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ABSTRACT
Service time is a part of time cost in the last-mile delivery, which is
the time spent on delivering parcels at a certain location. Predict-
ing the service time is fundamental for many downstream logis-
tics applications, e.g., route planning with time windows, courier
workload balancing and delivery time prediction. Nevertheless,
it is non-trivial given the complex delivery circumstances, loca-
tion heterogeneity, and skewed observations in space. The existing
solution trains a supervised model based on aggregated features
extracted from parcels to deliver, which cannot handle above chal-
lenges well. In this paper, we propose MetaSTP, a meta-learning
based neural network model to predict the service time. MetaSTP
treats the service time prediction at each location as a learning task,
leverages a Transformer-based representation layer to encode the
complex delivery circumstances, and devises a model-based meta-
learning method enhanced by location prior knowledge to reserve
the uniqueness of each location and handle the imbalanced distri-
bution issue. Experiments show MetaSTP outperforms baselines by
at least 9.5% and 7.6% on two real-world datasets. Finally, an intel-
ligent waybill assignment system based on MetaSTP is deployed
and used internally in JD Logistics.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems.
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1 INTRODUCTION

The last-mile delivery in logistics mainly relies on couriers. Typ-
ically, once a batch of parcels arrives at a delivery station, it would
be assigned to couriers. Then, couriers would start a delivery trip
to deliver the assigned parcels at several locations, as shown in
Figure 1(a). Two types of time cost for the entire trip are involved
in the delivery trip: travel time and service time. The former is the
time cost traveling between locations, and the later is the time cost
completing the delivery for a set of parcels at a certain location,
namely, a delivery task. Estimating those two types of time cost
facilitates many downstream applications, e.g., the route planning
with time windows [5], the workload balancing and the delivery
time prediction [33] as demonstrated in Figure 1(b). While the travel
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Figure 1: Service Time and Its Applications.
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Figure 2: Complex Delivery Circumstances.

time prediction has been widely studied [10, 30, 35], there are lim-
ited research on the service time prediction so far. Therefore, in
this work, we mainly focus on the service time prediction.

Traditionally, the service time is estimated by assuming it to
be proportional to the number of customers to deliver parcels to.
However, this method can introduce great prediction errors due
to its subjective nature. [24] made some initial efforts to predict
the service time in a data-driven way, which uses some coarse
aggregated features from delivery tasks to train a 𝑘-Nearest Neigh-
bor regressor [1]. Nevertheless, it still fails to tackle the following
challenges of the service time prediction problem.
• Complex delivery circumstances. Figure 2 shows a building
with two units under three delivery circumstances, which have
the same number of customers to be delivered to, i.e., two cus-
tomers. However, their delivery processes are totally different.
Though in Figure 2(a) and 2(b), the courier delivers only for one
unit, he only needs to visit a floor in the former case, while he
has to visit two floors in the latter case. And in Figure 2(c), the
courier has to deliver for each unit one by one. Different delivery
processes lead to different service time, leaving alone there could
be more customers to deliver for in a task in the real world.
• Locationheterogeneity.The service time could also vary greatly
for deliveries at different locations. We report the average ser-
vice time for delivering for one customer (the simplest delivery
circumstance) at three different locations (A, B and C) in Figure 3.
As observed, the average service time at location C (an office
building) takes much longer time than that at location A and
B (residential locations). Furthermore, even for locations at the
same residential area, the service time can vary (as shown at
location A and B), which might be attributed to different building
structures at the locations (as shown by the satellite image).
• Skewed observations. The frequency of placing orders in the
e-commerce platform follows a long-tailed distribution in space,
which makes the historical delivery tasks, i.e., data samples
for training, distributed highly imbalanced among locations, as
shown by the heat map in Figure 3. Training a single model for
all locations would favor those locations with more observations
and work poorly for those with few observations. Training a
model for each location is also infeasible since each location re-
quires adequate data to model complex delivery circumstances,
while most locations only have limited observations.
To this end, we present MetaSTP, a Meta-learning-based method

to make the Service Time Prediction. To tackle the location het-
erogeneity, MetaSTP treats the service time prediction at different

A:4.3min B:7.5min

C:10.3min

Residence

Office

Figure 3: Location Heterogeneity & Skewed Observations.

locations as different learning tasks. When predicting the service
time, MetaSTP first leverages a Transformer encoder-based repre-
sentation module to obtain floor-distribution-aware delivery task
embedding, which captures the complex delivery circumstances
of each delivery task, then employs a location prior knowledge
enhanced meta-learning method to produce accurate predictions
based on location-specific historical observations, globally learned
delivery knowledge and location prior knowledge, to mitigate the
skewed observation issue. Our contributions are three folds:
• We identify major challenges of service time prediction, which
is overlooked by the literature, and propose MetaSTP, a location
prior knowledge enhancedmeta-learningmethodwith a carefully
designed representation module to tackle those challenges.
• Extensive experiments based on two real delivery datasets from
JD Logistics demonstrate the effectiveness of MetaSTP, which
outperforms baselines by at least 9.5% and 7.6%, respectively.
• We present an intelligent waybill assignment system based on
MetaSTP, which has been deployed and used internally in JD
Logistics.

2 PRELIMINARIES
2.1 Problem Formulation
Definition 1 (Waybill). A waybill contains the information about
the parcel to deliver, denoted as a 4-tuple𝑤 = (𝑎𝑑𝑑𝑟,𝑢𝑖𝑑, F, 𝑡𝑠).𝑎𝑑𝑑𝑟
is the address, 𝑢𝑖𝑑 is the customer ID, and F denotes the features of
the corresponding parcel, e.g., the weight and the volume. 𝑡𝑠 is a
planned delivery time slot of the parcel (e.g., pending to be delivered
during 8AM-11AM), which depends on how many delivery trips
would be conducted in a day.

Definition 2 (Delivery Task). The set of parcels to be delivered
together to the same delivery location is named as a delivery task.
Parcels in a delivery task share the same planned delivery time slot,
therefore, we explicitly denote a delivery task as 𝑡 = (𝑊, 𝑡𝑠), where
𝑊 is the set of waybills of those parcels.

Note that, the delivery location of each waybill, is a geospatial
coordinate in the urban space, which can be obtained based on its
shipping address via Geocoding 1, or couriers’ annotation [22, 23].
Problem Definition. Given historical delivery tasks and their cor-
responding service time, the service time prediction (STP) problem
is to predict the service time for a delivery task in the future.

1https://en.wikipedia.org/wiki/Geocoding
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2.2 Basic Concepts of Meta-Learning
Meta-learning [16] aims to extract the meta-knowledge that is glob-
ally shared among a set of related learning tasks, so that we can
obtain ideal prediction for similar learning tasks based on learn-
ing task specific training set and the meta-knowledge even if the
observations are quite limited.

In the terminology of meta-learning, the training set and valida-
tion/test set of each individual learning task T are usually named as
support set D𝑠 = {(𝒙𝑠

𝑖
, 𝑦𝑠

𝑖
)}𝑁𝑠

𝑖=1 and query set D𝑞 = {(𝒙𝑞
𝑖
, 𝑦

𝑞

𝑖
)}𝑁𝑞

𝑖=1.
The inference of each query sample 𝒙𝑞 can be formulated as 𝑦𝑞 =

𝑓 (𝒙𝑞,D𝑠 , 𝜽 ), where 𝜽 is themeta-knowledge that is globally shared,
and 𝑓 is an arbitrary form of method that leverages 𝒙𝑞 ,D𝑠 , and 𝜽
to obtain the prediction 𝑦𝑞 .

Depending on the form of 𝑓 , meta-learning can be categorized
into three classes: optimization-based methods [11], metric-based
methods [29], and model-based methods [20]. Currently, the metric-
based meta-learning is usually limited to the classification problem.
Given competitive performance of the optimization-based methods
and the model-based methods, the latter are simpler and easier
to be optimized [16]. Therefore, in this study, we mainly follow
the paradigm of the model-based meta-learning. In model-based
methods, 𝑓 itself is a neural network parameterized by 𝜽 . It hides
the internal procedure to obtain the prediction by a black-box. In
such case, the inference can also be written as:

𝑦𝑞 = 𝑓𝜽 (𝒙𝑞,D𝑠 ) (1)
, which receives D𝑠 and 𝒙𝑞 , and produces 𝑦𝑞 end to end.

To optimize 𝜽 , we usually assume access to a set of learning tasks
already sampled from a learning task distribution 𝑝 (T ), which is
called meta-training tasks T𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 2. The optimal 𝜽 learned
from T𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 should adapt well to any learning task sampled
from 𝑝 (T ) based on Equation 1, which is achieved by optimizing
the following meta loss function:

L (𝜽 ) =
∑︁

T𝑖 ∈T𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛

1
|D𝑞

𝑖
|

∑︁
(𝒙𝑞 ,𝑦𝑞 ) ∈D𝑞

𝑖

L(𝑓𝜽 (𝒙𝑞,D𝑠
𝑖 ), 𝑦

𝑞) (2)

whereD𝑠
𝑖
andD𝑞

𝑖
are the support set and the query set of learning

task T𝑖 , and L is the loss function of a learning task.

3 METHODOLOGY
In this section, we first introduce how we setup the learning tasks
formeta-learning, then give an overview of ourmodel, i.e., MetaSTP,
and finally we present each module of the model in detail.

3.1 Learning Task Setup
In the real world, we cannot access future delivery tasks when
training our model. Therefore, we leverage fixed timestamps to split
historical delivery tasks into training dataset, validation datasets
and testing dataset (same as traditional machine learning settings).

During the training phase (meta-training), we need to construct
the meta-training datasetT𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 based on the training dataset.
Given that the service time prediction at each delivery location

2Correspondingly, we also have meta-validation tasks T𝑚𝑒𝑡𝑎−𝑣𝑎𝑙 and meta-test tasks
T𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡 for hyperparameter tuning and testing.

Train
Dataset

Val/Test
Dataset

Learning
Tasks

Support Set Query Set

(a) Meta-Training Phase. (b) Meta-Validating/Testing Phase.

Delivery Location Not Used

...

...

...

l2 l3 l4 l5l1

Train
Dataset

Val/Test
Dataset

Learning
Tasks

...

...

...

l2 l3 l4 l5l1

Figure 4: Illustration of Learning Task Setup.

is treated as an individual learning task, we first group training
datasets based on delivery locations. As shown in Figure 4(a), each
bar above the dash line indicates the number of observations can be
utilized for each learning task during the meta-training. Recall in
Section 2.2, for each learning task, both support set and query set
are required. Therefore, for the observations can be used in each
delivery location, we always keep 𝑟% proportion as the query set
(in blue) and leave others as the support set (in green). During the
inference phase (meta-validating/meta-testing), for each location,
the whole training dataset of each location is treated as the support
set, and the whole validation/test dataset is treated as the query set,
as shown in Figure 4(b).

Note that, unlike typical meta-learning settings [11, 20] where for
each learning task, the support set is always available. In our case, it
is possible that some locations have no observation in the training
dataset, because the location has no delivery record during the time
interval of the training dataset. In this case, the support set would
be empty when we perform the inference, as 𝑙4 shown in Figure 4(b).
Given this fact, we also include those cases (learning tasks with
empty support set) in the meta-training, e.g., 𝑙5 in Figure 4(a). It is
achieved by specifying a minimum query set threshold 𝑁𝑚𝑖𝑛

𝑞 . For
a location in the meta-training, if the size of query portion is less
than 𝑁𝑚𝑖𝑛

𝑞 , all samples would be assigned to the query set during
the meta-training, which is formally given as follows:

𝑁𝑞 =

{
⌈𝑟% ∗ |D|⌉, if ⌈𝑟% ∗ |D|⌉ ≥ 𝑁𝑚𝑖𝑛

𝑞

|D|, otherwise
(3)

where D is the whole training dataset of a location.

3.2 Model Overview
Figure 5 depicts the framework of MetaSTP, which consists of three
modules to predict the service time for each delivery task:
• Delivery TaskRepresentation, which first extracts and embeds
floor-level waybill features of each delivery task, then combines
the embeddings with other delivery task features to obtain the
fine-grained hidden representation of each delivery task;
• Historical Observation Encoding, which generates a vector
that encodes the correlation between the hidden representation
of the query task and tasks with labels in the support set;
• Location-wise Knowledge Fusion, which further enhances
the output vector with the location prior knowledge so that an
ideal prediction can still be achieved even if the support set has
no or very limited observations.
Next, we elaborate each module in detail.
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Figure 5: The Architecture of MetaSTP.

3.3 Delivery Task Representation
The delivery task representation module aims to encode each deliv-
ery task into an expressive representation to facilitate later obser-
vation correlation calculation and prediction.
Main Idea. To encode the complex delivery process, we propose
the delivery task representation layer (as shown in the left part of
Figure 5) to capture fine-grained waybill information. The module
first groups waybills in the task by units and floors, and extracts
waybill features for each floor involved in the delivery. Then the
set of floor-level features are jointly considered to obtain a floor
distribution-aware waybill representation for each unit. Those rep-
resentations from all units are further fused to obtain the floor
distribution-aware waybill representation of the delivery task. At
last, it is combined with location-level waybill features as well as
temporal features to further enrich the representation.

The floor distribution-aware waybill representation is inspired
by three key insights from a delivery task:

(1) The transition time cost at the same floor is much smaller than
that among different floors (which involve waiting for elevators
and/or walking upstairs) as shown in Figure 2(a).

(2) Waybills distributed among all floors in a unit jointly determine
its service time, as observed in Figure 2(b).

(3) Deliveries are usually conducted unit by unit, and the service
times of all units contribute to the overall time cost, but they
are less affected by each other as illustrated in Figure 2(c).

Implementation. To implement the above idea, we first identify
the unit and floor information from the address of each waybill
based on regular expression, since those information usually follows
some fixed patterns (e.g., Floor XX, Unit X, Building X, ...).
Based on the unit and floor information of each waybill, waybills
in the delivery tasks are grouped.

Then, for each floor in each unit involved in the delivery task,
we extract the following 5 floor-level features which potentially
contribute to the service time by aggregating waybills at the floor:
(1) the floor number; (2) the number of customers to deliver parcels
to; (3) the total number of waybills; (4) the total weight of parcels;
and (5) the total volume of parcels. Formally, we use f 𝑗

𝑖
to denote

floor-level features of the 𝑖𝑡ℎ floor of the 𝑗𝑡ℎ unit in the delivery task.
Then, all floor-level features of a delivery task can be represented as
a set {F𝑗 }𝑈

𝑗=1, where F
𝑗 = {f 𝑗

𝑖
}𝐹 𝑗

𝑖=1, 𝐹
𝑗 is the total number of floors

in the 𝑗𝑡ℎ unit, and 𝑈 is the total number of units in the task. Here,
we consider only those units and floors that are involved in the
delivery task. Note that𝑈 and 𝐹 𝑗 ( 𝑗 ∈ 1, ...,𝑈 ) would vary from task
to task, which are obtained based on units and floors in waybills of
a deliver task. For example, in Figure 2(b), the floor-level features
of the task is {{f11 , f

1
2 }}, and in Figure 2(c), the floor-level features

of the task is {{f11 }, {f
2
1 }}.

Next, we extract floor distribution-aware waybill representation
p𝑓 for the task based on {F𝑗 }𝑈

𝑗=1, which is a two-stage fusion (floor-
stage and unit-stage). In the floor stage fusion, the correlation
between floors in the same unit are captured, which is similar
to many NLP tasks that accept a sentence with varying number of
words [6]. RNN and Transformer [28] are commonly used module
for the sequence correlation modeling. Here we adopt transformer
encoder [28], which shows superior performance on many NLP
tasks [6]. More specifically, we first apply a feedforward network
on floor-level features in F𝑗 to increase the dimension of each
feature vector, and then apply a Transformer encoder to capture
their correlation. The outputs of the transformer encoder are sent
to a floor-level sum pooling to obtain the floor distribution-aware
waybill representation of each unit, denoted as u𝑗 :

u𝑗 = SumPool(TransEnc(FFN(F𝑗 ))) (4)

where FFN contains a fully connected (FC) layer.
Since the service time of each unit together forms the total ser-

vice time of the task, to obtain p𝑓 , we leverages a feedforward
network to transform {u𝑗 }𝑈

𝑗=1 into a hidden space, then the unit-
level sum pooling is applied:

p𝑓 = SumPool(FFN({u𝑗 }𝑈𝑗=1)) (5)

where FFN contains one FC layer and a ReLU activation.
Together with p𝑓 , we extract 6 location-level waybill features,

which describe waybills in the task in a macro view: (1) the total
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number of customers to deliver, (2) the total number of waybills,
(3) the total weight and (4) volume of parcels, (5) the number of
units to deliver, and (6) the total number of floors involved in the
addresses of waybills. The obtained feature vector is denoted as p𝑙 .

Since the service time could also be affected by the delivery time
slot considering the degree of crowdedness in the common pathway
of the building, we further extract two types of temporal features
from the planned delivery time slot of the task. The first one is a
binary value t𝑤𝑘 indicating whether the time slot is on workdays
or weekend. The second one is the time of the day. We discretize
the working hours of couriers [8:00-23:00] into 5 bins with equal
width. The time of the day feature is the bin index of which the
planned delivery time slot fell in. It is fed into an embedding layer
to obtain the dense representation t𝑡𝑜𝑑 .

We concatenate floor distribution-aware waybill representation
p𝑓 , location-level waybill features p𝑙 , workday or not feature t𝑤𝑘 ,
and embedded time of day feature t𝑡𝑜𝑑 , and send them to a feedfor-
ward network to obtain the delivery task representation h.

h = FFN( [p𝑓 ; p𝑙 ; t𝑤𝑘 ; t𝑡𝑜𝑑 ]) (6)

where FFN contains 2 FC layers with ReLU activation, and ; means
concatenation.

The representation from the support set {h𝑠
𝑖
}𝑁𝑠

𝑖=1 and that of the
query delivery task h𝑞 are all sent to the next module.

3.4 Historical Observation Encoding
After the previous delivery task representation, all delivery tasks in
the support set {𝑡𝑠

𝑖
}𝑁𝑠

𝑖=1 are transformed into dense representations
{h𝑠

𝑖
}𝑁𝑠

𝑖=1, and the query task 𝑡𝑞 is transformed into h𝑞 . For each h𝑠
𝑖
,

we concatenate it with its label 𝑦𝑠
𝑖
, and obtain a dense represen-

tation o𝑠 of the support observation, i.e., o𝑠
𝑖
= [h𝑠

𝑖
;𝑦𝑠

𝑖
]. The dense

representation of the support set is denoted as D𝑠′ = {o𝑠
𝑖
}𝑁𝑠

𝑖=1.
Taking D𝑠′ and h𝑞 as inputs, the historical observation encod-

ing aims to learn the correlation among them, and generate an
embedding vector z𝑞 (as shown in the middle part of Figure 5). z𝑞
semantically is a high-dimensional representation of the prediction
after “seeing” support set at the location.

We borrow the idea from a simple yet effective model-based
meta-learning approach [20], which proposes to interleave self-
attention [28] with temporal convolution [27] to encode past expe-
riences. It enjoys the benefit of accepting infinite large past experi-
ences (from self-attention) and having a high-bandwidth to direct
access a batch of past experiences (from temporal convolution).

To implement, D𝑠′ and h𝑞 are fed into this module in a batch
manner. We create a dimension expanded vector o𝑞 by concate-
nating h𝑞 with a masked label 𝑚, e.g., 𝑚 = 0, to make sure the
dimension consistency. After that, {o𝑠1, o

𝑠
2, ..., o

𝑠
𝑁𝑠
, o𝑞} are sent into

a self-attention layer, followed by a temporal convolution layer.
Then, another self-attention layer is applied to make sure the past
experiences are fully utilized. At that point, those independent ob-
servation representations are transformed into experience-shared
representations {z𝑠1, z

𝑠
2, ..., z

𝑠
𝑁𝑠
, z𝑞}. At last, we take z𝑞 as the output

of the historical observation encoding module, which contains the
knowledge about how to make the service time prediction for the
query delivery task with historical observations encoded.

3.5 Location-wise Knowledge Fusion
The location-wise knowledge fusion module takes historical ob-
servation encoded representation z𝑞 from the previous module,
enhances it with location-wise prior knowledge (location profile),
and gives the final service time prediction.
Main Idea. As we mentioned in Section 3.1, the support set of a
learning task could be empty or has very limited observations. In
those cases, the historical observation encoding module can hardly
perceive the information brought by the specific location, which
makes z𝑞 have difficulty in capturing the uniqueness of its delivery
location. However, even if the support set is empty, knowing where
the location is still gives us some prior knowledge about it. For
example, the locations with the same POI type is more likely to
have similar building structures, thus their delivery situations may
be similar. Therefore, it is beneficial to fuse such kinds of location-
wise prior knowledge before the prediction (as shown in the right
part of Figure 5).
Implementation. We consider four types of location prior knowl-
edge to fuse: (1) region (row and column index of a 500𝑚 × 500𝑚
cell in the gridded urban space), (2) POI type, (3) built year, and (4)
second-hand house price per square meter. The last two features
implicitly reflect whether the building is equipped with the elevator,
which is usually not publicly available but also a very important
factor to affect the service time. The region is directly derived from
the delivery location of a certain learning task, while others are
obtained from external data sources based on the location.

Based on those prior knowledge of the locations, we first send
POI type into an embedding layer to obtain a embedded represen-
tation. It is then concatenated with other features and sent to a
feedforward network with two FC layers activated by ReLUs to
obtain the dense representation of the location prior knowledge,
denoted by l.

A straightforward approach is then to concatenate l with z𝑞 to
make the final prediction. However, this strategy performs badly
according to our experimental results. We guess the reason is that
the output of historical observation encoding already contains rich
information for the time prediction, while l is a little bit noisy.

Inspired by ResNet [15], we propose to learn a residual informa-
tion based on z𝑞 and l that is able to refine z𝑞 , and ultimately make
the prediction more accurate, which is formally defined as follows:

𝑦𝑞 = FFN(ReLU(z𝑞 + FFN( [z𝑞 ; l]))) (7)

where FFN to calculate the residual contains 2 FC layers, and the
first FC layer is followed by a ReLU activation following [15], and
FFN to obtain the output contains one FC layer.

3.6 Optimization
To optimize MetaSTP, we need to choose the loss function L for
each learning task (delivery location). Here, we employ MSE, which
is widely used for regression problem:

L(𝑦𝑞, 𝑦𝑞) = (𝑦𝑞 − 𝑦𝑞)2 (8)

Then, MetaSTP is trained end to end by minimizing meta loss
L (Equation 2) with the above learning task loss L (Equation 8).
The overall training procedure is given in Algorithm 1.
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Algorithm 1 MetaSTP Training Algorithm.
Input: Delivery task datasets D; spatial external knowledge E;
MetaSTP model 𝑓𝜽 ; query set rate 𝑟 ; minimum size of query set 𝑁𝑚𝑖𝑛

𝑞 .
Output: The optimized parameters 𝜽 of MetaSTP.

1: construct location task datasets D via grouping D by locations;
2: initialize 𝜽 by random;
3: repeat
4: randomly select a batch of location task datasets D𝑏 from D ;
5: L ← 0;
6: for location delivery task dataset D𝑙 ∈ D𝑏 do
7: calculate 𝑁𝑞 based on Equation 3 with D𝑙 , 𝑟 and 𝑁𝑚𝑖𝑛

𝑞 ;
8: randomly split D𝑙 into D𝑠

𝑙
, D𝑞

𝑙
with size |D𝑙 | − 𝑁𝑞 and 𝑁𝑞 ;

9: L ← L + 1
𝑁𝑞

∑
(𝑡𝑞
𝑖
,𝑦

𝑞

𝑖
)∈D𝑞

𝑙

L(𝑓𝜽 (𝑡
𝑞

𝑖
,D𝑠

𝑙
, E𝑙 ), 𝑦

𝑞

𝑖
) ;

10: update 𝜽 by minimizing L ;
11: until stopping criteria is met
12: return 𝜽 ;

4 EXPERIMENTS
4.1 Datasets
Our datasets consist of historical delivery tasks and spatial external
knowledge, which are introduced as follows.
• Historical Delivery Tasks.We use two real world datasets from
JD Logistics for evaluation, which are collected in the downtown
area (DowBJ) and suburban area (SubBJ) of Beijing (splitted by
the 3rd Ring) over a period of 20 months (from Jan. 1st, 2018 to
Sept. 1st, 2019). The raw data consist of couriers’ trajectories and
waybills. We first use our previous work [22, 23] to infer the
delivery location of each waybill, then group waybills in each
delivery trip into delivery tasks. The pending delivery time slot
of each task is set according to the start time of each delivery trip,
since STP is usually called before departure. Finally, we match
each delivery task to a stay point (detected from couriers’ trajec-
tories) according to the accurately annotated delivery time or the
spatial closeness [23]. The duration of the stay point is treated
as the service time of the corresponding task. After the previous
data pre-processing steps, we obtain a database consisting of his-
torical delivery tasks as well as their corresponding service times.
We use the data from the first 16 months as training set, the data
from the following 2 months as validation set, and use the last 2
months for testing. The details of each dataset are summarized
in Table 1.

Table 1: Statistics of Datasets (“/” is train/val/test separator).

Datasets DowBJ SubBJ
#Delivery Tasks 53,979/5,978/6,138 22,403/4,630/5,520
#Delivery Locations 1,166/628/591 1,520/865/1,018
#New Loc. in Val/Test 13/16 266/424
Avg. Service Time (s) 418 395

• Spatial External Knowledge. For each delivery location, we
obtain its POI type via reverse Geocoding 3, which contains 18
POI types, and the built year and the second-hand house price

3https://lbs.qq.com/
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Figure 6: Data Distributions.

for Residence are crawled from the Web 4, while for other types
of POI, we use the mean to fill missing values.
We provide the distribution of some important aspects of both

datasets as follows.
Number of Observations Distribution. Figure 6(a) shows the
distribution of the number of observations of a delivery location
in both datasets. As can be seen, the observations are distributed
highly skewed in the urban space. For 80% locations in DowBJ, there
are less than 69 observations for training. The case is even worse in
SubBJ, which only have less than 19 observations under the same
criteria. It indicates that it is impossible for us to train a separate
model for each individual location given limited observations.
Number of Customers Distribution. Figure 6(b) shows the dis-
tribution of the number of customers involved in a delivery task. As
observed, both datasets have similar distribution, for around 40%-
50% delivery tasks, couriers have to deliver parcels for more than
one customer at a location, which introduces many uncertainties
for the delivery time prediction.
Number of Floors & Units Distribution. Figure 6(c) shows the
distribution of the number of floors of a delivery task in both
datasets, which also show similar distribution. For around 40%
delivery tasks, couriers need to go to different floors to complete
the delivery task at those locations. In addition, there are 10% deliv-
ery tasks in both datasets, in which couriers need to go to multiple
building units at a deliver location. Those complex factors further
bring challenges to the modeling.
POI Types Distribution. Figure 6(d) shows the distribution of POI
type of a delivery task in both datasets. The top 3 POI types of deliv-
ery tasks are the same in both datasets: Residence, Office Building,
and School. The deliveries for Residence take up for around 80%. It
can also be noticed that the portion of deliveries for Office Building
is a bit higher in DowBJ than SubBJ, which is consistent with our
common sense.

4https://www.fang.com/
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4.2 Experimental Settings
Baselines. We compare MetaSTP with the following baselines.
• HA, which always gives the historical average service time.
• HLA, which gives the location-specific historical average value.
If a location is newly appeared, the global HA would be used.
• HCA, which assumes the time is proportional to the number of
customers. The factor is estimated from the training data.
• GBRT [12], which trains a gradient boosting regression tree based
on historical observations to make prediction.
• MLP [14], which trains a 3-layer MLP to make prediction.
• KNN [24], which is the state-of-the-art service time prediction
model in literature. It trains a KNN regressor [1].
For all machine learning baselines, features from waybills only

contain location-level ones, which are concatenated with others as
input, since it is impractical to pad the floor-level waybill features to
the maximum length given long-tailed involved floors in samples.
Variants. We also compare MetaSTP with following variants to
show the effectiveness of each component of MetaSTP.
• MetaSTP-nMeta, which removes the meta-learning component.
That is, we change the last layer of the delivery task represen-
tation to let it directly make the prediction. And the model is
trained in the way like traditional machine learning methods.
• MetaSTP-nSeq, which removes the floor distribution-aware way-
bill representation p𝑓 from MetaSTP.
• MetaSTP-nLP, which drops the entirely location-wise knowledge
fusion module, and makes the output of historical observation
encoding to directly predict the time via a FC layer.
• MetaSTP-nRes, which drops the residual connection, and directly
concatenates l with the output from the historical observation
encoding to make the prediction.

Evaluation Metrics.We leverage three commonly used metrics
for regression problem, i.e., MAE, RMSE and MAPE, to evaluate the
performance of different methods. MAE = 1

𝑁

∑𝑁
𝑖=1 |𝑦𝑖 − 𝑦𝑖 |, where

𝑁 is the total number of delivery tasks in the test set. MAE char-
acterizes the average prediction error with respect to the ground-

truth over all test samples. RMSE =

√︃
1
𝑁

∑𝑁
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2, which is

more sensitive to samples with large prediction errors. MAPE =

100%
𝑁

∑𝑁
𝑖=1

��� 𝑦𝑖−�̂�𝑖𝑦𝑖

���, which measures the average relative errors of
the prediction and the ground-truths.
Training Details & Hyperparameters. Our method as well as
baselines are completely implemented in Python using PyTorch on
a docker with 16 Cores@2.2GHz, 64GB memory and Red Hat Linux.
In meta-training dataset setup, for each learning task, 𝑟 = 0.2 and
𝑁𝑚𝑖𝑛
𝑞 = 1. We leverage Adam with 𝛽1 = 0.9 and 𝛽2 = 0.999 to

perform the meta-training with a learning rate 1𝑒-3. We sample one
learning task in each iteration, and the whole meta-training dataset
is iterated over 2 times. The hidden size of FC before the transformer,
in the transformer encoder, in the representation output as well as in
the self-attention are all set to 8. FC to obtain u contains 16 neurons.
WorkdayOrNot is embedded to R3. The temporal convolution is
stacked by 4 dilated 1D convolutions with 16 filters. POI Type is
embedded to R2. To obtain l, the first FC contains 4 neurons, while
the second contains 2 neurons. To learn z𝑟𝑒𝑠 , the hidden size is 2.
The best hyperparameters of baselines are also selected based on
their performance on the validation set.

Table 2: Overall Evaluation.

Methods DowBJ SubBJ
MAE RMSE MAPE MAE RMSE MAPE

HA 253.9 368.1 126.0 229.6 320.3 112.0
HLA 204.2 295.0 88.2 205.8 282.9 93.8
HCA 174.0 269.3 68.7 157.7 235.5 64.4
MLP 161.4 257.7 65.9 150.0 259.5 61.5
GBRT 156.4 239.5 67.0 152.0 241.4 56.9
KNN 154.4 237.4 63.5 153.5 223.0 60.7
MetaSTP-nRes 151.7 244.3 58.9 145.6 374.8 59.9
MetaSTP-nMeta 149.8 232.5 59.4 145.8 246.2 56.3
MetaSTP-nSeq 144.3 228.0 56.7 144.5 283.2 51.3
MetaSTP-nLP 144.1 229.4 54.8 141.2 241.6 53.8
MetaSTP-nW 201.1 304.7 78.7 188.2 285.7 70.2
MetaSTP-nSE 142.6 227.5 52.3 140.7 221.1 50.8
MetaSTP-nT 142.8 230.6 53.7 142.9 267.0 51.0
MetaSTP (Ours) 139.7 226.9 48.9 138.5 216.0 50.0

4.3 Evaluation
Overall Performance. The overall performance of MetaSTP com-
pared with baselines over all three metrics is shown in Table 2.
As can be observed, directly predicting the service time based on
historical average (HA) leads to huge errors, indicating that it is
far from enough to empirically estimate the service time without
considering the information of a certain delivery task. HLA is better
than HA, which shows the uniqueness of different locations. HCA
is better than HLA, which shows the number of customers surely
is a shared strong signal affects the time among different locations.
Traditional machine learningmethods (MLP, GBRT, and KNN) show
superior performance than aforementioned empirical ones, since
they are able to model various factors by aggregating waybills in
the delivery task. Nevertheless, the coarse-grained location-level
features is not representative enough, and the universal model
naturally is not able to fit locations with few observations. Those
limitations leave us the room for improvements. Our method, i.e.,
MetaSTP, not only encodes the delivery task into a finer-grained
level, but also leverages meta-learning and the prior knowledge
to tackle the problem of skewed observations among locations.
MetaSTP consistently outperforms baselines over three metrics on
two datasets. Its MAE is 139.7s on DowBJ and 138.5s on SubBJ,
which outperforms the best baseline by 9.5% and 7.6%, respectively.
Ablation Study. The ablation study is also conducted in Table 2 to
validate the effectiveness of different components of MetaSTP. After
removing the meta-learning strategy (MetaSTP-nMeta), a signifi-
cant performance drop is witnessed, which shows the advantages
of using meta-learning to tackle the skewed observation issues. If
we ignore the encoding for floor-level waybill features (MetaSTP-
nSeq), the performance degradation is also obvious, indicating that
the floor distribution-aware waybill representation learning did
provide finer-grained information for service time prediction. The
prior knowledge about the location is also vital for the service time
prediction. As can be observed, it further boosts the performance
of the service time prediction (compared with MetaSTP-nLP). The
last variant MetaSTP-nRes shows the necessity to use the residual
structure to fuse the loation-wise knowledge with the previous
output. The residual structure is helpful to learn how to fuse those
two types of information to produce a more accurate prediction.
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Figure 7: Different # of Support Observations.

Importance of Features.We are also interested in the importance
of different types of features for the service time prediction problem.
MetaSTP-nW, MetaSTP-nSE and MetaSTP-nT are MetaSTP with
features from waybills, spatial external knowledge and temporal
information dropped. As expected, the features from waybills play
the most important role for the service time prediction. The features
from spatial and temporal domain also contribute to the prediction,
which shows the complexity of the service time prediction.
Performance w.r.t. Different Sizes of Support Set. To demon-
strate the performance of MetaSTP at locations with limited obser-
vations, we choose two representative types of locations (residence
and office building), and report the change of MAEwith the increase
of the size of the support set in Figure 7. Note that in our problem,
the empty support set is also included (0-shot), since this case would
appear if a location has never appeared in the train datasets as we
previously mentioned. As expected, with the increase of support
examples, MAE is decreasing, since the model could have more ex-
amples to refer to when making the prediction. To further show the
effectiveness of location prior knowledge in helping the prediction
when observations are limited, we also report the performance of
MetaSTP-nLP in Figure 7. As can be observed, MetaSTP consistently
outperforms MetaSTP-nLP with different number of support exam-
ples. Most importantly, MetaSTP is much more robust when the
support set is empty, since it considers the location prior knowledge
which reflects the delivery situation of locations to some extent.

5 DEPLOYMENT
An intelligent waybill assignment system based on MetaSTP is used
internally in JD Logistics. It provides the reference to the station
master. The system interface is shown in Figure 8, which consists
of 3 panels, Delivery Station, Computation and Assignment Result.

Firstly, in the Delivery Station panel, the station master can select
one of delivery trips of today, and the details of the batch of waybills
pending to be delivered would be listed in the table.

Secondly, in the Computation panel, the station master is asked to
input the number of couriers to conduct the delivery for the batch of
waybills. After the “Assign” button is clicked, the batch of waybills
would be assigned to couriers. The assignment is formulated as the
well-known distance/time-constrained capacitated vehicle routing
problem (DCVRP) [18] to minimize the total travel cost as well as
to balance couriers’ workload. The locations in DCVRP are derived
from the waybills, the travel time between locations is estimated
from couriers’ historical transitions, and the service time at each
location is predicted by MetaSTP. When deployed online, MetaSTP

Figure 8: System Interface.

can predict the service time for 250 tasks/s per thread. The multi-
thread processing is further implemented to increase its throughput.
After that, DCVRP is efficiently solved by a commercial MIP solver.

At last, the results are shown in the Assignment Result panel,
which contains the number of waybills assigned to each courier as
well as the estimated time for completing his/her delivery. When
“Display” button is clicked, the assignment for the courier is shown
on the map. Each marker is a delivery location, and the number on
the marker indicates the planned delivery order. When a marker is
clicked, the service time estimated by MetaSTP will be shown.

After the system is deployed, for a courier, the error of deliv-
ery trip time estimation is reduced by 14 minutes, which greatly
balances the working hours of couriers at the delivery station.

6 RELATEDWORK
Stay Time Prediction. The stay time prediction focuses on model-
ing the time cost of a user staying at a specific POI. Chen et al. [2]
use GBRT based on various spatio-temporal features extracted
from historical stay points at that location, Liu et al. [19] leverage
MLP considering spatio-temporal features as well as context logs
in smartphones, and Gidófalv et al. [13] propose to use Markov
models based on individual’s previous stay sequence. The service
time prediction differs from the stay time prediction in that the
underlying semantics of stay are specific and different from general
ones, i.e., they are driven by the delivery tasks but not others, e.g.,
working, eating. In stay time prediction, what a moving object is
doing at a location usually is unknown, and can only be inferred
from sequential patterns or smartphone logs, while we explicitly
know the stay is caused by delivery, and the delivery task should be
leveraged. The most similar work is [24], which predicts the service
time using a KNN regressor. However, [24] fails to consider the
fine-grained floor information in waybills, as well as omits the issue
that observations are distributed highly skewed in urban spaces.
Meta-Learning Applications in Spatio-temporal Data Mining.
Recently, meta-learning has been adopted in the field of spatio-
temporal data mining when data is limited. For example, Yao et
al. [34] make spatio-temporal prediction in cities with limited data,
and Qin et al. [21] predict the purchase volume in different regions
and day types. In addition, in the map search engine, Fang et al. [10]
estimate the en route travel time, Fan et al. [9] auto-complete POI
and Chen et al. [3] predict the next POI to search. Different from
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these studies, we are the first work to leverage meta-learning to
improve the predictability of service time in logistics. A representa-
tion layer is specially designed to embed the delivery task. Besides,
in our scenario, the support set could be empty, which is not the
case for the aforementioned works. We design a prior knowledge
fusion module to enhance the performance under this case.
Delivery Data Mining.With the digitization progress of the lo-
gistics/delivery industry, there are emerging studies focusing on
delivery data mining. In addition to travel time estimation [33]
and service time prediction [24], there are many other studies of
delivery data mining, which are reviewed as follows. Based on way-
bill data, Ding et al. [7] infer the delivery scope of each merchant,
and Wen et al. [31, 32] predict the pick-up order of parcels. With
couriers’ trajectories, Dahiya et al. [4] find the regions of interest,
Srivastava et al. [26] improve the quality of Geocoding, [22, 23, 25]
infer the delivery location, and Jiang et al. [17] detect fake locations
registered by the merchants. Leveraging couriers’ encounter data,
Ding et al. [8] estimate the relative location of couriers indoors.

7 CONCLUSION
In this paper, we study the problem of service time prediction (STP),
which is fundamental for intelligent logistics, and propose MetaSTP
to solve it. MetaSTP treats STP at each location as a learning task,
leverages a fine-grained representation layer to encode the complex
delivery circumstances of each delivery task, and devises a location
prior knowledge enhanced meta-learning method to tackle the loca-
tion heterogeneity and skewed observation problem. Experiments
show MetaSTP outperforms baselines by at least 9.5% and 7.6% on
two real-world datasets. Finally, an intelligent waybill assignment
system based on MetaSTP is used internally in JD Logistics. A possi-
ble future research direction is to incorporate the service time with
the travel time to provide an end-to-end delivery time prediction.
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