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ABSTRACT

The advent of ubiquitous machine learning (ML) has led to an exciting revolution
in computing today. However, recent studies have shown that ML, especially
deep neural networks (DNNs), are vulnerable to adversarial examples, which are
able to mislead DNNs with carefully crafted stealthy perturbations. So far, many
defense approaches have been proposed against such adversarial attacks, both
empirically and theoretically. Though effective under certain conditions, existing
empirical defenses are usually found vulnerable against new attacks; existing
certified defenses are only able to certify robustness against limited perturbation
radius. As current pure data-driven defenses have reached a bottleneck towards
certifiably robust ML, in this paper we propose a certifiably robust ML pipeline
CARD, aiming to integrate exogenous information, such as domain knowledge,
as logical rules with ML models to improve the certified robustness. Intuitively,
domain knowledge (e.g., the cat belongs to the mammal category) will prevent
attacks that violate these knowledge rules, and it is also challenging to construct
adaptive attacks satisfying such pre-defined logic relationships. In particular, we
express the domain knowledge as the first-order logic rules and embed these logic
rules in a probabilistic graphical model. We then prove that such a probabilistic
graphical model can be mapped to a 1-layer NN for efficient training. We conduct
extensive experiments on several high-dimensional datasets and show that our
proposed CARD achieves state-of-the-art certified robustness.

1 INTRODUCTION

Despite the great advances achieved by deep neural networks (DNNs), recent studies show that DNNs
are vulnerable to carefully crafted adversarial perturbations, which are usually of small magnitude
while being able to mislead the predictions arbitrarily (Biggio et al., 2013; Szegedy et al., 2014; Xiao
et al., 2018a;b). As machine learning techniques are incorporated into safety-critical systems—from
financial systems to self-driving cars to medical diagnosis—it is vitally important to develop robust
learning approaches before massive production and deployment of safety-critical ML applications
such as autonomous driving. To improve the robustness of machine learning models, several empirical
and certified defenses have been proposed against such attacks. However, most existing empirical
defenses have been attacked again by strong adaptive attackers (Carlini and Wagner, 2017; Athalye
et al., 2018); most certified defenses are restricted to certifying the model robustness within a small `p
norm bounded perturbation radius (Salman et al., 2019b; Yang et al., 2020). One potential limitation
for existing robust learning approaches is inherent in the fact that most of them have been treating
machine learning as a “pure data-driven" technique that solely depends on a given training set, without
interacting with the rich exogenous information such as domain knowledge; while we know human,
who has knowledge and inference abilities, is resilient to such attacks. Thus, in this paper we aim to
explore the questions: Can we incorporate human knowledge to DNNs to improve their robustness?
Can we provide certified robustness for such knowledge enabled machine learning pipelines?

Intuitively, there is information from the open world that could help with ML robustness: E.g.,
“persian cat is usually long-haired, furry, with whisker and tail”. Integrating such extrinsic infor-
mation enables the system to have the capacity of common sense reasoning, and therefore correct
mispredictions that do not satisfy such prior knowledge. In addition, such systems will also be hard
for attackers to conduct adaptive attacks which need to satisfy these knowledge rules. To efficiently
integrate knowledge into DNNs and be able to certify the learning pipeline, we propose the first

1



Under review as a conference paper at ICLR 2022

Constrained Logic Encoded 
Neural Networks 𝒓𝒓

Persian cat

Main 
Predictor

“White” 
Detector

“Tail”
Detector

“Primate”
Detector

IsWhite?

HasTail?

Primate? “Persian cat => white”
“Cat => has a tail”

“Primate => not a Persian cat” 

Persian
Cat √

Domain 
Knowledge

Predictors Reasoning
Input

Kn
ow

le
dg

e
Pr

ed
ic

to
rs

𝑓𝑓0

𝑓𝑓1:

𝑓𝑓2:

𝑓𝑓3:

Predictor 
Vector 𝒔𝒔

Figure 1: An overview of the CARD framework.
unified certifiably robust machine learning pipeline via domain knowledge integration (CARD). In
particular, CARD contains a main predictor, several knowledge predictors, and a reasoning compo-
nent as shown in Figure 1. The main predictor makes an overall prediction for a given input, each
knowledge predictor makes binary “knowledge prediction” (e.g., whether the input is a cat), and the
reasoning component aims to build logical relationships among the outputs of predictors.

Concretely, we express domain knowledge as the first-order logical rules (e.g., persian cat =⇒ cat),
which will build connections between different predictors; we then leverage the soft logic (Bach et al.,
2017) as relaxation to encode the binary outputs of knowledge predictors as [0, 1] (e.g., prediction
confidence) and encode these logical rules as matrices. Finally, we transform the matrices into a one-
layer neural network as the reasoning component. Note that we can also build different probabilistic
graphical models such as Markov logic networks as the reasoning component, but the inference for
such models is #P-Complete. We prove that such a reasoning process can be mapped as a one-layer
neural network, which is computationally efficient. We also prove that the certified robustness of
CARD is higher than that of a standard weighted ensemble or a single model.

To evaluate CARD, we conduct thorough experiments on large-scale datasets: Animals with At-
tributes (AwA2) (Xian et al., 2018), and Word50 (Chen et al., 2015). For AwA2, we leverage the
annotated attributes of each class and the hierarchy relationship between classes as our knowledge.
For Word50, we leverage the positions of characters in the known word set as knowledge. We show
that CARD significantly outperforms the STOA certified defenses (Salman et al., 2019a; Jeong and
Shin, 2020; Liu et al., 2020) under different perturbation radii.

Technical Contributions. In this paper, we provide the first machine learning framework CARD
on improving the certified robustness via knowledge integration. We make contributions on both
theoretical and empirical fronts.
• We propose the first certifiably robust learning framework CARD with knowledge integration.
• We prove that the reasoning process based on logic rules can be mapped as a one-layer neural

network. We also prove that the certified robustness of CARD is theoretically higher than that of a
standard weighted ensemble or a single model.

• We conduct extensive experiments on different datasets to show that CARD achieves significantly
higher certified robustness than SOTA baselines. For instance, on the word-level classification on
Word50, under `2 radius 0.5, CARD improves the certified accuracy from 15.4% (SOTA) to 53.6%;
and on AwA2 under `2 radius 1.5, CARD improves the certified accuracy from 43.8% (SOTA) to
65.4%. We also provide several ablation studies to explore the utility of different knowledge, the
impact of the number of predictors, and relaxation strategies for the reasoning component.

2 RELATED WORK

Knowledge integration and logical reasoning. Deng et al. (2014) proposed the hierarchy and exclu-
sion graphs to utilize the hierarchy relations between different classes in ImageNet for classification
tasks. Yan et al. (2015) tried to embed deep convolutional neural networks into a two-level category
hierarchy to improve the prediction accuracy on ImageNet. The hierarchical knowledge among
classes has been incorporated into the training to avoid worst-case failures (Bertinetto et al., 2020).
On the other hand, some work has applied the declarative logic to represent domain knowledge for
training different models. The expressive power of logic programming and the generalizations of the
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first-logic rules including Horn clauses have been studied extensively by Chandra and Harel (1985);
Dantsin et al. (2001). With the combination of neural networks and logic reasoning, Hu et al. (2016)
transfers the first-logic rules into weights of neural networks by distillation. However, existing work
mainly relies on using different knowledge to improve the benign accuracy of a machine learning
model, while our work focuses on improving its certified robustness via knowledge integration.

Certified robustness There are two sub-branches for the certified robustness approaches. The first is
the complete certification, which aims to provide complete certification for each instance on whether it
can be certified within a certain lp norm radius. However, the complete certification for the commonly
used feed-forward ReLU networks is NP-complete, and it is usually heuristically optimized based
on either satisfiability modulo theories (Katz et al., 2017; Ehlers, 2017), or mixed integer-linear
programming (Lomuscio and Maganti, 2017; Fischetti and Jo, 2017), which are computationally ex-
pensive. The other branch is incomplete certification, which aims to provide certification with certain
relaxation. Randomized smoothing is proposed to certify large-scale datasets such as ImageNet (Co-
hen et al., 2019). Several following works are proposed to further improve the certification bounds:
Salman et al. (2019a) proposed to integrate adversarial training to further improve the robustness
certification; a consistency regularization is applied during training to improve the certification (Jeong
and Shin, 2020). Based on existing certified defenses, we design the knowledge-enhanced certifiably
robust machine learning pipeline and certify it with standard certification.
3 CARD PIPELINE

In this section, we will first describe the building blocks of CARD, and then discuss the details of the
training and certification process of CARD, followed by our theoretical analysis for CARD.

Overview of CARD. To effectively integrate domain knowledge into machine learning pipelines,
we propose CARD, which consists of three parts: main predictor, knowledge predictor, and reasoning
component. In particular, the main predictor servers for the main classification task and makes the final
multi-class prediction given an input. The knowledge predictors make predictions for the individual
objects within a knowledge rule based on the same input. For instance, if we want to integrate the
knowledge “persian cat belongs to cat”, we will train two knowledge predictors to predict whether
the input is a persian cat and whether it is a cat, respectively. We then represent the knowledge as
first-order logic rule “persian cat =⇒ cat" via a probabilistic graphical model and obtain the weight
matrix of the model. Finally, we map the weight matrix as a one-layer neural network, which takes
the output of all main and knowledge predictors as inputs and makes the final classification prediction
based on the calculated weighted penalty scores of each knowledge rule. Since this pipeline can
be viewed as a general machine learning classifier composing several neural networks, we are able
to certify its robustness using standard certification approaches (Cohen et al., 2019). In this paper,
we consider different types of domain knowledge such as attributes-based knowledge and category
hierarchy knowledge to improve the certified robustness (details in Section 4).

Note that the CARD pipeline is quite flexible, and its robustness can be certified and compared fairly
with the state-of-the-art robust training algorithms (Salman et al., 2019a; Jeong and Shin, 2020).
As the pure data-driven based machine learning approaches have reached a bottleneck for certified
robustness so far due to the lack of additional information or prior knowledge, we show that the
proposed CARD is able to significantly improve the certified robustness on datasets including the
high-resolution data AwA2 (Xian et al., 2018) and standard Word50 (Chen et al., 2015). In addition,
we will also show both theoretically and empirically that the robustness improvement indeed comes
from the knowledge integration rather than simply adding more prediction models as an ensemble,
which is shown to obtain marginal robustness improvement (Liu et al., 2020; Yang et al., 2021). We
believe such knowledge integration is a promising way to break the current robustness barriers.

3.1 BUILDING THE CARD PIPELINE

We will next introduce each component of CARD, and the intuition for its robustness improvement.

Main and Knowledge Predictors. We first train a main predictor: f0 : Rd → Y0, together with
several knowledge predictors: fi : Rd → Yi where i ∈ {1, 2, . . . , n}. Here Y0 denotes the main
classification prediction and each Yi corresponds to a subtask related to the knowledge. The output
of all predictors would be concatenated into one predictor vector s ∈ [0, 1]m as the input to the
reasoning component r : Rm → Y0 (m =

∑n
j=0 |Yj |). Here we consider two types of knowledge.

• Attribute-based Knowledge: Every class would infer certain attributes, which can be represented
as the knowledge rules. For instance, cat =⇒ has a tail ∧ furry ∧ quadrupedal. To this end,
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Figure 2: An illustration of the built clauses between different random variables.

the knowledge predictors would be trained to recognize each of such attributes, and the reasoning
component would realize their relationships. Note that we can consider one or a subset of attributes.

• Hierarchy Knowledge: In general, different classes have hierarchical relationships with each other
as specified in Deng et al. (2014). For instance, persian cat∨bobcat∨ siamese cat =⇒ cat. Thus, a
knowledge predictor would be trained to classify each object, and the knowledge relationship between
them will be controlled by the reasoning component.
Reasoning Component. Given the predictor vector s from all the predictors, to integrate domain
knowledge, we will use a set of first-order logic rules to define the knowledge clauses, representing
the logic relationship between one or a subset of dimensions of s with prediction set y as shown
in Figure 2. We use si to represent the ith dimension of s, and yj as the jth one hot vector of the
prediction set y = {yj}|Y0|

j=1. To character each logic clause Cl, we compute a penalty score pl, which
measures its inconsistency with prior knowledge rules, and clause importance score wl.
Definition 1. (Clause Score). LetC = (C1, . . . , CL) represents a set of logic clauses, each of which
is defined by the relationship between a subset of dimensions of s and yj ∈ y. We characterize all
the clauses by the penalty score vector p and importance score vectorw. The final clause score is the
element-wise product of the two vectors: u = w · p.
During inference, the prediction yj with the lowest summed clause score (weighted penalty) over all
clauses would be the final output. In other words, the prediction will maximally satisfy the defined
knowledge rules. Concretely, each clause Cl takes the vector z := [s;yj ] as input and outputs
the corresponding penalty score pl. Here we use the Łukasiewicz soft logic (Bach et al., 2017) to
encode the logic rules for better optimization. The range of the truth values of each variable sl is thus
extended from {0, 1} to [0, 1]. Then the Boolean logic operators are reformulated as:

¬a = 1− a,
a & b = max{a+ b− 1, 0},
a ∨ b = min{a+ b, 1},

a1 ∧ · · · ∧ an =
1

n

∑
i

ai,

(1)

The “averaging” operator ∧ is a linear approximation for the conjunction operator & here, and will
be used to replace the operator & following Beltagy et al. (2014); Foulds et al. (2015).

Basically, the truth value of relation “x =⇒ y” could be modeled by logic “¬x ∨ y”. When the
clause “x =⇒ y” is more likely to be true, the value of “¬x ∨ y” would be larger. To efficiently
encode logical clauses into neural networks for better optimization, we propose a new Boolean logic
operator t to measure the degree of inconsistency between the clause and prior knowledge:

a t b = max{1− a− b, 0}. (2)

As we can see, the degree of the inconsistency of “x =⇒ y” can be modeled by logic “¬x t y =
max{1− (1− x)− y, 0} = max{x− y, 0}”, which is actually the prototype of ReLU activation.

Given a random variable t representing the target class and the predictor vector s, we are able to
encode four types of clauses and their inconsistency penalty scores as below:

Type 1: t =⇒ si ∨ sj ∨ ... ∨ sk : ¬t t (si ∨ sj ∨ ... ∨ sk),

Type 2: t =⇒ si ∧ sj ∧ ... ∧ sk : ¬t t (si ∧ sj ∧ ... ∧ sk),

Type 3: si ∨ sj ∨ ... ∨ sk =⇒ t : ¬(si ∨ sj ∨ ... ∨ sk) t t,
Type 4: si ∧ sj ∧ ... ∧ sk =⇒ t : ¬(si ∧ sj ∧ ... ∧ sk) t t,

(3)

where i, j, ..., k ∈ {1, 2, ...,m}, which means each time we would pick a subset of predictors’ outputs
to build the clause. All the random variables above could also take negation, and the clauses like
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t = si built for the main predictor could be decomposed to two clauses t =⇒ si and si =⇒ t with
the same importance score, which would be further discussed in Appendix A.

Example. Take the binary classification in Figure 2 as an example. Assume the ground truth label
is cat. For simplification, here we only build two clauses: cat =⇒ furry, cetacean =⇒ aquatic.
Thus, the penalty score of the first clause is max{1 − 0.95, 0} = 0.05, which is a small penalty,
and that of the second clause is max{0 − 0.14, 0} = 0. If we assume the importance score of all
clauses is 1, the clause score is 0.05. On the other hand, if we assume the target label is cetacean, the
corresponding penalty scores of these two clauses are 0 and 0.86 respectively, and the total clause
score is 0.86. As a result, we would pick the class with the minimal clause score as the final prediction,
namely, cat. It is easy to see that if the adversarial attack aims to manipulate the main predictor to
misrecognize cat as cetacean, as long as some of the knowledge predictors are correct, say the “furry"
knowledge predictor is correct, these logical clauses would help to correct the final prediction.
Theorem 1 (1-NN Reasoning Representation). Given the predictor vector s, the reasoning process
of optimizing the prediction confidence for each class in Y0 based on the clause inconsistency penalty
scores can be formed as the one layer neural networks:

r(s) = arg min
c∈Y0

(
WReLU(AsT +B))

)
, (4)

where W is the matrix related to the importance score w; A and B are the matrices determined by
the overall logic relationships and related to the clause penalty score p.
Proof sketch. We decompose the proof into two parts. First, we show that the calculation of the
allowed types of clauses in Equation (3) could be transformed to some linear functions of z = [s;yj ]
with a ReLU activation, based on which we could get a temporary matrix and one bias vector. Then,
we remove the iterative assignment of yj from z by dividing this temporary matrix into two blocks:
one is related to the multiplication with s, and one is related to the multiplication with yj . Since
all the assignments of the one-hot vectors in y could be concatenated as an identity matrix, the
inconsistency penalty score for each class could be parallelly calculated by matrix multiplication,
resulting in the final A and B shown here. The detailed proof deferred to Appendix A.1. We also
provide an example in Appendix A.2 to illustrate this transformation process.

3.2 TRAINING THE CARD PIPELINE

Training predictors. To certify the robustness of CARD, each predictor is trained separately with
Gaussian noise ε ∼ N (0, σ2) augmentation. To boost the robustness of the knowledge predictors,
they are designed as binary classification, and we use the Binary Cross Entropy(BCE) for training.
In particular, based on the logic relationships, we can see that for attribute-based knowledge, the
true positive rate is more important to correct the final prediction of the main predictor. Thus,
when the predictor is trained for the attribute-based tasks, we would increase the loss weight of
BCE(fi(x+ ε), 1) for the positive input x. Similarly, for hierarchy knowledge rules, the loss weight
of BCE(fi(x+ ε), 0) would be increased for negative input x since the true negative rate for this type
of knowledge is critical. Note that actually there is no need for extensive hyperparameter tuning in
CARD, and in our experiment setting, we just set the increased loss weight to 2 and the rest as 1.
Pseudo-training for Importance scores of logic clauses. After we can calculate the penalty score
of each clause by comparing it with given knowledge rules, we next describe how we train the
reasoning component to obtain the importance score for each clause. Given the predictor vector
s, and the ground truth label ygt, the importance score w, which is encoded into the matrix W
in Equation (4), is learned through minimizing the negative log-likelihood − lnP[r(s) = ygt]. The
importance scores w are initialized with 1 and are trained with Stochastic gradient descent(SGD).
In addition, to make the pipeline general and less influenced by attacks, the training of reasoning
component is independent with that of predictors. We propose the Pseudo-training for the reasoning
component using the sampled outputs of predictors, rather than their true outputs.

Concretely, given the ground truth label ygt, we denote the grounding predictor vector as sg, where
the correct binary values are assigned to each predictor output variable satisfy the true logic rules as
shown in Figure 8 in Appendix B.4. We then sample a set of predictor vectors {st} as training inputs
based on sg: if the the original value is 1, we will sample from the Uniform distribution U(0.5, 1);
otherwise sample from U(0, 0.5). Such Pseudo-training has several advantages: (1) the training
samples will not be affected by adversarial inputs, (2) the sampled training inputs are balanced and
thus avoid biases induced by imbalanced training, (3) such Pseudo-training is very efficient especially
when the input is high-dimensional data which enables CARD on large-scale datasets.
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Owing to the space limit, the detailed Pseudo-codes for the training of predictors and the reasoning
part are deferred to Appendix B.4.

3.3 THEORETICAL ANALYSIS OF CARD

We let f = (f0, f1, ..., fn)T, therefore, given x ∈ Rd, r(f(x)) ∈ Y represents the output of the
CARD pipeline.
Robustness Certification Protocol. We certify the robustness of CARD following the standard
randomized smoothing (Cohen et al., 2019) as follows: with Gaussian noise ε ∼ N (0, σ2)
added to clean input x0, suppose the ground-truth class is y0 ∈ Y , we make prediction as
PA = P (r(f(x+ ε)) = y0). Intuitively, PA is the probability that the CARD returns the cor-
rect prediction under input noise. Then, from (Cohen et al., 2019), the Gaussian smoothed classifier
g(x) := arg maxy∈Y P (r(f(x+ ε)) = y) which can be certified: under no further assumption, if
the correct prediction probability is PA, the certified `2 radius of g at input x is r = σΦ−1(PA), i.e,
for any x′ such that ‖x′ − x‖2 ≤ r, g(x′) = g(x).
Theoretical Analysis. We theoretically compare CARD with a single model (only using the main
predictor) and the commonly-used weighted ensemble (Liu et al., 2020; Yang et al., 2021). We let
benign input be x0 ∈ Rd, ground-truth label be y0 ∈ Y0, and ε be the added noise sampled from a
general noise distribution (not necessarily Gaussian). We make the following assumptions.
Assumption 3.1 (Main Predictor). The main predictor f0’s correct prediction probability under ε is
p: Pε(f0(x0 + ε) = y0) = p.

Definition 2 (Weighted Ensemble). The weighted ensemble is composed of (n + 1) submodels
{f (i)}n+1

i=1 , where each submodel f (i) : Rd → Y0 is associated with a confidence margin function
h(i) : Rd → Y0. The submodel predicts y0 if and only if the confidence margin function is positive.
The weighted ensemble is defined by static weights w ∈ Rn+1

+ :M : Rd → Y0, where

M(x) = y0 ⇐⇒
n+1∑
i=1

wih
(i) > 0. (5)

Remark. The margin function can be viewed as the margin of the submodel’s logit layer confidence
between the true class y0 and the runner-up class y1, i.e., f (i)(x) = F (i)(x)y0

− F (i)(x)y1
where

y1 = arg maxy 6=y0
F (i)(x)y and F (i) is the logit layer confidence of f (i). Since the weighted

ensemble typically sums up the logit layer confidence and predicts the class with the highest summed
confidence (Liu et al., 2020), to ensure the correct prediction y0, the sum of margin needs to be
positive, i.e., Equation (5).
Assumption 3.2 (Weighted Ensemble). Each submodel’s correct prediction probability under ε is p:

∀i ∈ {1, 2, . . . , n+ 1},Pε(f (i)(x0 + ε) = y0) = Pε(h(i)(x0 + ε) > 0) = p. (6)

We assume each h(i) follows the same Gaussian distribution:

h(i)(x0 + ε) ∼ N (µ, σ2). (7)

To model the high transferability across submodels (Tramèr et al., 2017), for any i 6= j, we assume
the Pearson correlation coefficient between h(i)(x0 + ε) and h(j)(x0 + ε) is a positive number ρ,
and all {h(i)(x0 + ε)}n+1

i=1 follow multivariate Gaussian distribution:

pij = ρ ∈ (0, 1). (8)
In general, pij is relatively high as observed in (Papernot et al., 2016).
Assumption 3.3 (CARD). We assume that under input noise, each of the n knowledge predictors
has q > 1/2 correct prediction probability on its own true label:

∀i ∈ {1, 2, . . . , n},Pε(fi(x0 + ε) = yi) = q. (9)

The CARD predicts correctly if and only if the main predictor is correct or more than half of the
knowledge predictors are correct:

r(f(x0 + ε)) = y0 ⇐⇒ f0(x0 + ε) = y0 ∨ |{fi : fi(x0 + ε) = yi, 1 ≤ i ≤ n}| ≥ n/2. (10)

Since different tasks are given to different predictors, the correlation between different predictors is
low. Thus, we assume that the events of correct predictions are mutually independent:

pi := I[fi(x0 + ε) = yi], {pi}ni=0 are mutually independent. (11)

6



Under review as a conference paper at ICLR 2022

Remark. Among the above assumptions, for fairness comparison, we let the correct prediction
probability of the main predictor to be always p. For weighted ensemble, the correlation between
submodel predictions is high. For CARD, the correlation between predictors is generally low (except
for certain blocks which are logically correlated). The intuition behind the robustness of CARD is that
given strong logic rules encoded by CARD, some incorrect predictors can be efficiently corrected.
Theorem 2. Under Assumptions 3.1 to 3.3,

Pε(M(x0 + ε) = y0) ≤ Φ
(√

ρ−1Φ−1(p)
)
, (12)

Pε(r(f(x0 + ε)) = y0) ≥ 1− (1− p) exp
(
−2n (q − 1/2)2

)
, (13)

where Φ is the Gaussian CDF. In particular,

Pε(M(x0 + ε) = y0) > p, Pε(r(f(x0 + ε)) = y0) > p. (14)

We prove the theorem in Appendix A.3. The proof is based on an affine projection of multivariable
normal distribution and Hoeffeding’s inequality.
Remark. Recall that the main predictor has correct prediction probability p. Thus, we find that:
1. Both weighted ensemble and CARD are more robsut than the single model.
2. Along with the increase of the number of models, the correct prediction probability of weighted

ensemble cannot approach 1, while our CARD can approach a correct prediction probability of 1
with a sufficiently large number of predictors, i.e., when n is large, CARD’s correct prediction
probability is always higher than the weighted ensemble. This exactly matches our empirical
findings in Section 4.4.

In addition, when ε ∼ N (0, σ2), as mentioned above, if the correct prediction probability is PA,
the certified `2 radius of the smoothed single model/ensemble/CARD at input x0 is r = σΦ−1(PA).
Since r monotonically increases with P , the above findings about the correct prediction probability
directly transfers to the certified `2 radii. Note that if Assumptions 3.1 to 3.3 do not hold, since we
compute the robustness certification following (Cohen et al., 2019), the certification is still valid.

4 EXPERIMENTAL EVALUATION

In this section, we would demonstrate experimental evaluation of CARD on high-resolution dataset
Animals with Attributes(AwA2) and Word50. As we can see, with the knowledge integration, CARD
achieves significantly higher certified robustness than the state-of-the-art baselines. We also provide
some interesting understandings and conclusions of different knowledge.

4.1 EXPERIMENTAL SETUP

We conduct experiments on AwA2 and Word 50 datasets. We defer more details to appendix B.1.
The model architectures chosen for all the predictors in dataset AwA2 is ResNet-50 (He et al., 2016);
for dataset Word50, we follow the similar setting in Chen et al. (2015), and choose multi-layer
perceptrons (MLPs) with rectified linear units (ReLU) as the predictors. All the experiments are run
on four NVIDIA 2080 Ti GPUs.

Evaluation Metric. Following Cohen et al. (2019), we would report the certified accuracy for CARD
and other pipelines under Gaussian noise with different varianceσ and under different `2 radius R.

Baselines. We consider four state-of-the-art certifiably robust baselines: (1) Gaussian smoothing (Co-
hen et al., 2019) trains smoothed classifiers by directly adding the Gaussian noise during training; (2)
SmoothAdv (Salman et al., 2019a) employs adversarial training to improve the certified robustness
based on the Gaussian smoothing; (3) Consistency (Jeong and Shin, 2020) adds a consistency reg-
ularization term to the standard Gaussian smooth training; (4) SWEEN (Liu et al., 2020) employs
weighted ensemble to improve the certified accuracy.

4.2 EXPERIMENTAL RESULTS ON AWA2

Logic Relationships. For the hierarchy logic rules, similar to Deng et al. (2014), we utilize Word-
Net (Miller, 1995) to build a hierarchy tree by iteratively searching the inherited hypernyms of the 50
leaf classes. We perform the main classification task on the 28 internal nodes to integrate knowledge
relationships with both their child and parent nodes. We train 50 knowledge predictors to classify
each leaf node as a binary classification, and build the logical clauses like blue whale =⇒ cetacean
and cetacean =⇒ aquatic on both directions.

7
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For attribute-based logic rules, we train 85 knowledge predictors for classifying each attribute
annotated in AwA2 as a binary classification with logic clauses such as blue whale =⇒ live in ocean.
Training details in appendix B.4.

Certification Results. The certification results of CARD and baselines are shown in Figure 3 (row
1). To demonstrate the flexibility of CARD, we train the main predictor with different baselines
denoted as CARD-x, where “x" represents the training algorithm. All the knowledge predictors
are still trained with the standard Gaussian Smoothing (Cohen et al., 2019) for simplicity. As we
can see, CARD performs quite stable with different training algorithms for the main predictor, and
CARD significantly improves the certified accuracy under different perturbation radii with different
smoothing levels. The number of base models used in SWEEN ensemble is 20 here.

4.3 EXPERIMENTAL RESULTS ON WORD50

Logic Relationships. We perform both word-level and character-level classifications as the main
prediction task on Word50. For the word-level classification, we aim to classify the word of the
input images, and each image consists of 5 characters. The main predictor is trained to classify
the 50 words, and we train 5 knowledge predictors to classify the character for each position. We
denote Pos(i,x) as the random variable representing the confidence of predicting the character at ith
position of the input image as character “x”. Since we find that in this dataset, the identification
of the characters on three positions is enough to determine the whole word, we build logic clauses
like Pos(1,s) ∧ Pos(3,a) ∧ Pos(4,c) =⇒ "Snack" as the “hierarchy” knowledge direction, and
clauses like "Snack" =⇒ Pos(2,n)∧Pos(5,k) as the “attribute-based” knowledge direction as shown
in Appendix B.3. In total, we build the clauses for any three or four characters classified on the
five positions for the “hierarchy” direction and it would result in 15 clauses for each word. On
the “attribute-based” direction, we build clauses for any one or two characters classified on the five
positions and it would result in 15 clauses for each word. Then the total number of clauses is 1600,
the detailed construction can be found in Appendix B.3. Finally, for the classification on the character
level, we would first use the clauses defined before to identify the current input word and thus predict
the corresponding character at a specific position. Training details in appendix B.4.

Certification Results. The certified accuracy results on the word-level and character-level classifi-
cation are shown in the second and third row of Figure 3, respectively. Since the size of the input
image is small, the Gaussian noise levels σ ∈ {0.12, 0.25, 0.50}. Similarly, as we can see, CARD
outperforms all other baselines significantly, under different perturbation radii and smoothing noise
levels. All the knowledge predictors used in CARD are trained under Gaussian noise for simplicity.
The number of base models used in SWEEN ensemble is 6, which equals the number of predictors
in CARD.

4.4 ABLATION STUDIES

Utilities of Different Knowledge. Here we aim to explore the utilities of different knowledge in
terms of improving the certified robustness of the whole CARD pipeline. On dataset AwA2, we let
“attrP” represent the clauses built for the positive attributes, e.g. , persian cat =⇒ white, and “attrN”
for the clauses built for the negative attributes, e.g., persian cat =⇒ ¬ aquatic. The hierarchy
clauses “hierP” and “hierN” are defined similarly. Then, clearly the number of clauses defined by
“attrPN” and “hierPN” for each class is 85 and 50 respectively, which represent the clauses for both
the positive and the negative clauses. The number of clauses defined by “attrP” and “hierP” for each
class depends on the number of its attributes and child nodes.

The comparison of certified robustness enabled by different knowledge is shown in Figure 4. The main
predictor of CARD here is trained under Gaussian smoothing. The “main+attrPN+hierPN” represents
the whole logical relations we used for CARD in Section 4.2, and more training details could be
found in Appendix B.3. As we can see, given the same main predictor, the certified robustness is
different by using different types of knowledge. Interestingly, although the number of “hierP” is 50,
which is relatively small, such knowledge is quite effective for improving the certified robustness.
The similar exploration on Word50 could be found in Appendix B.5.
Number of Knowledge Predictors. As shown in our theoretical analysis (Theorem 2), the certified
robustness of CARD would improve with the increase of the number of knowledge predictors. Here
we aim to verify it with experiments. First, we calculate the importance scores of clauses trained
under “CARD-main+attrPN+hierPN”, and for each knowledge predictor, we calculate the averaged
importance score based on the clauses related it. Next, we select the most influential topk knowledge
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Figure 3: Certified accuracy under different perturbation radii on different datasets: AwA2 (Row1), word-level
classification on Word50 (Row2), and character-level classification on Word 50 (Row3).
predictors with the maximal averaged importance scores to build CARD. As shown in Figure 5,
the certified robustness of CARD indeed improves with the increase of k. On the contrary, for the
weighted ensemble, such as SWEEN, when we increase the number of base models in the ensemble
from 3 to 20 the improved certified robustness is marginal as shown in Figure 9 in Appendix B.5,
which again verifies our theoretical analysis in Theorem 2.

In addition, we explore the different strategies to relax the reasoning component by defining and
training the matricesA andB differently. We find that different relaxation strategies would further
improve the certified robustness of CARD and we defer the results and discussion to Appendix B.5.

Figure 4: Certified accuracy of CARD using different knowledge on AwA2.

Figure 5: Certified accuracy of CARD using different number of knowledge predictors on AwA2.

5 CONCLUSIONS

In this work, we propose the first knowledge-enabled certifiably robust machine learning pipeline.
We show both theoretically and empirically that the proposed pipeline CARD achieves high certified
robustness. We expect our framework and findings will inspire interesting future directions on
leveraging domain knowledge to make machine learning models more trustworthy.
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Ethics Statement. In this paper, we prove the first framework of a certifiably robust machine
learning pipeline via knowledge integration. We aim to leverage human knowledge to improve the
trustworthiness of machine learning models, and we do not expect any ethics issues raised by our
work.

In addition, for many ML algorithms, there could be potential bias issues which usually come from
the imbalance of training datasets. In other words, there are limited features or less samples can be
used for minority groups. To reduce such bias and encourage fair learning in practice, instead of
directly training based on pure data, CARD introduces prior domain knowledge and adopts simulated
training so as to sample the balance data for training.

On the other hand, since the proposed framework CARD would leverage existing or crafted domain
knowledge or commonsense knowledge rules if such knowledge rules are biased, it is possible to
induce biased learning outcomes for the learning pipeline. As a result, we need to follow the standard
policies and auditing principles to collect and filter the used knowledge rules for the robust learning
systems. Besides, given that the proposed CARD does not require a complete set of knowledge rules
since a subset of knowledge rules are sufficient to avoid inconsistency (i.e., potential adversarial
behaviors), it is possible to filter the used knowledge rules to ensure that they are not biased and
satisfy existing ethical requirements.

Reproducibility Statement. All theorem statements are substantiated with rigorous proofs in our
Appendix. We have uploaded the source code as the supplementary material for reproducibility
purposes.
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A DETAILED PROOFS

Usually, the clauses built with attribute-based knowledge is Type 1 or Type 2, and the clauses built
with hierarchy knowledge is Type 3 or Type 4. In addition to the knowledge predictor, we still
have one main predictor, and the clauses built for it would be the form of m = t where m is the
one dimension random variable in the confidence vector output from the main predictor and t is
the discrete random variable representing the corresponding class. We will decompose this logical
representation into two clauses: m =⇒ t and t =⇒ m, and force them share the same importance
score w. So the main predictor would thus contribute 2|Y0| clauses totally. This new representation
is actually equivalent to the original logical expression m = t for inference. One specific example is
provided in Appendix A.2.

A.1 1-NN REASONING REPRESENTATION PROOF

Proof of Theorem 1. Since the clauses built for the main predictor could be reduced to a special
case of the Type 1 and Type 3 clauses, then here we first show that the calculation of the weighted
penalty score of these four types clauses shown on Equation (3) could be represented as the form of
an importance score times a linear function of the elements of the vector z = [s;yj ] with a ReLU
activation. Assume the discrete one dimension random variable t represents a specific target class and
yj is the one-hot label vector. Denote the number of picked subset si, sj , ..., sk as n and the number
of total clauses as L.

Type 1 and 3 clause: si ∨ sj ∨ ... ∨ sk = min{si + sj + ... + sk, 1}, notice t ∈ {0, 1}, so
¬tt(si∨sj∨ ...∨sk) = max{t−min{(si+sj + ...+sk), 1}, 0} = max{t−(si+sj + ...+sk), 0}.
And it is similar for ¬(si ∨ sj ∨ ... ∨ sk) t t = max{min{(si + sj + ... + sk), 1} − t, 0} =
max{(si + sj + ...+ sk)− t, 0}.
Type 2 and 4 clause: ¬t t (s1 ∧ s2 ∧ ... ∧ sn) = max{t − (si + sj + ... + sk)/n, 0} and ¬(s1 ∧
s2 ∧ ... ∧ sn) t t = max{(si + sj + ...+ sk)/n− t, 0}.
Although we use the operator ∧ as the linear approximation of the conjunction operator & in Type 2
and 4 clause, the conclusion still holds if we replace the ∧ back to &:

First, it is easy to extend the binary calculation of si & sj = max{si + sj − 1, 0} to the multiple one
si & sj & ...&sk = max{(si + sj + ... + sk) − (n − 1), 0}. Denote the importance score for this
clause as w, then the weighted penalty score of ¬t t (si & sj & ...& sk) is wmax{t −max{(si +
sj + ...+ sk)− (n− 1), 0}}. Next, we would break down this calculation into two parts with the
same importance vector: wmax{t− (si + sj + ...+ sk) + (n− 1), 0} and −wmax{(n− 1)− (si +
sj + ... + sk), 0}. It is quick to verify that the sum of these two parts is equal to the original one.
This trick also applies to the case ¬(si & sj & ...& sk) t t.
Notice the discrete random variable t which represents a target class here is just one dimension of the
one-hot vector yj . Then as we could see, the original calculation of the clause score for this class
could be represented aswmax{GzT + β,0}, wherew is the importance scores with L dimensions,
G is the coefficient matrix with shape L× (m+ |Y0|) and the value of its element gi,j is determined
by the coefficient of the element zj appeared in the ith clause, β is the corresponding bias vector
whose non-zero elements are from the clauses related to the operator &. Notice, if the element zj is
not picked in the ith clause, then gij is 0. Most of the time, each clause would only build the logical
relation among small part of the random variables of the z = [s;yj ], so the G is quite sparse in
practice.

So the left problem now is just to remove the latent yj in z, and thus instead of iteratively assigning
the yj from (1, 0, ..., 0) to (0, 0, ..., 1) to get the clause score for each class, we could get a clearer
expression for better optimization. The idea is also quite intuitive, just blocking the matrixG first:

Gz + β = ( C E )

(
sT

yT
j

)
+ β = CsT +EyT

j + β, (15)

where the shape of C is L×m and the shape of E is L× |Y0|.
Now we want to remove the yj here, and we could do all the assignments of it at one time by

using matrix multiplication. Denote W as diag(
|Y0| times︷ ︸︸ ︷

w,w, · · · ,w) and A as diag(

|Y0| times︷ ︸︸ ︷
C,C, · · · ,C) ×
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|Y0| times︷ ︸︸ ︷
( I I · · · I ) T , where I is the identity matrix with shape m×m. Further define the matrixB
as a column vector with |Y0| dimensions, where Bi×L:(i+1)×L = β + the (i+ 1) th column of E,
∀i ∈ {0, . . . , |Y0| − 1}. ThenW max{AsT +B,0} would directly return the column vector with
|Y0| dimensions and each dimension represents the corresponding clause score for this class. In
practice, the multiplication would be implemented parallelly.

A.2 EXAMPLE.

Consider the illustration in Figure 2, and denote the sensing vector s as [m1,m2, a1, a2, h1, h2],
where each random variable represents the confidence of the corresponding object in Figure. Further,
we denote the assignment of the target label cat as t1 and the Cetacean as t2. As mentioned before,
the clause mi = ti built for the main predictor would be decomposed to two clauses mi =⇒ ti and
ti =⇒ mi with the same importance score. Then we introduce eight simple clauses for example as
follows:

w1 : (1) t1 =⇒ m1 : ¬t1 tm1 = max(t1 −m1, 0)
w1 : (2) m1 =⇒ t1 : ¬m1 t t1 = max(m1 − t1, 0)
w2 : (3) t2 =⇒ m2 : ¬t2 tm2 = max(t2 −m2, 0)
w2 : (4) m2 =⇒ t2 : ¬m2 t t2 = max(m2 − t2, 0)
w3 : (5) t1 =⇒ a1 : ¬t1 t a1 = max(t1 − a1, 0)
w4 : (6) t2 =⇒ a2 : ¬t2 t a2 = max(t2 − a2, 0)
w5 : (7) h1 =⇒ t1 : ¬h1 t t1 = max(h1 − t1, 0)
w6 : (8) h2 =⇒ t2 : ¬h2 t t2 = max(h2 − t2, 0)

(16)

Denote

w = (w1, w1, w2, w2, w3, w4, w5, w6),G =



−1 0 0 0 0 0 1 0
1 0 0 0 0 0 −1 0
0 −1 0 0 0 0 0 1
0 1 0 0 0 0 0 −1
0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1


. (17)

Now define z := [s; t1; t2], then w ·max(GzT ,0) just represents the clause score when given the
target one-hot label vector [t1; t2]. Further denote I as the identity function with shape 6× 6,A as
diag(G[: 6], G[: 6])× [I, I]T where G[: i] means the first i columns ofG,W as diag(w,w). Since
there is no bias constant in this simple example, i.e., the bias vector β brought from Equation (16) is a
null column vector. Then the matrixB here is simply the concatenation of the last two columns vectors
ofG with shape 16× 1. The final corresponding reasoning model is just the matrix multiplication
form:

r(s) = arg min{W max(AsT +B,0)} (18)

A.3 PROOF IN THEORETICAL ANALYSIS OF CARD

Proof of Theorem 2. We prove these equations sequentially.

(I)

First, combining Equation (6) and Equation (7) we have

Φ
(
−µ
σ

)
= 1− p =⇒ p = 1− Φ

(
−µ
σ

)
= Φ

(µ
σ

)
.

To simplify the notation, we use random variable hi to represent h(i)(x0 + ε) when ε is sampled from
the noise distribution, and h ∈ Rn+1 is the random vector that concatenates each hi(1 ≤ i ≤ n+ 1)
together. According to Assumption 3.2,

h ∼ N (µ,Σ),

where µ = (µ, µ, · · · )T ∈ Rn+1 and Σ = σ2ρ11T +σ2(1−ρ)In+1, where 1 = (1, 1, · · · )T ∈ Rn+1

and In+1 is an (n + 1) × (n + 1) identity matrix. Now we can infer the distribution of random
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variable

s :=

n∑
i=1

wihi = wTh.

According to the affine transformation rule of multivariate Gaussian distribution, s follows Gaussian
distribution N (µs, σ

2
s) where

µs = wTµ = µ‖w‖1,

σ2
s = wTΣw =

n+1∑
i=1

n+1∑
j=1

wiwjΣij =

n+1∑
i=1

n+1∑
j=1

wiwjσ
2ρ+

n+1∑
i=1

w2
i σ

2(1− ρ)

= σ2ρ‖w‖21 + σ2(1− ρ)‖w‖22.
Therefore,

Pε(s ≥ 0) = 1− Φ

(
−µs

σs

)
= Φ

(
µs

σs

)
= Φ

(
µ‖w‖1√

σ2ρ‖w‖21 + σ2(1− ρ)‖w‖22

)
= Φ

(
σΦ−1(p)‖w‖1√

σ2ρ‖w‖21 + σ2(1− ρ)‖w‖22

)

= Φ

(
Φ−1(p)√

ρ+ (1− ρ)‖w‖22/‖w‖21

)
.

(19)

By Definition 2, the correction prediction probability of weighted ensemble is

Pε(M(x0 + ε) = y0) = Pε

(
n+1∑
i=1

wih
(i)(x0 + ε) > 0

)
= Pε(s > 0).

With Equation (19), we get

Pε(M(x0 + ε) = y0) = Φ

(
Φ−1(p)√

ρ+ (1− ρ)‖w‖22/‖w‖21

)
≤ Φ

(√
1

ρ
Φ−1(p)

)
.

This is Equation (12) in theorem statement.

(II)

In CARD, recall that random variable pi = I[fi(x0 +ε) = yi], 0 ≤ i ≤ n (Equation (11)). According
to Assumption 3.3,

Pε(r(f(x0 + ε)) = y0) = 1− Pε

(
p0 = 0 ∨

n∑
i=1

pi < n/2

)

= 1− (1− p) · P

(
n∑

i=1

pi < n/2

)
(by mutual independence)

(∗)
≥ 1− (1− p) · exp

(
−2n

(
q − 1

2

)2
)
, (by Hoeffding’s inequality)

(20)
which is Equation (13) in theorem statement. The (∗) can use the Hoeffding’s inequality since
{pi}ni=1 are 1) mutually independent; 2) bounded by [0, 1]; and 3) have expectation q. It is possible
to further tighten the inequality using the tail bound of binomial distribution.

(III)

Now we prove Equation (14). Recall that in Equation (19),

Pε(s ≥ 0) = Φ

(
Φ−1(p)√

ρ+ (1− ρ)‖w‖22/‖w‖21

)
.
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Since wi > 0 by Definition 2, we know ‖w‖2 < ‖w‖1 and hence√
ρ+ (1− ρ)‖w‖22/‖w‖21 < 1.

Thus,

Pε(M(x0+ε) = y0) = Pε(s ≥ 0) = Φ

(
Φ−1(p)√

ρ+ (1− ρ)‖w‖22/‖w‖21

)
> Φ

(
Φ−1(p)

)
= p. (21)

Meanwhile, for CARD, recall Equation (20):

Pε(r(f(x0 + ε)) = y0) = 1− (1− p) · P

(
n∑

i=1

pi < n/2

)
.

Since E
∑n

i=1 pi = nq > n/2 by Assumption 3.3,

sP

(
n∑

i=1

pi < n/2

)
< 1.

Therefore,
Pε(r(f(x0 + ε)) = y0) > 1− (1− p) = p. (22)

The Equations (21) and (22) are combined to Equation (14) in the theorem statement.

B EXPERIMENT DETAILS

B.1 DATASETS

To integrate different knowledge as first-order logic rules to demonstrate the effectiveness of CARD,
we first conduct experiments with the dataset Animals with Attributes (AwA2) Xian et al. (2018),
which consists of 37322 (resized to 224 × 224) for classification. The whole dataset contains 50
animal classes and provides 85 binary class attributes for each class, e.g., for persian cat, “furry”
is yes and “stripes” is no. In this dataset, some popular classes like horse has 1645 examples but some
less popular classes like mole only has 100 samples. Such data imbalanced phenomenon is common
in practice and it is quite interesting to see if the prior domain knowledge can help to handle it,
given that the number of samples with specific attributes is still sound for us to train a good attribute
knowledge predictor. As a result, it is easy to see the bottleneck of purely training from data or simply
stacking plenty of main models to do ensemble owing to the inability of handling such imbalanced
data. Even at the theoretical level, as shown in Theorem 2, along with the increase of the number of
models, the correct prediction probability of weighted ensemble cannot approach 1, while our CARD
can approach a correct prediction probability of 1. Besides, with more models, the performance of
the ensemble will converge as theoretically proven by Yang et al. (2021).

In addition, we also conduct experiments on Word50 dataset (Chen et al., 2015), which is created
by randomly selecting 50 words and each consisting of five characters. All the character images
are of size 28 × 28 and perturbed by scaling, rotation, and translation. The background of the
characters is blurry by inserting different patches, which makes it a quite challenging task. Sometimes
it is even hard for human to recognize the characters. The interesting property of this dataset is
that the character combination is given (50 known words) as the prior knowledge, which can be
integrated into our CARD. The training, validation, and test sets contain 10, 000, 2, 000 and 2, 000
variations of words styles, respectively. In our experiment, we would certify the robustness on both
word-classification and character-classification levels.

B.2 TRAINING AND CERTIFICATION DETAILS.

Training and Certification Details on AwA2 For the training of the knowledge predictors, in
every training epoch, we would sample half images with the attribute/hierarchy from the training
data and sample half images without it. Therefore, we do not need to use all the training data for the
knowledge predictors, which would save a lot of time compared to the training of the main predictor
and encourage the generalization. The predictor vector s here could be represented as [m;a;h],
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Pos(1,s)∧ Pos(3,a) ∧ Pos(4,c) => “Snack”
“Snack” => Pos(2,n) ∧ Pos(5,k) 

Figure 6: Hierarchy tree of AwA2, and the main
classification task is on the gray node level.

Pos(1,s)∧ Pos(3,a) ∧ Pos(4,c) => “Snack”
“Snack” => Pos(2,n) ∧ Pos(5,k) 

Figure 7: Knowledge and logic rules on Word50.

wherem is the output of the main predictor with 28 dimensions, a is output of the attribute predictors
with 85 dimensions, and h is the output of the hierarchy predictors with 50 dimensions. Notice, for
each image sampled from the leaf node, it is relabeled to its parent node, and the grounding value
of a still depends on its original annotation of the attributes for the training of the importance score
w. During training, we randomly sample 10, 000 simulated data for each class, and the number of
the training epoch is set to 10, the batch size is set to 2048, then the whole training forw could be
finished within 5 minutes. Following the certification algorithm in Cohen et al. (2019) and for saving
the certification time on the total 135 knowledge predictors, all the results were certified with the
N = 10, 000 samples and failure probability α = 0.001. For the baseline SWEEN, we train 20 main
models with standard Gaussian Smoothing to do the weighted ensemble.

Training and Certification Details on Word50. We randomly select 10 images for each word
from the test dataset for certification , and the total number of certified images here is 500. The main
predictor is trained to classify the input word consisted of five characters, and all the knowledge
predictors here are trained to classify the 26 characters. The predictor vector s could be represented
as [m; e1; ...; e5], wherem is the output of the main predictor with 50 dimensions, ei is the output
of the knowledge predictors which is responsible for the classification of the character at the ith
position. The hyperparameters for training the importance score w are the same in AwA2. All the
results were certified with N = 100, 000 samples of smoothing noise.

B.3 BUILT CLAUSES DETAILS.

To construct different logic rules for the target prediction, we focus on the classification on the
internal nodes as shown in Figure 6. The sampled images and example logic clauses on dataset
Word50 can be found at Figure 7. Besides, as mentioned in the Appendix A, each clause for m = t
would be converted into two clauses in our allowed clauses type. So the number of the clauses built
in the “CARD-main+attrPN+hierPN” is 28× 2 + 28× (85 + 50) = 3836, then similarly the number
of clauses built on Word50 would be 50 × 2 + 50 × (15 + 15) = 1600. These two are just the
clauses used in the CARD in Figure 3. For other knowledge, the number of clauses for each class is
dependent on the number of its own positive attributes and the child nodes it has. The number of the
clauses defined by the knowledge “CARD-main+attrP” is 1074, and for “CARD-main+hierP”, it is
106. Then for “CARD-main+attrP+hierP”, the total number is 1124.

B.4 TRAINING AND CERTIFICATION DETAILS.
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Figure 8: The process of sampling the
Pseudo-training dataset {st}, given the
truth label cat.

The training of the predictors and the reasoning part is inde-
pendent, as mentioned in Section 3.2. For the former, the
corresponding training process is shown Algorithm 1, and no-
tice that we expect the attribute predictors to own high TP rates,
and the hierarchy predictors own high TN rates. For the training
of the reasoning part, we adopt pseudo-training for reducing
the imbalance and bias in the actual training dataset as shown
in Algorithm 3 and the illustration of the process of generating
simulated training data for the reasoning part is shown in Fig-
ure 8. The embedding process of the knowledge rules to the
1-NN neural network r is detailed discussed in Appendix A.1,
and an intuitive example is provided at Appendix A.2. The
final prediction process of our whole pipeline during the testing
stage is shown in Algorithm 4.

For AwA2, we randomly sample 80% images from each leaf node as the training data, and pick 10
images for each leaf node from the remaining unsampled images for certification. Following the
standard setting Cohen et al. (2019) we certify 500 images with noise sampling size α = 0.001.
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Algorithm 1 The training process of knowledge predictors for one batch.
Input: Base model f , images x1, x2, ..., xn, binary ground labels y1, y2, ..., yn, noise level σ.

1: Drawn n samples of noise, ε1, ..., εn ∼ N (0, σ2I).
2: Obtain The predictions f(x+ ε1), ..., f(x+ εn).
3: if the predictor is trained for classifying attribute then
4: for i = 1 to n do
5: if yi == 1 then
6: Loss weight wi of BCE(f(x+ εi), 1)← 2
7: else if yi == 0 then
8: Loss weight wi of BCE(f(x+ εi), 0)← 1
9: end if

10: end for
11: else if the predictor is trained for classifying hierarchy then
12: for i = 1 to n do
13: if yi == 1 then
14: Loss weight wi of BCE(f(x+ εi), 1)← 1
15: else if yi == 0 then
16: Loss weight wi of BCE(f(x+ εi), 0)← 2
17: end if
18: end for
19: end if
20: Final weighted BCE loss l =

∑n
i=1

wi∑n
i=1 wi

.BCE(f(x+ εi), yi).
21: Computes the gradient w.r.t. l and update the parameters of f .

Algorithm 2 Get the grounding predictor vector sg .
Input: Ground label y0 ∈ Y., m attributes, k hierarchies.
Output: The corresponding grounding predictor vector sg .

1: Initialize a zero vector sg with |Y| dimensions.
2: sg[y0]← 1.
3: for i = 1 to m do
4: if the class of label y0 has ith attribute. then
5: sg ← [sg, 1]
6: else
7: sg ← [sg, 0]
8: end if
9: end for

10: for k = 1 to k do
11: if the class of label y0 has jth hierarchy. then
12: sg ← [sg, 1]
13: else
14: sg ← [sg, 0]
15: end if
16: end for
17: return sg

Algorithm 3 The training process of the reasoning part for one batch.
Input: 1-NN reasoning neural network r, uniformly sampled class labels y1, y2, ..., yn ∈ Y , the

corresponding grounding predictor vector sg1 , sg2 , ..., sgn got from Algorithm 2.
1: Initialize predictor zero vectors sti , i ∈ {1, 2, ..., n} with the same dimension of sgi .
2: for i = 1 to n do
3: sti [sgi == 0] = Uniform(0, 0.5)
4: sti [sgi == 1] = Uniform(0.5, 1)
5: end for
6: Obtain the penalty scores r(st1), ..., r(stn).
7: Final loss l =

∑n
i=1 CrossEntropy(−r(sti), yi)/n.

8: Computes the gradient w.r.t. l and update the parameters of r.
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Figure 9: Comparison of certified accuracy with SWEEN containing different number of base models on AwA2.

Figure 10: Certified accuracy of CARD under different relaxation of the matrices on AwA2.

During training, we randomly sample 10, 000 Pseudo-training data for each class, and the number of
the training epoch is 10 with batch size. 2048. The whole Pseudo-training process for training the
clause importance weights w can be finished within 5 minutes.

For Word50, We randomly select 10 images for each word from the test dataset for certification , and
the total number of certified images here is 500. The main predictor is trained to classify the input
word consisted of five characters, and all the knowledge predictors here are trained to classify the
26 characters. The predictor vector s could be represented as [m; e1; ...; e5], wherem is the output
of the main predictor with 50 dimensions, ei is the output of the knowledge predictors which is
responsible for the classification of the character at the ith position. The hyperparameters for training
the importance score w are the same in AwA2. All the results were certified with N = 100, 000
samples of smoothing noise.

Algorithm 4 The prediction process of the whole pipeline during testing stage.
Input: Image x, predictors f0, f1, ..., fn, 1-NN reasoning neural network r.
Output: Predicted label.

Initialize the predictor vector s with f0(x).
for i = 1 to n do
s← [s, fi(x)]

end for
Obtain the penalty scores r(s).
return arg min r(s)

B.5 EXTRA ABLATION STUDY.

Number of Knowledge Predictors. The ensemble is a method of gathering a bunch of similar
models and doing a simple weighted sum without inherent logical relations; however, although we
also have a bunch of models, there is some prior domain knowledge. Each model is responsible
for different tasks, and the first-order logical relations between the outputs of different models are
built for more robust prediction. Then one interesting question is With the increase of the number
of the predictors, what is the trend for the certified accuracy? When we gradually increase the
number of base models used in weighted ensemble from 3 to 20, the improved performance shown
in Figure 9 is quite marginal, which means the performance of this ensemble way has converged and
this phenomenon has also been theoretically proven by Yang et al. (2021). However, with the domain
knowledge and logic, such phenomenon is alleviated as shown in Figure 5.

Different knowledge used on Word50. The input image size to the main predictor is 5×28×28 =
3920, and the image input to the knowledge predictor is a single character image, so the corresponding
input size is 28 × 28 = 784. All the predictor models here are trained under standard Gaussian
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Figure 11: Certified accuracy of CARD using different knowledge on Word50 for the word-classification task.

Figure 12: Certified accuracy of CARD using different knowledge on Word50 for the character-classification
task.

Smoothing for simplicity. We use “attrk” to denote the clause whose number of the elements in the
tail is k. For example, “attr2” just means the clauses built like "Snack" =⇒ Pos(1,s) ∧ Pos(3,a).
Similarly, we use “hierk” to denote the clause whose number of the elements in the head is k. So
“hier4” is used to represent the clauses like Pos(1,s) ∧ Pos(2,n) ∧ Pos(3,a) ∧ Pos(4,c) =⇒ "Snack".
The “attr1&2” is used to represent the clauses contains both the “attr1” and “attr2”, the definition of
“hier3&4” could be similarly obtained. Then as we can see, even given the same input predictor vector,
with the different knowledge and the variation of the clauses we use, the final certified accuracy still
could be strongly influenced as shown in Figure 11 and Figure 12, which is strong and compelling
evidence for showing the potential of CARD.

Relaxation of Reasoning Component. Another interesting exploration is about the relaxation
of the matrices shown in the reasoning model r, i.e., the matrices W , A, and B. During our
formal experiment setting, the matrix A,B are constrained and determined by the pre-defined
logic relations. So they are fixed and not trained, however, it is reasonable if we also train them.
Take a simple example, if we denote the confidence variables for persian cat, white and furry as
p, w and f respectively. Then, the penalty score for the clause persian cat =⇒ white ∧ furry is
max(p− w/2− f/2, 0). However, if furry is a more important attribute to distinguish the persian
cat from other animals, then it is reasonable to change the coefficient of w and f to −1/3 and −2/3
respectively, which means the attribute furry would influence the penalty score more. In addition, the
matrixW could also be relaxed and the relaxed matrices are all trained by SGD, the corresponding
results are shown in Figure 4. The “i” in the parentheses means the matrices are initialized by the
given logical relations(“main+attrPN+hierePN”), the “r” means the matrices are initialized randomly.
It shows that sometimes such relaxations may help, but they could not be controlled well owing to
the lack of explicit knowledge and logic encoding. The further design of the optimization of these
matrices is still an open problem and would be explored in the future.
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