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Abstract—Activity preceding the onset of epileptic seizures has
been an elusive subject for neuroscience research, without a clear
grasp of what patterns might be responsible. In this work, we
present an out of the box approach to this problem, trying to
mimic the visual inspection process that a trained physician
might do to locate the beginning of a pre-ictal state in an
EEG plot. We explore different data labeling methods for the
posterior training of a Convolutional Neural Network, taking
into account only visual characteristics for classification. Ten
second images (300x400 px) were synthesized from scalp EEG
recordings belonging to 10 epileptic patients from the public
Physionet CHB-MIT database. A tortuosity measure was taken
for each one-second window, for each channel (23 channels in
10-20 bipolar configuration). Unsupervised clustering methods
in conjunction with the mean and the standard deviation of the
tortuosity sets were used to identify pre-ictal states; interictal
states were selected according to the same proximity criteria
used for the Kaggles Melbourne University AES/MathWorks/NIH
Seizure Prediction Challenge. The proposed labelling method
indentified 28 posible pre-ictal states across 10 patients. Data
from pre-ictal states and interictal states was used to train ,
and test, a Convolutional Neural Network classifier for each of
the 8 patients selected. A classification accuracy of 99.29% was
achieved for the best patient; however, an accuracy of 46.93%
was also obtained for the worst patient. Mean performance across
patients was 76.03%, a 52.07% improvement over chance.

Index Terms—CNN, Deep Learning, epilepsy, medical imaging.

I. INTRODUCTION

EPILEPSY is a neurological disorder affecting 39 million
people worldwide, from which at least two thirds

are in an age superior to 60 years [1]. This condition is
most noticeable due to the presence of abnormal electric
discharges in specific regions of the brain, affecting the
normal activity of nerve tissue in the organ, this episodes are
called epileptic seizures. Different types of seizures can be
identified according to the epileptic focus location and how
many neurons are affected [2].

Nowadays, the common protocol of monitoring a person
with this condition is the use of electroencephalography
(EEG), which can vary according to the type of electrode
or its distribution. Electrodes can either be invasive or not,
non invasive electrodes are placed in the scalp of the patient.
This instrumentation is capable of identifying electrical
activity in the extracellular region of the nerve tissue,
different electrodes collect electrical information unique for
their channel, the brain location that its being measured
by the electrode. Currently this procedure is used for the
diagnosis and monitoring of epileptic patients, the activity
registered by the different channels is examined posterior to
the study, with the purpose to identify an epileptic event for

the correct specific diagnosis of the patient [3]. Diagnosis
consist in the visual examination of the EEG by a specialist
that has to identify, not only the type of event that can
occur, but also the starting times of the clinic condition,
even when the patient is not showing physical symptoms
(silent epileptic seizures). In general, the neurologist tries
to search for zones with low amplitude and frequency
in the signal followed by a progressive increase of those
features, then finalizing in a new segment of the signal with
a relative low amplitude and frequency signal again [3];
this behavior is synchronized in different channels of the EEG.

The clinical care of epileptic patients is a topic that has
gathered attention of various professionals involved with the
disease, new methods of diagnostic and care for those patients
search the improvement of the way which the patients face
their condition and also to mitigate the repercussion of the
symptoms in their daily lives. The objective of this work is to
look for new ways to identify activity preceding seizures, with
the ultimate goal of alerting the patient of incoming episodes.

II. MATERIALS AND METHODS

A. Dataset

Scalp EEG data was obtained from Physionet’s CHB-MIT
Scalp EEG Database [4], it contains scalp EEG data from
23 subjects, ranging from ages 1.5 - 22, for 5 males and 17
females. We selected a subset of 10 patients for our work, 6
females and 4 males, again from ages 1.5 - 22. Records were
converted to the same bipolar 10-20 format as that of subject
chb01, records with missing channels were ignored. From the
processed data, 300 x 400 px images were created, each one
containing 10 seconds of EEG data from 23 channels, as can
be seen in Fig.1, these images were used for posterior analysis.

B. Pre-Processing

Given that the image is in binary format, relevant visual
characteristics were constrained, as it has to be representative
of the underlying signal but exploiting the generality and scale
that visual representations give. A perfect candidate feature is
the tortuosity, as has been used in multiple medical imaging
applications for vessel characterization [5]. Although there
are multiple ways to evaluate tortuosity, the most common
is characterized as:

T =
L

D
(1)
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Fig. 1: Visual representation of EEG signal created for all data
samples. 23 channels in 10/20 configuration

Where L denotes the total length of the segment and D its
cord length (the distance between endpoints).

For each one second image snippet (13x40 px) tortuosity
was calculated, producing a 230 dimensional feature vector
for each image. To estimate the segment length, pixel counting
was used, plots with steep ascends (amplitude) or with high
frequencies are going to be ‘larger’, thus having greater
tortuosity, than those that do not present much activity; cord
length was fixed to be constant, 40 px, as the greatest possible
value was 42.05 px. Using these constraints, tortuosity can
be represented as a linear transformation of pixel density
(number of white pixels), optimizing computation time:

T = 1− ρpx
W ∗H

(2)

III. RESULTS

A. Features

Normalized tortuosity was used for clustering analysis, as
a first approach, each of the 10 seconds snippets for the 23
channels were used as feature vectors (230 features). Despite
its high dimensionality, there is clearly a pattern in centroid
distribution after fitting a K-means model [6] (Fig. 3a), as
each centroid corresponds to a combination of mean activity
in spatial channels; furthermore, each channel combination
contains channels with similar mean activity (Fig. 3b).

To account for changes in activity within and between
channels, and reduce dimensionality of the problem, the mean
tortuosity and its standard deviation were calculated for the 23
x 10 tortuosity matrix corresponding to a 10 second image.
These two variables were highly correlated for all patients, as
can be seen for subject 1 in Fig. 2, although its not entirely
clear why. To validate this result and confirm that it is not
biased by the method implemented, a set of images generated
from random signals was evaluated, finding no correlation
between variables in it.

Fig. 2: Mean tortuosity and its standard deviation across time
(Subject 1). Illustrating the high correlation between these two
variables.

B. Labeling

Tortuosity deviation for each ten second image was
calculated and used as a feature to fit a K-means model
with 20 groups. After classification, it is possible to identify
changes in grouping for activity preceding some of the
seizures (Fig. 4). To quantify this, Shannon’s Entropy was
calculated for a moving window of the preceding 15 minutes
(90 datapoints) across time. The difference of the resulting
entropy signal was taken and smoothed with a moving mean
of 15 minutes, using its squared value to find the mean change
in entropy µ and its standard deviation σ. The changes in
grouping activity can then be found thresholding the signal
at value µ+ σ. Due to the nature of the data, all the positive
values after thresholding were set to 0 if they were adjacent
to discontinuities in the signal.

After filtering discontinuous data, a moving sum of 15
minutes was calculated to get an activation signal (avoiding
multiple activations for the same pre-ictal state). This method
also identified changes in waking activity and post-ictal states,
as these are not of interest for labeling, signals less than an
hour after a seizure or more than four hours away until the
onset of one were ignored (invalid activations and adjacent
values set to 0). Finally, data corresponding to the closest
activation to the onset was used as a candidate of a pre-
ictal state (Table I). Interictal states, however, were classified
using the same criteria as Kaggle’s Melbourne University
AES/MathWorks/NIH Seizure Prediction Challenge [7]: mul-
tiple seizure clusters were identified, a cluster containing
consecutive seizures less than 4 hours apart; interictal data
must be more than 4 hours away from any cluster.

C. Network Training

For each subject, training and testing sets were selected
from different seizure onsets for pre-ictal data, and between
seizures for interictal data. All subjects training sets were
class-balanced, also for most of the testing sets with the excep-
tion of subject 5 (Table II). A Convolutional Neural Network
[8] was used to classify each image, the network’s architecture
was built from scratch (Fig. 5), given that existing ones might
be biased for natural image recognition. Training was done
with error backpropagation using Stochastic Gradient Descent
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TABLE I: Results of Proposed Method in each patient

Subject Seizures Candidate Preictal States Min Duration [min] Max Duration [min] Mean Duration [min]

1 7 5 39 212 74± 48.2
2 3 1 47 47 47± −
3 7 1 24 24 24± −
4 4 2 176 218 197± 29.7
5 5 2 79 80 79± 0.707
6 10 6 11 127 72± 44.5
7 3 2 57 277 167± 155.6
8 5 2 27 55 41± 19.8
9 4 3 4 205 134± 112.5
10 7 4 11 135 54± 57.3

Total 55 28 47.5 138 88.9± 7.6

(a) ’Centerwise’ value visualization (b) Global value visualization

Fig. 3: Centroid results for 230 features (Subject 1). a: 20 centroids of 23 x 10 corresponding to 10 second information for
each channel, color coded for minimum (blue) and maximum (yellow) values in each centroid. b: Centroid visualization color
coded for minimum and maximum values across all centroids.

[9] with a decaying learning rate (0.99n), momentum = 0.5 and
weight decay = 0.01, with mixed patient-dependent results, as
shown in Table II.

IV. DISCUSSION

The EEG plotting gives a more general view of the signal,
but at loss of local characteristics and, feature selection
from it becomes a whole new problem as well. An almost
linear relation was found between the mean of the tortuosity
(proportional to high frequency/ high amplitude electrical
activity) and its standard deviation, posing the question if
variability within and between channels only occurs when
high frequency/ high amplitude activity is present.

The first major hurdle for the development of a predictive
algorithm is the correct classification of its training data,
current methodology relies on a one size fits all time frame to
separate preictal and interictal states, although we were able
to identify some preictal states, the nature and variability of
seizures makes it a difficult problem. Visual based classifi-
cation with Convolutional Neural Networks gives promising
results, although it varies between patients. Multiple factors
might be responsible for this: some patients could present
easily predictable brain activity while others do not; the
labeling method misclassified some of the training data or
simply there wasn’t enough data for the network to learn
global patterns.

Future work should focus on finding common ground be-
tween a time frame for classification and unbiased feature se-

lection, Recurrent Convolutional Neural Networks and feature
embedding might be a good fit for this problem, in order to
find an accurate representation of the underlying distribution
of brain activity and detect its abnormalities without assuming
it (i.e. no need for a K-means model).

REFERENCES

[1] “Global, regional, and national incidence, prevalence, and years lived
with disability for 310 diseases and injuries, 1990 2015: a systematic
analysis for the global burden of disease study 2015.” The Lancet, vol.
388 (10053), p. 14591544, 2016.

[2] S. Wilson, “Epileptic variants.” J Neurol Psychopath, vol. 31, p. 223240,
1928.

[3] N. Ahammad, T. Fathima, and P. Joseph, “Epileptic variants.” BioMed
Research International, vol. 2014, pp. 1–7, 2014.

[4] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff,
P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K.
Peng, and H. E. Stanley, “Physiobank, physiotoolkit, and physionet,”
Circulation, vol. 101, no. 23, pp. e215–e220, 2000. [Online]. Available:
http://circ.ahajournals.org/content/101/23/e215

[5] E. Bullitt, G. Gerig, S. M. Pizer, W. Lin, and S. R. Aylward, “Measuring
tortuosity of the intracerebral vasculature from mra images,” IEEE
Transactions on Medical Imaging, vol. 22, pp. 1163–1171, 2003.

[6] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129–137, 1982.

[7] “Melbourne university aes, mathworks, nih seizure prediction challenge,”
2018. [Online]. Available: https://www.kaggle.com/c/melbourne-
university-seizure-prediction/data

[8] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, “Backpropagation applied to handwritten zip code
recognition,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

[9] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” nature, vol. 323, no. 6088, p. 533,
1986.



IX SEMINARIO INTERNACIONAL DE INGENIERÍA BIOMÉDICA 4

Fig. 4: K-means classification using tortuosity std. (Subject 1). Changes in group distribution are observed moments before
seizure onset.

Fig. 5: Convolutional Neural Network architecture

TABLE II: Data samples and accuracy

Subject Training Testing Best Accuracy
Preictal Interictal Preictal Interictal

4 1332 1332 1200 1200 99.29 %
1 248 248 243 243 93.00 %
5 477 477 404 474 91.34 %
8 250 250 112 112 88.39 %
9 1242 1242 1158 1158 66.53 %
7 1414 1414 341 341 61.88 %
6 1926 1926 480 480 60.93 %
10 814 814 326 326 46.93 %
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Supplementary Fig. 1: Training set Accuracy vs. Epoch

Supplementary Fig. 2: Testing set Accuracy vs. Epoch

Supplementary Fig. 3: Training set Cross-entropy vs. Epoch
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Supplementary Fig. 4: Testing set Cross-entropy vs. Epoch


