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Abstract
In the present work, we address the problem of
generalization by leveraging interaction to com-
pose previously acquired knowledge. We show
that the problem of long distance navigation can
be naturally decomposed into local navigation
around multiple previously known landmarks.
Since these landmarks enter and exit the agent’s
field of view and frequently occlude each other,
they must be considered collectively. We propose
a two-step approach where an agent first acquires
group-structured representations of individual ob-
jects by navigating around them and witnessing
the changes to the view caused by its movement.
In the second stage, we introduce a stitching pro-
cedure to combine the learned individual object
manifolds into a coherent representation of the
scene. The stitched representation is a group struc-
tured representation of the whole scene which can
be maintained from any object in view and predict
all other objects pose. In conclusion, the agent
learns a world model representation for its naviga-
tion of the scene that is modular and data efficient,
relying solely on interaction which enables it to
situate itself, predict its pose evolution from per-
formed actions and infer actions connecting two
observations.

1. Introduction
A hallmark of biological intelligence is the remarkable abil-
ity to adapt and generalize rapidly to new tasks and envi-
ronments by composing knowledge from various previous
object related experiences. This capability is demonstrated
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in tasks like landmark-based navigation, where animals and
human leverage spatial relationships between multiple ob-
jects to plan routes, estimate their position with respect to
food sources or other animals, and acquiring new reference
points.

In artificial agents, it is of significant importance to be able
to decompose problems into smaller problems and employ
modular computation to limit the number of parameters that
need to be learned (Kirsch et al., 2018). Additionally, the
possible configurations of a scene composed of a number
K of objects would grow exponentially with the number
of objects. We leverage compositional generalization and
interaction as a shared inductive bias to learn the K single
object representations separately and then efficiently ‘stitch’
them together, as a result the growth in complexity becomes
linear.

In this work, we build artificial agents that mimic the naviga-
tional capacities of animals by forming a large-scale scene
positioning system using only locally available information.
Our approach is built on two key steps: First, to efficiently
learn world models for navigation around individual objects
and second, to merge these multiple local world models into
a unified scene world model that can be used to plan and
navigate coherently across multiple local reference frames.

While most multi-object representations approaches
(Burgess et al., 2019; Eslami et al., 2018; Locatello et al.,
2020; Kipf et al., 2020; 2022) focus on segmenting the im-
age into its object components, we instead shift the focus
to composing navigable object representations into a navi-
gable scene representation. Each object world model is a
group structured representation learned from interaction as
part of a Homomorphism AutoEncoder (Keurti et al., 2023).
In a given multi object scene, we use interaction cues to
superpose (stitch) the learn object manifolds into a coherent
group structured representation for the scene that is robust to
occlusion and objects exiting the frame. We discuss related
works in Appendix B.

We summarize our contributions as follow:

• We formalize the existing geometric structure of static
scenes with regard to agent and object poses and move-
ments of the agent.
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Figure 1. The agent reuses learned representations in Phase 1 from
single object scenes (scene k) in scenes where multiple objects are
present in phase 2.

• We propose a novel stitching approach to compose
group structured representation of objects into a coher-
ent scene representation.

• We show through experiments the procedure produces
a navigable world model where the agent can predict
the effect of its actions in the form of rollouts, can
reason about its relative pose to each object at all times
and navigate between source and target views despite
occlusions and out of frame objects.

2. Learning Extended World Models for
large-scale Navigation

2.1. Problem setup

In our setup, scenes are composed of multiple objects and
an agent moves around and observes the scene. When the
scene contains only a single object k put at a canonical
pose, we call the scene single object scene k or scene k. We
are interested in a two-phases setup illustrated in Figure 1.
In the first phase, the agent moves around each object k
separately in scene k to learn representations. In the second
phase, the agent moves in a composed scene with multiple
of the already encountered objects. As it moves in the
composed scene, its relative pose to each object varies. We
formalize this problem in sections 2.1.1 and 2.1.2. The
diagram in Figure 4 summarizes all the relations between
the components of this project. We invite the reader to refer
to the diagram to better visualize the formalism.

2.1.1. GEOMETRIC STRUCTURE OF LATENT SCENE

In a static scene, there exists a natural structure relating the
different objects poses and the pose of a moving agent. For
a visual account of this structure, the reader can refer to the

‘Latent’ part of the diagram Figure 4 in Appendix F.1. We
consider an agent with pose s ∈ S navigating a scene con-
taining K objects with poses (pk)k∈[K] ∈ S. The state
space for the scene is therefore S × S × · · · × S︸ ︷︷ ︸

K

. The

pose space S of the agent and of each of the objects in
the scene is a manifold structured by the regular action of a
smooth group G, we can therefore identify S with G (more
in Appendix A). If for instance, the pose space S = R is
simply an object’s position on a 1D line, then the group
acting on it is (G, ·) = (R,+) and its action on S is also
+ : (g, s) 7→ g+ s. The agent performs actions from G or a
subset of it to navigate around the scene.

In particular, if the scene contains only the object k put at
the origin of the scene (point of S identified with the identity
of G), we will call this scene “scene k” and we denote in this
scene the absolute pose s of the agent by sk. The pose sk

also corresponds to the relative pose of the agent with regard
to object k in any scene. Notation: In skt the exponent k
corresponds to the object index and the index t corresponds
to the sample or the time index.

In any given scene, the relative pose skt of the agent to
a given object k is given by skt = (pk)−1st. In the 1D
example: sk = s− pk. This relative pose skt also describes
a state on S. It will be useful to note that the relative pose of
an object k can be obtained from that of an object l through
skt = (pk)−1plslt. As the agent performs a movement gt in
the composed scene, changing its state from st to st+1 =
gtst, it induces the relative movement gkt = (pk)−1gtp

k

with regard to object k , changing its relative pose to it from
skt to gkt s

k
t .

2.1.2. INTERACTION PROBES THE LATENT STRUCTURE

While the latent states are hidden, we consider the agent
is equipped with a measurement device (camera) to col-
lect observations, and actions which change its state. We
encourage the reader to view the ‘Observation’ part of
the diagram in Firgure 4. An observation mechanism

b : S ×
K︷ ︸︸ ︷

S × · · · × S → O maps the agent’s latent pose
s ∈ S and the configuration (pk)k∈[K] of the K objects
in the scene to the observations o, which are images in our
setup. For a given scene, the poses pk are constant, therefore
we will write ot = b(st) instead of ot = b(st, p

1, . . . , pK).
We suppose observations ot can be segmented into the sep-
arate objects segments: seg : ot 7→ (okt )k∈[K] such that
ot =

∑
k o

k
t . The observation segment okt of object k at

pose pk with the agent at pose st can be obtained from
scene k where the isolated object k is at the "canonical"
pose and the agent at the pose skt = (pk)−1st. We also
consider the associated observation mechanism for scene k,
bk : sk 7→ ok.
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At any time, the agent performs actions gt changing its pose
from st to st+1 = gtst, and observes the tuple (ot, gt, ot+1),
which can be segmented as

(
(okt )k, gt, (o

k
t+1)k

)
. The agent

does not have access to its relative movement gkt with re-
gard to each object k and therefore will need to learn it by
understanding the relative pose of objects with regard to the
scene. Figure 4 (Observations) summarizes these relations.

2.1.3. DESIDERATA OF THE LEARNED REPRESENTATION

The core idea to represent the agent’s pose and movements
in a given composed scene comprising of individual objects,
is to rely on the previously learned representations with re-
gard to individual objects. Each object in the global scene
is only seen from a subregion of the poses of the agent, due
to occlusions or exiting the field of view. This makes it
impossible to rely on a single object to describe the pose
of the agent within the global scene, instead the agent will
rely on one object at each time to estimate its pose in the
scene. To solve this problem we developed a stitching proce-
dure described in Section 2.2 which combines local object
manifolds into one global manifold the agent can use to
keep track of the objects’ locations, predict trajectories and
navigate the scene.

2.2. Stitching procedure composes scenes from objects

During the first stage, the agent learns vector representa-
tions hk : O → Z for each individual object k allowing
it navigating single object scenes. In a second stage, in
the composed, global scene, the agent then learns matrices
which link the individual representations hk to each other
enabling the prediction of the representation of the relative
pose with regard to any object l from any other object l.
It also learns matrices which conjugate the actions of the
agent in the scene to convert them into relative action with
regard to the single objects. This section details each of
the component of the proposed model and procedure. We
provide experimental results in Appendix E.1.

2.2.1. SINGLE OBJECT MANIFOLD LEARNING

We are interested in estimating the agent’s relative pose
to each object k and how it transforms under the agent’s
movements. As such the vector representation hk : O → Z
learned from the scene k should encode the relative pose of
the agent to object k and satisfy equivariance under its move-
ment. The agent only perceives sequences (okt , g

k
t , o

k
t+1) of

observations and actions, this is a similar setting to the prob-
lem of learning group structured representations (Higgins
et al., 2018). We therefore choose to use the Homomorphism
AutoEncoder (Keurti et al., 2023) (HAE, see Appendix D.1
for more).

The kth object model is an HAE (hk, dk, ρ), which com-
prises a trainable encoder hk : O → Z mapping obser-

vations to the space of representation vectors Z, a train-
able decoder dk : Z → O reconstructing the observations
from the representation space and a group representation
ρ : G → GL(Z) mapping the agent’s movements to invert-
ible matrices on the vector space Z. Unlike the original
HAE, we do not learn ρ but assume the agent already un-
derstands how its movements in G affect the representation
space. The model learns on a set of transitions of the form
(okt , g

k
t , o

k
t+1, g

k
t+1, o

k
t+2) on scene k. The k exponent in

gkt is used to indicate the action is taken in the single ob-
ject scene k, it also corresponds as previously discussed to
the relative action with regard to object k in a composed
scene as the object performs the action gt. The model is
trained to satisfy commutativity between action and rep-
resentation, which for each transition corresponds to the
equality: h(okt+1) = ρ(gkt )h(o

k
t ). The training losses are

detailed in the Appendix D.2. The associated results can be
found in Appendix F.2.

As G acts regularly on S and the mapping fk := hk ◦ bk :
S → Z is injective over the training domain, the repre-
sentation manifold hk(O) in Z can be identified with G.
Therefore, the object representation manifolds can be identi-
fied with each other. To evaluate how well the representation
hk is group structured, meaning it satisfies the equivariance
hk(g · o) = ρ(g)hk(o),∀o, g, we use the manifold score
described in Appendix D.4.

2.2.2. COMPOSED SCENE REPRESENTATIONS

In a scene composed of K objects at poses pk, we can reuse
the previously learned mappings hk, dk by segmenting the
observations ot to each object’s segment okt . At a given pose
of the agent s in the scene, we obtain the representations
hk(okt ) = ztk for the subset of objects k currently in view.
The representations correspond to the pose sk = (pk)−1s
in the isolated object scene. And the movement g on the
composed scene relates to the movement gk on the scene k
through the conjugation gk 7→ pkg(pk)−1.

2.2.3. (STATIC) STITCHING OF OBJECTS MANIFOLDS

The relative pose sk to object k can be expressed from
the relative pose sl with regard to object l through sk =
(pk)−1plsl. Through equivariance we would obtain by
identifying the representation manifolds with the group
manifolds that zG,k = ρ((pk)−1pl)zG,l. The encoders
(hl)l∈[K] map to a manifold identified with ρ(G) how-
ever they are not constrained to embed it at the same lo-
cation of Z. Let Mkl be the matrix offsetting the man-
ifold l into the manifold k. In other words for a same
pose s0 ∈ S in each of scenes l and k, the representations
satisfy hk(bk(s0)) = Mklhl(bl(s0)). Putting it together,
zk = ρ((pk)−1pl)Mklzl. In the end, for a given scene, we
need to estimate a constant matrix Rkl which satisfies for
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Figure 2. Static Stitching: (a) Collect observations where k and l
are visible. (b) Represent in each object’s manifold. (c) Infer Rkl

which transforms a representation from manifold k to l.

any pose st of the agent: zkt = Rklzlt and therefore allows
us to switch from the representation of object l to that of ob-
ject k. We can estimate Rkl from a set of “stitching points”,
these are poses st for which both objects objects l and k are
in frame by solving the least squares problem:

Rkl = argmin
X∈RD×D

|X|≠0

∑
t

||zkt −Xzlt||22. (1)

2.2.4. LEARNING A GLOBAL WORLD MODEL
MANIFOLD: STITCHING OF OBJECT MANIFOLDS
FOR NON ADJACENT OBJECTS

If no or not enough observations ot can be collected where
both objects l and k are in frame, then Rkl cannot be esti-
mated through the least squares problem Equation 1. It can
instead be obtained through an intermediate object j adja-
cent to both through Rkl = RkjRjl. This operation can be
repeated to estimate Rkl for objects l, k that are connected
at a higher degree of separation. The path of intermediate
objects i1, . . . , iI can be chosen on the basis of the least
sum of errors achieved on the associated MSE problems
Equation 1.

2.2.5. (DYNAMIC) STITCHING OF GLOBAL MOVEMENT
TO RELATIVE MOVEMENT

The agent represents its pose s in the scene through repre-
sentations zkt of its relative pose skt to different objects k
in the scene but lacks knowledge of the transformations gkt
of the object representations and only observes its action
g performed relative to the scene. Therefore, to predict
the effect of its movement gt on its pose, the agent needs
to infer the associated relative movements gkt . We have
established in Section 2.1.1 that the relative movement gk

of the agent is related to its absolute movement g through
gkt = (pk)−1gtp

k. As the group representation is a homo-
morphism we get ρ(gkt ) = ρ(pk)−1ρ(gt)ρ(p

k). However
pk, the object’s pose in the scene is unknown. The agent
only needs to estimate the conjugation matrix P k := ρ(pk).

As the agent performs an action gt, it observes the tran-
sition (ot, gt, ot+1), from which it can get the representa-

Figure 3. Dynamic stitching: (a) Act and observe in the global
scene. (b) Represent on the object manifold, the relative movement
gkt is unknown. (c) Infer P k that transforms the observed gt to gkt .

tions transition (zkt , ρ(gt), z
k
t+1). The transition satisfies

zkt+1 = (P k)−1ρ(gt)P
kzkt . By having the agent navigate

the scene and observing how its representation of object
k changes, we can estimate P k from a dataset of tuples
(zkt , gt, z

k
t+1)t through minimizing the least squares in Equa-

tion 2. While the solution to this problem is not unique, it
captures the part of the reference change that matters to ob-
tain the right transformation ρ(gkt ). Finding P k for a single
object k is sufficient as the other P l’s can be determined
from the Rkl’s through: P l = RklP k. As optimizing over
invertible matrices can be challenging we use the exponen-
tial matrix parametrization (See Appendix E.1).

P k = argmin
X∈RD×D

|X|≠0

∑
t

||zkt+1 −X−1ρ(gt)Xzkt ||22. (2)

3. Experiments and Results
We refer to the Appendix F for details on our experimen-
tal setup (Appendix F.1) and for different results (Appen-
dices F.2 and F.3).

3.1. Single Object Representations

The single object representations for multiple 3D objects
are obtained by training an HAE model on a dataset of
collected transitions. The learned representation is described
in Appendix F.2.

3.2. Stitched Scene Representation

The scene representation resulting from the stitching pro-
cedure is described in Appendix F.3. We show in Ap-
pendix F.3.1 that the stitching can be used to predict, at
a given time, the representation of objects from a chosen
visible object. We also show in Appendix F.3.2 that the re-
sulting scene representation can be used to predict rollouts,
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where the agent views the image associated with its initial
pose then performs a sequence of actions without accessing
images. By virtue of the equivariance of the composing
object representations, the stitching matrices, the agent can
maintain the representations of all objects as they transform
under its action.
4. Conclusion
We have studied the geometric and interactive structure un-
derlying a static scene with a moving agent, and object
positions and poses. We leveraged equivariant object mod-
els to compose a scene representation from the individual
object representations. The resulting ‘stitched’ representa-
tion supports inferring the scene configuration from seeing
a single object. It also supports predicting the effect of roll-
outs on the agent’s pose relative to the objects. In particular
we showed that this approach is useful for building a scene
pose from relative poses to objects in a large scene. We also
showed that the agent can use the resulting scene pose to
navigate between a source and target observation.

Limitations In this work we focused on the composition
of object representations but we did not give an account
on how to segment observations into object components.
Another limitation is that the objects in the scene should
not present symmetries with regard to the movement of the
agent as this would lead the object model to collapse. A
probabilistic account would solve this by having a controller
choose which objects to rely on as landmarks based on how
informative on the relative pose to the agent they are.
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A. Background on group theory
This appendix provides the necessary concepts from group theory used in the paper.

Definition A.1 (Group). A set G is a group if it is equipped with a binary operation · : G×G → G and if the group axioms
are satisfied

1. Associativity: ∀a, b, c ∈ G, (a · b) · c = a · (b · c)

2. Identity: There exists e ∈ G such that ∀a ∈ G, a · e = e · a = a.

3. Inverse: ∀a ∈ G, there exists b ∈ G such that a · b = b · a = e. This inverse is denoted a−1.

We are often interested in sets of transformations, which respect a group structure, but are applied to objects that are not
necessarily group elements. This can be studied through group actions, which describe how groups act on other mathematical
entities.

Definition A.2 (Group Action). Given a group G and a set X , a group action is a function ·X : G× X → X such that the
following conditions are satisfied.

1. Identity: If e ∈ G is the identity element, then e ·X x = x, ∀x ∈ X .

2. Compatibility: ∀g, h ∈ G and ∀x ∈ X, g ·X (h ·X x) = (g · h) ·X x

The group action ·X : G× X → X induces a group homomorphism ρ·X : G → Sym(X). (where Sym(X) is the group
of all invertible transformations of X) through:

∀(g, x) ∈ G×X, ρ·X (g)(x) := g ·X x

The group homomorphism property of ρ·X comes from the group action axioms of ·X :

ρ·X (id)(x) = id ·X x = x (identity)

= idX(x)

So ρ·X (id) = idX . and

ρ·X (g1 · g2)(x) = (g1 · g2) ·X x = g1 ·X (g2 ·X x) (compatibility)

= ρ·X (g1) ◦ ρ·X (g2)(x)

Equality over all of X leads to equality of the functions: ρ·X (g1 · g2) = ρ·X (g1) ◦ ρ·X (g2).

In what follows, we are interested in linear group actions in which case the acted on space is a vector space V and the
induced homomorphism ρ maps G to the group GL(V ) of invertible linear transformations of V . This mapping is called a
group representation. Actions of this type have been studied extensively in representation theory.

Definition A.3 (Group Representation). Let G be a group and V a vector space. A representation is a function ρ : G →
GL(V ) such that ∀g, h ∈ G, one has ρ(g)ρ(h) = ρ(g · h).

Note that such definition is not restricted to finite dimensional vector spaces, however we will limit our study to this case,
such that representations are appropriately described by mappings from G to a space of square matrices.

B. Related works
Our scene representation approach based on composition is related to the line of research on multi-object representation
learning (Eslami et al., 2018; Burgess et al., 2019; Kipf et al., 2020; Locatello et al., 2020; Kipf et al., 2022; Foo et al., 2023).
While these works are mostly focused on learning object centric representations to perform object detection or extraction,
our works assumes segmentation and focuses on combining the object representation for navigation. In particular, compared
to works on scene understanding, we are to the best of our knowledge the first to leverage the geometric structure of the
scene for navigation.
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Through our stitching procedure, we aim to compose modular world models of scenes from individual world models
of isolated objects. Popularized by (Ha and Schmidhuber, 2018), world models encode an agent’s understanding of an
environment, how it evolves and how actions impact it. Different approaches attempt to learn factorized world models in
terms of the independent mechanisms (Lei et al., 2023) or similar to our work, in terms of the objects contained (Kipf et al.,
2020). The classic approach to learning world models relies on the joint processing of action and state. We instead rely
on algebraic considerations of equivariance between the hidden states space and the representation space. Unlike MDP
Homomorphisms (van der Pol et al., 2020), we do not seek to learn an abstraction of the states and actions based on some
symmetry of the problem, instead we aim for the emergence of a representation that admits the movement actions as a
structuring group. This is based on the idea of group structured representations (Higgins et al., 2018), in particular we use
the HAE architecture (Keurti et al., 2023) for our single object models. However none of the works in this line of research
leverage the learned representations compositionally (Caselles-Dupré et al., 2019; Keurti et al., 2023; Yang et al., 2022).

Modular computation is a promising way to solve large problems. (Kirsch et al., 2018) proposes to learn a controller which
selects modules based on input. For our specific problem, the module selection does not require a complex controller, it is
solely based on which objects reconstruct best.

C. Overview commutative diagram
We present in Figure 4 the overview commutative diagram of the stitching procedure which highlights the different
components of the model and how it builds on top of existing single object models.

Figure 4. Absolute and relative poses and actions diagram. All of (hk, Rkl, P k)k are learned from interaction. hk is the single object
encoder, part of the object specific HAE. Rkl is the static stitching matrix between poses and P k is the dynamic stitching matrix which
conjugates the global action performed in the scene into relative actions performed in the object manifold.

8
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D. Single object representation
D.1. Homomorphism AutoEncoder

The Homomorphism AutoEncoder (h, d, ρ) is an autoencoder (h : O → Z, d : Z → O), with Z the representation
space, equipped with a group representation ρ : G → GL(Z). It learns representations which satisfy the equivariance
property: h(ot+1) = ρ(gt)h(ot) for any transition (ot, gt, ot+1). In other words, acting in the real world then representing
the observation yields the same representation as first representing the observation then acting in the representation space.
This model learns representations constrained by the actions of the agent and learns a representation manifold similar to the
pose space.

D.2. Losses

Each single object model is an HAE (Keurti et al., 2023) trained by minimizing a composite loss of a reconstruction loss (as
usual autoencoders) and a latent prediction loss ensuring equivariance between the agent’s actions and transformations of
the representation space. Similarly to (Keurti et al., 2023), we find training on 2-step transitions to work best:

L = Lrec + γLpred (3)

Lpred = L2
pred(ρ, h)=

3∑
t=2

∥∥∥∥∥h(ot)−( t−1∏
i=1

ρ(gi)
)
h(o1)

∥∥∥∥∥
2

2

(4)

Lrec = L2
rec(ρ, h, d)=

3∑
t=1

∥∥∥∥∥∥ot−d

( t−1∏
i≥1

ρ(gi)
)
h(o1)

∥∥∥∥∥∥
2

2

, (5)

where by convention an empty product is 1.

D.3. Manifold score

In the case of a transitive action of the group G on the states space S, every state s can be reached from any chosen start
state s0 through the action of a group element g, and therefore satisfies s = gs0. A group-structured representation (h, ρ)
satisfies the same property in the representation space z = ρ(g)z0, and it follows that ρ(g−1)z for all representation vectors
land in the same location z0. Based on this observation (Tonnaer et al., 2022) introduces a metric to evaluate how well the
learned manifold fits the structure of G by measuring the variance of the representation vectors ρ(g−1)z after applying
the inverse of their associated action. With the group action being regular, we can designate an origin (canonical) state s0
which we identify with the identity of the group and identify every other state s = gs0 with the group element g. As such to
evaluate how well each object manifold is learned we evaluate how ρ(skt )

−1zkt clusters around the representation of the
canonical point:

m :=
Vt[ρ(s

k
t )

−1fk(skt )]

Vt[fk(skt )]
=

Vt[ρ(s
k
t )

−1hk(okt )]

Vt[hk(okt )].

D.4. Learned representation manifold

We show in Figure 5 the learned representation manifold for one of the objects. The representation is 4D augmented by a 1
to make the action of the affine translation group linear. Due to the expression of the group representation ρ, the first two
components encode (x+ x0, y + y0) while the last two encode orientation through (c cos(θ+ θ0), c sin(θ+ θ0)) where c is
a scaling factor and (x0, y0, θ0) is an offset. We visualize the first two component through a scatter plot where we color by
the true x and scale according to the true y. We visualize the orientations by estimating θ = arctan2(z[3], z[4]), which we
use to orient an arrow on the scatter plot. We show in Figure 6 the associated manifold score for this learned representation.

E. Stitched scene representation
E.1. Optimizing over invertible matrices

The optimization problems Equations 1 and 2 are constrained to invertible matrices. To avoid enforcing the non zero
determinant constraint or computing the inverse, we use the matrix exponential to parametrize invertible matrices X =

9
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Figure 5. Learned single object representation. The scatter plot corresponds to the first two units of the learned representations zkt = hk(okt )
for a set of poses skt of the agent in scene k. These units are shaped to correspond to the x (color) and y (size) of the actual pose of the
agent. In red, the representations for a square trajectory of the agent around the object including few samples over the trajectory, the
orientation of the arrows is obtained from the last two units of the representations, which are shaped to correspond to (c cos θ, c sin θ).

Figure 6. The manifold score for learned representation manifold of the example bunny object.
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Figure 7. Representation of object 0 maintained from different source objects as the agent performs a long rectangle path around the
objects. Colors indicate the source object used on that part of the path. Different arrows correspond to all object representations predicted
from the reference object. This can be viewed as an animated GIF here.

exp(A) for A ∈ RD×D. (Bader et al., 2019) proposes an inexpensive differentiable approximation to the matrix exponential.
The optimization problems in Equations 1 and 2 become the unconstrained problems in Equations 6 and 7.

Rkl = exp
(
argmin
A∈RD×D

∑
t

||zkt − exp(A)zlt||22
)
. (6)

P k = exp
(
argmin
A∈RD×D

∑
t

||zkt+1 − exp(−A)ρ(gt) exp(A)zkt ||22
)
. (7)

E.2. Example scene

We consider a scene containing 9 objects in a row. As such each object can only be connected to its neighbour. We learn the
matrices Rkl for connected objects, then use composition to compute Rkl for disconnected objects. Note that some pairs
require a product of 8 matrices to connect. We consider a single object id = 0 as the reference in the scene. Now wherever
the agent is in the scene, it computes the representation of this one object. We show Figure 7 how the scene representation is
maintained by considering different sources at each time.

F. Experimental results
In this section, we highlight the benefits of the stitching procedure on an example environment.

F.1. Experimental setup

Using Mujoco, we generate 3D scenes composed of multiple static objects. A cart like agent navigates the scene by
translating in the xy plane and rotating its head, where a camera is mounted, around the vertical axis. The agent’s pose
s = (x, y, θ) in the scene is described by its position (x, y) and its head direction θ. Similarly, the kth object pose is denoted
pk = (ak, bk, αk), with (ak, bk) its position on the (xy) plane and αk representing rotation around the vertical axis with
regard to a canonical orientation. A camera on the agent’s head captures image observations ot of the scene and the image
segments okt for each object k. The agent can move in a given scene through displacement actions g = ds = (dx, dy, dθ).
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F.2. Learned individual object models

In a first phase we train the per object models (hk, dk) on transitions (okt , g
k
t , o

k
t+1) from the scene k where the object k

is put at the origin and at the canonical orientation (ak = 0, bk = 0, αk = 0). With skt = (xk
t , y

k
t , θ

k
t ) the pose of the

agent in this scene, we limit the training domain for (xk
t , y

k
t ) to a square centered around 0 with edge L as the object

is too far to be visible well otherwise, thetakt is limited for each position to values where the object is visible. The
agent’s actions are given by gkt = dskt = (dx, dy, dθ), the displacements in the scene k, which is also the change in the
relative position of the agent to the object k in the coordinates of scene k. ρ : G → GL(Z) defined by the mapping

ρ : (dx, dy, dθ) 7→


1 0 dx 0 0
0 1 dy 0 0
0 0 1 0 0
0 0 0 cos(dθ) − sin(dθ)
0 0 0 sin(dθ) cos(dθ)

 is not trained and is shared across scenes. It acts on the

representations output by the encoder h(okt ) augmented by 1 at the 3rd position to use the group representation of the
translation.

Each of the object specific HAEs successfully learns an encoder hk which maps images of object k to the representation Z
on a manifold structured by ρ.

Manifold: The constraint imposed by the consistency loss and the action of the group representation on the encoder h
leads the representation to be similar to (x, y, c cos(θ), c sin(θ)) the relative pose of the agent with regard to the object up
to a constant offset translation of the position (x, y) and a constant offset rotation of the orientation θ, as can be seen in
Figure 5. The orientation component is learned up to a constant scaling c as only the angle matters to the rotation action. We
show in Figure 6 the associated manifold score for this learned representation, as described in Appendix D.4.

F.3. Stitched scene representation

We generate a few example scenes with K (∈ J3, 9K) objects from the objects we trained models on. The agent renders
observations ot of the scene and navigates with actions gt = (dx, dy, dθ) on its pose st = (xt, yt, θt). For each observations
we also have pixel masks for each of the objects, which can be used to produce each image segment okt . For each object
segment okt , the reconstruction error ||okt − dk(hk(okt ))||22 can be used to determine if the object k is well visible. For
example, a high reconstruction error could be explained by occlusion or the object being further than the training domain.
We use this signal to determine if the associated representation zkt = hk(okt ) is reliable and can be used for stitching.

F.3.1. STATIC STITCHING

Learn Rkl : The agent randomly moves in the scene and collects a dataset of N observations (ot)t∈[N ]. For each pair
of objects (k, l), we select a subset of Nkl observations (oti)i∈[Nkl] where both objects k and l are visible with reliable
representations. From those the agent computes the representation vectors (zkti , z

l
ti)i∈[Nkl] from the associated segments

(okti , o
l
ti). Finally we solve the least squares problem in Equation 6 to obtain the matrices Rkl. We show in Figure 7 a

stitched scene pose from different source objects. We also show it here in animated GIF format.

Disconnected objects : If Nkl is too low or zero which corresponds to objects that are never seen in the same image, we
will say the two objects are not connected and rely on composition instead. After learning Rkl for the connected pairs of
objects, we recursively compute products Rkl = RkiRil until no new connection can be made. In our experiments, we only
considered scenes where this process ends with all objects being connected.

Relative poses and scene pose : The benefit of the static stitching step is to provide a mean to predict an estimate of the
relative pose to any object k from an object l currently in the field of view, despite the object k being occluded or out of the
field of view. Indeed this provides alternative computation paths to estimate zkt other than zkt = hk(okt ). In the same spirit,
we show that thanks to the stitching, the agent can hop from one object representation to another to maintain a continuous
and coherent estimation of the relative pose representation zk0

t to a single object k0. By considering this object the origin of
the scene, we obtain a representation of the pose of the agent in the scene.
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Figure 8. Rollouts along a square path from ocow
0 (Bottom Left) the cow segment of the observation o0 at the start of the path. Top row

shows the observations ot along the path. Bottom Center shows the representations zkt = hk(okt ) for each object specific segment,
the colors match the colors of the objects. The star indicates hcow(ocow

0 ). Middle row shows the reconstructions from the predicted
representations ẑkt .

F.3.2. DYNAMIC STITCHING

Learn P k : The agent randomly moves in the scene and collects a dataset of N transitions (ot, gt, ot+1)t∈[N ]. For each
object k, we select a subset of Nk transitions where object k is visible in both observations. These result in the representation
transitions (zkt , gt, z

k
t+1). From which P k can be obtained from solving the problem in Equation 7.

Rollouts : With the conjugacy matrix P k learned, the agent can transport its actions gt to transformations ρ(gkt ) =
(P k)−1ρ(gt)P

k of the representation space of object k. As a result it can predict long rollouts in virtue of the equivariance
commutative diagram its representation satisfies. From a start observation o0, if object k is visible, then the representations
after t actions can be predicted through: zkt = (P k)−1

∏t−1
i=0 ρ(gi)P

kh(oko). In addition, through the static stitching matrices
Rkl, the rollouts can be predicted from any start observation o0 if a connect object l is visible, not necessarily k. Figure 8
shows rollouts for a sequence of 400 actions from a single object in o0.

F.3.3. SOURCE-TARGET NAVIGATION

We highlight the benefit of our stitching procedure through a navigation task: at a given pose s0 of the agent in the
scene, the agent observes the source observation o0. We choose a target image oT from a random pose sT and we ask
which action g∗ should the agent take to observe oT . If o0 contains object k and oT contains object l, we obtain the
representations zk0 and zlT , which should satisfy zlT = Rlk(P k)−1ρ(g∗)P kzk0 . The action g∗ can be obtained by minimizing
||zlT −Rlk(P k)−1ρ(g)P kzk0 ||22. For source and target objects k and l that are too far apart, the errors may accumulate and
g∗ does not match to the minimum of this optimization problem. In this case, we can find the sequence of actions which
take the agent from source to target by repeatedly solving the optimization problem and updating the source pose.
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