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Figure 1: (top) (a) The mean attention map across all heads and layers of a GPT2-Medium model—the first to-
ken strangely dominates attention (boxed in red). (b) The mean hidden state across layers of the same model—
outlier activations emerge in specific feature dimensions (boxed in red). The first token position exhibits the
most extreme outlier activations—(circled in red). (bottom) (a) Replacing the canonical softmax function with
our proposed softmax-1 function eliminates the first token dominance. (b) Using our proposed optimiser, Or-
thoAdam, removes outlier activations without any reduction in model performance.

ABSTRACT

We study two strange phenomena in auto-regressive Transformers: (1) the domi-
nance of the first token in attention heads; (2) the occurrence of large outlier acti-
vations in the hidden states. We find that popular large language models, such as
Llama attend maximally to the first token in 98% of attention heads, a behaviour
we attribute to the softmax function. To mitigate this issue, we propose a refor-
mulation of softmax to softmax-1. Furthermore, we identify adaptive optimisers,
e.g. Adam, as the primary contributor to the large outlier activations and intro-
duce OrthoAdam, a novel optimiser that utilises orthogonal matrices to transform
gradients, to address this issue. Finally, not only do our methods prevent these
phenomena from occurring, but additionally, they enable Transformers to sustain
their performance when quantised using basic algorithms, something that standard
methods are unable to do. In summary, our methods reduce the attention propor-
tion on the first token from 65% to 3.3%, the activation kurtosis in the hidden
states from 1657 to 3.1, and perplexity penalty under 4-bit weight quantisation
from 3565 to 0.3. We will publish our code upon acceptance.

1 INTRODUCTION

Transformers have revolutionised machine learning, achieving state-of-the-art performance across
diverse domains, including natural language processing, computer vision and even protein structure
prediction (OpenAI, 2023; Carion et al., 2020; Jumper et al., 2021). However, the inner workings of
auto-regressive Transformers remain enigmatic. Recent studies (Elhage et al., 2022; Olsson et al.,
2022; Bansal et al., 2023) unravelled some of their complexities, yet our research reveals two sur-
prising phenomena remain pervasive:
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1. The strong, consistent dominance of the first token in attention maps—see top of Figure 1a.
2. The presence of outlier activation values, across sequence position, in specific feature channels

of the hidden states (the intermediate features of each layer after the residual connection) that
are orders of magnitude larger than other values—see top of Figure 1b.

We ask: What causes these phenomena? Are they essential to performant models? And, if not, how
can we mitigate them?

These two phenomena are aesthetically curious, but also have important practical implications. For
instance, Llama models (Touvron et al., 2023b; Dubey et al., 2024) exhibit the aforementioned first
token dominance of attention, and so requiring complicated attention masking schemes to extend
Llama models to tasks with long sequences (Xiao et al., 2024) i.e. increase the maximum context
length used during training. This is particularly crucial for instruction-tuned models where long
conversations are desirable (Wei et al., 2022; Ouyang et al., 2022). Similarly, the presence of outlier
activations leads to challenges in quantising large language models (LLMs). Large outlier activa-
tions increase the required quantisation range (to capture the outliers), resulting in low effective bits
for the non-outlier activations, causing severe performance degradation post-quantisation. To ad-
dress this issue, prior work has proposed mixed-precision decomposition of LLMs (Dettmers et al.,
2022) or complex scaling of the weights and activations which must be learnt for each model (Xiao
et al., 2023). Therefore, our additional motivation is to understand and mitigate these phenomena in
a general manner, such that these issues are resolved during training.

We begin by examining the attention mechanism, and surprisingly find, across numerous input se-
quences, query tokens attend most to the first key token up to 98% of the time. This is striking
considering the limited semantic information the first token typically contains—it is often a special
token indicating the start of a sequence, such as <bos>. We explore explanations for this, ruling
out positional encodings, non-linearity choice, or feature normalisation. Ultimately, we identify
the softmax function used in the attention mechanism combined with causal masking as the root
cause—excessive attention on the first key token demonstrates an attention head effectively doing
nothing (Bondarenko et al., 2023; Clark et al., 2019). The first token is privileged due to causal
masking; it is the only key token to which all query tokens can attend. We propose a straight-
forward adjustment to softmax as a solution, softmax-1, which removes first token dominance in
attention (bottom of Figure 1a).

Model #Parameters PPL
FP16 4-bit Quant

GPT2-Small 137M 37.8 4456.1
GPT2-Medium 350M 28.8 2435.3
GPT2-Large 812M 25.2 571.0
GPT2-XL 1.6B 23.2 7981.8

Llama2-7B 6.7B 7.7 191477.5
Llama3.1-8B 8B 10.2 2087638.0

GPT2 (Ours) 350M 16.3 17.1
GPT2 (Ours) 1.4B 13.3 13.6

Table 1: Due to surprising phenomena in
Transformer models, basic zeropoint 4-bit
weight quantisation leads to catastrophic
performance degradation. Our models
trained with softmax-1 and OrthoAdam ex-
hibit improved robustness to quantisation.

Despite removing first token dominance in attention, us-
ing softmax-1, we find that the problem of outlier acti-
vations in the hidden states persists. Once again, we in-
vestigate potential causes of this issue and discover the
outliers are primarily caused by the use of adaptive op-
timisers, e.g. Adam (Kingma & Ba, 2015). Specifically,
our experiments show the exponential decaying averages
of first and second moments of gradients result in outlier
activations. To tackle this, we propose a novel optimiser,
OrthoAdam, which transforms computed gradients using
orthogonal matrices, thus storing gradients in an alterna-
tive basis to the model parameters. Our results demon-
strate this optimiser eliminates the outliers in the hidden
states of Transformers (bottom of Figure 1b).

Our research extends beyond aesthetic curiosities. While LLMs perform well despite first token
dominance and outlier activations, they lead to practical challenges. Although advanced schemes
have been developed to enable quantised LLMs to maintain their performance, we show our ap-
proach enables LLMs to maintain their performance with the most basic quantisation methods, such
as per-tensor 8-bit absmax weight/activation quantisation and 4-bit zeropoint weight quantisation.
Thus, while our investigation began to better understand Transformers, our methods offer additional
practical benefits.

In summary, our contributions are as follows:

• We identify the dominance of the first token in attention and the occurrence of outliers in the
activations of the hidden states as significant issues in auto-regressive Transformers.
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• We propose two simple, effective solutions: a reformulation of the softmax function, softmax-1,
to address the former issue, and a novel optimiser, OrthoAdam, to tackle the latter. Our methods
reduce first token attention from 65% to 3.3% and activation kurtosis from 1657 to 3.1.

• We demonstrate that these proposals not only resolve the identified problems but also lead to
practical improvements in the performance of Transformers under 8-bit weight/activation and
4-bit weight quantisation. Our method reduces the perplexity penalty under 4-bit weight quanti-
sation from 3565 to 0.3.

2 PROBLEM DEFINITION

This work investigates the two most prominent and strange phenomena of auto-regressive Trans-
former models: (1) strong, consistent dominance of the first token in the attention maps; (2) strong,
consistent outlier activations in specific feature channels of the hidden states (the intermediate fea-
tures computed immediately after the residual connections)—see top of Figure 1. We aim to under-
stand the cause of these phenomena and to propose individual solutions for each of them. They have
been investigated or commented on previously (Bondarenko et al., 2023; Dettmers et al., 2022; Xiao
et al., 2023), but our work reaches different conclusions on the causes and suggests novel solutions.
We start by describing these two anomalies in detail.

2.1 FIRST TOKEN DOMINANCE IN ATTENTION MAPS

The top of Figure 1a shows the attention map, averaged across all layers and heads, of a Transformer
model, specifically a pretrained GPT2-Medium model (Radford et al., 2019), for a single real natural
language sequence. Strangely, in this average attention map the key corresponding to the first token
receives the highest attention across all queries. Quantitatively, we find the first key token is the most
attended to key in 76% of (query, head) pairs and receives 52% of all attention, when evaluating on
the en validation split of the C4 dataset (Raffel et al., 2020; Dodge et al., 2021). This behaviour is
consistent across different LLMs, including the Llama series (Touvron et al., 2023b; Dubey et al.,
2024), DeepSeek (Liu et al., 2024), and the GPT2 series (Radford et al., 2019). See Appendix K for
detailed examples of attention maps for these models.

Attention is a key component of the Transformer architecture, and work on the interpretability of
LLMs often focuses on analysing attention (Elhage et al., 2021). Moreover, many models, such as
Llama2, use a special token for the beginning of a sequence (the <bos> token), which is always
the first token in an input sequence. This makes first token dominance particularly puzzling, as such
models should learn the initial input structure easily. We hypothesise that this phenomenon in the
attention mechanism is a symptom of a fundamental problem in the Transformer architecture and is
not necessary for a performant auto-regressive Transformer.

2.2 OUTLIER ACTIVATIONS IN THE HIDDEN STATES

The top of Figure 1b shows the activation magnitude in the hidden states of a pretrained GPT2-
Medium model. We observe the hidden states of the Transformer model exhibit consistent outlier
activations in specific feature channels across all token positions (boxed red), with the most extreme
outliers occurring in the first token position (circled red). Once again, this behaviour is consistent
across different LLMs and is invariant to the input sequence i.e. the same feature channels always
exhibit outlier activations. See Appendix J for examples of hidden states in pretrained models.

From a practical perspective, these outlier activations are problematic with regards to quantising
models for deployment (Lin et al., 2021; Dettmers et al., 2022). However, from a theoretical perspec-
tive, the cause of these outlier activations is not well understood. Previous works, have suggested
these outliers are related to first token domination in attention maps (Xiao et al., 2023; Bondarenko
et al., 2023). This is plausible for the most extreme outliers observed in the first token position, but
it does not explain the outlier activations observed across all token positions. In this work, we show
the two phenomena are unrelated and separate solutions are required to address each.

3
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3 METHOD: FIRST TOKEN DOMINANCE OF ATTENTION MAPS

We start by eliminating plausible causes of the first phenomenon of interest: first token dominance of
attention maps. We mainly consider GPT2 as a representative auto-regressive Transformer, because
of its simplicity, but also consider the more recent Llama2 model to narrow down possible causes
of this phenomenon. For all experiments, unless mentioned otherwise, we use a GPT2 model with
130M parameters, trained on the en split of the C4 dataset.

3.1 ELIMINATING CERTAIN CAUSES OF FIRST TOKEN DOMINANCE OF ATTENTION MAPS

Both GPT2 and Llama exhibit first token dominance in attention maps. Thus, we can rule out parts
of their architecture that are different:

• Positional encoding. Llama models use Rotary Positional Encodings (RoPE) (Su et al., 2024),
while GPT2 models uses learnt absolute positional encodings (Vaswani et al., 2017).

• Initial token. Llama models use a <bos> token to denote the beginning of a sequence, while
GPT2 models do not.

• Activation function. Llama models use SiLU (Elfwing et al., 2018) in the feedforward layers,
while GPT2 models use GeLU (Hendrycks & Gimpel, 2016).

• Feature Normalisation. Llama models use RMSNorm (Zhang & Sennrich, 2019), while GPT2
models use LayerNorm (Ba et al., 2016).

Note that Llama and GPT2 use different positional encoding, but it is possible that any form of
positional encoding might be cause of first token dominance. To test this possibility, we train a
GPT2 model without any positional encodings and observe the attention maps. We find equivalently
trained GPT2 models with/without positional encodings exhibit first token dominance in 33%/20%
of (query, head) pairs and allocate 17%/10% of all attention to the first token. Thus, we conclude that
positional encodings are not the cause of these anomalies. The models mentioned here are trained
for relatively few steps and first token dominance is more pronounced in our longer-trained models
and in publicly available pretrained models.

3.2 REMOVING FIRST TOKEN DOMINANCE OF ATTENTION MAPS

After eliminating the above causes, we have two aspects of Transformers that could cause first token
dominance: (1) causal masking in self-attention; and (2) softmax normalisation in attention heads.

Consider the self-attention mechanism on the initial token in a causal Transformer. The first query
token can only attend to its own key token and therefore it receives an attention score of 1, due
to softmax normalisation. Similarly, the second query can only attend to the first two keys, whose
attention scores must sum to 1. Prior work establishes attention heads specialise to concepts or
concept groups (Bansal et al., 2023; Elhage et al., 2022). However, given a query irrelevant to the
specialisation of an attention head, it must still allocate attention across the keys summing up to 1.
Moreover, causal masking privileges the first key token above all others; it is the only key token to
which all tokens can attend. This explains why the first token specifically dominates attention maps.

Clearly, a particular attention head should be able to attend nowhere if no relevant information is
present. Thus, we modify the softmax function to the following:

softmax-1(xi) =
exp(xi)

1 +
∑L

j=1 exp(xj)
;

L∑

i=1

softmax-1(xi) < 1 (1)

This modification removes the strict enforcement of attention scores summing to 1, allowing the
model to allocate attention as it sees fit, including having low attention scores everywhere. From a
registers/attention sink perspective (Darcet et al., 2024; Xiao et al., 2024), the 1 in the denominator
is equivalent to a register/attention sink key token which has 0 dot product with any query token.

Validating the hypothesis. We train two GPT2 models, one with canonical softmax and
one with softmax-1, keeping all other variables the same. The model trained with canon-
ical softmax attention exhibits first token dominance; the first key token is the most at-
tended to key in 53% of (query, head) pairs. However, the model trained with softmax-
1 lowers this to just 2%. Furthermore, with canonical softmax 46% of all attention is re-
ceived by the first key, while using softmax-1 lowers this to 4%, thereby validating our idea.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0 32 64 96
Key Position

0

32

64

96

Qu
er

y 
Po

sit
io

n

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Relaxing causal mask-
ing leads to attention domination
by a different token

The difference in attention maps between canonical softmax and
softmax-1 is shown in Figure 1a, which compares the attention
maps of two models on the same input sequence. Furthermore, we
find using softmax-1 has no effect on training stability, convergence
or model performance (see Appendix L for the training curves of all
our trained models).

What if causal masking is relaxed? To verify the first token is
privileged by causal masking, causing first token dominance, we
train a GPT2 model with canonical softmax in which causal mask-
ing is removed for the first 10 tokens. (the loss function is appropri-
ately modified). This way, neither of the first 10 tokens can attend
anywhere. Figure 2 shows one of these tokens (this happens with
uniform distribution) still dominates the attention map.

4 METHOD: OUTLIER ACTIVATIONS

To quantitatively establish the extent of outliers in the hidden states, we use kurtosis. Kurtosis, in
this case, is a measure of tail heaviness of a set of activation values. Activations which are normally
distributed have a kurtosis of ∼3, while higher kurtosis indicates a heavier-tailed distribution (e.g. the
exponential distribution) and lower kurtosis indicates a lighter-tailed distribution (e.g. the uniform
distribution). Given hidden states X ∈ RM×L×D of a Transformer model, where M is the number
of layers, L is the number of tokens and D is the number of feature channels, we compute the
per-layer, per-position kurtosis of the hidden states as:

κm,l = Kurtm,l [Xm,l,d] =
Ed[(Xm,l,d − µm,l)

4]

Ed[(Xm,l,d − µm,l)2]2
, where µm,l = Ed[Xm,l,d] (2)

where Xm,l,d is the hidden state at layer m at position l for feature d, and µm,l is the mean hidden
state value at layer m at position l.

4.1 ELIMINATING CERTAIN CAUSES OF OUTLIER ACTIVATIONS

We start by eliminating certain causes which could lead to the presence of outlier activations.

Feedforward Layer Biases. GPT2 uses biases in all feedforward layers, while Llama uses none,
therefore it is unlikely feedforward layer biases cause of outlier activations.

Normalisation Layers. GPT2 uses LayerNorm (Ba et al., 2016) while LLama uses RM-
SNorm (Zhang & Sennrich, 2019), which both learn individual scaling parameters for each feature
channel, potentially causing the outlier activations. To remove such an effect, we replace Layer-
Norm in our trained GPT2 models with an RMSNorm version which applies a single global scale
instead of per-channel scaling, and call it “RMSNormSingle”—similar to “Simple RMSNorm” from
Qin et al. (2023) which has no learned parameters. We find outlier activations persist in the hidden
states of a GPT2 model with RMSNormSingle. In Table 5 we show kurtosis remains high in models
trained without biases and/or with RMSNormSingle.

Optimiser. Most Transformer models are trained with Adam (Kingma & Ba, 2015) or a variant.
These optimisers track the first and second moments of the computed gradients using exponen-
tial moving averages, tracking these moments at a parameter level. The main hyperparameters of
Adam-like optimisers are β1 and β2, which control the decay rates of the first and second moments,
respectively. If β2 = 0, only the first moment of the gradients is tracked, resembling stochastic
gradient descent (SGD) with momentum. Conversely, if β1 = 0, only the second moment of the
gradients is tracked, resembling RMSProp. We suspect that given the optimiser tracks moments in
the same basis as the model parameters, it is the most likely cause of the outlier activations in the
hidden states auto-regressive Transformer models.

Validating the hypothesis. We train a series of GPT2 models using Adam, RMSProp, SGD with
and without momentum, tuning the learning rate and training schedule to encourage convergence.
The model trained with SGD has the slowest convergence and highest validation perplexity, while
the model trained with Adam converges the fastest and has the lowest perplexity. However, we find
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models trained with Adam and RMSProp have high kurtosis, 140 and 70, respectively, while training
with SGD gives a kurtosis of ∼3.0. We provide these results in our ablation study (Section 5.3).

4.2 ORTHOADAM
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Figure 3: Rotating
vectors with dominant
components leads to a
reduction in the maxi-
mum absolute value.

The previous section leaves an important question for training Transformer
models: “How can we train a model with an optimiser which has the speed
and convergence properties of Adam, but produces activations properties sim-
ilar to SGD”?

Optimisers which track exponential decaying averages of the first and/or sec-
ond moments of the gradients lead to outlier activations in the hidden states
of Transformer models. Moreover, in the models trained above, the largest
absolute parameter values correspond to the features which exhibit outlier
activations in the hidden states, i.e. if outlier activations occur in feature chan-
nel i of the hidden states, the largest model parameter values correspond to
specific weights which act on feature channel i of the hidden states e.g. the
ith output channel of the output projection weights of the attention/MLP lay-
ers. Therefore, to arrive at these large model parameter values, the optimiser
(e.g. Adam) must provide relatively large updates to these specific parameters
and not others. We note here that Adam and similar optimisers calculate gra-
dient moments in the same basis as the model parameters. Additionally, given
the channels which contain outlier activations appear invariant to the input se-
quence, we hypothesise that these channels are an artefact of the optimiser and
do not correspond to any meaningful feature in the input sequence—see Ap-
pendix J for plots of the hidden states of pretrained models with different
input sequences. Given these observations, we discuss an idealised case of
observed hidden states below, and show how orthogonal transformations can
be used to reduce outlier activations.

Consider a D-dimensional vector, x = αei + z, where ei is the ith unit vector in the standard basis,
x ∈ RD, α ∈ R+, α ≫ 1 and z ∼ N (0, I). The first term represents the single outlier activation
specific to the ith channel and the second term represents the “informative” activations. The vector x
represents the hidden states of a Transformer model with high kurtosis. This simplified model makes
two assumptions: (1) there is a single outlier activation channel; and (2) the informative activations
are normally distributed.

For values of D similar to that of Transformer models, i.e. D ≈ [103, 105], Kurt[xj ] = O(D).
Therefore, we expect larger Transformer models of a given architecture to have larger kurtosis in
their hidden states. Moreover, the ratio of the ℓ∞-norm to the ℓ2-norm of the hidden states in our
simplified model, ∥x∥2

∞
∥x∥2

2

, is close to 1. This ratio is another proxy for the extent of outliers.

Now we consider the effect of an appropriate orthogonal transformation on the vector x. Let
Q ∈ RD×D be an orthogonal matrix, and y = Qx. Under a particular orthogonal transforma-
tion, ∥y∥2

∞
∥y∥2

2

≈ 1
D and Kurt[yj ] = 3. The orthogonal transformation which achieves this is one which

rotates the vector x such that Qei = 1√
D
1. Figure 3 illustrates this rotation process in 2D and

3D. The kurtosis and norm ratio results quoted in this section are derived in Appendix G and Ap-
pendix H, respectively, and are shown to be empirically valid for models we train from the plots
in Appendix I.2 and Appendix I.3, respectively.

One option is to apply orthogonal transformations directly to the hidden states of the model, i.e.,
make Q part of the model parameters that are kept fixed during training. Instead, we propose a
novel optimizer, OrthoAdam, which applies orthogonal transformations to incoming gradients such
that the moment calculations (which our experiments in Table 3 show are the key factor in producing
outlier activations) are performed in a different basis to the model parameters to prevent gradient
updates to any particular set of parameters which lead to outlier activations. We provide the full
algorithm in Algorithm 1.

In our experiments, we randomly sample the orthogonal matrix for each parameter (which remains
fixed during the training of the model). We find that using OrthoAdam leads to a significant re-
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Algorithm 1 OrthoAdam, our proposed optimiser for reducing activation outliers. ḡ2
t is the element-wise

square ḡt ⊙ ḡt. With βt
1 and βt

2 we mean β1 and β2 taken to the power of t.

given learning rate: η = 0.001, first moment decay rate: β1 = 0.9, second moment decay rate: β2 = 0.999,
numerical epsilon: ϵ = 10−8

initialise time step: t← 0, parameter vector: θt=0 ∈ Rn, first moment vector: m̄t=0 ← 0, second moment
vector: v̄t=0 ← 0, schedule multiplier: λt=0 ∈ R, unique orthogonal matrix: Q ∈ On

repeat
t← t+ 1
∇ft(θt−1)← SelectBatch(θt−1) ▷ select batch and calculate gradient
gt ← ∇ft(θt−1) ▷ store the gradient in model parameter basis
ḡt ← MatMul(Q,gt) ▷ transform gradient into unique optimiser basis
m̄t ← β1m̄t−1 + (1− β1)ḡt ▷ update biased first moment estimate
v̄t ← β2v̄t−1 + (1− β2)ḡ

2
t ▷ update biased second raw moment estimate

m̂t ← m̄t/(1− βt
1) ▷ compute bias-corrected first moment estimate

v̂t ← v̄t/(1− βt
2) ▷ compute bias-corrected second raw moment estimate

s̄t ← m̂t/(
√
v̂t + ϵ) ▷ calculate the update step in unique optimizer basis

st ← MatMul(QT , s̄) ▷ transform the update step back to model parameter basis
λt ← SetScheduleMultiplier(t) ▷ can be fixed, decay, or also be used for warm restarts
θt ← θt−1 − λtηst ▷ apply parameter update

until stopping criterion is met
return optimised parameters θt

duction in the kurtosis of hidden states in Transformer models, effectively eliminating the outlier
activations. This is shown qualitatively at the top of Figure 1b, where feature channels with high
absolute activation values in the hidden states are no longer present across all token positions, and
quantitatively in Table 2 showing the kurtosis of hidden states in models trained with OrthoAdam is
close to 3, with no performance penalty.

5 EXPERIMENTS

Datasets. We train all models on the en training split of the C4 dataset (Dodge et al., 2021; Raffel
et al., 2020) and evaluate on 100000 samples from the validation en split.

Models. We train GPT2 models with ∼{60M, 130M, 350M, 1.4B} parameters and Llama2 mod-
els with ∼130M parameters. Apart from changing the softmax function, the only other changes
we make to the model architectures are the use of RMSNormSingle and we do not use biases in
feedforward layers. We ablate these changes in the ablation study at the end of this section.

Training. Unless stated otherwise, we use a batch size of 512 and a cosine learning rate schedule
with linear warmup for {1000, 2000, 6000, 10000} steps for models with {60M, 130M, 350M,
1.4B} parameters respectively, with a maximum learning rate of 10−3. We train models with {60M,
130M, 350M, 1.4B} parameters for {160k, 320k, 960k, 600k} steps respectively. Note that we use
a reduced number of steps for the 1.4B parameter model due to computational constraints. In the
ablation study, we train GPT2 models with 130M parameters for 40k steps only.

Metrics. We evaluate our experiments in the following metrics: (1) the perplexity (PPL) of models
on the validation set; (2) the mean kurtosis across all layers of the model (evaluated separately for the
first token and the remaining tokens); (3) the maximum absolute activation across all layers of the
model (again evaluated separately); (4) the percentage of (query, head) pairs in which the first key
token is the most attended to key token. We calculate (1) to ensure our method at least maintains
the vanilla language model performance i.e. to ensure the model is not harmed by softmax-1 or
OrthoAdam. (2) and (3) show quantitatively the extent to which outlier activations are present in the
hidden states. Finally, (4) shows the extent to which the first token dominates attention in the model.

5.1 MAIN RESULTS

We show the results of softmax-1 and OrthoAdam used to train GPT2 and Llama2 models in Table 2.
We observe that across both model architectures and all sizes, the evaluated PPL is the same or
slightly lower when comparing a model with softmax-1 and trained with OrthoAdam to the vanilla
model with neither, indicating that our method does not change model performance. Despite no
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Model #Parameters Softmax+1? OrthoAdam? PPL Kurtosis Activation Value %First AttnEm [κm,1] Em [κm,>1] Em [|Xm,1,d|] Em [|Xm,>1,d|]

GPT2*

60M

✗ ✗ 31.9 313.8 77.9 1856.1 266.6 0.489
✓ ✗ 31.6 105.6 81.4 304.9 259.0 0.021
✗ ✓ 32.4 260.8 10.6 1419.9 114.7 0.365
✓ ✓ 31.8 7.6 7.0 92.8 87.8 0.019

130M

✗ ✗ 22.9 514.9 141.5 7018.1 1014.8 0.527
✓ ✗ 22.7 175.4 144.2 1134.3 967.5 0.024
✗ ✓ 23.1 446.4 20.2 4285.0 433.4 0.424
✓ ✓ 22.8 10.1 7.3 318.1 261.6 0.019

350M ✗ ✗ 16.4 820.3 161.8 40196.0 3801.1 0.579
✓ ✓ 16.3 3.1 3.1 388.1 333.3 0.021

1.4B ✗ ✗ 13.4 1656.5 351.9 56798.3 7051.2 0.648
✓ ✓ 13.3 3.1 3.0 181.9 132.1 0.033

Llama2 130M

✗ ✗ 17.4 435.0 170.0 4622.7 1627.4 0.105
✓ ✗ 17.2 208.2 181.2 1340.4 1229.5 0.016
✗ ✓ 17.4 435.8 169.5 4685.9 1629.1 0.103
✓ ✓ 17.3 4.2 6.9 161.1 157.0 0.017

Table 2: Main results showing the impact of softmax-1 and OrthoAdam on trained GPT2 and Llama2 models.
Utilising softmax-1 and OrthoAdam, significantly reduces the kurtosis and the max activation values of hidden
states. Using softmax-1 only is sufficient to reduce first token dominance in attention. We generally find that all
combinations of softmax-1 and/or OrthoAdam at a given model size lead to similar performance. Em [κm,1]:
mean kurtosis of the first token; Em [κm,>1]: mean kurtosis of all other tokens; Em [|Xm,1,d|]: mean max
absolute activation value of the first token; Em [|Xm,>1,d|]: mean max absolute activation value of all other
tokens. All values are averaged across all layers.

significant change in PPL, each of our proposed methods lead to a significant reduction in outlier
activations in the hidden states (shown by a considerably lower mean layer kurtosis and maximum
absolute activation), with the largest reduction observed when both softmax-1 and OrthoAdam are
used. In particular, for GPT-2 models with 60M, 130M, 350M and 1.4B parameters, the kurtosis
without our modifications were 77.9, 141.5, 161.8 and 351.0, while after our modification they drop
to 7, 7.3, 3.1, and 3.0. We observe similar results for Llama2-130M where the perplexity is around
the same as the original version, but kurtosis is reduced from 170 to 6.9. Similar to kurtosis, in all
cases we see a significant reduction of the mean activation value. Furthermore, we also observe the
drastic drop in first token attention. While the vanilla versions of the model have maximal first token
attention of up to 64.8%, after our modification, it is reduced to 1-3%.

5.2 QUANTISATION

We quantise trained models using Absmax and Zeropoint quantisation. Absmax quantisation scales
a given tensor (weight or activation) using the absolute maximum absolute value. On the other hand,
Zeropoint quantisation shifts the quantised tensor such that the minimum tensor value is the mini-
mum representable value. See Dettmers et al. (2022) for exact details on the quantisation schemes.

Experimental Setup. We quantise the trained models using Absmax quantisation using 8-bit in-
tegers and the more powerful Zeropoint quantisation using 4-bit integers. In the case of Absmax
quantisation, we use 3 different configurations: (1) fine quantisation, where “per-channel” scaling
is used for input activations and weights; (2) moderate quantisation, with “per-tensor” scaling for
input activations and weights; and (3) coarse quantisation, with “per-tensor” scaling for input and
output activations and weights. In the case of Zeropoint quantisation, we use a single configuration
where “per-channel” scaling is used for weights only. We only quantize the linear layers, while the
embeddings, normalisation layers and softmax activations are not quantised.

Results. In Table 3 we show the results of quantising the trained models using Absmax and Zero-
point quantisation. We experimentally confirm that in all cases, models trained with softmax-1 and
OrthoAdam are more robust to Absmax quantisation schemes than models trained with the canonical
softmax function and Adam. The difference in performance is most pronounced when using mod-
erate and coarse quantisation schemes—models trained with softmax-1 and OrthoAdam are able to
maintain performance while models trained with canonical softmax and Adam suffer a significant
degradation in performance. In particular, in the coarse setting, our method outperforms the baseline
by up to 36.12 points. For Zeropoint quantisation, we observe that all GPT2 models trained with
canonical softmax and Adam become unusable when using 4-bit integer weight quantisation, while
models trained with softmax-1 and OrthoAdam suffer only a small drop in performance. Llama2
models in both cases remain usable after quantisation, but the performance drop is more pronounced
when using the canonical softmax function and Adam.
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Model #Parameters OA + S1? PPL

full coarse ∆ moderate ∆ fine ∆ 4-bit ∆

GPT2

60M ✗ 31.88 43.53 11.65 34.87 2.99 32.15 0.27 68.5 36.6
✓ 31.83 32.30 0.47 32.18 0.35 31.89 0.06 33.9 2.1

130M ✗ 22.89 46.49 23.60 28.31 5.42 23.07 0.18 679.9 657.0
✓ 22.78 23.21 0.43 23.10 0.32 22.83 0.05 24.0 1.2

350M ✗ 16.37 52.49 36.12 19.92 3.55 16.50 0.13 118507.1 118490.7
✓ 16.31 16.50 0.19 16.46 0.15 16.33 0.02 17.1 0.8

1.4B ✗ 13.44 45.05 31.61 15.19 1.75 13.68 0.24 3577.7 3564.3
✓ 13.33 13.45 0.12 13.43 0.10 13.34 0.01 13.6 0.2

Llama2 130M ✗ 17.39 43.61 26.22 24.46 7.07 17.69 0.30 21.5 4.1
✓ 17.31 20.85 3.54 20.11 2.80 17.38 0.07 19.7 2.4

Table 3: Performance of our trained models under various quantisation settings. When using OrthoAdam and
softmax-1 (OA + S1), the performance penalty due to quantisation is significantly reduced. The benefits of
our proposed changes are more pronounced under more aggressive quantisation settings—i.e. 4-bit weight and
coarse 8-bit weight/activation quantisation (vanilla models exhibit catastrophic performance degradation).

5.3 ABLATION STUDY

Table 5 shows the results of an ablation study on GPT2 models with 130M parameters. As expected
from the discussion in Section 3, we find removing biases from linear layers and varying the position
encodings does not prevent first token domination—we see a small reduction in first token domina-
tion when positional encodings are removed. Using softmax-1, first token dominance is mitigated
with only ∼2% of (query, head) pairs having the first key token as the most attended to key token.

Switching from LayerNorm to RMSNorm with a learnt scale for each channel (RMSNorm-M, the
normalisation used in Llama2) does not reduce the prevalence of outlier activations in the hidden
states. However, switching to RMSNorm with a single learnt scale (RMSNorm-S) reduces the mean
layer kurtosis and max absolute activation by ∼40%, which remains high. In all of the above cases
in which Adam is used as the optimiser, we observe similar perplexity to the initial model (top row).
Slight exceptions being the use of rotary and no positional encodings, in which perplexity reduces
and increases by 1.3 and 0.5, respectively.

Model Speed VRAM
60m-vanilla 14 iter/sec 16.4GB
60m-S1+OA 12 iter/sec 16.8GB
130m-vanilla 7.5 iter/sec 22.6GB
130m-S1+OA 6.0 iter/sec 23.3GB
350m-vanilla 3.3 iter/sec 46.6GB
350m-S1+OA 3.0 iter/sec 47.3GB
1.4B-vanilla 1.0 iter/sec 61.9GB
1.4B-S1+OA 1.1 iter/sec 65.0GB

Table 4: Time and memory performance.

Changing the optimiser to RMSProp leads to increased
perplexity (0.5 compared to the initial model), reduced
mean layer kurtosis and max absolute activation, by
∼50% and ∼30%, respectively, when comparing to the
equivalent model trained with Adam. In contrast to all
previous cases, using SGD with/without momentum (on
a longer schedule to encourage convergence), leads to a
significant decrease in mean layer kurtosis and max abso-
lute activation, by up to 98% and 97%, respectively, when
comparing to the equivalent model trained with Adam.
However, using SGD requires a significantly longer training schedule to approach initial model per-
formance. Using SGD without momentum leads to a significantly higher perplexity (6.8 compared
to the initial model). This finding confirms the importance of the optimiser in causing outlier acti-
vations in the hidden states.

Using OrthoAdam yields the desirable results from SGD without momentum—namely a significant
decrease in mean layer kurtosis (140 to 3.0) and max absolute activation (432 to 43.5) and the
desirable results from Adam—namely similar perplexity to a model trained with Adam and therefore
much faster and better convergence than SGD without momentum.

The final three rows of Table 5 show that using OrthoAdam with softmax-1 and RMSNorm-S leads
to the most desirable results, and critically the removal of softmax-1 and the use of LayerNorm or
RMSNorm-M reintroduces first token attention dominance and outlier activations, respectively.

Time and memory increase. In Table 4, we show that our modifications come with a small and
tolerable increase in time and memory.

Increasing the sequence length. In Table 6 of Appendix, we show that our method is robust
to increasing the training sequence length. We show results with models trained in 512 and 1024
sequence length, getting similar results to those of Table 3.
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Biases Position Encoding Normalisation Optimizer Softmax+1? PPL Kurtosis %First Attn Max Abs. Act?

✓ Absolute LayerNorm Adam ✗ 26.9 291.7 0.333 1675.9
✗ Absolute LayerNorm Adam ✗ 26.9 263.7 0.308 1104.0

✗ None LayerNorm Adam ✗ 27.4 283.3 0.197 1478.7
✗ Rotary LayerNorm Adam ✗ 25.6 391.9 0.336 2577.4

✗ Absolute LayerNorm Adam ✓ 26.5 244.7 0.022 648.6
✗ Absolute RMSNorm-M Adam ✓ 26.6 230.4 0.026 628.6
✗ Absolute RMSNorm-S Adam ✓ 26.6 140.0 0.020 432.0

✗ Absolute RMSNorm-S RMSProp ✓ 27.4 70.5 0.021 302.2
✗ Absolute RMSNorm-S SGD w/mom* ✓ 25.3 5.0 0.019 17.8
✗ Absolute RMSNorm-S SGD w/o mom* ✓ 33.4 3.2 0.017 13.1

✗ Absolute RMSNorm-S OrthoAdam ✓ 26.8 3.0 0.022 43.5
✗ Absolute RMSNorm-S OrthoAdam ✗ 27.3 323.0 0.231 726.4
✗ Absolute RMSNorm-M OrthoAdam ✓ 26.7 380.9 0.025 737.2
✗ Absolute LayerNorm OrthoAdam ✓ 26.6 188.4 0.023 514.6

Table 5: Ablation study on the impact of various architectural choices on the performance of a GPT2 model with
sim130M parameter model. *SGD models are trained for 8× longer than the others to encourage convergence.

6 RELATED WORK

Language Models. Language models are based on Transformers (Vaswani et al., 2017). While there
are Transformer-based LLMs that used the original encoder-decoder architecture such as T5 (Raffel
et al., 2020), researchers developed models such as BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), which are encoder-only. However, most current LLMs such as the GPT (Radford et al.,
2018; 2019; Brown et al., 2020) and Llama series (Touvron et al., 2023a;b; Dubey et al., 2024) use
a decoder-only architecture. In our work, we focus on this variant using GPT2 and Llama.

Attention Dominance. Bondarenko et al. (2023) identify the dominance of bland tokens in the
attention maps of the BERT Transformer, and suggest complex clipping schemes, additional hy-
perparameters, and a gating mechanism to to mitigate this issue. Other researchers found the same
issue in long-range attention (Xiao et al., 2024) and found a workaround using “attention sinks” and
discontinuous attention masking. In vision Transformers, Darcet et al. (2024) made the same obser-
vation and proposed a solution using “registers”. In contrast, we find the root cause of this issue, the
softmax in attention, and reformulate it to prevent the first token dominance happening.

Outlier Activations. Previous works have shown that in certain Transformer models which use
post-normalisation the norm of the weights of the learnt model must increase (Arora et al., 2019;
Soudry et al., 2018). However the same reasoning does not apply for most recent decoder-only
Transformers which use pre-normalisation (Xiong et al., 2020) (i.e. normalisation before the resid-
ual connection). A blog-post by Elhage et al. (2023) discusses the presence of outlier activations in
the hidden states of Transformer models and rules out numerical precision as the cause. Another
blog-post by Miller (2023) posits the activation outliers are caused by the attention mechanism,
however, we find outliers and attention dominance are disjoint phenomena. He et al. (2024) identify
the presence of outliers and propose an “Outlier Protected Transformer Block” which makes many
architectural changes such as removing normalisation layers and severely downscaling the activa-
tions at the residual connection. In our contrast, similar to first token dominance, we first find the
root cause of this strange behaviour, and then fix it without doing architecture changes.

Outlier-Aware Quantisation. The presence of outliers in the activations of the hidden states has
led to a number of works, such as LLM.int8 (Dettmers et al., 2022), per-embedding group quanti-
sation (Bondarenko et al., 2021), and SmoothQuant (Xiao et al., 2023) propose varying quantisation
schemes to handle the presence of outliers, which require calibration. In contrast, we eliminate
the presence of outliers in our trained models thus enabling the use of the most basic quantisation
schemes such as Absmax and Zeropoint quantisation.
7 CONCLUSION

In this work, we study two surprising phenomena in large auto-regressive Transformers: (1) the
strong, consistent dominance of the first token in attention maps; and (2) the presence of outlier
activations in the hidden states. We propose novel solutions: (1) the softmax-1 function to remove
first token dominance; and (2) the OrthoAdam optimiser which mitigates outlier activations. By
doing so, we reduce first token dominance of attention maps by up to 95% and the activation kurtosis
by up to 99.8%. Furthermore, our work improves our understanding of Transformers but also offer
practical benefits in model quantisation, reducing the quantisation penalty by up to 99.9%.
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A TRAINING DETAILS

In this section, we provide details on the training of our models.

In all experiments we use a batch size of 512 and in all experiments using Adam or OrthoAdam as the
optimiser, we use a peak learning rate of 10−3. This excludes the experiments in Section 5.3 which
use SGD as the optimiser, which use a peak learning rate of 0.2. In all experiments we use a cosine
learning rate schedule with linear warmup for {1000, 2000, 6000, 10000} steps for models with
{60M, 130M, 350M, 1.4B} parameters respectively. Note that we use a reduced number of steps
for the 1.4B model due to computational constraints. For the main experimental results in Tables 2
and 3, we train the models with {60M, 130M, 350M, 1.4B} parameters for {160k, 320k, 960k,
600k} steps respectively. For the ablation study in Section 5.3, we train GPT2 models with 130M
parameters for 40k steps with 2000 warmup steps. We use a maximum sequence length of 256
tokens, which we find is sufficient to observe the anomalies of first token attention dominance and
large outlier activations found in popular pretrained models such as GPT2 (Radford et al., 2019) and
Llama (Touvron et al., 2023a;b; Dubey et al., 2024). The result of our training setup is that models
trained for the main experimental results with {60M, 130M, 350M, 1.4B} parameters are trained on
{21B, 42B, 126B, 79B} tokens respectively. The ablation experiments are trained on 5B tokens. We
train models on 8 NVIDIA 32GB V100 GPUs using the Pytorch deep-learning framework (Paszke
et al., 2019) and the HuggingFace Transformers library (Wolf et al., 2020).

B NOTE ON SUPPLEMENTARY MATERIAL

The supplementary material contains three folders:

• our attention maps/: additional attention map plots for our trained models from Sec-
tion 5.1, using softmax-1 removes first token dominance.

• our hidden states/: additional hidden state plots for our trained models from Section 5.1,
using OrthoAdam and softmax-1 together removes outlier activations.

• our output weights/: plots showing the maximum norm of the output features for the final
feedforward layer in each attention and MLP sub-block in our trained models from Section 5.1,
using OrthoAdam and softmax-1 leads to a large reduction in the maximum norm of the output
weights.
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C LONGER SEQUENCE TRAINING

Model Size Setup Full Coarse ∆ (Coarse) Moderate ∆ (Moderate) Fine ∆ (Fine)
60M-256 Vanilla 31.88 43.53 11.65 34.87 2.99 32.15 0.27
60M-512 Vanilla 32.66 48.55 15.89 37.24 4.58 33.07 0.41
60M-1024 Vanilla 33.52 57.68 24.16 38.22 4.70 33.80 0.28
60M-256 S1+OA 31.93 32.46 0.53 32.32 0.39 32.00 0.07
60M-512 S1+OA 31.83 32.30 0.06 32.18 0.35 31.89 0.47
60M-1024 S1+OA 32.25 32.85 0.60 32.73 0.48 32.32 0.07
130M-256 Vanilla 22.89 46.49 23.60 28.31 5.42 23.07 0.18
130M-512 Vanilla 22.80 42.34 19.54 28.14 5.34 22.98 0.18
130M-1024 Vanilla 22.93 38.78 15.85 29.04 6.11 23.16 0.23
130M-256 S1+OA 22.78 23.21 0.43 23.10 0.32 22.83 0.05
130M-512 S1+OA 22.73 23.16 0.43 23.04 0.31 22.79 0.06
130M-1024 S1+OA 23.87 23.28 0.41 23.19 0.32 22.94 0.07

Table 6: Performance results for various model sizes and setups under longer sequence length.

In Table 6 we provide results when trained with sequence length of 512 and 1024, and compare
with sequence length 256. As can be seen, our model is very robust when we increase the sequence
length, showing no noticeable performance drop in perplexity be it under the general setting, or
when quantized. In all cases, especially under quantization schemes, our method outperforms the
vanilla one when trained with longer sequences.

D LARGER LLMS

We show that the first token attention and the outliers happen also in large modern LLMs such
as Llama-3.1-8B. Furthermore, these issues happen regardless if the training is done in unsu-
pervised manner (next-token prediction) or supervised manner (intruction tuning). We down-
loaded Llama-3.1-8B (https://huggingface.co/meta-llama/Llama-3.1-8B) and Llama3.1-8B-Instruct
(https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct).

In Table 7, we show that in these large models, the first token attention increases (at over 95%
compared to the results shown in the main paper. Furthermore, we also checked the cumulative sum
of attention to the first token and found it out to be at 73.49%. In other words, 73.49% of the entire
attention in Llama-3.1-8B is in the first token. This can be interpreted that the larger the network,
the more specialized the heads are, and most of the heads will simply do nothing. Attending on the
first token is the mechanism the Transformer has developed to learn to do nothing. We also check
the kurtosis of Llama-3.1-8B, showing that the method has a very high kurtosis for both the first
token and on average.

Finally, we show that these results remain very similar if the model is finetuned in instruction data.
We observe that the first token attention and first token kurtosis is virtually the same in Instruct
model as in the original one, while the average kurtosis actually increases in the Instruct model.
Thus, we conclude that our findings stand for modern large LLMs, regardless if they are finetuned
in instruction data or not.

Method %1st attention Sum first token 1st kurtosis Average kurtosis
Llama-3.1-8B 95.45 73.49 1227 55
Llama-3.1-8B-Instruct 95.53 70.13 1228 69

Table 7: Comparison of attention and kurtosis metrics for LLama-3.1-8B and Llama-3.1-8B-Instruct.
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E OPTIMISER BASIS
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Figure 4: Left: MLP output feature weight euclidean norm for each layer in our GPT2-130M model training
with softmax-1/canonical softmax and OrthoAdam/Adam. Right: Sum of gradient second moments for the
corresponding MLP output feature weight when training with canonical softmax and Adam. Training with
softmax and Adam leads to small outlier gradient second moment moving averages with lead to disproportion-
ately large gradient steps for the feature dimensions containing these small outliers. This in turn leads to large
outliers in the model weights.
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Figure 5: Left: MLP output feature weight euclidean norm for each layer in our GPT2-130M model train-
ing with softmax-1/canonical softmax and OrthoAdam/Adam. Right: Sum of gradient second moments for
the corresponding MLP output feature weight when training with softmax-1 and OrthoAdam. Training with
softmax-1 and OrthoAdam leads to gradient second moment movings averages to be considerably more uni-
form than training with softmax and Adam. This prevents large gradient steps from being taken removing
outlier weights in the model.
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Our observation of outlier activations in the hidden states of language models leads us to the conclu-
sion that some aspect of the training process is ”basis-dependent”. ”Basis-independet” functions are
those which are equivariant under orthogonal transformations. A function f(x) is basis-independent
if f(Qx) = Qf(x) for any orthogonal matrix Q. We remove biases from our linear layers and in-
troduce a single-scale version of RMSNorm to remove ”basis-dependent” effects from the model
itself. It is straightforward to show that linear layers with biases (i.e. affine transformations) and
multi-scale RMSNorm (as is standard) are not basis-independent (i.e. they are basis-dependent).
SGD and SGD with momentum are basis-independent: We can show that the standard SGD update
rule is basis-independent.

Given the standard SGD update rule θt+1 = θt−η∇L(θt) transforms the parameters to → θ̂t = Qθt
where θt is an orthogonal matrix:

θ̂t+1 = θ̂t − η∇L̂(θ̂t) (E.1)

By chain rule:

∇L̂(θ̂t) = ∇L(θt) ·
∂θt

∂θ̂t
= ∇L(θt) ·QT = Q∇L(θt),

θ̂t+1 = θ̂t − ηQ∇L(θt) = Q(θt − η∇L(θt)) = Qθt+1.

(E.2)

SGD with momentum follows similarly.

However, Adam and RMSProp are not basis-independent because of tracking the second-order mo-
ments. Let vt be the second-order moment of the gradients at step t, then

vt+1 = β2vt + (1− β2)(∇L(θt)⊙∇L(θt)) (E.3)

v̂t+1 = β2v̂t + (1− β2)(∇L̂(θ̂t)⊙∇L̂(θ̂t))

= β2v̂t + (1− β2)(Q∇L(θt)⊙Q∇L(θt))

̸= Qvt+1

(E.4)

The above shows that SGD and SGD with momentum provide a basis-independent update rule which
is proportional to the gradient, on the other hand, Adam and RMSProp are not basis-independent and
provide updates that depend on the element-wise root of the second-order moment of the gradient.
We believe that basis-dependent functions (whether in the model or the optimizer) are the cause of
the outlier activations we observe in the hidden states of language models. The second-order moment
tracking in Adam and RMSProp allows disproportionately large gradient updates in certain weights
of the model especially in the early steps of training where the moment moving averages are not well-
calibrated (a result of adaptive per parameter learning rate scaling). Therefore we expect features
for which the second-order moment is small to have disproportionately large weights in the model.
Disproportionately large weights in particular dimensions of the model cause the outlier activations
we observe. Using OrthoAdam, the moving average moments of the gradients are computed in a
unique random orthogonal basis for each parameter, which prevents small values of the second-order
moment from causing disproportionately large updates in the model parameters (outlier gradients
large or small in the model basis are transformed to be likely of similar magnitude in the orthogonal
basis).

The outlier weights in the model are generally contained in the output linear layer of each MLP
block. To verify our intuition above, we have computed the norm of the output weights in output
linear layer of each MLP block in a GPT2-130M model trained with/without softmax-1 and Or-
thoAdam. We additionally plot the sum of the second-order moments of the gradients of the output
weights in each MLP block. We observe that in all cases of large outlier weights in the model, the
sum of the second-order moments of the gradients of the output weights in the corresponding MLP
block are small outliers. This is consistent with our intuition that the small outlier second-order
moments of the gradients are causing the large outlier weights in the model. We show these plots
in Figure 6 and Figure 5 respectively.
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F TRANSFORMING THE OUTPUT INTO ORTHOGONAL BASIS

Figure 6: Transforming the output into orthogonal basis

We investigated transforming the output of each layer (i.e. the added activations to the hidden states
for said layer) into the orthogonal basis used by that output layer in OrthoAdam. We use our GPT2-
350M model trained with Softmax-1 and OrthoAdam. Given layer i has output Xi ∈ RL×D and the
orthogonal basis for the output layer in OrthoAdam is Qi ∈ OD, where L is the sequence length,
D is the hidden dimension and OD is the set of D ×D orthogonal matrices. We plot the activation
kurtosis of Xi, XiQi, XiQ

T
i and XiVi where Vi is the right singular vectors of Xi. Using Vi as

a transformed basis gives a baseline for how large one could increase the kurtosis of the activations
by transforming them into an orthogonal basis. Additionally we give the activation kurtosis for our
GPT2-350M vanilla model.
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G KURTOSIS GROWS WITH THE NUMBER OF DIMENSIONS IN
TRANSFORMERS

In this section, we use some observations from the hidden states of transformer models to illustrate
how the kurtosis of the hidden states grows with the number of dimensions in the hidden states.
This is something we observe empirically in the hidden states of transformer models and is a key
motivation for our work. Table 2 shows the kurtosis of the hidden states of transformer models
trained without softmax-1 or OrthoAdam grows as the model size increases, as does the maximum
activation value in the hidden states.

To make this mathematically rigorous, we shall consider a simple example, in which we shall ap-
proximate the hidden states of a transformer model at a single token position as a D-dimensional
vector comprising of the sum of a scaled one-hot vector and a standard normal vector.

Consider a D-dimensional vector x which is the sum of two D-dimensional vectors αei and z,
where ei is the ith unit vector in the standard basis, x ∈ RD, α ∈ R and z ∼ N (0, ID). Therefore
the elements of x are given by:

xj = αδij + zj for j = 1, 2, . . . , D

where δij is the Kronecker delta function. The mean is given by:

µ = E [xj ] = E [αδij + zj ] = αE [δij ] + E [zj ]

=
α

D
+ 0 =

α

D
as E [zj ] = 0 by definition of the standard normal distribution

µ =
α

D
(G.1)

The variance is given by:

σ2 = Var [xj ] = Var [αδij + zj ]

= α2Var [δij ] + Var [zj ] as αδij and zj are independent in our model

= α2Var [δij ] + 1 as Var [zj ] = 1 by definition of the standard normal distribution

Var [δij ] = E
[
δ2ij
]
− (E [δij ])

2
=

1

D

(
1− 1

D

)

Therefore:

σ2 =
α2

D

(
1− 1

D

)
+ 1 (G.2)

The kurtosis of the elements of x is given by:

Kurt[xj ] = E

[(
xj − µ

σ

)4
]
=

E
[
(xj − µ)

4
]

σ4

When j ̸= i:

E
[
(xj − µ)

4
]
= E

[(
zj −

α

D

)4]

= E
[
z4j − 4z3j

α

D
+ 6z2j

( α

D

)2
− 4zj

( α

D

)3
+
( α

D

)4]

= E
[
z4j
]
− 4E

[
z3j
] α
D

+ 6E
[
z2j
] ( α

D

)2
− 4E [zj ]

( α

D

)3
+
( α

D

)4

As E
[
z3j
]
= 0 and E

[
z4j
]
= 3:

= 3 + 6
( α

D

)2
+
( α

D

)4
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When j = i:

E
[
(xj − µ)

4
]
= E

[(
α+ zj −

α

D

)4]

= E

[(
α

(
1− 1

D

)
+ zj

)4
]

= E

[(
α

(
1− 1

D

))4

+ 4

(
α

(
1− 1

D

))3

zj

+ 6

(
α

(
1− 1

D

))2

z2j + 4

(
α

(
1− 1

D

))
z3j + z4j

]

=

(
α

(
1− 1

D

))4

+ 6

(
α

(
1− 1

D

))2

+ 3

Therefore, the overall fourth moment of the elements of x is given by:

E
[
(xj − µ)

4
]
=

1

D

((
α

(
1− 1

D

))4

+ 6

(
α

(
1− 1

D

))2

+ 3

)

+
D − 1

D

(
3 + 6

( α

D

)2
+
( α

D

)4)

And the kurtosis of the elements of x is given by:

Kurt [xj ] =

1
D

((
α
(
1− 1

D

))4
+ 6

(
α
(
1− 1

D

))2
+ 3
)
+ D−1

D

(
3 + 6

(
α
D

)2
+
(
α
D

)4)

(
α2

D

(
1− 1

D

)
+ 1
)2

Kurt [xj ] =
3 + α4

D + 6α2

D − 4α4

D2 − 6α2

D2 + 6α4

D3 − 3α4

D4

1 + 2α2

D − 2α2

D2 + α4

D2 − 2α4

D3 + α4

D4

(G.3)

At this point, we can see that Kurtosis is a function of α and D, however if we consider the limit
as D → ∞, we can see that Kurt[xj ] → 3 i.e. the kurtosis of a Gaussian distribution. However,
this neglects the importance of the scaling factor α which we know empirically is larger than the
dimensionality of the hidden states. The table below summarises the maximum activation values
(analogous to α) and the dimension of the hidden states for the models we trained. Given this

Model #Parameters Model Size (D) Max Activation (α)

GPT2

60M 512 1856
130M 768 7018
350M 1024 40196
1.4B 2048 56798

Llama 130M 768 4623

Table 8: Model sizes and maximum activation values for the models used in our experiments.

empirical information, we make the conservative assumption that α = D. Under this assumption
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which is supported by our empirical observations, Equation (G.3) simplifies to:

Kurt [xj ] =
3 + D4

D + 6D2

D − 4D4

D2 − 6D2

D2 + 6D4

D3 − 3D4

D4

1 + 2D2

D − 2D2

D2 + D4

D2 − 2D4

D3 + D4

D4

=
3 +D3 + 6D − 4D2 − 6 + 6D − 3

1 + 2D − 2 +D2 − 2D + 1

=
D3 − 4D2 + 12D − 6

D2

Kurt [xj ] = D − 4 +
12

D
− 6

D2
= O(D) (G.4)

Using our conservative assumption that α
D = 1, we can see that the kurtosis of the hidden states

grows linearly with the dimensionality of the hidden states when D is in the region of 103 − 105 as
is the case for transformer models.

This simple example serves as a mathematical illustration of the empirical observations we make
in the hidden states of transformer models. We have shown that the kurtosis of the hidden states is
expected to grow linearly with the dimensionality of the hidden states, and so the issue of outlier
activations is expected to grow as the hidden states of transformer models grow in size.
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H ORTHOGONAL TRANSFORMATIONS AND REDUCTION IN ℓ∞–NORM AND
KURTOSIS

From our simple model in Appendix G we have a simplified model of Transformer hidden states,
x ∈ RD, where the first element is α and the rest are standard normal random variables.

x = αei + z where zj ∼ N (0, 1)

From this model, we can compute the expected ℓ2–norm:

E
[
∥x∥22

]
=

D∑

j=1

x2
j = α2 +

D∑

j=1

z2j = α2 +DVar [zj ] = α2 +D (H.1)

Using the triangle inequality, we can compute a range for the ℓ∞–norm:

E [∥x∥∞] = E
[
max

1≤j≤D

(
|α+ zi| ,max

j ̸=i
|zj |
)]

Given α ≫ 1, we can drop the terms for j ̸= i and compute the expected ℓ∞–norm using the ith

element:

E [∥x∥∞] = E [|α+ zi|]
|α+ zi| ≤ |α|+ |zi|

Using folded normal distribution properties, E [|zi|] =
√

2
π ≪ α, therefore:

E [∥x∥∞] ≈ α

Given that α ≫ 1, we can safely assume that ∥x∥2∞ ≈ α2. Therefore:

E
[
∥x∥∞
∥x∥2

]
≈ α√

D + α2

Note from Table 8 that the maximum activation value, α, is generally much larger than the model
size, D.

E
[
∥x∥∞
∥x∥2

]
≈ 1 (H.2)

We find this empirically to be the case in the middle layers of the Transformer models we study (see
plots in Appendix I.3).

The ∞-norm of x can be thought of as a proxy for the extent of outliers in a vector. If ∥x∥2

∥x∥∞
≈ 1,

then a vector has at least one large outlier and consequently a high kurtosis.

We will now show that applying an orthogonal transformation to a vector can reduce the ℓ∞-norm
constrained to a fixed ℓ2-norm. Using the same definition of x as above, let Q ∈ RD×D be an
orthogonal matrix and let y = Qx.

∥y∥22 = yTy = xTQTQx = xTx = ∥x∥22
E[∥y∥22] = E[∥x∥22] = α2 +D (H.3)

This standard proof shows that applying an orthogonal transformation to a vector does not change
the ℓ2–norm of the vector. It can however lead to a dramatic reduction in the ℓ∞–norm of the vector.
We will now show that for a vector, y ∈ RD, constrained to have a fixed ℓ2–norm,

√
α2 +D, the

ℓ∞–norm of a vector can be reduced significantly by applying an orthogonal transformation such
that yj = α√

D
+ z′,∀j ∈ [1, D], where z′ ∼ N (0, 1).

y = Qx = Q (αei + z) = αQei +Qz
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Select Q such that Qei =
(

1√
D
, 1√

D
, . . . , 1√

D

)
, given Q is orthogonal, Qz = z′ ∼ N (0, ID).

E [∥y∥∞] ≈ α√
D

+
√
2 lnD, using extreme value theory (Cramér, 1946)

=
α+

√
2D lnD√
D

The expected ratio of ℓ∞–norm to ℓ2–norm is:

E

[
∥y∥2∞
∥y∥22

]
=

E
[
∥y∥2∞

]

E
[
∥y∥22

] =

(
α+

√
2D lnD

)2

D (α2 +D)

Using the same conservative assumption as in Appendix G that α = D, Table 8 shows empirically
α > D:

E

[
∥y∥2∞
∥y∥22

]
=

D2 + 2D lnD + 2D
√
2D lnD

D3 +D2
=

D + 2
√
2D lnD + 2 lnD

D2 + 1

As D grows, the last term of the numerator and the 1 in the denominator become negligible:

E

[
∥y∥2∞
∥y∥22

]
≈ 1

D
+

D + 2
√
2 lnD

D
3
2

= O

(
1

D

)

Therefore, under an orthogonal transformation, the ℓ∞–norm to ℓ2–norm ratio can be reduced sig-
nificantly. It is trivial to show that Kurt[yj ] = 3 and we see many of our experiments which use
OrthoAdam and softmax-1 exhibit this behaviour (see plots in Appendix I.2).

x = αei + z, E

[
∥x∥2∞
∥x∥22

]
≈ 1 → y = Qx, E

[
∥y∥2∞
∥y∥22

]
≈ 1

D

Kurt [xj ] = D − 4 +
12

D
− 6

D2
= O(D) → Kurt [yj ] = 3

The exact form of Q can be computed numerically or constructed using appropriately normalised
Hadamard matrices (Sylvester, 1867).
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I LAYER PROGRESSION OF FIRST TOKEN ATTENTION DOMINANCE,
KURTOSIS, ℓ∞-NORM TO ℓ2-NORM RATIO AND MAXIMUM ABSOLUTE
ACTIVATION

For brevity, we give metrics for the first token attention dominance, hidden state kurtosis and ab-
solute maximum activation averaged over all layers in Table 2 which gives the results of the main
experiments in our work.

However, the layer-wise progression of these metrics is also of interest and can provide insights into
the behaviour of the model. Additionally, we provide the same metrics for popular pretrained GPT2
and Llama models to show the similarity to our models trained without softmax-1 and OrthoAdam.

Finally, to establish a relationship between activation kurtosis and the ℓ∞-norm to ℓ2-norm ratio, we
calculate the Pearson’s correlation coefficients between per-layer kurtosis and per-layer ℓ∞-norm to
ℓ2-norm ratio for all models in our main experimental results from Table 2.

All metrics are computed on the same validation set of the C4 dataset (Raffel et al., 2020) as in the
main paper (Section 5).

I.1 FIRST TOKEN ATTENTION DOMINANCE

We begin by examining the progression of first token attention dominance across layers. We calcu-
late the percentage of (head, query) pairs where the query token attends most to the first (key) token.
Given different models have a different number of layers, we normalise the layer index to the range
[0, 1] for each model.

We find a general trend across our trained models which use the canonical softmax function where
the first token attention dominance begins low in the initial layers where models do initial processing
of all input tokens. The dominance rises to a peak in the middle layers where heads specialise to
specific sub-tasks and so the first token is attended to as a default “no-op” (Bondarenko et al.,
2023; Clark et al., 2019). Finally, the dominance decreases in the final layers where the model
“detokenises” the features back into token space.

I.1.1 GPT2-60M
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Figure 7: Layer-wise progression of first token attention dominance for GPT2-60M. The x-axis is normalised
to the range [0, 1]. S1/OA denote models trained with softmax-1 and/or OrthoAdam.
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I.1.2 GPT2-130M
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Figure 8: Layer-wise progression of first token attention dominance for GPT2-130M. The x-axis is normalised
to the range [0, 1]. S1/OA denote models trained with softmax-1 and/or OrthoAdam.

I.1.3 GPT2-350M AND GPT2-1.4B
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Figure 9: Layer-wise progression of first token attention dominance for GPT2-350M and GPT2-1.4B. The x-
axis is normalised to the range [0, 1]. S1/OA denote models trained with softmax-1 and/or OrthoAdam.
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I.1.4 LLAMA-130M
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Figure 10: Layer-wise progression of first token attention dominance for Llama-130M. The x-axis is normalised
to the range [0, 1]. S1/OA denote models trained with softmax-1 and/or OrthoAdam.

I.1.5 POPULAR PRETRAINED MODELS—GPT2 AND LLAMA
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Figure 11: Layer-wise progression of first token attention dominance for popular pretrained GPT2 and Llama
models. The x-axis is normalised to the range [0, 1].

I.2 ACTIVATION KURTOSIS

Next, we examine the progression of activation kurtosis across layers. As observable in Table 2, the
kurtosis of the first hidden state is significantly higher than the other hidden states and so we plot
the kurtosis of the first hidden state only for brevity.

We observe in the plots below that models trained without OrthoAdam exhibit a general trend of
increasing kurtosis as the hidden states progress through the layers. Demonstrating that multiple
layers of the model contribute to the emergence of large activation values. Models trained with
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OrthoAdam but not softmax-1 exhibit a similar trend, but with lower kurtosis values initially. Fi-
nally, models trained with both OrthoAdam and softmax-1 exhibit a consistent small kurtosis across
layers—around the value of 3 which is the kurtosis of a Gaussian distribution. Interestingly, GPT2-
60M and GPT2-130M show small rises in the final layers—the cause of this is left for future work.

We find that some models show a reduction in kurtosis in the final layers, we again attribute this to
the “detokenisation” of the features back into token space.

I.2.1 GPT2-60M
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Figure 12: Layer-wise progression of activation kurtosis of the first token position for GPT2-60M. The x-axis
is normalised to the range [0, 1]. S1/OA denote models trained with softmax-1 and/or OrthoAdam.

I.2.2 GPT2-130M
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Figure 13: Layer-wise progression of activation kurtosis of the first token position for GPT2-130M. The x-axis
is normalised to the range [0, 1]. S1/OA denote models trained with softmax-1 and/or OrthoAdam.
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I.2.3 GPT2-350M AND GPT2-1.4B
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Figure 14: Layer-wise progression of activation kurtosis of the first token position for GPT2-350M and GPT2-
1.4B. The x-axis is normalised to the range [0, 1]. S1/OA denote models trained with softmax-1 and/or Or-
thoAdam.

I.2.4 LLAMA-130M
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Figure 15: Layer-wise progression of activation kurtosis of the first token position for Llama-130M. The x-axis
is normalised to the range [0, 1]. S1/OA denote models trained with softmax-1 and/or OrthoAdam.
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I.2.5 POPULAR PRETRAINED MODELS—GPT2 AND LLAMA
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Figure 16: Layer-wise progression of activation kurtosis of the first token position for popular pretrained GPT2
and Llama models. The x-axis is normalised to the range [0, 1].

I.3 ℓ∞-NORM TO ℓ2-NORM RATIO

The plots below show the progression of the ℓ∞-norm to ℓ2-norm ratio across layers. We observe
that models trained without OrthoAdam exhibit a general trend of increasing ratio as the hidden
states progress through the layers. Once again as this ratio is maximal in the first hidden state, we
plot the ratio of the first hidden state only for brevity (as done for kurtosis).

The trends are similar to the kurtosis plots and so the same commentary applies.

I.3.1 GPT2-60M
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Figure 17: Layer-wise progression of the ℓ∞-norm to ℓ2-norm ratio in the hidden states of the first token posi-
tion for GPT2-60M. The x-axis is normalised to the range [0, 1]. S1/OA denote models trained with softmax-1
and/or OrthoAdam.
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I.3.2 GPT2-130M
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Figure 18: Layer-wise progression of the ℓ∞-norm to ℓ2-norm ratio in the hidden states of the first token
position for GPT2-130M. The x-axis is normalised to the range [0, 1]. S1/OA denote models trained with
softmax-1 and/or OrthoAdam.

I.3.3 GPT2-350M AND GPT2-1.4B
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Figure 19: Layer-wise progression of the ℓ∞-norm to ℓ2-norm ratio in the hidden states of the first token
position for GPT2-350M and GPT2-1.4B. The x-axis is normalised to the range [0, 1]. S1/OA denote models
trained with softmax-1 and/or OrthoAdam.
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I.3.4 LLAMA-130M
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Figure 20: Layer-wise progression of the ℓ∞-norm to ℓ2-norm ratio in the hidden states of the first token
position for Llama-130M. The x-axis is normalised to the range [0, 1]. S1/OA denote models trained with
softmax-1 and/or OrthoAdam.

I.3.5 POPULAR PRETRAINED MODELS—GPT2 AND LLAMA
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Figure 21: Layer-wise progression of the ℓ∞-norm to ℓ2-norm ratio in the hidden states of the first token
position for popular pretrained GPT2 and Llama models. The x-axis is normalised to the range [0, 1].

To further clarify that in Transformer models the ℓ∞-norm to ℓ2-norm ratio is a proxy for activation
kurtosis, we calculate the Pearson’s correlation coefficients between the two metrics for all models
in our main experimental results from Table 2 and public GPT2 and Llama models. The results
are shown in Table 9. We find a strong positive correlation between the two metrics across all
models which reinforces our intuition that using orthogonal matrices to transform the gradients in the
optimiser is an effective way to mitigate the emergence of large activation values, as an orthogonal
transformation can reduce the ℓ∞-norm of a vector substantially for a given ℓ2-norm.
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Model #Parameters Softmax+1? OrthoAdam? Correlation of Kurtosis to Norm Ratio
First Token Other Tokens

GPT2 (Ours)

60M

0.961 0.932
✓ 0.932 0.934

✓ 0.986 0.972
✓ ✓ 0.968 0.970

130M

0.988 0.932
✓ 0.927 0.924

✓ 0.992 0.962
✓ ✓ 0.935 0.953

350M 0.990 0.929
✓ ✓ 0.998 0.997

1.4B 0.988 0.952
✓ ✓ 0.994 0.995

Llama2 (Ours) 130M

0.931 0.903
✓ 0.864 0.877

✓ 0.931 0.905
✓ ✓ 0.560 0.975

GPT2 (Public) 137M 0.985 0.944
GPT2-Medium (Public) 350M 0.969 0.846

GPT2-Large (Public) 812M 0.985 0.896
GPT2-XL (Public) 1.6B 0.956 0.939

Llama2-7B (Public) 6.7B 0.987 0.902
Llama3.1-8B (Public) 8B 0.928 0.915

Table 9: Correlation of the kurtosis and norm-ratio of the hidden states of our trained models and popular
pretrained models.

I.4 MAXIMUM ABSOLUTE ACTIVATION

Finally, we examine the progression of the maximum absolute activation across layers.

I.4.1 GPT2-60M
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Figure 22: Layer-wise progression of the maximum absolute activation in the hidden states of the first token po-
sition for GPT2-60M. The x-axis is normalised to the range [0, 1]. S1/OA denote models trained with softmax-1
and/or OrthoAdam.
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I.4.2 GPT2-130M
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Figure 23: Layer-wise progression of the maximum absolute activation in the hidden states of the first token
position for GPT2-130M. The x-axis is normalised to the range [0, 1]. S1/OA denote models trained with
softmax-1 and/or OrthoAdam.

I.4.3 GPT2-350M AND GPT2-1.4B
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Figure 24: Layer-wise progression of the maximum absolute activation in the hidden states of the first token
position for GPT2-350M and GPT2-1.4B. The x-axis is normalised to the range [0, 1]. S1/OA denote models
trained with softmax-1 and/or OrthoAdam.
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I.4.4 LLAMA-130M
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Figure 25: Layer-wise progression of the maximum absolute activation in the hidden states of the first token
position for Llama-130M. The x-axis is normalised to the range [0, 1]. S1/OA denote models trained with
softmax-1 and/or OrthoAdam.

I.4.5 POPULAR PRETRAINED MODELS—GPT2 AND LLAMA
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Figure 26: Layer-wise progression of the maximum absolute activation in the hidden states of the first token
position for popular pretrained GPT2 and Llama models. The x-axis is normalised to the range [0, 1].
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J HIDDEN STATES OF PRETRAINED MODELS

In this section, we present the progression of hidden states of popular pretrained models. This shows
how models establish outlier activations and how they persist in the same feature dimensions across
layers. For each model we show the absolute activation values in the features containing the largest
activations. We show the mean across layers, the first layer, 1

4 and 3
4 of the layers.
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Figure 27: Example hidden state plots for a GPT2-Small model.
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Figure 28: Example hidden state plots for a GPT2-Medium model.
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Figure 29: Example hidden state plots for a GPT2-Large model.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

1024 1088 1152 1216 1280 1344 1408 1472
Feature Index

0
2
4
6
8

10
12
14

Input Sequence: 1
Overall Mean Hidden States

1024 1088 1152 1216 1280 1344 1408 1472
Feature Index

Input Sequence: 2
Overall Mean Hidden States

112
114
116
118
120
122
124
126

1024 1088 1152 1216 1280 1344 1408 1472
Feature Index

0
2
4
6
8

10
12
14

Layer: 0
1024 1088 1152 1216 1280 1344 1408 1472

Feature Index
Layer: 0

112
114
116
118
120
122
124
126

1024 1088 1152 1216 1280 1344 1408 1472
Feature Index

0
2
4
6
8

10
12
14

Layer: 12
1024 1088 1152 1216 1280 1344 1408 1472

Feature Index
Layer: 12

112
114
116
118
120
122
124
126

1024 1088 1152 1216 1280 1344 1408 1472
Feature Index

0
2
4
6
8

10
12
14

Layer: 36
1024 1088 1152 1216 1280 1344 1408 1472

Feature Index
Layer: 36

112
114
116
118
120
122
124
126

10 2

10 1

100

101

102

103

10 2

10 1

100

101

102

10 1

100

101

102

103

10 1

100

101

102

103

To
ke

n 
Po

sit
io

n
To

ke
n 

Po
sit

io
n

To
ke

n 
Po

sit
io

n
To

ke
n 

Po
sit

io
n

To
ke

n 
Po

sit
io

n
To

ke
n 

Po
sit

io
n

To
ke

n 
Po

sit
io

n
To

ke
n 

Po
sit

io
n

GPT2-XL Hidden States

Figure 30: Example hidden state plots for a GPT2-XL model.
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Figure 31: Example hidden state plots for a Llama2-7B model.
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Figure 32: Example hidden state plots for a Llama3.1-8B model.
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Figure 33: Example hidden state plots for a DeepSeekv2-Lite model.
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K ATTENTION MAPS OF PRETRAINED MODELS

In this section, we present the attention maps of popular pretrained models. This shows how models
establish attention patterns and how they persist after initial layers. This shows that generally after
the first or second layer, first token attention dominance is highly established and persists across
layers.

We show the mean across layers, the first layer, 1
4 and 3

4 of the layers—averaging over all heads in
each case.
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Figure 34: Example attention maps for a GPT2-Small model.
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Figure 35: Example attention maps for a GPT2-Medium model.
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Figure 36: Example attention maps for a GPT2-Large model.
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Figure 37: Example attention maps for a GPT2-XL model.
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Figure 38: Example attention maps for a Llama2-7B model.
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Figure 39: Example attention maps for a Llama3.1-8B model.
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Figure 40: Example attention maps for a DeepSeekv2-Lite model.
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L TRAINING CURVES

To demonstrate that our proposed methods, i.e. replacing the canonical softmax function with
softmax-1 and using our proposed optimiser, OrthoAdam, do not negatively impact the training
of large language models, we provide the training curves for our models here. One can observe that
the training curves for models using either or both of our proposed changes are stable and converge
to a similar loss value as the baseline models.

L.1 GPT2-60M
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Figure 41: Training curves for GPT2-60M models with different optimisers and softmax functions. The models
using OrthoAdam and softmax-1 are stable and converge to a similar loss value as the baseline models. S1/OA
denotes the model using softmax-1 and/or OrthoAdam.

L.2 GPT2-130M
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Figure 42: Training curves for GPT2-130M models with different optimisers and softmax functions. The
models using OrthoAdam and softmax-1 are stable and converge to a similar loss value as the baseline models.
S1/OA denotes the model using softmax-1 and/or OrthoAdam.
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L.3 GPT2-350M AND GPT2-1.4B

0 100000 200000 300000 400000 500000 600000
Training Step

2.6

2.7

2.8

2.9

3.0

3.1
Tr

ai
ni

ng
 L

os
s

gpt2: 350m Final Loss: 2.86
gpt2: 350m, S1, OA Final Loss: 2.86
gpt2: 1b Final Loss: 2.64
gpt2: 1b, S1, OA Final Loss: 2.63

Figure 43: Training curves for GPT2-350M and GPT2-1.4B models with different optimisers and softmax
functions. The models using OrthoAdam and softmax-1 are stable and converge to a similar loss value as the
baseline models. S1/OA denotes the model using softmax-1 and/or OrthoAdam.

L.4 LLAMA-130M
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Figure 44: Training curves for Llama-130M models with different optimisers and softmax functions. The
models using OrthoAdam and softmax-1 are stable and converge to a similar loss value as the baseline models.
S1/OA denotes the model using softmax-1 and/or OrthoAdam.
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