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Abstract

For machine learning algorithms to be applicable in human-centric fields such
as healthcare, law-making, or industrial design, it is essential to develop inter-
pretable techniques. It is of utmost importance that the physician/government
lawmaker/factory worker understand why an algorithm gave the answer that it did.
In this paper, we define interpretable policies as being regionwise constant maps.
Previous work has computed the optimal policy which takes actions on a partitioned
state space. Our work is the first that aims to compute the regions as well as derive
the optimal action to take on the partition. We compute upper bounds on the
cost of interpretability as the error in summarizing the final policy by a region-wise
constant map. We see that this is given by the function summarization error for
the final policy. We run experiments to check how our approach performs with the
dimension and size of the state space. We compute the optimal interpretable policy
for different final policies.

1 Introduction

It is no surprise that automation of decisions using artificial intelligence has led to better outcomes for
humanity. To allow for the creation of decision-making agents in critical applications such as health-
care, law-making, or industrial manufacturing the output of an algorithm must be interpretable.
Towards this goal, dynamic decision-making algorithms whose output is interpretable are the need
of the hour.

For humans to understand the output of a dynamic decision-making algorithm, the output of the pol-
icy learning method must be interpretable. Traditional ways of defining interpretability involve tree-
based final policies Zhu et al. (2015), or policies based on lists Zhang et al. (2018). An information-
theoretic way to think of interpretability is to have the final policy be a region-wise constant map.
Here the number of regions present in the policy represents the information stored in the policy.
The accuracy of the final policy increases as the number of regions in the final policy increases.

Computing piecewise constant approximations of functions has been studied in the signal processing
literature and algorithms exist to find the piecewise constant approximator for a given function in 1D
space such as Bergerhoff et al. (2019), Dar & Bruckstein (2019). In our paper, we show that the cost
of interpretability (the difference in the values of the optimal policy and the optimal interpretable
policy) is bounded by a region-wise constant approximation to the optimal final policy. Further
based on the geometry of the splitting procedure, we can derive the approximation to the optimal
interpretable policy.
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Petrik & Luss (2016) compute the optimal interpretable policy for a partitioned state space. They
achieve this by formulating the problem of calculating the optimal value function of a policy as a
Mixed Integer Linear Program for which we get an exact solution when the policies are restricted to
take values on the quotient of the state space. In our excerpt, we show that we can upper bound the
cost of interpretability using regionwise constant maps and we get that this is given by approximating
the final policy using such a map. We now compute the optimal partition using a tree-based splitting
mechanism where we decide the splits based on which split minimizes the total distance from the
median. We can think of it as an L1 version of the CART algorithm from Steinberg (2009).

Our contributions can be summarized as follows:

• We define a notion of interpretability that is given by regionwise constant maps. Further,
we define the cost of interpretability problem as a function of the depth of the optimal
interpretable policy.

• We show that the cost of interpretability can be bounded by the regionwise constant ap-
proximation to the final obtained policy.

• We run experiments to compute the cost of interpretability using a tree-based splitting
mechanism. We check to see how our method performs with noise, dimension, and size.

• We define the cost of interpretability as the difference obtained between the optimal value
function and the optimal interpretable policy. We hope to do future work on this front.

Our paper is organised in the following manner. In Sec. 2 we discuss notions of interpretability
that already occurs in the literature. In Sec. 3 we introduce the setting for the problem and come
up with the formalism for the blocked value iteration method. In Sec. 4 we simplify the derived
upper bounds on the cost of interpretability and show that it is given as a regionwise constant
approximation of the final policy. In Sec. 5 we experimentally look at the behaviour of our method
in custom environments, and see the dependence with dimension, size, and other environmental
parameters. In Sec. 6 we discuss the pros and cons of the method and mention future work to
extend this line of research. In Sec. 7, we conclude the paper and discuss the main insights that can
be drawn.

2 Related Work

In this section, we introduce different notions of interpretability for Markov Decision Processes and
the reinforcement learning problem.

In Grand-Clément (2021) value iteration using backward induction is performed. In this paper,
they compute the optimal tree policy by maximizing the total reward received at every timestep for
the reinforcement learning problem in a greedy fashion. Our approach works by performing value
iteration on the partitioned state space. We compute the cost of interpretability by noticing the
difference in the value functions of each element in the partition with the leader.

In Petrik & Luss (2016) they assume that a partition of the state space is given through an inter-
pretability map from states to a new space which they define to be observations. They obtain policies
on the quotient of the state space by defining interpretable policies to be those deterministic policies
that take the same value on the pre-image of the interpretability map. One can hope to define any
partition of the state space by using such a map, and then use their method to compute the exact
optimal policy. The problem we wish to solve involves computation of the interpretability map. We
can extend the Mixed Integer Linear Program obtained in this to the case where we actually have
to compute the partition of the 1 − D space.

The paper Givan et al. (2003) gives another way to obtain this partitioning of a Markov Decision
Process. In this paper, they define a factored MDP- a Markov Decision Process obtained over
a smaller state space after combining equivalent states. For MDPs with a massive state space,
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this would result in exponentially fewer states and we would be able to use algorithms running in
polynomial time over the state space on this reduced Markov Decision Process. They group together
states to form quotient MDPs. They also come up with approaches to perform model minimization
for MDPs.

In Hein et al. (2018) we perform reinforcement learning on existing trajectory data to obtain policies
which are represented by basic algebraic equations that are restricted to an adequate complexity.
Genetic Programming for Reinforcement Learning approaches work as follows; we find the optimal
policy amongst the set of all possible equations which can be built upto a certain complexity. This
can be thought of as a version of solving the cost of interpretability problem from the introduction
since we are choosing those policies to solve the problem that are below a certain degree of complexity.
Here policies that are represented as simple algebraic equations are preferred.

In Petrik & Luss (2016) they assume a partition of the space is known through an interpretability
map. This maps states to a new space which they define to be the observation space. They obtain
policies on the quotient of the state space by defining interpretable policies to be deterministic maps
that take the same value on the pre-image of the interpretability map. One can hope to define any
partition of the state space by using such a map, and then use their method to compute the exact
optimal policy. The problem we wish to solve involves the computation of the interpretability map.

The article Glanois et al. (2024) is a survey on interpretable reinforcement learning that speaks
about interpretability in different contexts. They start by introducing the notion of interpretable
inputs, where the agent performs symbol extraction to convert a high-dimensional input from the
world into a lower-dimensional perception model. Next, they speak about interpretable transition
models where the probability transitions are made to be interpretable by learning decision trees or
other graphical models to represent the probability transitions. Another area where interpretability
can be introduced is when learning the reward transitions. The ability to understand how the reward
dynamics work in a given environment proves to be useful in learning which actions an agent would
take and at what stage. The last area they speak about, which is related to our line of work is
interpretability in the policies. In this section, they list literature where the agent learns tree-based
interpretable policies either directly while solving for the optimal value function or as a post-doc
method after obtaining an approximation of the optimal interpretable policy. In our paper, we
showed that a way to upper bound the cost of interpretability is by performing an interpretable
approximation of the obtained final policy. We provide theoretical justification to the claim that a
region-wise constant approximation of the policy would help us give upper bounds on the cost of
interpretability.

3 Background

We are given a Markov Decision Process (S, A, P, r) with a finite state space S, action space (can be
finite/infinite) A with a metric d(a, a′) which measures distances between actions, rewards r(s, a),
and uniform transition kernels P (s′|s, a)∀s, s′ ∈ S, a ∈ A. We also assume that the time horizon
T = ∞, and since r and P are independent of time, we aim to compute policies that are uniform
in time. We assume we can do K clusters of the state space, and we wish to find a partition of the
state space S = ⊔K

i=1Si and a policy π, such that π|Si
= ai ∈ A.

An ’interpretable’ policy would be parametrized as [(Si, ai)|i ∈ [K]]. We can also impose restrictions
on how we partition the space, for example in Rd, we might have each Si be a box. The following
method gives a bound on the cost of interpretability. We do this by performing the blocked value
iteration, where we assume a partition of the state space with a chosen leader set. We measure
the discrepancy in the value function of the leader set when compared to the other elements in the
partition and perform the value iteration procedure accordingly on the leaders, whilst copying the
actions to the members of the partition.
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4 Method

In this setting, we want to define an interpretable policy as a piece-wise constant policy that takes
values on a partition of the state space S with the number of clusters k. For this, we need to find
a partition of the state space S = ⊔K

k=1Si and a policy π, such that π|Si
= ai ∈ A is an action. An

interpretable policy would be parameterized as [(Si, ai)|i ∈ [K]] and ⊔K
i=1Si = S and ai ∈ A. We

can also impose restrictions on how we do this partitioning, for example in Rd, we might have that
each Si be a box. The following method gives a bound on the cost of interpretability.

4.1 Lead-and-value-iterate

For every Si, we wish to pick a leader si such that the final policy π obeys whatever the optimal
policy does on s∗

i , i.e π(s) = π∗(si)∀s ∈ Si. If we can compute the optimal policy, then we can
obtain π by

π(s) := π∗(si)∀s ∈ Si (1)
After doing this, we can obtain the cost of interpretability for a given partition P and a set of leader
sets S∗ in the partition. To recall notation, let P := ⊔K

k=1Sk, and S∗ := {s∗
i }K

i=1. Assume we have
a measure ds on our space, and we measure distances using this (we can now get a general version
of an optimization problem for both the multidimensional and single-dimensional cases) We then
define the cost of interpretability for the partition and the leader set as

C(P, S∗) := 1
|S|

∫
S

|Vπ∗(s) − Vπ(s)|ds (2)

This is equal to

= 1
|S|

K∑
i=1

∫
Sk

(Vπ∗(s) − Vπ(s))ds

4.2 Finding the cost of interpretability

Here we expand the expression to find a bound on the cost of interpretability, along the way we
see that we need assumptions on γ, Lipschitz continuity of P , and r in the action space to get the
bound. We then develop discrete algorithms that lessen the value of this bound for different cases
of S and metrics d, namely S is unstructured, a subset of the real line, a subset of n dimensional
space, and d is L1/L2.

By the Bellman equation on π∗ and π, we know that

Vπ∗(s) = r(s, π∗(s)) + γPπ∗(s)Vπ∗(s) (3)

When s ∈ Sk, we have that

Vπ(s) = r(s, π∗(sk)) + γPπ∗(sk)Vπ(s) (4)

Subtracting 3 from 4, we get

(r(s, π∗(s)) − r(s, π∗(sk))) + γ(Pπ∗(s)Vπ∗(s) − Pπ∗(sk)Vπ(s)) (5)

To simplify we make assumptions on the rewards and transitions of the model. Assume that there
exists a metric d, and constant Cr > 0, such that for all actions a, b ∈ A

|r(s, a) − r(s, b)| ≤ Crd(a, b) (6)

The first part in [5] then simplifies as

|r(s, π∗(s)) − r(s, π∗(sk))| ≤ Crd(π∗(s), π∗(sk)) (7)
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The second part is then given by γ|Pπ∗(s)V (s) − Pπ∗(sk)V (s)|. We expand this out by

γ|
∫

S

P (s′|s, π∗(s))Vπ∗(s′)ds′ −
∫

S

P (s′|s, π∗(sk))Vπ∗(s′)ds′+ (8)∫
S

P (s′|s, π∗(sk))Vπ∗(s′)ds′ −
∫

S

P (s′|s, π∗(sk))Vπ(s′)ds′| (9)

The final two terms of 8 can be brought together to yield∫
S

P (s′|s, π∗(s)) − P (s′|s, π∗(sk))Vπ∗(s′) (10)

Here we now bring in smoothness assumptions on the transitions,

|P (s′|s, a) − P (s′|s, b)| ≤ Cpd(π∗(s), π∗(sk)) (11)

And we assume that value functions are uniformly bounded, which does happen when rewards are
bounded and γ < 1

Vπ(s) ≤ Vb (12)

So the inequality in 10 is now

γ

∫
S

P (s′|s, π∗(s)) − P (s′|s, π∗(sk))Vπ∗(s′) ≤ γVbCpd(π∗(s), π∗(sk)) (13)

Bringing together 7 and 13 and taking the summation over the partitions and the integral inside,
we get

(Cr + γVbCp)
∑K

k=1
∫

Sk
d(π∗(s), π∗(sk))ds

|S|
(14)

The first two terms of 8 is given by∫
Sk

γ

|S|

K∑
k=1

∫
S

P (s′|s, π∗(sk))(Vπ∗(s′) − Vπ(s′)ds′) (15)

We can now define an averaged probability density by bringing the summation inside, this yields
the following

P̄P,S∗(s′) := 1
|S|

K∑
k=1

∫
Sk

P (s′|s, π∗(sk))ds (16)

We can see that
∫

S
P̄P,S∗(s′)ds′ = 1 and hence it is a probability measure on the state space S.

Coming back to 16, we see∫
Sk

γ

|S|

K∑
k=1

∫
S

P (s′|s, π∗(sk))(Vπ∗(s′) − Vπ(s′)ds′) ≤ γ

∫
S

P̄P,S∗(s′)(Vπ∗(s′) − Vπ(s′))ds′ (17)

Then we have
γ

∫
S

P̄P,S∗(s′)(Vπ∗(s′) − Vπ(s′))ds′ ≤ γ|S|C(P, S∗) (18)

This gives us another assumption, namely

γ <
1

|S|
(19)
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After moving [19] to the left, we then get

C(P, S∗) ≤ 1
1 − γ|S|

(Cr + γVbCp)
∑K

k=1
∫

Sk
d(π∗(s), π∗(sk))ds

|S|
(20)

We only have to bound
∑K

k=1

∫
Sk

d(π∗(s),π∗(s∗
k))ds

|S| , and we need to do the following optimization

argminP,S∗

∑K
k=1

∫
Sk

d(π∗(s), π∗(sk))ds

|S|
(21)

Theorem 1 We can obtain an upper bound on the cost of interpretability C(P, S∗) for regionwise
constant policies by solving the partition problem given by:

C(P, S∗) ≤ 1
1 − γ|S|

(Cr + γVbCp)
∑K

k=1
∫

Sk
d(π∗(s), π∗(sk)ds

|S|
(22)

For doing so, we look at particular cases of d and different connectivity structures in how we can
group the Sis. In the first case, assume d(a, b) = ||a − b||2, and assume a free unstructured finite
state space, i.e we can group any set of elements. Then the discrete optimization problem returns

K∑
k=1

∑
s∈Sk

||π∗(s) − π∗(s∗
k)|| (23)

And we need to find S = ⊔K
k=1Sk and S∗ ⊂ S to minimize [23].

Finding the result to the bound [23] can be thought of as computing the regionwise constant ap-
proximation to the final policy. The goal here would be to perform the partitioning so that we can
compute the regions Si and the leader elements s∗

i . Future work can be done on how to bound 22
where we simplify the bounds obtained for different state spaces and conditions for performing the
partitioning.

5 Computational Experiments

The goal of our computational experiments is to visually examine the optimal interpretable policy
obtained and analyze it’s behaviour with different environmental constraints such as the dimension
and the state of the space. In this analysis we wish to demonstrate the performance of blocked value
iteration with the dimension and size of the state space.

Our experimental setups work as follows: we define environments or use existing reinforcement
learning environments for which we have access to a (noisy) version of the final policy π∗. To the
final optimization problem obtained in Equation. 23, we perform tree-based splits to obtain a region-
wise constant map. We look at the performance of these methods in three different environments.

5.1 Experimental Setup

In this subsection we list the different environmental setups in which we wish to deploy our algo-
rithms. Initially we start with the two dimensional grid environment for which we assume that to
know the true oracle policy which is affected with noise. Here we compute the optimal splits and
the actions to take by using a grid-based partitioning.

5.1.1 Two Grid Environment

In the two dimensional grid setup (Figure 1) we have a state space S to be given by a 10 × 10-
2D grid. The state space also has obstacles (O) and goals (G) that are denoted by a square and



RLJ | RLC 2024

(a) Splits obtained for the 2 dimensional space; arrows
represent the actions chosen by the oracle, the colored
regions represent the region-wise constant approxima-
tions. The goals ’x’ are placed at (1, 1), (3, 4), and
(6, 7). The obstacles denoted by a square are placed
at (2, 0), (3, 1), and (2, 3) (b) Plot of the decision tree

Figure 1: Decision tree and it’s graphical illustration for the two dimensional grid environment

an x respectively. The actions are given by up, down, left, and right. The transition matrix is
deterministic and we perform transitions as determined by the actions. A transition cannot occur if
an obstacle is on the path towards making the transition. The objective of the agent is to reach one
of the multiple goals placed at the different locations. When we reach the optimal goal we obtain a
reward r(s, a) = 1 if s ∈ G. As in the setup, we assume an infinite horizon Markov Decision Process.
To check the robustness of our method, in the final oracle policy, we also add random noise of 0.2.
The agent decides to move with the prescribed action with a probability of 0.8, else the agent decides
to take a random action with a probability of 0.2. For different values of k, we wish to find the
optimal splits of the space S = ⊔K

i=1Si and the optimal actions to take ai ∈ A for i ∈ [K] such that
we obtain the maximal reward.

5.2 Results

In Figure 1 we are given a grid of values with values ranging on the x-axis and y-axis from 0 to 10.
We plot the individual actions taken by the oracle at all the states in the box from 0 to 10 in the x
and y axes. We can attribute the presence of noisy actions in the plot to the case when we perform
an action that is not the optimal one, which happens 20% of the time. We place 3 goals at points
[(1, 1), (3, 4), (6, 7)] and we place 3 obstacles are placed at [(2, 0), (3, 1), (2, 3)]. We can see in Figure
1 that the splits are regionwise constant approximations to the final policy and this is captured even
in the presence of noise in the sampling of the final action.

For different lengths over the state space two dimensional grid state space we compute the total
error vs depth in Figure 2a. We can see how the errors drop with increase in depth and decrease
in size. In this plot and Figure 2 to counter for the randomness within the experimental setup, we
sample the same point in the graph 10 times, and we plot the mean of the sampled points. The
variance is plotted as an error bar where we look at the distance of the sampled points from the
mean. We observe the large variance of the observed plot with size, which implies that with the
different sizes, the error graphs do not decrease or increase.

In the next set of experiments, we assume a functional form for the final policy with a varying
dimension. The goal of this technique is to measure how the methods perform with environmental
parameters such as the dimension and size of the plots. To this function, we perform the tree based
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(a) Error vs depth for different lengths of the 2D grid
state space

Figure 2: Error versus depth for different dimensions and L1 norm.

splitting to divide the regions of the plot into the regions where we follow different actions obtained
in the plot. To account for randomness within the experimental setup, we sample the graph a total
of 10 times and plot the mean and error bars as the variance for the sampling. The functional form
we assume for the policy is given by:

f(x, λ) = exp(λ
∑d

i=1 xi)
1 + exp(λ

∑d
i=1 xi)

(24)

In Figure 2 we look at the error obtained in the tree based splitting procedure for different norms and
depths and look at it’s dependence on dimension. We also look at the behaviour of the splitting based
mechanism of the final policy. We observe that the error decreases with an increase in dimension
which aligns with our intuition of what should occur.

6 Discussion

Our work demonstrates that when we define interpretability to be given by region-wise constant
maps, we can derive bounds on the cost of interpretability. The main insight of the method is
that we can bound the cost of interpretability as a region-wise constant approximation on the final
policy. Experimentally we also observe how it grows with the size and dimension of the state space.
Possible limitations of this technique include the solving of the optimization problem 23. We solve
this problem using a tree-based splitting mechanism which was informed according to intuition
on how splitting worked for the CART algorithm Steinberg (2009). Further, we can improve the
theoretical bounds by designing different techniques to optimize for 23. Also, we have not addressed
how we would solve 23 on different state spaces and connectivity assumptions. For example, one
could assume our state space is a space in Rd and we can split the space into polygonal regions instead
of splits. Another limitation of the proposed technique is also that interpretability is obtained after
obtaining the final policy, this could potentially lead to two sources of error in the accuracy estimation
problem which are an approximation of the final policy and a piece-wise constant approximation of
it. We must work on this further to get interpretability and accuracy in one shot.

In this paper, we worked with a specific definition of interpretability - region-wise constant maps.
In future work we wish to generalize this notion to different definitions of what it means to be
interpretable. We define the cost of interpretability problem as one in which we compute the
optimal policy over a policy subspace and we come up with algorithms to compute upper bounds
on the cost of interpretability. The ideas we have in mind are list based policies, trees, vector-
field policies where the state space is a manifold, and Gaussian vector fields where our notion of
interpretability is the given by the variance which is the sum of the Eigenvalues of the covariance
matrix. This work would build upon similar work by Bertsimas et al. (2019) where interpretability
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is defined for paths and models that occur during the course of development of a machine learning
algorithm. Borrowing ideas from Saghafian (2023), we also wish to extend this line of work in the
presence of model ambiguity i.e when we have a cloud of models and use the MEU-α metric to
evaluate our approach.

7 Conclusion

In this paper, we came up with a notion of interpretability for a Markov Decision Process. We
assumed a general definition of region-wise constant maps which could potentially give us flexibility
as to how we choose the regions or do the partitioning of the space. We then use a blocked value
iteration approach in the presence of a leader set to derive bounds on the cost of interpretability. We
do this by performing value iteration on the leaders and under the assumption that every element
of the subset follows the action proposed by the leaders. This gives us region-wise constant maps
where we obtain policies that take the same action on every element of the partition. Further, we
show that we can bound the cost of interpretability as the region-wise constant approximation on
the final policy in 23. This leads us to design tree-based splits to perform the optimization which
ensures we get a tree-based policy. By assuming we know noisy versions of the final policy for custom
environments we show how the error in optimization scales with dimension and size of the problem.
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