of ap-285

pearance. After looking up the entities in Tu from286

H = {he}|E|e=1 , we get (h1,h2, ...,h|Tu|).287

To summarize the entity-level user representa-288

tion, previous work mainly depends on the self-289

attention mechanism (Zhou et al., 2020a; Lu et al.,290

2021), where a learnable matrix is leveraged to291

learn and derive each entity’s importance. Such a292

mechanism might be sub-optimal as no supervised293

signals are used to guide the model to learn knowl-294

edge about entity importance. Instead, we propose295

Time-aware Attention, where the entity-level user296

representation hE is calculated as follows:297

hE =

|Tu|∑
i=1

λi−1∑|Tu|
i=1 λi−1

hi (5)298

where λ ≥ 1 is a hyper-parameter to control the re-299

cency effect. This means that the recently appeared300

items will contribute more to the next item predic-301

tion, which is consistent with the intuition to such302

a system . Finally, the entity-level recommendation303

probability is computed as follows:304

pe = softmax(mask(hEH⊤)) (6)305

where mask is an operation that sets all non-item306

entities to −∞, and pe ∈ R|E|.307

Contextual-level Representation. Entity-level308

representation and the resulting recommendation309

only concern what entities have appeared in the310

context but cannot fully reflect user preferences.311

For example, if a user says “I do not like A!”. We312

cannot capture such a negative opinion towards313

“A” through entity-level representation alone. To314

partly address the problem and to incorporate more 315

semantic- and discourse-level context for recom- 316

mendation, we further use the context representa- 317

tion HC computed in §3.2 to yield semantic-aware 318

prediction. Specifically, we average the context 319

representation over the sequence as context-level 320

representation for C and put it through an MLP 321

layer to give the prediction: 322

pc = softmax(MLP(

|C|∑
j=1

hC
j )) (7) 323

where hC
j indicates the representation for the j-th 324

token in the context representation HC , |C| is the 325

total length of context C, and pc ∈ R|E|. 326

Joint Recommendation. The final recommenda- 327

tion based on the above two components is: 328

prec = µ · pe + (1− µ) · pc (8) 329

where µ (0 ≤ µ ≤ 1) is a hyper-parameter to bal- 330

ance between the two kinds of recommendations. 331

The learning objective for the recommendation 332

module can be summarized as: 333

Lrec = −
M∑
i=1

log pe(ri) + log pc(ri) (9) 334

where M is the number of items that need to be 335

recommended and ri ∈ I is the target item in 336

the i-th recommendation. pe(ri) and pc(ri) are 337

the corresponding prediction probabilities of the 338

target item from the entity-level and contextual- 339

level recommendation components, respectively. 340

3.4 Module Integration 341

We introduce an integration mechanism to incorpo- 342

rate the recommendation module’s knowledge and 343

guide the generation module to generate responses 344

that are more consistent with the user’s preference. 345

Inspired by Chen et al. (2019), we add a vocabulary 346

bias to the top decoder predictions. Different from 347

their work, our vocabulary bias directly comes from 348

the recommendation probabilities prec in Eq 8: 349

bu = [0;G(prec)] (10) 350
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where 0 is a V-dimensional zero vector, G(·) is351

an index selection operation to select items from352

entities(G : R|E| → R|I|), and [; ] means concate-353

nation. This makes the bias the same dimension as354

our generation output (i.e. |V ′| = |V|+ |I|).355

We dynamically add the bias bu during genera-356

tion based on the top predictions in each time stamp357

t. The effect of this is that for a generation token358

yt that is an item in I, we add its recommendation359

probability prec(yt) to the original generation prob-360

ability p(yt). In this way, the generation module361

can generate recommendation-aware responses.362

Finally, the total objective for our model is:363

L = Lgen + γLrec (11)364

where γ is a hyper-parameter that balances the two365

objectives.366

4 Experimental Setup367

Datasets. To empirically evaluate the proposed368

approach, we conduct experiments on two datasets,369

namely, ReDial (Li et al., 2018) and OpenDi-370

alKG (Moon et al., 2019). ReDial is centered371

around movie recommendation. OpenDialKG con-372

sists of conversations that are mainly in four do-373

mains: movie, book, sports and music. We split374

them into training, validation and test at ratios of375

80%:10%:10% and 75%:15%:15% by following Li376

et al. (2018) and Moon et al. (2019). More statistics377

about the datasets can be found in Appendix.378

Parameter Setting. We implement our models379

based on FAIRSEQ framework1 (Ott et al., 2019),380

and train on an NVIDIA 3090 GPU. For the RGCN-381

based recommendation module, we set both the en-382

tity embedding size and the hidden representation383

size to 128. The layer number for R-GCN is 1 and384

the normalization factor Ze,r is set to 1 following385

Chen et al. (2019). For the BART-based generation386

module, we adopt a BART base model consisting387

of 6 layers of encoder and decoder. The hidden388

dimension of these encoders and decoders are set389

to 768. We set the max tokens to 4096 with an390

update frequency of 4. We adopt Adam optimizer391

with a 5e-3 learning rate (and 5e-5 learning rate392

for BART-related modules) and 1000 warm-up up-393

dates followed by a polynomial decay scheduler.394

We adopt diverse beam search (Vijayakumar et al.,395

2016) mechanism in generation with a beam size396

of 4 and diverse beam group number of 2. All the397

hyper-parameters are determined by grid-search398

1https://github.com/pytorch/fairseq

based on validation performance. More detailed 399

parameter setting can be found in Appendix. 400

Baselines and Comparisons. For ReDial, we 401

compare several competitive baselines that include: 402

• ReDial (Li et al., 2018) consists of an HRED- 403

based (Sordoni et al., 2015) generation module, and 404

an auto-encoder based recommender module. 405

• KBRD (Chen et al., 2019) uses DBpedia to rec- 406

ommend and adopts a transformer based genera- 407

tion, where knowledge graph (KG) information 408

serves as word bias to assist the generation. 409

• KGSF (Zhou et al., 2020a) uses MIM (Viola and 410

Wells III, 1997) to align the semantic spaces of 411

word- and entity-level KGs. It adopts a transformer 412

encoder and a fused knowledge-enhanced decoder. 413

• RevCore (Lu et al., 2021) performs review- 414

enriched and entity-based recommendation and use 415

a review-attentive encoder-decoder for generation. 416

We do re-implementations of KBRD and 417

RevCore models, denoted as EM-SA and EM-SA- 418

Rev, where EM-SA means entity modeling with 419

self-attention2. We also test performance of the 420

variants to our model: BART, EM-TA, EM-TA- 421

BART. BART refers to model that uses contextual- 422

based recommendation (described in §3.3) only. 423

EM-TA means using entity-based recommenda- 424

tion with time-aware attention only. EM-TA-BART 425

means the joint model of the above two models. 426

For the OpenDialKG dataset, we compare the 427

models (seq2seq, Tri-LSTM, Ext-ED, DialKG 428

Walker) that are described in Moon et al. (2019) 429

and skip the introduction to them for saving spaces. 430

Please refer to Moon et al. (2019) for the details. 431

Evaluation Metrics. We evaluate the recommen- 432

dation and generation separately. For recommen- 433

dation, we adopt Recall@K scores: K = 1, 10, 50 434

for ReDial by following Chen et al. (2019), and 435

K = 1, 3, 5, 10, 25 for OpenDialKG by following 436

Moon et al. (2019). Recall@K indicates whether 437

the predicted top-K items contain the ground truth 438

recommendation items. For generation, apart from 439

Dist-n (n=2, 3, 4) and PPL scores reported in (Lu 440

et al., 2021), we also report the case-insensitive 441

BLEU-n (n=2, 4) scores3. For a fair comparison, 442

we calculate the PPL scores via a widely used off- 443

the-shelf package KenLM4, as the PPL scores are 444

very different when using different vocabulary. 445

2Its attention weights are calculated by a learnable matrix.
3We use NLTK package (https://www.nltk.org)

to calculate the BLEU scores.
4https://kheafield.com/code/kenlm/
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Models Input R@1 R@10 R@50

Baselines
ReDial C+Sentiment 2.4 14.0 32.0
KBRD C+TE+EK 3.1 15.0 33.6
KGSF C+TE+EK+WK 3.9 18.3 37.8
RevCore C+TE+EK+Rev 6.1 23.6 45.4

Re-implementation
EM-SA(KBRD) C+TE+EK 3.3 16.3 32.6
EM-SA-Rev†(RevCore) C+TE+EK+Rev 3.3 16.6 33.8

Our Models
BART C 3.0 16.4 35.0
EM-TA C+EK 4.6 18.3 34.1
EM-TA-BART C+EK 5.5 21.2 40.0
EM-TA C+TE+EK 5.2 18.2 34.6
EM-TA-BART C+TE+EK 5.8 20.8 40.2

Table 1: Recommendation results (in %) on ReDial
dataset. “C”, “TE”, “EK”, “WK”, “Rev”, “EM-SA”
and “EM-TA” are short form for “Context”, “Text En-
tity”, “Entity-level Knowledge”, “Word-level Knowl-
edge”, “Review”, “Entity Modeling with Self-Attention”
and “Entity Modeling with Time-aware Attention”, re-
spectively. Rev† indicates the extracted items from the
retrieved reviews may be not the same as RevCore.

5 Experimental Results446

In this section, we first report the main comparison447

results on recommendation and generation in §5.1448

and §5.2, respectively. Then we further analyze the449

effectiveness of our model in §5.3.450

5.1 Recommendation Result Comparisons451

We first present the main comparison results on Re-452

Dial in §5.1.1. To further verify the effectiveness453

of our model in multi-domain dataset, we conduct454

experiments on OpenDialKG and report the com-455

parison results in §5.1.2.456

5.1.1 Results on ReDial457

Table 1 shows the recommendation results of our458

models, the baselines and our re-implementation459

of some baselines. We can draw the following460

observations from the results:461

• Adding more external knowledge can improve462

the recommendation performance. We can see that463

among the baselines, KBRD adds the entity-level464

knowledge (EK), while KGSF and RevCore further465

incorporate word-level knowledge (WK) and item466

reviews (Rev). All the external knowledge intro-467

duces considerable improvement, demonstrating468

the efficiencies of the external knowledge.469

• More external knowledge like the item reviews470

introduces greater difficulty in reproduction and471

less generalization. We have tried to re-implement472

the results of KBRD and RevCore baselines (the re-473

implementation results are also shown in Table 1). 474

We find that we can easily re-implement similar 475

results of KBRD but cannot achieve improvement 476

when further incorporating item review information 477

following RevCore. The reasons can be twofold. 478

First, incorporating multiple external knowledge 479

introduces more challenges to balance them. The 480

other is that the method introduced in RevCore 481

requires much extra effort to collect and annotate 482

the reviews (some items may even lack reviews) 483

and train a sentiment-aware retrieval model (Lu 484

et al., 2021), which makes it difficult to reproduce 485

similar results and become less generalizable to 486

other domains. 487

• Time-aware attention can better summarize 488

user preference than self-attention. Our models 489

with time-aware attention perform significantly bet- 490

ter than the models with self-attention. For exam- 491

ple, EM-TA achieves 1.9% higher Recall@1 com- 492

pared to EM-SA in the same input (C+TE+EK) sit- 493

uation. This validates our intuition that the recently 494

appeared items are more important for reflecting 495

user preference, as well as the effectiveness of our 496

designed time-aware attention. 497

• BART-based representations are helpful. We 498

are the first to finetune a pretrained BART model 499

and utilize the representations for recommenda- 500

tion. As we can see in Table 1, the simplest 501

BART model achieves 35.0% Recall@50 while 502

the KBRD model that incorporates external knowl- 503

edge graph gets 33.6 Recall@50. We can also find 504

that our models with time-aware attention show 505

good improvements in all metrics after being en- 506

hanced with BART representations. Both indicate 507

that contextual-level representations extracted by 508

BART can reflect user preference that entity-level 509

representations cannot capture. Fig. 2(a) shows 510

more detailed analysis. 511

• Text entities are effective in capturing most 512

relative items. Our models with additional text en- 513

tities (TE) as input can achieve better Recall@1 514

compared with the same models without TE, while 515

keeping similar Recall@10 and Recall@50. This 516

means that text entities help re-rank the top predic- 517

tions and find the most relative items. 518

5.1.2 Results on OpenDialKG 519

Apart from ReDial that focuses on movie recom- 520

mendation, we also examine our recommendation 521

performance in a multi-domain dataset, OpenDi- 522

alKG, to show the generalizability of our model. 523

The results are displayed in Table 2. Our model 524
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Models R@1 R@3 R@5 R@10 R@25
Baselines
seq2seq 3.1 18.3 29.7 44.1 60.2
Tri-LSTM 3.2 14.2 22.6 36.3 56.2
Ext-ED 1.9 5.8 9.0 13.3 19.0
DialKG Walker 13.2 26.1 35.3 47.9 62.2

Our Models
BART 5.8 19.7 31.0 45.5 57.8
EM-SA 10.9 21.2 30.3 41.6 53.2
EM-TA 16.0 28.9 34.3 45.1 57.9
EM-TA-BART 18.0 33.5 41.5 50.0 64.8

Table 2: Recommendation results (in %) on Open-
DialKG. ‘EM-SA” and “EM-TA” are short form for
“Entity Modeling with Self-Attention” and “Entity Mod-
eling with Time-aware Attention”, respectively.

with time-aware attention and BART-enhanced rep-525

resentations achieves the best performance com-526

pared to all the other methods. We can observe527

similar trends among the different variants as those528

in ReDial, e.g., time-aware attention is better than529

self-attention and BART representations help im-530

prove all of the metrics. This validates that our531

method generalizes well to other domains.532

5.2 Generation Result Comparisons533

Automatic Evaluation. We show the genera-534

tion comparison results in Table 3. To investigate535

the performance in different scenarios, we display536

the results of our model with conventional beam537

search (BS) and diverse beam search (DBS), respec-538

tively, together with their results without BART539

pre-training. We summarize our observations in540

the following:541

• Our model is able to generate more diverse542

and fluent responses than the baselines. As can be543

seen, our model with beam search achieves the best544

BLEU and perplexity scores, and our model with545

diverse beam search yields the highest Dist-n while546

maintaining comparable BLEU and perplexity.547

• It is challenging to balance diversity and flu-548

ency. The baselines perform differently in terms of549

Dist-n and perplexity, e.g., KGSF achieves higher550

Dist-n than KBRD, but its perplexity is worse. We551

presume that higher diversity requires the models552

to extract more different patterns to express the553

content, but organizing them into a fluent response554

may be challenging. Another example is our model555

without BART pre-training achieves poor diversity,556

as it may overfit on the training corpus and tend557

to generate simple responses. But this also results558

in its lowest perplexity. Our model with diverse559

beam search achieves consistently better Dist-n,560

and maintains relatively lower perplexity, demon-561

Models Dist-2 Dist-3 Dist-4 BLEU2 BLEU4 PPL

Transformer 14.8 15.1 13.7 - - -
ReDial 22.5 23.6 22.8 17.8 7.4 61.7
KBRD 26.3 36.8 42.3 18.5 7.4 58.8
KGSF 28.9 43.4 51.9 16.4 7.4 131.1
RevCore 42.4 55.8 61.2 - - -

Ours+BS 35.8 49.9 57.7 19.1 9.3 52.1
- BART PT 8.5 10.9 12.3 18.6 8.7 30.7

Ours+DBS 45.7 65.3 76.1 19.1 8.9 54.8
- BART PT 13.9 19.8 23.8 18.6 8.2 43.9

Table 3: Generation results (in %) on the ReDial
dataset. “BS” refers to beam search, “DBS” refers to
diverse beam search, and “PT” refers to pre-training.

Models Fluency Informativeness Coherence

HUMAN 1.95 1.71 1.71

ReDial 1.92 1.32 1.23
KBRD 1.95 1.39 1.31
KGSF 1.91 1.02 0.95

Ours+BS 1.95 1.54 1.66
Ours+DBS 1.92 1.64 1.64

Table 4: Human evaluation of the generation results
on the ReDial dataset. “BS” refers to beam search,
“DBS” refers to diverse beam search. All the metrics
are in the scale of [0, 2]. The overall Cohen’s kappa
coefficient is larger than 0.65.

strating the superiority of our model. 562

• Dist-n scores highly depend on the search- 563

ing strategy. Our model performs much better in 564

terms of Dist-n when applying diverse beam search 565

compared with using conventional beam search. 566

What is more, different configuration (e.g., length 567

penalty) applied during generation also affects the 568

scores. More analysis can be found in Appendix. 569

Human Evaluation. We adopt a human evalua- 570

tion to examine the generation results from a differ- 571

ent perspective and display the results in Table 4. 572

The evaluation details are given in the Appendix. 573

From Table 4, all the models generate responses 574

with high fluency, but perform differently regard- 575

ing informativeness and coherence. The baselines 576

are more likely to produce safe responses (short 577

and repetitive) while our model can generate more 578

informative and coherent responses. 579

5.3 Further Analysis 580

Effectiveness of Contextual-level Representa- 581

tion. To investigate how contextual-level repre- 582

sentations influence recommendation, we show the 583

Recall@50 scores with varying mentioned items 584

numbers in context in Fig. 2(a). We can observe 585

that the BART model performs better than EM-TA 586

when the mentioned number is 0 or 1. Such phe- 587
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Figure 3: Change of Recall scores when using different
values of λ, which controls the recency effect.

nomenon is desired, since when the item history588

information is rare or even missing, entity-level rep-589

resentations are not sufficient to produce reliable590

recommendations while contextual-level represen-591

tations can capture useful information from the text.592

Then we find EM-TA performs consistently better593

than BART when the mentioned number increases.594

Because the increasing mentioned item number595

also means the context becomes longer, and the596

model might be not able to handle the long con-597

text, especially when the mentioned item number598

is larger than 10. This means that contextual-level599

representations are useful in the cold-start scenario600

(not a rare situation as shown in Fig. 2(b)), which601

is a shortcoming for entity-level recommendation.602

Therefore, combining the both representations (i.e.,603

EM-TA-BART model) yields the best performance.604

Effectiveness of Time-Aware Attention. We605

present the Recall@1 and Recall@10 (Recall@50606

shows similar trend with Recall@10) scores with607

varying values of λ, which can control the effect608

of recency introduced in Eq. (5) of Fig. 3. λ < 1609

indicates the earlier appeared items are more im-610

portant, which results in quick performance drops.611

And the performance increases when λ > 1 com-612

Models Inputs PT R@1 R@10 R@50

BART C ! 3.0 16.4 35.0
% 2.6 14.5 31.7

EM-TA-BART C+EK ! 5.5 21.2 40.0
% 5.2 21.0 39.4

EM-TA-BART C+TE+EK ! 5.8 20.8 40.2
% 5.4 20.4 39.0

Table 5: Recommendation results (in %) of our models
when using BART pre-training (PT) or not.

pared to λ = 1. This validates the intuition that 613

more recently appeared items contribute more to 614

the recommendation. On the other hand, Recall@1 615

and Recall@10 present different trends when λ in- 616

creases – Recall@1 consistently increases while 617

Recall@10 begins to drop when λ > 2. This is 618

because when λ is too large, time-aware attention 619

tends to concern with the most recently appeared 620

item. This is helpful in finding the most relative 621

items but hurts the overall recommendation. 622

Effects of BART Pre-training. We examine the 623

effects of BART pre-training (PT) for recommen- 624

dation and generation. For recommendation, we 625

list the recall scores of our different model variants 626

with and without BART PT in Table 5. As can be 627

seen, all the models perform worse when removing 628

PT, as PT on large-scale monolingual datasets helps 629

the models learn better semantic features. When 630

joint recommending with entity-level representa- 631

tions (i.e., EM-TA-BART model), the performance 632

degradation becomes less, demonstrating the two 633

kinds of information can complement each other. 634

For generation, we have listed the ablation with- 635

out PT in Table 3. As we can see, models without 636

PT show poor performance on Dist-n metric as 637

models tend to be overfitting and cannot generate 638

diverse responses based on a small dataset. 639

6 Conclusion 640

In this work, we propose to capture both entity- 641

level and contextual-level representations to im- 642

prove the conversational recommender system, 643

where a time-aware attention is designed to empha- 644

size the recently appeared items and a pre-trained 645

BART is used to enhance context modeling. Exper- 646

iments show that the proposed model can achieve 647

comparable performance with less external knowl- 648

edge and generalizes well to other domains. Fur- 649

ther analyses also examine the effectiveness of the 650

model in different scenarios. 651
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Appendix827

A Datasets and Parameter Setting828

ReDial OpenDialKG

Number of conversations 10,006 13,802
Number of utterances 182,150 91,209
Knowledge Graph DBpedia DBpedia
Domains Movie Movie, Book

Table 6: Statistics of ReDial and OpenDialKG datasets.

We first show the basic statistics of the two datasets829

in Table 6. Then we show the detailed parame-830

ter search space and best assignment in Table 7.831

The parameter number of our model is 269M. The832

training time of one epoch is around 22 minutes833

when the model is trained an NVIDIA 3090 GPU834

with a max token number of 4096 and an update835

frequency of 4. The model needs around 5 epochs836

to achieve the best performance on the validation837

set.838

B Human Evaluation Details839

We randomly sampled 100 context-response pairs840

from the test set and collected the corresponding841

generation results of our models as well as the base-842

line models. We then employ two crowd-workers843

to score the results on the scale of [0, 1, 2], where844

higher scores indicate better quality. Following845

prior studies, we also evaluate three aspects:846

• Fluency: whether a response is in a proper En-847

glish grammar and easy to understand.848

• Informativeness: whether a response contains849

meaningful information. The “safe responses”850

are treated as uninformative as they may be repet-851

itive and meaningless.852

• Coherence: whether a response is coherent with853

the context, i.e., the discussion content should be854

consistent.855

The scoring details are shown in Table 8 following856

one of the previous work.857

C More Analysis858

Limitation of Dist-n Metrics. As we find that859

search strategies seriously affect the Dist-n metrics,860

we present more analysis on them by setting dif-861

ferent values of length penalty (a hyper-parameter862

that can control the lengths of final generated re-863

sults) when generating the responses. We display864

the results of Dist-2 and BLEU2 for EM-TA-BART865

model with beam search setting in Fig. 4 (other866

metrics are in similar trends). We can find that the 867

generated lengths also affect much on the Dist-n, 868

since longer responses allow more different tokens 869

to be generated. However, this is not expected as 870

not the longer the better. Therefore, other metrics 871

including human evaluation are desired to explic- 872

itly evaluate generation performance.

0

5

10

15

20

25

30

35

40

0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9

Sc
or
e
(in
%
)

Value of Length Penalty

Dist-2 BLEU2

Figure 4: Change of Dist-2 and BLEU2 scores when
using different length penalty. Larger length penalty
(> 1) indicates allowing generating longer responses.
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Figure 5: Change of Recall@1 and Recall@50 scores
over different values of trade-off parameter µ.

Trade-off between Entity-level and Contextual- 874

level Representations. We examine the effects 875

of the hyper-parameter µ in Eq. (8) by setting its 876

value from 0 (only entity-level representations) to 1 877

(only contextual-level representations) and display 878

the results of EM-TA-BART model with C+EK 879

input in Fig. 5. As can be seen, Recall@50 is sig- 880

nificantly improved when µ changes from 0 to 0.1 881

(or 1 to 0.9). This validates that the two represen- 882

tations capture user preferences from a different 883

perspective and can complement each other. The 884

best result is achieved with µ = 0.5, showing that 885

both representations are important. 886
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Hyper-parameter Search Space Best Assignment

RGCN entity embedding size {128, 256} 128
RGCN hidden representation size {128, 256} 128
RGCN layer number 1 1
Normalization factor Ze,r 1 1

BART layer number 6 6
BART hidden dim 768 768

Max token number {2048, 4096, 8192, 10240} 4096
Update frequency {1, 2, 4, 8} 4
LR for recommendation [1e-4, 2e-4, ..., 8e-3] 5e-3
LR for generation [1e-5, 2e-5, ..., 5e-4] 5e-5
Warm-up updates {200, 400, 600, 800, 1000, 2000} 1000
Patience 5 5

µ trade off [0, 0.1, 0.2, ..., 1.0] 0.5

beam size {2, 4, 6, 8} 4
diverse beam group number {2, 4} 2
length penalty [0.1, 0.2, ..., 3] 1.5

Table 7: Hyper-parameter Search Space and Best Assignment.

Score Fluency

0 The response has many grammar mistakes.
The response is hard to understand.

1 The response has minor grammar mistakes.
Some part of the response is hard to understand.

2 The response is in correct grammar and easy to understand.

Score Coherence

0

The response is not related with the context.
The response simply repeats the context.
The response has obvious conflicts with the context.

1 The response has minor conflicts with the context.
There are some minor logic conflicts in the response.

2 The response is coherent with the context.

Score Informativeness

0

The response does not contain any information.
This response just repeats the context and fails to bring any addi-
tional information.
The information is invalid, as the coherence score is 0.

1 The information has conflicts with common sense.
There are factual errors in the response.

2 The response has appropriate and correct information.

Table 8: Scoring details for human evaluation.
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