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ABSTRACT

Several recent studies have demonstrated that deep-learning based image genera-
tion models, such as GANs, can be uniquely identified, and possibly even reverse
engineered, by the fingerprints they leave on their output images. We extend this
research to a previously unstudied type of image generator: single image super-
resolution (SISR) networks. Compared to previously studied models, SISR net-
works are a uniquely challenging class of image generation model from which to
extract and analyze fingerprints, as they can often generate images that closely
match the corresponding ground truth and thus likely leave little flexibility to em-
bed signatures. We take SISR models as examples to investigate if the findings
from the previous work on fingerprints of GAN-based networks are valid for gen-
eral image generation models. In this paper, we present an analysis of the ca-
pabilities and limitations of model fingerprinting in this domain. We show that
SISR networks with a high upscaling factor or trained using adversarial loss leave
highly distinctive fingerprints, and show promising results for reverse engineering
some hyperparameters of SISR networks, including scale and loss function.

1 INTRODUCTION

Recent progress in deep-learning based image synthesis has dramatically reduced the effort needed
to produce realistic but fake images (Tolosana et al.| [2020). But just as a criminal may leave fin-
gerprints at a crime scene, image synthesis networks leave telltale “fingerprints” on the images they
generate (Marra et al.| 2019). Researchers have sought to extract increasingly detailed information
about image synthesis networks from these fingerprints. A popular form of this problem is deepfake
detection (Dolhansky et al., 2019), which seeks to extract a single bit of information: is a particular
image real or fake? Going further, model attribution seeks to identify the particular image genera-
tion model that produced an image (Yu et al., 2019). Model parsing goes even further, seeking to
infer design details of the image generation model (Asnani et al., 2021).

Model fingerprints have been studied primarily to identify and track down sources of misinforma-
tion. Therefore, the types of models used for deepfakes, such as generative adversarial networks
(GANS), have received the most attention. But model fingerprinting has other applications, such
as intellectual property protection. A proprietor may have property rights to a dataset, loss func-
tion, neural network architecture, or pretrained model which is useful for image synthesis. Such a
proprietor might be interested in identifying media artefacts created in violation of their intellectual
property rights. In this situation, model attribution can detect the misuse of pretrained networks,
and model parsing is useful for detecting when individual parts of an image synthesis network (e.g.
the training dataset, the loss function) are proprietary. Proprietors may wish to deploy this kind of
copyright detector for a broad range of deep image generation models. For example, deep-learning
based image and video enhancement technologies, such as super-resolution, image de-noising, and
video interpolation are all commercially important applications a proprietor may wish to protect.

Without further study, it is unclear how the current, GAN-focused model fingerprint literature will
extend to a broader set of image generation models. Compared to GANs, image enhancement net-
works often produce images which are very close to the ground truth training targets. For exam-
ple, different L,-optimized single image super-resolution (SISR) models are known to converge
on super-resolved outputs which are visually very similar (Sajjadi et al) 2017). Are such subtle
variations between models sufficient to produce the uniquely identifying fingerprints?
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As an initial foray into the study of fingerprints for more general image generation models, we study
the model fingerprints for SISR networks. We collect photographs from Flickr and super-resolve
each of them with 124 different SISR models. These 124 models consist of 16 pretrained models
published online by other researchers, and 108 models which we have trained ourselves by system-
atically varying the architecture, super-resolution scale, training dataset, and loss function. We then
train an extensive collection of image classifiers to perform model attribution, and to predict four
important hyperparameters of each SISR model: architecture, dataset, scale, and loss function. By
systematically reserving different subsets of the SISR models for testing, we explore the generaliza-
tion capability of our model attribution and parsing classifiers. Our contributions are as follows:

* We develop a novel dataset of 124 super-resolution models, which will be made publicly available.

* We analyze the factors that contribute to the distinctiveness of a SISR model fingerprint. We show
that the choice of scaling factor and loss function significantly impact fingerprint uniqueness.

* As|Yu et al.| (2019) showed for GANs, we show that the fingerprints of adversarially-optimized
SISR models are highly sensitive to small changes in hyperparameters, such as random seed.

* We study the generalization of our SISR model attribution classifier to models outside the training
set. We show that our attribution classifier generalizes well from our contrived training set to
real-world models, with architectures and loss functions not seen during training.

* We train a set of model parsing classifiers to predict the hyperparameters of the SISR models.
We show promising results for predicting the scale and loss function, and mixed results for the
architecture and training dataset.

2 RELATED WORK

Single image super-resolution: Recent years have seen rapid progress in deep-learning based SISR
methods. These days, there are a profusion of such methods available online. We choose SISR
methods as our subject of study for this reason. A diverse set of state-of-the-art SISR models form
the foundation of our experiments. As listed in Table [ in the appendix, we selected 12 SISR
methods presented in recent papers based on their reproducibility and their high-quality results.

Model attribution: To identify the source of synthetic images, model attribution methods can look
either for watermarks (signatures deliberately encoded into each output image by the network au-
thor) (Hayes et al.,[2020; Skripniuk et al.,|2020;|Adi et al., 2018;|Yu et al.} 2020; |Zhang et al.,|2020),
or for unintentional statistical anomalies in the generated images which are unique to a particular
model, which we call “fingerprints”. We focus on detecting these fingerprints, which can appear
without deliberate intervention by the network author.

Generative adversarial networks have been shown to possess uniquely identifying fingerprints
(Marra et al., 2019; [Yu et al., 2019). These fingerprints have been extracted with convolutional
networks (Yu et al., 2019; Xuan et al., 2019), and with hand-crafted features (Marra et al., [2019;
Guarnera et al., 2020; |Goebel et al., 2020)). |Albright & McCloskey| (2019) and |Zhang et al.| (2021)
showed that GAN inversion can be a useful way to attribute images to the GANs. All of these meth-
ods focus on finding the fingerprints of GANs or Variational Auto Encoders (VAEs). However, the
relevance of these results to image enhancement models, such as SISR networks, is a priori unclear.

Reverse engineering/model parsing: We are the first to attempt to reverse engineer some hyperpa-
rameters of SISR models from the images they generate. But we are not the first to attempt to re-
verse engineer the hyperparameters of black-box neural networks. By feeding around 100 specially-
designed input images through a black-box classifier, (Oh et al.| (2019) successfully inferred many
fine-grained architectural choices for small image classification networks. These input images were
optimized using gradient descent so that the classifiers’ output would correlate with its hyperparam-
eters. Hyperparameters inferred included the network’s activation function, optimization algorithm,
and training dataset. By comparison, our experiments predict fewer hyperparameters of much larger
networks, and do so by viewing arbitrary output images, without the need to pass specially-designed
inputs through the black-box model.

In a concurrent work, |Asnani et al.| (2021) train a convolutional network to extract a fingerprint
from a generated image, and to predict the hyperparameters of various image generation models
from this fingerprint. Their method, like ours, can be used for attribution,and model parsing. Their
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Figure 1: An overview of our experimental setup. 1,000 low-resolution images are fed through each
of 124 SISR models to produce a dataset of 124,000 super-resolved images. We then train our model
parsing and attribution classifiers on this dataset.

study covers a diverse domain of 100 image generation models, mostly unconditional GANs and
variational autoencoders. Our work, by contrast, is focused on SISR models, which generate images
very close to a ground truth and likely leave less flexibility to embed fingerprints.

3 SETUP

We wish to explore what choices of SISR model hyperparameters lead to distinctive model fin-
gerprints, and which model hyperparameters can be reverse engineered using model parsing. To
explore these questions carefully, we need a dataset of SISR models that varies the hyperparameters
we wish to experiment on, while holding all other hyperparameters constant. We choose 5 SISR
model hyperparameters to analyze: model architecture, super-resolution scale factor, loss function,
training dataset, and random seed. We train a 108 SISR models with various combinations of these
experimental hyperparameters, and add in 16 more SISR models from previous works for additional
diversity. We construct our main dataset by super-resolving 1,000 images by each of our 124 SISR
models. We use this dataset to train several image classifiers for model attribution and parsing tasks.
Finally, we can address our research questions by analyzing the performance of these classifiers.
Figure [I] shows an overview of our process.

3.1 SINGLE IMAGE SUPER-RESOLUTION MODEL DATASET
We want our collection of SISR models to meet the following criteria:

1. Realistic: Our SISR models should be comparable to those encountered in the real world.
2. Diverse: Our models should span many architectures, loss functions, and training sets.

3. Large: We want a large number of SISR models, so that the model classifiers can begin to
generalize across the SISR model space.

4. Uniform: The hyperparameters of our SISR models should be uniformly distributed and inde-
pendent from each other to prevent spurious correlations that could confound our analysis.

To make our dataset realistic and diverse, we include 16 real-world pretrained super-resolution mod-
els, published between 2016 and 2021 (See Table [ in the appendix). Unfortunately, there are not
enough pretrained SISR models available online to make our dataset very large. But even more im-
portantly, distribution of hyperparameter values among these 16 SISR models is neither uniform nor
independent. For example, all four models with 2x super-resolution scale are L;-optimized. Such
correlations are confounding factors in our analysis, and we would prefer to avoid them.

Therefore, we make our dataset large and uniform by adding 108 SISR models which we train
ourselves. We select 5 SISR model hyperparameters to vary in our experiments (we will call these
the experimental hyperparameters). All other training details of our custom-trained SISR models
are held constant. The experimental hyperparameters and their values are as follows:
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1. Architecture: The choices are EDSR (Lim et al.,2017), RDN (Zhang et al.,[2018b)), and RCAN
(Zhang et al., [2018a).

2. Dataset: The super-resolution dataset used for training the model. The choices are DIV2K
(Agustsson & Timoftel |2017) or Flickr2K, originally collected by [Lim et al|(2017). To see
if using a smaller training dataset might lead to a more distinctive model fingerprint, we also
trained SISR models with just one quarter of the total training data available from these two
datasets, effectively creating two more dataset choices, %DIVZK and %FlicerK

3. Scale: Scaling factor by which to upsample the low-resolution input image; either 2x or 4x. To
be clear, this is the scaling factor for the linear dimension of the image, not the total number of
pixels; a 2x-upsampled image has four times as many pixels.

4. Loss: Loss function to optimize during training. Choices are the L; norm (which is standard
in the super-resolution literature), VGG+adyv. loss, or ResNet+adyv. loss. VGG+adv. loss is the
the same linear combination of VGG-based perceptual loss and adversarial loss that was used
in SRGAN (Wang et al., 2018a). ResNet+adv. uses the same adversarial term, but replaces the
VGG-based perceptual loss with ResNet based perceptual loss (for details, see Appendix [A.3).

5. Seed: Random seed to use during training. Random seeds used are simply 1, 2, or 3.

In total, there are 216 possible SISR models that could be trained from different combinations of
these hyperparameters. To save time and computational resources, we only train the subset of these
models whose random seed is 1 or whose training dataset is DIV2K. This leaves us with 108 custom-
trained SISR models.

3.2 IMAGE DATASETS

As discussed in Section [3.I] We employ two existing super-resolution image datasets, DIV2K and
Flickr2K, to train our SISR models. We also create our own dataset of super-resolved images which
we will use to train the model attribution and parsing classifiers. Because models often behave
anomalously well on the images they were trained on, we do not wish to reuse any of the images
from the DIV2K or Flickr2K datasets for our super-resolution dataset.

Instead, we collect a new image dataset consisting of 1,000 photographs from Flickr. We query
Flickr for 200 images from each of the following 5 image tags: food, architecture, people, animals,
and landscapes. We select only images with at least two megapixel resolution. At full resolution,
however, many of these images contain visible JPEG artifacts, so we downsample the images to 960
pixels in their largest dimension, at which point any jpeg artifacts were imperceptible to us. We
refer to this collection of images as the “Flickr1K dataset”. Table[5]in the appendix compares some
aggregate image statistics of this dataset to the DIV2K and Flickr2K datasets.

To generate the final super-resolution dataset upon which we train our model attribution and parsing
classifiers, we super-resolve each image in our Flickr1K dataset by each of our 124 SISR models.
For each SISR model, for each Flickr image, we first downsample the image by the model’s scaling
factor using bicubic interpolation, and then super-resolve the downsampled image using the model.
This gives us a dataset of 124,000 super-resolved images. To get a sense of the resulting images, see
Table[T] which displays the same 64x64 image patch super-resolved by 34 of the 124 SISR models.

3.3 CLASSIFICATION NETWORKS

We train an extensive collection of model classification networks to perform model attribution and
parsing. Following |[Rossler et al.| (2019), we choose XceptionNet, pretrained on ImageNet, as our
backbone classification network of choice.

To adapt the pretrained XceptionNet to our classification problems, we replace the final fully-
connected layer of the network with a randomly initialized one of the appropriate shape to output
the right number of classes. A softmax layer is applied after the last fully-connected layer, and
the network is trained with cross-entropy loss. As in [Rossler et al.,| (2019), We train just the final
layer for three epochs, then we unfreeze all network weights and fine-tune the entire network for 15
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Table 1: A small image patch super-resolved by the 16 pretrained SISR models (top) and a sample
of 18 custom-trained SISR models (bottom). All custom-trained models shown were trained with
the DIV2K dataset, with random seed 1. Best viewed zoomed in.
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epochs. Our classifiers are trained with our super-resolved image dataset on just 800 images from
each SISR model. We reserve an additional 100 images for validation, and 100 for testing. All
analyses presented in Section [4] are computed from this test set of 100 super-resolved images per
SISR model.

4 EXPERIMENTS

Our experiments are organized around the analysis of two different problems: model attribution
(Section @.T)) and model parsing (Section [4.2). We formulate both as classification problems, and
train XceptionNet models to solve them as described in Section[3.3]

4.1 MODEL ATTRIBUTION

How reliably can a SISR model be uniquely identified by its output images? What combinations
of hyperparameters lead to distinct fingerprints? To answer these questions, we train and analyze
two attribution classifiers: the custom model attribution classifier, which is trained to distinguish
between the 108 custom-trained SISR models, and the pretrained model attribution classifier, which
is trained to distinguish between the 16 pretrained models. We discussed the comparative benefits
and drawbacks of these two subsets of models in Section[3.1] Essentially, the the custom models are
a larger and more controlled sample, while the pretrained models are more diverse. For the rest of
the section, we use “model” as shorthand for “SISR model” unless explicitly stated otherwise.

4.1.1 WHEN ARE SISR MODEL FINGERPRINTS DISTINCTIVE?

Do certain hyperparameter choices make SISR model fingerprints more or less distinctive? We
hypothesize that the more detail a SISR model adds to an image, the more opportunities there are
for the model to embed its distinctive biases, i.e. to “leave fingerprints”. 4x upscaling adds more
detail than 2x. As noted in|Sajjadi et al.|(2017)), L;-optimized SISR models tend to converge upon
the same unnaturally smooth super-resolved images, while SR images from adversarially trained
models are more detailed and diverse. Therefore, we hypothesize that 4x SISR models leave more
distinctive fingerprints than 2x, and adversarially trained models leave more distinctive fingerprints
than L; models.
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Figure 2: T-SNE visualizations of of super-resolved image feature embeddings. Figureshows the
features of images upscaled by the 108 custom-trained models, grouped by scale and loss. Figure
[2b] shows feature embeddings for the pretrained SISR model images as encoded by the pretrained
model attribution classifier (left) and the custom model attribution classifier (right). Classification
accuracies associated with the models in each plot are in the lower-left corner.

To test this hypothesis, we look at the accuracy of our custom model  Table 2: Accuracy (%) of
attribution classifier segmented by each hyperparameter, as shown our custom model attribution
in Table[2] Attribution accuracy is roughly the same for the different  classifier grouped by different
training datasets and architectures, indicating that distinctiveness of hyperparameters. For exam-
SISR models does not vary much with these parameters. But clas- ple, the average accuracy of
sification accuracy varies significantly by scale and loss function: our classifier on SISR models
average classification accuracy for 4x SISR models is 5.4% higher whose scale is 2x is 92.6%.
than for 2x models, and average classification accuracy for adver-

sarially trained models is 11.0% higher than for L; models. Value Acc.
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Figure @ shows a T-SNE embedding of the super-resolved image 7 FlickrizK 96.1

features disaggregated by scale and loss. We define image features

as the 2048-dimensional vector of activations from the last layer of an attribution classifier. Class
separation is better for 4x SISR models than 2x, and better for adversarial than L; models. This data
supports our hypothesis that adversarial loss functions and higher super-resolution scales lead to
more distinctive model fingerprints.

In (2019), even small variations in a GAN’s training parameters can lead to highly distinc-
tive GAN fingerprints. To test if this finding holds for our dataset, we evaluate the accuracy of our
custom model attribution classifier at distinguishing between groups of models which differ only by
their random seed (as shown in Figure[3). Our custom-trained SISR model dataset contains 36 “seed
triplets”: sets of three SISR models which are identical except for their seed. Our custom-trained
model classifier can distinguish between models in each triplet with an average of 98.3% accuracy.
Disaggregating by scale and loss shows the same trend as the broader attribution problem: the (2x,
L1), (4x, L1), (2%, adv.), and (2x, adv.) model groups have 92.9%, 98.6%, 99.3%, and 99.9% accu-
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racy on this task, respectively. We interpret this as a confirmation that Yu, et al.’s finding extends to
this new domain.

4.1.2 PRETRAINED MODEL ATTRIBUTION

Our 16 pretrained models have a greater diversity of architectures, loss functions, and datasets, and
may be more representative of the kinds of SISR models encountered “in the wild”. So do our attri-
bution results still hold for them? To test this, we train a model attribution classifier to predict which
of the 16 pretrained models produced a given super-resolved image. We find that the performance
of this classifier improves significantly if we initialize it with weights from the custom model attri-
bution classifier, instead of starting from the XceptionNet model used for ImageNet classification.

Overall test-set attribution accuracy for these 16 pretrained models is 90.4%. Our hypothesis about
scale and loss function still holds: accuracy among the (2x, L;) models is 75.5%, while accuracy
among the (4x, L) is 92.4%. The average classification accuracy for the (4x, adv.) group is 99.6%.
Figure 2b] shows a T-SNE embedding of the features of the test images classified by the pretrained
model attribution classifier. The figure depicts a similar trend to Figure [Za} adversarially trained
models are highly separable, (4x, L1) models less so, and (2x, L) least separable of all.

4.1.3 FINGERPRINTING UNSEEN SISR MODELS

So far, we have assumed that the full set of SISR models our attribution classifiers will ever encounter
is known and available during training. In real-world applications, such as scraping the web for
super-resolved images which make illicit use of a proprietary model, this condition is unlikely to
obtain. More likely, attribution classifiers will be met with images from numerous unknown sources,
and will need to handle them gracefully. So does our attribution classifier still detect meaningful
fingerprints for these unseen models?

To answer these questions, we ran the super-resolved images from our 16 pretrained models through
the custom model attribution classifier, which has only seen our 108 custom-trained models during
training. A T-SNE embedding of the resulting image features is displayed in Figure [2b] Notice that
these features, taken from the custom attribution classifier, follow a very similar trend to those from
the pretrained attribution classifier, which has seen these particular SISR models. Class separation
is not as good, but the (4x, adv.) models are still modestly separable.

4.2 MODEL PARSING

We have demonstrated that small variations in SISR model parameters can lead to distinctive fin-
gerprints. Are these variations in model fingerprints random, or do they contain information about
the underlying model parameters? If they contain such information, this could be leveraged towards
model parsing. To test this, we train an extensive collection of classifiers, referred to here as parsers,
to predict each of the experimental hyperparameters of our custom-trained SISR models.

In real-world applications, such parsers would be used to reverse engineer the hyperparameters of
unknown SISR models, which may use architectures, loss functions, etc. from outside our parser’s
training set. Therefore, we evaluate our parsers on models with some hyperparameter value which
we exclude from the parser’s training set. We call this excluded value the test hyperparameter value.
For example, if a parser’s test hyperparameter value is RCAN, this means the parser was trained on
the EDSR and RDN models, and tested on the RCAN ones.

If we have multiple super-resolved images which are known to originate from the same SISR model,
then we can aggregate predictions of model hyperparameters from across multiple super-resolved
images. We do this by feeding 10 randomly sampled images from the same SISR model through
our parser and choosing the most popular prediction. This procedure reduces the variance in our
predictions, and improves accuracy. Table [3]shows both the 1-image and 10-image accuracy of each
of our model parsers.

3All models with seeds 2 and 3 were trained with the DIV2K dataset. Therefore, to keep the class fre-
quencies balanced, models with seeds 2 and 3 were excluded during both training and testing of the dataset
parsers.
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Table 3: single-image/10-image test accuracy (%) of 19 parameter classifiers. The “chance baseline”
column shows the percent chance of predicting the parameter correctly by random guess. We do not
train any parsers to predict the test hyperparameter value, hence the dashes.

Predicted Chance Test hyperparameter value
hyperparam. - baseline 7/ RCAN  ResNet+adv.  Flickr2K $3
scale 50.0 46.8/50.0 99.5/100.0  96.6/100.0  99.4/100.0 99.6/100.0
loss 333 - 90.4/98.8 - 92.3/99.8  86.9/95.9

arch. 333 31.8/14.7 - 53.0/66.6 58.3/80.8  53.8/69.2
dataset [l 25.0 28.5/28.6  36.9/51.8 29.0/28.5 - -

The L; column of Table [3|shows the test accuracies of parsers which were trained on adversarially
trained models (VGG+adv. and ResNet+adv.) and tested on L;-optimized models. It appears that
L+-optimized models are too different from adversarially trained models for the parser to generalize:
accuracy is no better than chance. Aggregating predictions from across multiple images offers no
improvement. With aggregation, the architecture parser actually does worse, due to a bias that
becomes more pronounced when aggregation reduces the variance.

Generalization from one adversarial loss function to another works better. The ResNet+adv. column
shows the test accuracies of parsers which were trained on models with L; or VGG+adv. loss, and
tested on ResNet+adv. models. Both the scale and architecture parsers do significantly better than
chance. We hypothesize that this is because VGG loss and ResNet loss are not so different: both
are perceptual losses trained from the ImageNet dataset. Parser generalization for the other test
hyperparameter values (RCAN, Flickr2K, and s3) appears comparably good.

Below, we briefly discuss our results for each parameter that we attempt to predict. These sections
are ordered from easiest to predict (scale) to the hardest (dataset).

Scale: Excluding the L test hyperparameter value, our scale parsers are highly successful, obtaining
accuracies between 96.6% and 99.6% depending on which parameter is being generalized over.

Loss: Our three loss functions, (L1, ResNet+adv., and VGG+adv.) can also be distinguished with
high accuracy. L; loss can be distinguished from the adversarial losses with near 100% accuracy,
while the adversarial losses can be distinguished from each other with 84.6% accuracy.

Architecture: We had less success identifying which architecture (EDSR, RDN, or RCAN) was
used to generate a given super-resolution image. Averaging across the ResNet+adv., Flickr2K, and
s3 test splits, the average architecture classification accuracy is only 54.5% (against a chance ac-
curacy of 33%). Interestingly, this classification problem was no easier for adversarially trained
models than L;-optimized ones, but it was easier for 4X scale SISR models (60.0% accuracy) than
2X scale ones (49.1%). This suggests that the additional information in an adversarial fingerprint is
uncorrelated with the model architecture.

Dataset: Dataset prediction appears even more difficult than architecture prediction: For the RCAN
and ResNet+adv. test hyperparameter values, we can only predict the dataset with 29.0% accuracy
(against a chance accuracy of 25%). Again, this doesn’t vary significantly based on the loss function
used, but is significantly easier for 4X (39.0%) than for 2X (19.0%). We included the i DIV2K and
% Flickr2K training sets in our SISR model dataset to test the hypothesis that smaller datasets would
lead to more idiosyncratic SISR networks that would be easier to distinguish. However, we find that
the i—datasets are no easier to identify (27.9% accurate) than the full datasets (30.1% accurate). In
fact, the quality of quarter- and full-dataset SISR models hardly differs: On average, a full-dataset
trained SISR model has a PSNR just 0.21 points higher than its i-dataset counterpart, and an LPIPs
score just 0.0007 points lower.

4.2.1 PRETRAINED MODEL PARSING

To study model parsing for pretrained models, we train parsers on all 108 custom-trained SISR
methods to predict the models’ scale, loss, and architecture. (We omit the dataset parser because
DIV2K is the only dataset shared by both the custom and pretrained models) We then apply these
parsers to images from the 16 pretrained SISR models.



Under review as a conference paper at ICLR 2022

Figure [ presents a full table of the model parser predictions for each pretrained SISR model. As
with the custom model parsers, we find it easy to parse the scale of models with loss functions
in the training set. The scale parser we used here was trained on L;, VGG+adv. and ResNet+adv.
losses. This parser can predict the scale of our L;-optimized pretrained models with 100% accuracy.
EnhanceNet and ProSR are also easy to parse, and are trained with losses very similar to VGG+adv.
loss: both leverage a pretrained VGG network for perceptual loss, in combination with adversarial
loss. But as shown in Table[3]with test hyperparameter value L1, prediction accuracy for unseen loss
functions can be much worse. NCSR and SPSR use very different approaches to super-resolution
than the models in the parser’s training set, and generalization to these models is accordingly worse.
ESRGAN also uses a form of VGG loss, but our scale parser still performs poorly on it. ESRGAN
does introduce some significant changes VGG+adv. loss, and perhaps this explains the failure to

generalize, but we consider this to be an open question. Predicted hyperparameter value

Our loss classifier can easily distinguish between XX
L+-optimized and adversarially trained models: all A
Lq-optimized pretrained models are identified as
such with 100% accuracy. The true loss func-
tions of the adversarial SISR models (ESRGAN, En-
hanceNet, ProSRGAN, NCSR, and SPSR) are not
in the loss classifier’s training set. Yet the loss
classifier always predicts that these methods were
produced with an adversarial loss function (either

EDSR-2x
RCAN-2x
RDN-2x
SRFBN-2x
DRN-4x
EDSR-4x

ResNet+adv. or VGG+adv.). g RCAN-4x
o
g  RDN-4x
Architecture prediction is unsuccessful. Our set of T  san.ax
pretrained models contains six models whose archi- % gregn.ax

tecture was in the training distribution: EDSR, RDN,
and RCAN at 2x and 4x scale. Among these models,
the architecture classifier can predict the architecture
correctly just 41.0% of the time, barely exceeding
the random chance classification accuracy of 33.3%.

proSR-4x
E.GAN-4x
E.Net-4x
NCSR-4x
proSR-4x

SPSR-4x
4.3 KEY FINDINGS Scale Loss

Figure 4: Parser predictions for the pre-
trained models. For example, out of the 100
test images for SPSR, 66 were predicted to
come from a model with 2x scale, 34 from
4x. Actual model hyperparameter values are
in green boxes. Some models use losses and
architectures which aren’t in the parsers’ set
of class labels, so none of their columns are
inscribed in green.

4x SISR models produce more distinctive finger-
prints than 2x for both model attribution and parsing.
As has been shown for GANs, any small change to a
SISR model’s hyperparameters is sufficient to detect
a unique fingerprint. These fingerprints are consider-
ably more distinctive for adversarially trained mod-
els than L; models. However, the uniquely identify-
ing information in an adversarially trained model’s
fingerprint is uncorrelated with its hyperparameters:
model parsing is no easier for for adversarially trained models than L; ones. Using our simple clas-
sification method, it is possible to parse a SISR model’s scale and loss function in a reliable and
generalizable way. We achieved mixed, inconclusive results for parsing the model architecture, and
were unable to effectively parse the model dataset.

5 CONCLUSION

We have presented the first exploration of model fingerprinting and image attribution specifically
focused on single image super-resolution networks. We create a dataset of 124 super-resolution
methods. We show that the extra information provided by higher upscaling factors is strongly cor-
related with the tractability of these problems. We show that, similarly to GANs, the fingerprints
of adversarially trained models are highly sensitive to small changes in the training procedure. Our
attribution classifiers learn to detect distinctive fingerprints even for SISR models outside the train-
ing set. Our model parsing experiments show promising results for parsing the loss function of the
SISR model, and less promise for other parameters. We have demonstrated that these results mostly
extend from our custom-trained SISR models to a set of 16 real-world pretrained SISR models.
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A APPENDIX

A.1 PRETRAINED SISR MODELS

Our 16 pretrained SISR models come from deep-learning based SISR research papers who published
their models, along with pretrained weight files, on Github. We only include methods which solve
the most standard form of the single image super-resolution problem: inverting a bicubic down-
sampling function. Other forms of super-resolution, such as blind super-resolution or real-world
super-resolution, are not included. Table ] shows a full list of the pretrained models we use in this

paper.

11
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Table 4: 12 papers which provide the 16 pretrained super-resolution models we use in our dataset
(some papers provide both 2x and 4x models).

Publication Name Loss Training Dataset Scale(s)
Lim et al.[(2017) EDSR Ly DIV2K 2x, 4x
Sajjadi et al.|(2017)  EnhanceNet Adv. MSCOCO 4x
Zhang et al.| (2018b) RDN Ly DIV2K 2x, 4x
Wang et al.| (2018b)  ProSR Ly DIV2K 4x
Wang et al.| (2018b)  ProGanSR Adv. DIV2K 4x
Zhang et al.| (2018a) RCAN L4 DIV2K 2x, 4x
Wang et al.[(2018a) ESRGAN Adv. DIV2K, Flickr2K, OST 4x
Dai et al.[(2019) SAN Ly DIV2K 4x

Li et al.|(2019) SRFBN Ly DIV2K 2x, 4x
Ma et al.[(2020) SPSR Adv. DIV2K 4x
Guo et al.[(2020) DRN Ly DIV2K 4x
Kim & Son/(2021) NCSR Adv. DIV2K 4x

A.2 COMPARISON OF FLICKR1K, FLICKR2K, AND DIV2K DATASETS

In the DIV2K introductory paper, |Agustsson & Timofte| (2017)) provide a few summary statistics
for their dataset. Here in Table[5] we provide the same statistical analysis of our Flickr1K dataset,
and the Flickr2K dataset from [Lim et al.| (2017). Notice that the metrics are largely similar across
datasets, with the exception of pixels per image (ppi), because our images are approximately one
quarter the size of those in the Flickr2K and DIV2K datasets.

Table 5: Main Characteristics of SR Datsets: number of images, pixels per image (ppi), bits per
pixel using PNG compression (bpp PNG), and shannon-entropy of the images’ greyscale histograms
(entropy). for We report average (+standard deviation).

Dataset Images Ppi Bpp PNG Entropy

Flickr2K train 800 2793045 12.71(£2.53)  7.34(40.57)
Flickr2K test 100 2794881  12.52(+2.45) 7.38 (+£0.53)
Flickr2K validation 100 2749737  12.96(£2.67)  7.52(+0.29
DIV2K train 800 2779971  12.68(42.79)

( )

7.48(£0.34)

DIV2K validation ~ 100 2733370 1324 (+2.87) 7.51(0.43)
FlickrIK train 100 649958  12.93 (£2.75)  7.30(40.45)
FlickrIK test 798 646188  12.89(+£2.44)  7.32(+0.52)
FlickrIK validation 100 633369 1239 (+£2.39)  7.24(+0.54)

A.3 RESNET-BASED PERCEPTUAL LOSS

Our ResNet-based perceptual loss is computed by passing both the super-resolved image and the
ground-truth high-resolution image through an instance of the ResNet classifier pretrained for Ima-
geNet classificaiton. We extract the feature vectors from the last layer before classification, and take
the L2 distance between HR and SR feature vectors as our ResNet loss term.

A.4 COMPARISON OF PRETRAINED VS. CUSTOM-TRAINED SUPER-RESOLUTION QUALITY
Judging by PSNR and LPIPS, our custom-trained L;-optimized SISR models appear to be about on

par with the pretrained models, perhaps slightly lower quality. Table [ compares pretrained EDSR,
RDN, and RCAN models to their custom-trained counterparts.

A.5 MODEL PARSING USING KNNS OF ACUTANCE

How much of the information we extract from our model parsers is purely a function of the blur-
riness/sharpness of the image? We can tell from Table |4 that 2x models tend to produce sharper
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Table 6: Comparison of pretrained vs. custom-trained model performance by PSNR (higher is
better) and LPIPS (lower is better) All models are 4x scale. Rows of the form {architecture }/{loss}
are averaged across all custom-trained models with that combination of architecture and loss.

model psnr  Ipips

EDSR (pretrained) 29.2  0.282

EDSR (custom) 29.1 0.284

RDN (pretrained) 29.35 0.280

RDN (custom) 29.15 0.280

RCAN (pretrained) 29.4 0.270

RCAN (custom) 29.1 0.29

ESRGAN (pretrained) 28.5 0.147
EnhanceNet (pretrained) 27.5 0.196
EDSR/VGG+GAN (custom) 27.2  0.178
RDN/VGG+GAN (custom) 28.1 0.171
RCAN/VGG+GAN (custom) 28.36 0.160
EDSR/ResNet+GAN (custom) 27.23  0.180
RDN/ResNet+GAN (custom)  26.7  0.180
RCAN/ResNet+GAN (custom) 279 0.171

Table 7: Accuracy (%) of the parameter classification achieved using acutance as the only feature,
and k-nearest neighbors as the classification scheme.

parameter chance L; RCAN ResNet GAN Flickr2K  s3
arch. 333 344 - 35.6 333 33.6
dataset 250 25.6 245 25.3 - -
scale 50.0 485 584 50.8 59.6 60.5
loss  33.3 - 46.0 - 471 48.4

images than 4x, and adversarially trained models produce sharper images than L1 models. We de-
fine the acutance, or sharpness, of an image, as the variance of the laplacian of the greyscale version
of that image. This simple yet robuts acutance metric originated with Pech-Pacheco et al.| (2000).
For each model parsing classification task we train an XceptionNet for, we also create an “acutance-
based classifier” to compare it to. This baseline classifier uses the k-nearest neighbors classification
algorithm (with k=20) to predict the target parameter based off of a single input feature: image
acutance. The KNN-classifiers predict the class of each test image by finding the 20 images in the
training set with the closest acutance and selecting the modal class from among those 20 images as
its prediction. Table[7|shows how this classificaiton scheme performs for each of our model parsing
problems.

A.6 ALTERNATIVE CLASSIFIER ARCHITECTURES

The parameter classifiers are clearly overfit to the training SISR models. The classifier trained to
predict the architecture of the models with seeds 1 and 2 can correctly predict the architecture with
94.9% accuracy for models in its training set. Accuracy drops precipitously for the testing set:
There, model architecture can only be correctly predicted with 53.8% accuracy. In an attempt to
alleviate this overfitting issue, we tried training several smaller classifiers on this problem. Table 9]
demonstrates the result of this experiment: no matter the network size, this trend remains the same.

We experimented with a handful of pretrained classifier backbone architectures for our model at-
tribution and parsing networks. Table [ shows the accuracy of several backbone architectures we
trained to perform model attribution between 36 different models: the slice of models where the
dataset is DIV2K and the seed isn’t S3.

To make smaller versions of the XceptionNetwork, we reduce the network’s width and depth. Table
[9) shows four versions of XceptionNet, all trained to classify network architecture. The maximum
feature width and maximum number of blocks are varied.
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Table 8: Accuracies of different classifier backbones.

Classifier  Accuracy (%)

Xception 95
mobilenet 92
resnetl8 79
resnet50 84

Table 9: Size and shape of the smaller versions of XceptionNet.

Version #blocks Max. conv. depth  # parameters train acc (%) test acc (%)

normal 12 728 21M 85 47
small 8 728 14.4M 86 40
smaller 8 364 3.9M 88 44
smallest 5 182 0.9M 81 41
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