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Abstract

The Segment Anything Model (SAM) and CLIP are
remarkable vision foundation models (VFMs). SAM, a
prompt-driven segmentation model, excels in segmentation
tasks across diverse domains, while CLIP is renowned for
its zero-shot recognition capabilities. However, their uni-
fied potential has not yet been explored in medical image
segmentation. To adapt SAM, to medical imaging, exist-
ing methods primarily rely on tuning strategies that require
extensive data or prior prompts tailored to the specific task,
making it particularly challenging when only a limited num-
ber of data samples are available. This work presents an
in-depth exploration of integrating SAM and CLIP into a
unified framework for medical image segmentation. Specif-
ically, we propose a simple unified framework, SaLIP, for
organ segmentation. Initially, SAM is used for part-based
segmentation within the image, followed by CLIP to re-
trieve the mask corresponding to the region of interest (ROI)
from the pool of SAM’s generated masks. Finally, SAM
is prompted by the retrieved ROI to segment a specific or-
gan. Thus, SaLIP is training/fine-tuning free and does not
rely on domain expertise or labeled data for prompt engi-
neering. Our method shows substantial enhancements in
zero-shot segmentation, showcasing notable improvements
in DICE scores across diverse segmentation tasks like brain
(63.46%), lung (50.11%), and fetal head (30.82%), when
compared to un-prompted SAM. Code and text prompts are
available at SaLIP.

1. Introduction

The utilization of Vision-Foundation models (VFMs) has
become increasingly prominent in various vision-related
tasks, predominantly due to their zero-shot transfer capa-
bilities to various downstream tasks. The Segment Any-
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thing Model (SAM) [10] and Contrastive Language-Image
Pre-Training (CLIP) [22] have showcased remarkable gen-
eralization capabilities in segmentation and recognition, re-
spectively. SAM, in particular, has been trained with a mas-
sive dataset of over 1 billion masks, making it highly adapt-
able to a wide range of downstream tasks through interac-
tive prompts. SAM can be utilized to either segment ev-
erything in an image or to segment a specific region based
on the prompts. SAM has shown impressive results in
a broad range of tasks for natural images but its perfor-
mance has been subpar when directly applied to medical
images [3, 6, 17, 37]. On the other hand, CLIP’s training
with millions of text-image pairs has given it an unprece-
dented ability in zero-shot visual recognition.

Both SAM and CLIP have shown remarkable zero-shot
transfer capabilities in various downstream tasks for natural
images. However, their unified potential in the challenging
domain of medical imaging has not yet been explored.

While SAM offers considerable advantages, there are in-
herent limitations to its application in medical image seg-
mentation. SAM relies on prompts to segment specific re-
gions. This prompt engineering requires domain expertise
and manual intervention. However, it is particularly chal-
lenging in medical imaging due to the scarcity of high-
quality labeled medical data and the need for specialized
domain expertise. To address this, several studies have inte-
grated SAM with other foundation models such as Ground-
ingDINO [12] and YOLOV8 [9] to generate bounding box
prompts [20] for regions of interest (ROI) [2]. These mod-
els are not directly applicable to medical image segmenta-
tion. To effectively utilize them for this purpose, they must
undergo training with medical datasets containing images
paired with their corresponding annotated masks. Their per-
formance is also reliant on the size of training data, which
requires careful evaluation and experimentation to achieve
optimal segmentation results.

Furthermore, although SAM’s capability of automati-
cally segmenting everything in the image is appealing, there
are further challenges to its application to medical imaging.
One of the main challenges lies in the inherent variability
of segmentation tasks. For example, given a liver cancer
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Figure 1. SAM efficiently segments regions based on prompts
such as box or point prompts etc. However, such prompt genera-
tion needs domain expertise or annotated data, which is not readily
available in medical imaging. To overcome this challenge, we use
the segment everything mode to get the mask for every part in the
image. Then, using CLIP, we select the mask corresponding to the
specific organ and use it to generate prompts.

CT image, the segmentation task can vary depending on the
specific clinical scenario. One clinician may be focused on
segmenting the liver tumor, whereas another may require
segmentation of the entire liver along with the surrounding
organs. Additionally, clinicians are primarily interested in
analyzing specific anatomical organs such as the liver, kid-
neys, spleen, lesions, etc. It becomes challenging to discern
and focus on regions of interest amidst the growing num-
ber of segmented areas. Thus, such challenges impede the
direct application of SAM to medical image segmentation.

To address the aforementioned challenges, we leverage
the combined capabilities of SAM and CLIP and introduce
a unified framework called SaLIP, for zero-shot organ seg-
mentation. SAM effectively performs organ segmentation
with prompts as shown in Fig. 1, but its effectiveness hinges
on domain expertise and annotated data for prompt engi-
neering, which is not readily available in the medical do-
main. To circumvent these challenges, we adopt the seg-
ment everything mode to segment every part in the image
and cascade it with CLIP to get the mask for specific or-
gans.

Initially, our framework SaLIP, employs SAM to auto-
matically segment every part within the image. SAM pro-
vides exhaustive segmentation, however the resulting masks
lack semantic labels. To extract the relevant ROI mask from
the pool of generated masks, we first crop the original im-
age according to these masks. This set of cropped regions
is passed to CLIP. By employing visually descriptive (VDT)
sentences related to the target organ, CLIP then retrieves the
corresponding crop in a zero-shot manner [15]. The VDT
prompts for CLIP are generated via GPT-3.5 [1]. Finally,
the retrieved ROI mask is used for bounding box prompt
generation, which is eventually used to prompt SAM to
guide the specific organ segmentation. Hence, our frame-
work is training/fine-tuning free and independent of domain
expertise or labeled data for prompt engineering. By com-
bining the strengths of SAM and CLIP, our method effec-
tively performs zero-shot medical organ segmentation. We
conduct experiments across three diverse medical imaging

datasets encompassing MRI scans, ultrasound, and X-ray
images to demonstrate the effectiveness of SaLIP.

Our contributions can be summarized as follows:
• We propose a simple unified framework that leverages the

combined capabilities of SAM and CLIP for medical im-
age segmentation. We demonstrate that a cascade of these
foundation models can improve the zero-shot segmenta-
tion accuracy in medical imaging.

• To effectively address the challenges associated with ap-
plying SAM directly to medical imaging and to optimize
its utilization for medical image segmentation, we pro-
pose employing both segment everything and promptable
segmentation modes. To the best of our knowledge, we
are the first to investigate the utilization of SAM’s dual
modes for zero-shot medical imaging segmentation.

• Our unified framework SaLIP is adapted fully at test-time
for zero-shot medical image segmentation, thereby effi-
ciently alleviating the training costs associated with these
foundation models. By leveraging Large language mod-
els (LLMs), our method eliminates the need for domain
expertise in prompt engineering.

2. Related Work

2.1. Segment Anything Model (SAM)

SAM [10] is a promptable vision foundation segmenta-
tion model that aims to segment everything in an image
conditioned on different kinds of prompts like bounding
boxes and point prompts. It presents a new data engine
and portable model for general object segmentation. Given
prompts, SAM returns valid segmentation masks. It has
three modules: an image encoder, a prompt encoder, and
a mask decoder. Masked Autoencoders (MAE) [5], a pre-
trained Vision Transformer (ViT) [4] is used as an image
encoder. The mask decoder efficiently maps the image em-
bedding, prompt embedding, and an output token to a mask.

2.2. SAM for medical image segmentation

The application of SAM has been investigated within the
medical domain. The first line of research focuses on the
adaptability of SAM using fine-tuning strategies. Med-
SAM [14] fine-tunes the SAM mask decoder on large-scale
datasets, SAMed [34] adopts a low-rank-based fine-tuning
strategy (LoRA) [7], and trains a default prompt for all im-
ages in the dataset. Medical SAM Adapter (MSA) [30] uses
adapter modules for fine-tuning. These approaches yield
promising results, often matching or surpassing state-of-
the-art fully-supervised models. Nevertheless, these SAM-
based methodologies still require substantial amounts of
data for supervised fine-tuning and do not fully leverage
the prompting ability. The second line of research focuses
on evaluating the performance of few-shot segmentation by
prompting SAM to return a specific object segmentation.
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CLIP top-k

Figure 2. Illustration of SaLIP: SAMEM segments the input image I using a grid-wise set of keypoints G, as prompts to produce part-based
segmentation masks M. To remove m 2 M that corresponds to background, a Athreshold is applied on M. Subsequently, I is cropped based on
Mfiltered to generate a set of crops C, which are then fed into CLIP along with visually descriptive sentences T generated by GPT 3.5. The
region of interest crops CROI are retrieved from CLIP using argmax, and top-k crops (two in this case) are selected as ROI. The extracted
ROI is leveraged to generate bounding box prompts (coordinates shown in red), which are used to prompt SAMPSM to get the specific organ
segmentation Sorg within I.

Several recent studies, including [3, 6, 8, 16, 18] have evalu-
ated SAM’s capability on different medical image segmen-
tation tasks in the context of zero-shot transfer. However,
this prompt generation requires domain expertise or high-
quality labeled data.

In contrast, our method is entirely independent of train-
ing or domain expertise for prompt engineering. Instead,
it effectively adapts SAM to medical imaging segmentation
by harnessing the capabilities of both segment-everything
and promptable modes, using CLIP as the bridge between
the two. Our framework facilitates fully test-time zero-shot
organ segmentation in medical imaging.

2.3. CLIP

CLIP [22] is a pre-trained large Vision-Language Model
(VLM) known for its strong generalizability and impres-
sive zero-shot domain adaption capabilities. An effec-
tive method for adapting CLIP to various domains is
through prompt engineering, a process that typically incor-
porates relevant semantic details related to the specific tar-
get task [15]. CLIPSeg [13] extends the CLIP model with
a transformer-based decoder that facilitates dense predic-
tion. MedCLIP [29] fine-tunes the CLIP model by separat-
ing medical images and texts to expand the available train-
ing data exponentially at a low cost. CXR-CLIP [33] im-
proves its performance in chest X-ray classification tasks by
fine-tuning the CLIP image and text encoders using samples
from image-text and image-label datasets. These method-
ologies require supervised fine-tuning on medical image-
text pairs. Other studies such as [11, 35, 36] have demon-

strated that the incorporation of text embeddings learned
from CLIP into medical segmentation models achieves
state-of-the-art results. However, these medical image-text
pairs are collected under guidelines and with the support of
domain experts.

3. Methodology

In this section, we first review SAM and CLIP in Sec. 3.1.1
and Sec. 3.1.2. Subsequently, we explain our unified frame-
work SaLIP in Sec. 3.1.3. Our framework is illustrated in
Fig. 2.

3.1. Preliminaries

3.1.1 SAM

SAM is a prompt-driven segmentation foundation model.
It consists of three main components: an image encoder, a
prompt encoder, and a lightweight mask decoder. We de-
note an input image as I 2 RH⇥W⇥3 and an input visual
prompt as P 2 RN , where H ⇥ W are the spatial dimen-
sions and N is the number of prompts. The image encoder
is a MAE [5] pre-trained Vision Transformer (ViT) [4]. It
encodes an image into dense features FSAM 2 RH

16⇥
Q

16 . The
prompt encoder encodes prompts P into sparse prompts Qsp.
P can either be sparse, such as points, boxes, or text, or
dense, like masks. The points and boxes are represented
by positional encodings [27] summed with learned embed-
dings for each prompt type. Currently, SAM does not di-
rectly process text prompts and the text-to-mask task is still
in its exploratory stages and is not entirely robust [10].
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The mask decoder efficiently maps the image features
FSAM, Qsp , and an output token to a mask. It uses prompt
self-attention and cross-attention in two directions (prompt-
to-image embedding and vice-versa) to update all embed-
dings. After running two blocks, a multilayer perceptron
(MLP) maps the output token to a dynamic linear classi-
fier, which then computes the mask foreground probability
at each image location.

SAM can operate in two distinct modes: segment every-
thing mode (SAMEM) and promptable segmentation mode
SAMPSM. The former can segment everything in the image
without relying on externally provided prompts. Instead, a
grid of keypoints is generated on the image, and these grid-
wise set of keypoints are used as prompts to segment every-
thing in the image. The latter segment a specific set of ROIs
based on the prompts given to SAM.

Our framework utilizes both modes of SAM with CLIP
as a bridge between them.

3.1.2 CLIP

Using contrastive pre-training on large image-text datasets,
CLIP performs image classification. CLIP aligns image
and text modalities within a shared embedding space. Af-
ter pretraining, CLIP directly performs image classification
on the target dataset without any fine-tuning. For an image
I 2 RH⇥W⇥C, where H ⇥ W ⇥ C denotes spatial dimension,
the vision encoder f maps I into a joint embedding space to
get the image features E 2 D with dimension D. During in-
ference, a prompt template such as ‘A photo of classname’
is used to generate sentences for K different classes and
passed through the text-encoder to yield classifier weight
matrix W 2 RD⇥K . Prediction probabilities are then cal-
culated by multiplying image feature f and W and applying
a softmax function.

In this work, to construct textual prompts for CLIP, we
use ensembles of visually descriptive (VDT) information
for each class [15].

3.1.3 SaLIP

In this section, we provide a detailed overview of our uni-
fied framework for zero-shot organ segmentation. First, we
explain how SAMEM generates masks for every part within
the image, followed by an explanation of how CLIP re-
trieves the relevant ROIs from the pool of generated part-
based masks. Finally, we illustrate how we leverage re-
trieved ROIs to create prompts for SAMPSM.

To generate part-based segmentation masks from the im-
age, we use SAMEM. It generates an extremely exhaustive
prediction of nearly any object or part in the images. It takes
a grid-wise set of keypoints G 2 Rg2⇥2 as input, where g
is the point number along one side of the image. Then the

masks are generated by SAMEM by prompting it with a set
of grid-wise key points.

M = SAMEM(I,G) (1)

where I 2 R3⇥H⇥W is the input image, and M 2
RN⇥H⇥W is the set of all the part-based generated masks.
N refers to the number of masks and H ⇥ W is the spatial
dimension.

The process of generating part-based masks with SAMEM
is greatly influenced by the selection of hyperparameters
utilized for the SAM mask generator module. To stream-
line and achieve optimal part-based segmentation, we use
a random search for optimal hyper-parameters for SAMEM
using five randomly selected images. The combination of
hyper-parameters that yields the highest DICE score is used
as the final configuration of SAMEM to generate part-based
masks for the entire dataset.

Following this, the next step in the pipeline is to extract
the ROI mask from M using CLIP. To accomplish this, we
first utilize M to crop I, thereby producing a series of crops,
each corresponding to a mask in M. As SAMEM generates
masks for every element within the image, there arises the
possibility of predicting a mask corresponding to the back-
ground. In such instances, the resulting crop has spatial
dimensions identical to I. Consequently, when these crops
are subsequently passed to CLIP, there is a risk of miss-
classification, as CLIP may perceive them as ROI due to the
presence of relevant region in I as discussed in Sec. 4.4.3.
To mitigate this issue, instead of directly forwarding the en-
tire set of masks M to CLIP, we first filter out the masks
m 2 M that potentially correspond to the background re-
gion using area-based filtering on each mask within M. To
determine the optimal threshold for area-based filtering, we
perform a random hyperparameter search within the space
defined by the areas of masks in M. This search is carried
out simultaneously with the hyper-parameter optimization
process for SAMEM, using the same methodology discussed
above. The area filtering is conducted, and set crops are
generated as follows:

Mfiltered = {m 2 M : area(m) < Athreshold} (2)

C = {crop(I,m) | m 2 Mfiltered}, (3)

where Athreshold is the value of area achieved via hyper-
parameter search used for filtering M based on area, m is
a mask from M, Mfiltered is the set of masks after remov-
ing the m corresponding to background. crop(I,m) denotes
the operation of cropping I according to m 2 Mfiltered The
set of generated crops C along with the textual prompts are
passed to CLIP to select the crop corresponding to ROI. To
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construct textual prompts for CLIP, we use prompt ensem-
bling, a technique that constructs several sentences for each
class and subsequently averages the classification vectors.
We use prompt ensembles of visually descriptive (VDT)
information for each class [15]. The VDT sentences are
generated via GPT 3.5 and passed through CLIP to get the
text embeddings and averaged to obtain a single text pro-
totype WT for the organ under consideration. Now all the
image crops in C are passed through CLIP’s vision encoder
to obtain vision embeddings Ec. Subsequently, the mask
corresponding to ROI is computed as:

CROI = topk
✓
argmax

c2C

S(Ec,WT)

◆
(4)

where S(Ec,WT ) represents a similarity function which
computes cosine similarity between any embeddings Ec of
any crop c 2 C and the text embeddings WT . k denotes
the number of ROIs and varies depending on the number of
ROIs in the image. CROI is the mask corresponding to ROI.

Finally, we compute the bounding box prompts using the
minimum and maximum X, Y co-ordinates of the retrieved
CROI and use it to prompt SAMPSM as:

Sorg = SAMPSM(I, P ) (5)

where P 2 Rk⇥4 is the bounding box computed from CROI,
N is the number of box prompts which varies according to
ROI and Sorg is the final segmentation for ROI.

4. Experiments

4.1. Datasets and Metrics

We assessed our method across three diverse medical
imaging modalities, encompassing two datasets focusing
on single-organ segmentation and one more challenging
dataset requiring the segmentation of two distinct organs.
Calgary-Campinas (CC359) [25] is a multi-vendor (GE,
Philips, Siemens), multifield strength (1.5, 3) magnetic
resonance (MR) T1-weighted volumetric brain imaging
dataset. It has six different domains and contains 359 3D
brain MR image volumes, primarily focused on the task of
skull stripping. The HC18 [28] consists of 2D fetal head ul-
trasound images obtained throughout all trimesters of preg-
nancy. These images have been annotated with biometrics
by experienced medical experts. From this dataset, a sub-
set of 200 images is selected for testing purposes. X-ray
Masks and Labels [19] consists of 800 2D chest X-ray im-
ages, each accompanied by its corresponding mask for lung
segmentation. We use the DICE score (DSC) and mean in-
tersection over union (mIoU) as our evaluation metrics.

4.2. Implementation Details

We employed ViT-H, a variant of SAM, and ViT-L/14
trained in CLIP by OpenAI. For CLIP, the visually descrip-

tive textual sentences are generated using GPT 3.5, the de-
tails can be found in the supplementary material, Sec. 9. We
implemented our framework in PyTorch [21] with SAM
codebase 1. All experiments are performed on a desktop
computer with the Ubuntu operating system 20.04.6 LTS
with CUDA 11.6, NVIDIA GeForce RTX 3090 GPU. For
reproducibility, a random seed is set to 1234.

4.3. Results and Analysis

We evaluated our proposed method against U-Net [23],
ground truth-aided SAM (GT-SAM), and un-prompted
SAM. U-Net is widely used in medical image segmentation,
and it is fine-tuned for all three of our datasets separately.
GT-SAM is an upper bound in which box prompts for SAM
are directly derived from the ground truth. As our method
does not utilize ground truth for prompt generation, to en-
sure a fair comparison and simulate the real-world medical
imaging scenarios without annotated data, we employ an
un-prompted version of SAM. In this version, SAM is not
provided with prompts from ground truth, rather it utilizes
its default prompt embedding.

The quantitative results are shown in Tab. 1. The differ-
ence in performance among all methods can be attributed to
the prompts utilized for SAM, highlighting the significant
dependency of SAM’s performance on the prompts em-
ployed. For CC359 [25], our method achieves an average
of 0.94 DSC, significantly outperforming the un-prompted
SAM’s average DSC of 0.31. When evaluated for lung seg-
mentation, our approach elevates the performance from an
initial DSC of 0.31 with unprompted SAM to 0.83. Our
method achieves an average DSC of 0.81 for segmenting
the fetal head on HC18 [28], achieving a 26% increase
compared to the unprompted SAM’s average DSC of 0.55.
The low performance of the un-promoted SAM is because
it does not utilize any prompts, which leads to its inability
to segment the ROIs. This demonstrates that SAM’s abil-
ity to effectively segment is strongly reliant on the prompts.
Furthermore, the qualitative analysis presented in Fig. 3, il-
lustrates that the un-prompted SAM fails to accurately per-
form organ segmentation, as it generates a general segmen-
tation mask for the regions in the image rather than delineat-
ing specific organs. Hence, SAM’s applicability to medical
imaging scenarios is limited, where obtaining domain ex-
pertise and annotated data for prompt engineering is chal-
lenging. On the other hand, GT-SAM achieves high DSC
of 0.95, 0.94, and 0.91 for brain, lungs, and fetal head seg-
mentation respectively. This high performance is attributed
to GT-SAM’s use of perfect prompts extracted directly from
the ground truth. In contrast, our method performs fully
test-time zero-shot organ segmentation without relying on
external prompts or domain expertise, demonstrating its ef-

1https://github.com/facebookresearch/segment-
anything
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ROI Dataset U-Net GT-SAM Un-prompted SAM Ours

DSC mIoU DSC mIoU DSC mIoU DSC mIoU

GE 1.5 0.98 0.93 0.95 0.91 0.33 0.29 0.92 0.87

Philips 1.5 0.97 0.95 0.96 0.93 0.41 0.31 0.94 0.85

Brain Philips 3 0.95 0.92 0.93 0.89 0.40 0.39 0.89 0.80
Siemens 1.5 0.97 0.95 0.95 0.91 0.39 0.26 0.90 0.81

Siemens 3 0.98 0.92 0.96 0.90 0.41 0.32 0.93 0.85

Lungs X-ray 0.98 0.95 0.94 0.90 0.47 0.31 0.83 0.76

Fetal head Ultrasound 0.95 0.91 0.95 0.91 0.55 0.40 0.81 0.72

Table 1. Comparison of our method with other baselines. Our method significantly outperforms un-prompted SAM, without using domain
expertise or annotated data for prompt engineering. Note: GT-SAM uses the prompts extracted from ground truth.

Figure 3. GT-SAM is the upper bound, un-prompted SAM, SaLIP
(ours). The text in yellow refers to the DSC with each method
respectively.

fectiveness and versatility. To evaluate our method in com-
parison to GT-SAM, it is important to highlight that GT-
SAM benefits from perfect prompts extracted directly from
ground truth and is the upper bound. In contrast, our method
operates in a zero-shot manner completely independent of
ground truth or any domain expertise for prompt engineer-
ing. Despite this, our method still achieves results compa-
rable to GT-SAM. This demonstrates the effectiveness and
adaptability of our approach in the context of organ segmen-
tation in medical images, where access to domain expertise
and perfect annotated data is either limited or impractical.
To further demonstrate the effectiveness of our approach,
the qualitative results are shown in Fig. 3.

4.3.1 Failure Cases and Future Work

Although our method demonstrates effective performance,
through an in-depth analysis and exploration, we have iden-
tified two sets of limitations: one at the SAM level and the
other one at the CLIP level.

SAM part-based segmentation: This refers to the in-
stances where SAMEM fails to generate a mask for the ROI
as shown in Fig. 4. Among our three datasets, this is-

Figure 4. SAM failure cases: First row: SAMEM fails to generate
a mask for the fetal head, resulting in miss-classification by CLIP.
Second row: SAMEM generates a mask for the right lung but fails
to generate one for the left lung, leading to CLIP retrieving the
wrong crop.

sue is particularly prominent in ultrasound and X-ray im-
ages. Due to the nature of how ultrasound images are cap-
tured, inherent limitations in fetal ultrasound images are
very common, such as acoustic shadows, speckle noise, and
obscured boundaries. These characteristics pose challenges
to the accurate generation of masks for the fetal head by the
SAMEM. These issues often arise from sub-optimal selec-
tion of hyperparameters for SAM’s mask generation pro-
cess. To tackle this, we have implemented an automated
hyperparameter search for SAMEM hyperparameters. This
automation significantly mitigated the problem.

CLIP mask retrieval: There are instances where SAMEM
generates masks corresponding to ROIs, but CLIP fails to
retrieve them. Such issues arise due to the generation of
multiple masks for a single region by SAMEM and impact
the datasets with multiple ROIs, lungs in our case. CLIP in
some cases retrieves the masks corresponding to the same
lung region as shown in Fig. 5.

For extracting lung crops from the pool of masks gen-
erated by SAMEM via CLIP, we use a single set of visually
descriptive prompts that characterize both lungs in a chest
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Figure 5. CLIP failure cases: SAMEM generates multiple masks for
both ROIs (left and right lung). First row: CLIP while correctly
recognizing the left lung, identifies a second mask for the same
lung region and fails to retrieve the one for the right lung. Second
row: CLIP does not retrieve the left lung crop.

X-ray (supplementary Sec. 9.1). To address the challenge
of the same region mask retrieval by CLIP, we experimented
with a separate set of prompts for the left and right lungs
and evaluated the impact. For more details, please refer to
the supplementary material (Sec. 9.2). However, our results
demonstrated that CLIP shows limited performance in pre-
cise localization and recognition tasks and lacks semantic
knowledge in distinguishing objects based on their spatial
alignment (i.e., left and right). Consequently, employing
separate sets of prompts to describe organs based on their
spatial alignment does not mitigate the issue. The results are
presented in Tab. 2. In contrast to using separate prompts,
our approach of utilizing a single set of prompts describing
both lungs achieves 0.83 DSC, thereby outperforming the
separate prompts, which achieve 0.67 and 0.28 DSC for the
left and right lung, respectively.

Right Lung Left Lung Both (Ours)

DSC 0.67 0.28 0.83

Table 2. CLIP performance with separate prompts for left and right
lungs, and combined prompts.

Recent research indicates that CLIP performance can be
enhanced through the utilization of visual prompting [24,
26, 31, 32]. Visual prompting (VPT) involves the ad-
dition of markers like colorful boxes or circles directly
onto an image, aiding in highlighting specific targets in
image-language tasks. This technique directs the attention
of Vision-Language Models towards desired targets while
maintaining the global context. Inspired by this, we also
used visual prompting to further evaluate using a separate
set of prompts for the lungs. We evaluated three different
visual prompts: red bounding box, gray reverse blur, and
contour. In our case, we add visual markers on the origi-
nal image around SAM-generated masks, and pass this set
of images to CLIP, as discussed in supplementary Sec. 8.
However, for medical datasets, VPT did not perform well.
In contrast to such techniques, our method, which involves

Prompt Box Reverse blur Contour Crops (ours)

DSC 0.49 0.60 0.61 0.65

Table 3. Evaluation of visual prompting.

employing a set of crops of the image according to SAM-
generated masks, even while utilizing separate prompts for
the left and right lung, still achieves a superior DSC of 0.65
as compared to other prompts as shown in Tab. 3.

These limitations have offered valuable insights into the
failure cases. In the future, we aim to incorporate inference
mechanisms to detect such failures and prevent their prop-
agation to the subsequent steps in the pipeline. It will help
mitigate the occurrence of such failures and improve perfor-
mance further.

4.4. Ablations

4.4.1 Different SAM models

In this section, we assess whether employing different vari-
ants of SAM can improve the performance. We evaluated
all three different versions: ViT-B (base), ViT-L (large),
and ViT-H (huge). The results are presented in Tab. 4.
Given its superior performance, we opt ViT-H version in our
pipeline. Notably, as our approach is training/fine-tuning
free and performs test time adaptation for zero-shot seg-
mentation, integrating the ViT-H version imposes no extra
training overhead.

Dataset ViT-B ViT-L ViT-H

CC359 [25] 0.80 0.89 0.94

X-ray [19] 0.71 0.76 0.83

HC18 [28] 0.66 0.76 0.81

Table 4. Ablation: Comparison of SAM’s variant.

4.4.2 SaLIP vs SAM + CLIP

To assess the performance enhancement brought by our
proposed stacking approach of SaLIP, we compared it to
SAM + CLIP. Unlike our framework, SAM + CLIP utilizes
SAMEM and CLIP exclusively, with the CLIP-retrieved crop
considered as the prediction. The results are presented in
Tab. 5. Our proposed approach leads to improvement.

4.4.3 Area based filtering

SAMEM employs a grid-wise set of key points to gener-
ate masks for each part of the image. The resulting set of
masks may include masks for the background or larger re-
gions encompassing the region of interest (ROI). In such
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Dataset SAM-CLIP SaLIP

CC359 [25] 0.89 0.94

X-ray [19] 0.80 0.83

HC18 [28] 0.78 0.81

Table 5. Ablation: Performance comparison between SAM-CLIP
and SaLIP (ours).

cases, CLIP can miss-classify background or larger region
encompassing ROI as illustrated in Fig. 6. To tackle this
challenge, we implement area-based filtering, determining
the optimal area threshold through a random hyperparam-
eter search. To assess the effectiveness of this filtering ap-
proach, we compare its results with one obtained by passing
all the masks generated by SAMEM to CLIP without any fil-
tering. The comparative results between area filtering and
without area filtering are presented in Tab. 6. Our area
filtering approach shows an improvement of 3% for brain
segmentation [25] and approximately 10% for lung and fe-
tal head segmentation [19].

Dataset No Filtering Filtering (Ours)

CC359 [25] 0.91 0.94

X-ray [19] 0.75 0.83

HC18 [28] 0.71 0.81

Table 6. Ablation: Impact of area-based filtering.

5. Conclusion

In this work, we propose a simple and effective unified
framework SaLIP, that leverages the zero-shot segmentation
and recognition capabilities of SAM and CLIP respectively.
By harnessing both the segment everything and prompt-
able segmentation modes from SAM, with CLIP acting as
a bridge between them, we demonstrate effective zero-shot
organ segmentation. Unlike other SAM-based segmenta-
tion methods, SaLIP is training/fine-tuning free and does
not rely on domain expertise or annotated data for segmen-
tation. It is fully adapted at test time without the need for
pre-training or additional computational overhead. We em-
ploy SAM to segment each region within the image, then
leverage CLIP to identify the region of interest by using vi-
sually descriptive prompts generated from GPT 3.5. Subse-
quently, we utilize the retrieved region of interest to prompt
SAM for organ segmentation. We validate our framework
across three diverse medical imaging datasets, demonstrat-
ing its robustness. Our work provides an in-depth explo-
ration of SaLIP for zero-shot organ segmentation. In the fu-
ture, we aim to expand this work to diverse medical imaging
datasets and further improve SaLIP, by integrating an infer-

DSC: 0.44

DSC: 0.90

DSC: 0.42

DSC: 0.93

DSC: 0.90

DSC: 0.46

Image Region 
Proposals

BBox 
co-ordinates

Prediction

Figure 6. Ablation: the first row for each modality shows results
without area filtering, and the second row illustrates the effects of
area filtering (ours).

ence mechanism to avoid propagation of failures.
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