
FlashMask: Reducing the Complexity of Attention
Computation through Sparse Mask Representation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent advancements in Larger-Scale Transformers have significantly benefited1

from sophisticated attention mechanisms, which are critical for modeling long-2

context sequences. However, the computational and memory demands of conven-3

tional attention mask computations, typically scaling with an O(𝑁2) complexity4

where 𝑁 is the sequence length, pose significant challenges. This paper intro-5

duces FlashMask, a simple yet effective Exact attention algorithm designed to6

substantially reduce both the computational complexity and memory requirements7

of attention computations. By adopting a novel column-wise sparse representation8

of attention masks, FlashMask achieves a linear memory complexity of O(𝑁) and9

computational complexity of O(𝑁) ∼ O(𝑁2). We assess the performance of Flash-10

Mask in a variety of masking scenarios, including causal and customized attention11

masks, demonstrating its versatility and robustness across a wide range of attention12

patterns and models. Our empirical analysis encompasses a variety of downstream13

training modalities, including Supervised Fine-Tuning (SFT), Direct Preference14

Optimization (DPO), and Reward Model (RM). We compare FlashMask against15

state-of-the-art techniques, including notably FlashAttention [1]. In kernel-level16

assessments, FlashMask achieves substantial computational speedups, up to 6.7x17

(SFT), 6.9x (DPO), and 8.3x (RM). Furthermore, in end-to-end training, FlashMask18

consistently enhances training speed significantly, with accelerations up to 2.4x19

(SFT), 4.2x (LoRA), 2.5x (DPO), and 2.6x (RM) across these varied scenarios20

without sacrificing model accuracy. Additionally, when implemented in the LoRA21

scenario, FlashMask enables the LLaMA2-7B to process sequence lengths of up to22

544k, significantly enhancing its capability for long-context input.23

1 Introduction24

Transformers [2] , equipped with self-attention mechanisms, have revolutionized natural language25

processing (NLP) by efficiently modeling data dependencies without the limitations of sequential26

processing. This makes them ideal for handling long sequences. Large Language Models (LLMs),27

which utilize training paradigms such as Supervised Fine-Tuning (SFT) [3, 4] and Reinforcement28

Learning from Human Feedback (RLHF) [5, 6], critically rely on selective attention management29

through masks. Effective mask management is essential to focus selectively on pertinent data30

segments, optimizing both performance and computational efficiency.31

However, the conventional attention mechanism in Transformers entails a quadratic increase in32

computational and memory demands O(𝑁2), where 𝑁 denotes the sequence length. This exponential33

growth presents substantial challenges as models scale to sequence lengths ranging from 128K to34

1M in advanced systems like GPT-4 [7], Claude [8], and Gemini [9], necessitating more efficient35

computational approaches. As sequence lengths extend, the memory load for masked attention36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

computations also grows quadratically, adversely affecting computational speed and the ability to37

manage various mask configurations across different tasks. Current methodologies often resort to38

approximate sparse attention strategies [10, 11, 12], which unfortunately trade off precision for39

computational efficiency, underscoring an essential gap in achieving high precision with reduced40

computational costs.41

This paper introduces FlashMask, a novel approach utilizing a sparse mask representation to accelerate42

attention computations in transformers, effectively addressing both computational and memory scala-43

bility issues. Unlike previous methods that compromise accuracy for efficiency, FlashMask provides44

precise computations without sacrificing accuracy, ensuring high fidelity in attention mechanisms.45

The contributions of this work include:46

• Exact Computation. FlashMask uniquely ensures precise attention computations across varying47

sequence lengths and tasks. It employs a unique column-wise sparse mask representation, denoted48

by FlashMaskStart (FMS) and FlashMaskEnd (FME), to precisely mask specific rows within49

columns, ensuring computational efficiency and accuracy.50

• Long Context Modeling. FlashMask significantly reduces computational and memory demands,51

enabling efficient processing of extended sequences critical for deploying LLMs in resource-limited52

settings.53

• Efficient Mask Computation. FlashMask leverages strategic sparse masking to increase compu-54

tational throughput, thereby improving processing speeds and broadening the practical utility of55

LLMs in diverse real-world scenarios.56

• Extensive Empirical Validation. Empirical studies validate FlashMask’s efficiency in computation57

and storage. Its practical application in real-world scenarios and integration with existing frame-58

works underscore its potential impact. Moreover, a comprehensive comparison with state-of-the-art59

methods like FlashAttention-DenseMask, FlashAttention-Varlen highlights FlashMask’s efficiency60

and versatility.61

2 Background62

The attention mechanism has revolutionized data handling in NLP by mimicking human selective63

focus, allowing neural networks to prioritize parts of the input data. This addresses limitations64

of traditional sequence-to-sequence models, enhancing context awareness in long sequences. The65

Transformer model by Vaswani et al. [2] implements this mechanism centrally, using multiple parallel66

attention heads instead of recurrent layers, thus improving efficiency and performance.67

2.1 Attention Computation68

Central to the Transformer architecture is the attention mechanism, which computes relevance69

scores between elements in a sequence to focus more on important aspects and less on others. This70

mechanism can be expressed as:71

Attention𝑚𝑎𝑠𝑘 (𝑄, 𝐾,𝑉) = softmax
(
𝑄𝐾𝑇

√
𝑑𝑘
+ 𝑀

)
𝑉, (1)

where 𝑄, 𝐾, 𝑉 , and 𝑀 represent the query, key, value, and mask matrices respectively, derived72

from the input data, and 𝑑𝑘 is the dimension of keys. The term 𝑀 incorporates constraints to73

selectively consider certain parts of the input sequence during attention computation, enabling74

functionality like masking future tokens in sequence-to-sequence modeling. One inherent challenge75

with attention is its computational and memory complexity, both of which scale quadratically with76

the length of the input sequence. Processing long sequences presents significant challenges, which77

are exacerbated in the downstream pipeline of training large language models (LLMs). Different78

training stages, such as Supervised Fine-Tuning (SFT/LoRA [3, 4, 13, 14, 15]), Direct Preference79

Optimization (DPO) [16, 17, 18, 19, 20], Reward Model (RM) [5, 21, 22, 23, 24], and Proximal80

Policy Optimization (PPO) [25, 6], place diverse demands on the attention mask.81

2.2 Masking Variable-Length Sequences82

The advent of large transformer-based models has marked substantial progression in handling83

increased sequence lengths in natural language processing. Previously, models like BERT [26] and84

2

GPT-2 [27] were limited to sequences of approximately 512 tokens, whereas more recent adaptations85

such as the LLaMA [28, 29, 30], GPT-4 [7] and Claude series [8] stretched these limits to encompass86

2K to 200K tokens, respectively. Innovations from Google’s Gemini [9] have further shifted this87

boundary, managing up to 1M tokens. Enhanced sequence management within these models employs88

various masking techniques in the attention matrix, adapting to the length and diversity of input89

sequences. Techniques such as the use of padding operations are illustrated in Figure 1(a), which help90

maintain efficiency by allowing uniform processing of diverse input lengths through padding masks.91

However, conventional padding can lead to inefficiencies due to the diverse sequence lengths typically92

found in training data, often following a long-tail distribution. This issue is adeptly addressed by93

dynamic token allocation technologies like InToken [31, 3, 32, 33, 34], which optimize computational94

resources by adjusting the token count based on actual data needs, significantly improving the training95

efficiency for datasets with various sequence lengths in Figure 1(b)(c).96

(a) (b) (c) (d)
Figure 1: Common patterns of attention masks. (a) Padded masks from single-sequence inputs in
unidirectional (uni-) attention. (b) InToken masks from grouping several masks with different lengths
in uni-attention. (c) InToken masks in bidirectional (bidi-) attention. (d) Question and Answering
Masks in uni-attention.

Despite having extensive text-handling capabilities, the meticulous design of masking configurations97

remains crucial for specific training scenarios. The illustrated scenarios in Figure 1(d) and Figure 298

depict various specialized masking mechanisms employed to enhance model training efficiency and99

applicability. Figure 1(d) illustrates a scenario involving DPO/RM with two or more answers, where100

each answer’s tokens have visibility to the tokens of the question, and tokens from different answers101

are not visible to each other. Multi-shot and in-context learning scenarios facilitated by extended102

attention spans in configurations like Figure 2(a) are becoming prevalent, which allows the final103

question in a series to receive comprehensive attention, enhancing contextual understanding [35,104

36]. Furthermore, hybrid masking forms combining features from different methodologies are105

demonstrated in Figure 2(b). These incorporate sink tokens [37] and a sliding window mask from the106

Big Bird [38], facilitating a localized yet extensive context capture. Figure 2(c) is also derived from107

Big Bird, showing a bi-directional global attention mask, which allows for a comprehensive global108

context capture. Such innovative approaches in masking not only bolster the efficiency of training109

large transformer models but also pave the way for advanced explorations into the capabilities of110

attention mechanisms, such as simulating token eviction during inference as depicted in Figure 2(d).111

These advancements underscore the dynamic and adaptable nature of transformer technology in112

accommodating varying training needs and enhancing the overall performance of LLMs.113

2.3 Attention Optimization Techniques114

As aforementioned in Equation 1, the computational and memory demands of this mechanism,115

particularly the computation of 𝑄𝐾𝑇 , become significant as the sequence length 𝑁 increases. This116

is due to the size of the resultant attention scores matrix, which scales quadratically with the117

sequence length, leading to a complexity of O(𝑁2). Several related works has been proposed to118

alleviate the issue. In the realm of model training optimizations, Memory Efficient Attention [39]119

(MEA) and FlashAttention [1] have been pivotal. MEA focuses on reducing the model’s memory120

demands by altering the self-attention mechanisms. This allows either for the use of larger models121

or for the extension of maximum sequence lengths within existing hardware constraints. On the122

3

(a) (b) (c) (d)
Figure 2: Extended patterns of attention masks. (a) In-context learning formatted multi-shot masks in
uni-attention. (b) Sink + Slidewindow masks in uni-attention. (c) Global masks in bidi-attention. (d)
Customized masks in uni-attention.

other hand, FlashAttention enhances the efficiency of attention mechanisms with IO-Awareness to123

better utilize contemporary GPU architectures, resulting in faster computations and reduced energy124

consumption. This method reduces memory overhead to O(𝑁) utilizing tiling techniques during125

the computation process, making it particularly effective in scenarios without the need for a custom126

mask. However, for specific training contexts requiring custom masking, the memory overhead127

with FlashAttention remains O(𝑁2). Note that, in typical training setups like unidirectional causal128

attention or bidirectional full-context attention, the default mode of operation with FlashAttention129

does not involve passing a custom mask.130

During the inference stage, optimizations such as FlashDecoding [40] and FlashDecoding++ [41]131

play crucial roles. FlashDecoding enhances the decoder in transformers to expedite the generation of132

sequences by optimizing state management and employing techniques that minimize computational133

waste. FlashDecoding++ further advances these improvements, incorporating sophisticated dynamic134

batching and more refined state management to significantly boost throughput and reduce latency.135

Concerning long sequence training, RingAttention [42] is notable for its efficiency in distributed136

training contexts, managing communication overhead and memory utilization effectively across137

multiple nodes.138

Another class of study targets on the sparsity/low-rank of attention computation. The Sparse Trans-139

former [10] revolutionizes sequence processing with log-linear complexity. Similarly, Reformer [43]140

optimizes memory via locality-sensitive hashing, while Big Bird [38] introduces a hybrid attention141

method to manage longer sequences efficiently. Linformer [44] reduces complexity using low-rank142

approximations, significantly economizing computation and storage requirements. Both of the pre-143

viously discussed solutions either compromise precision or yield only marginal enhancements in144

efficiency. Conversely, our proposed FlashMask is capable of delivering an exact computations.145

3 FlashMask: Algorithm and Analysis146

In this section, we present the critical design of the column-wise sparse mask representation, imple-147

mentation of the mask computation kernel, and a complexity analysis of the proposed FlashMask.148

3.1 Column-wise Sparse Mask Representation149

We introduce FlashMask, a column-wise sparse masking technique, represented using FMS,FME ∈150

R𝑁 (the row index of Flash Mask Start and Flash Mask End), where FMS𝑐,FME𝑐 denote that151

elements in the 𝑐-th column of the attention score matrix S = QK𝑇 within the interval [FMS𝑐,FME𝑐)152

are masked (set to −∞). As shown in Fig. 2(a), FMS = [4, 4, 4, 4, 10, 10, 10, 10, 10, 10], FME =153

[7, 7, 7, 7, 10, 10, 10, 10, 10, 10] indicates that, for the first column, the 4-th to 6-th rows are masked.154

3.2 Integration with FlashAttention155

Unidirectional (causal) attention, commonly utilized in large language models, incorporates Flash-156

Mask within the FlashAttention-2 algorithm, as detailed in Algorithm 1. This paper elaborates the157

implementation of FlashMask using the lower triangular section of the mask for illustration, where158

the blue section represents the computation by the dense mask method (for comparison and not159

4

Algorithm 1 Optimized Forward Pass with FlashMask
Require: Matrices Q,K,V ∈ R𝑁×𝑑 in HBM, block sizes 𝐵𝑐 , 𝐵𝑟 , dense mask D ∈ R𝑁×𝑁 , column-wise sparse

mask starting rows FMS ∈ R𝑁 , ending rows FME ∈ R𝑁 .
1: Divide Q into 𝑇𝑟 =

⌈
𝑁
𝐵𝑟

⌉
blocks Q1, . . . ,Q𝑇𝑟 of size 𝐵𝑟 × 𝑑 each, and divide K,V in to 𝑇𝑐 =

⌈
𝑁
𝐵𝑐

⌉
blocks

K1, . . . ,K𝑇𝑐 and V1, . . . ,V𝑇𝑐 , of size 𝐵𝑐 × 𝑑 each.
2: Divide the output O ∈ R𝑁×𝑑 into 𝑇𝑟 blocks O𝑖 , . . . ,O𝑇𝑟 of size 𝐵𝑟 × 𝑑 each, and divide the logsumexp 𝐿

into 𝑇𝑟 blocks 𝐿𝑖 , . . . , 𝐿𝑇𝑟 of size 𝐵𝑟 each.
3: Divide D into 𝑇𝑟 × 𝑇𝑐 blocks D1,1, ...,D𝑇𝑟 ,𝑇𝑐 .
4: Divide FMS into 𝑇𝑐 blocks FMS1, ...,FMS𝑇𝑐 , and divide FME into FME1, ...,FME𝑇𝑐 .
5: Precompute the max value maxFMS1, ...,maxFMS𝑇𝑐 for each FMS1, ...,FMS𝑇𝑐 , write to HBM.
6: Precompute the max value maxFME1, ...,maxFME𝑇𝑐 for each FME1, ...,FME𝑇𝑐 , write to HBM.
7: Precompute the min value minFMS1, ...,minFMS𝑇𝑐 for each FMS1, ...,FMS𝑇𝑐 , write to HBM.
8: Precompute the min value minFME1, ...,minFME𝑇𝑐 for each FME1, ...,FME𝑇𝑐 , write to HBM.
9: for 1 ≤ 𝑖 ≤ 𝑇𝑟 do

10: Load Q𝑖 from HBM to on-chip SRAM.
11: On chip, initialize O(0)

𝑖
= (0)𝐵𝑟×𝑑 ∈ R𝐵𝑟×𝑑 , ℓ (0)

𝑖
= (0)𝐵𝑟

∈ R𝐵𝑟 , 𝑚
(0)
𝑖

= (−∞)𝐵𝑟
∈ R𝐵𝑟 .

12: for 1 ≤ 𝑗 ≤ 𝑇𝑐 do
13: if 𝑖 × 𝐵𝑟 ≥ maxFMS 𝑗 and (𝑖 + 1) × 𝐵𝑟 ≤ minFME 𝑗 then
14: Continue
15: end if
16: Load K 𝑗 ,V 𝑗 from HBM to on-chip SRAM.
17: Load FMS 𝑗 from HBM to on-chip SRAM.
18: Load FME 𝑗 from HBM to on-chip SRAM.

19: On chip, compute S(𝑗)
𝑖

= Q𝑖K𝑇
𝑗
∈ R𝐵𝑟×𝐵𝑐 .

20: On chip, set S(𝑗)
𝑖

= S(𝑗)
𝑖
+ D𝑖, 𝑗

21: if (𝑖 + 1) × 𝐵𝑟 ≥ minFMS 𝑗 and 𝑖 × 𝐵𝑟 ≤ maxFME 𝑗 then
22: On chip, set S(𝑗)

𝑖
[𝑥] [𝑦] = −∞,∀𝑥, 𝑦, such that FMS 𝑗 [𝑦] ≤ 𝑖 × 𝐵𝑟 + 𝑥 ≤ FME 𝑗 [𝑦]

23: end if
24: On chip, compute 𝑚 (𝑗)

𝑖
= max(𝑚 (𝑗−1)

𝑖
, rowmax(S(𝑗)

𝑖
)) ∈ R𝐵𝑟 , P̃(𝑗)

𝑖
= exp(S(𝑗)

𝑖
− 𝑚 (𝑗)

𝑖
) ∈

R𝐵𝑟×𝐵𝑐 (pointwise), ℓ (𝑗)
𝑖

= 𝑒𝑚
𝑗−1
𝑖
−𝑚(𝑗)

𝑖 ℓ
(𝑗−1)
𝑖

+ rowsum(P̃(𝑗)
𝑖
) ∈ R𝐵𝑟 .

25: On chip, compute O(𝑗)
𝑖

= diag(𝑒𝑚
(𝑗−1)
𝑖

−𝑚(𝑗)
𝑖)−1O(𝑗−1)

𝑖
+ P̃(𝑗)

𝑖
V 𝑗 .

26: end for
27: On chip, compute O𝑖 = diag(ℓ (𝑇𝑐)

𝑖
)−1O(𝑇𝑐)

𝑖
.

28: On chip, compute 𝐿𝑖 = 𝑚
(𝑇𝑐)
𝑖
+ log(ℓ (𝑇𝑐)

𝑖
).

29: Write O𝑖 to HBM as the 𝑖-th block of O.
30: Write 𝐿𝑖 to HBM as the 𝑖-th block of 𝐿.
31: end for
32: Return the output O and the logsumexp 𝐿.

present in FlashMask) and the red section indicates the FlashMask computation. FlashAttention160

Forward involves two nested loops; the outer loop iterates over each block Q𝑖 of Q, and the inner161

loop iterates over all blocks K 𝑗 of K and V 𝑗 of V. In the inner loop, S(𝑗)
𝑖

= QK𝑇 is computed on162

SRAM. Once S(𝑗)
𝑖

is generated, the corresponding dense mask is added as a bias (shown in line 20 of163

Algorithm 1), whereas FlashMask applies the column-wise sparse mask by setting elements beyond164

FMS𝑐 but not exceeding FME𝑐 to −∞ (as shown in lines 21 to 23 of Algorithm 1).165

FlashMask further exploits the block computation feature of FlashAttention-2 to reduce computation.166

If all elements within a block are masked, the block’s computation, including matrix multiplication167

and softmax operations, can be skipped. A block defined by rows [𝑟0, 𝑟1) and columns [𝑐0, 𝑐1) is168

skipped if 𝑟0 ≥ max(FMS𝑐0:𝑐1) and 𝑟1 ≤ min(FME𝑐0:𝑐1). Considering that mask regions often169

exhibit continuity, most blocks are either completely masked or not at all, with only boundary blocks170

requiring fine-grained masking. A block is completely unmasked if every coordinate (𝑟, 𝑐) satisfies171

𝑟 < FMS𝑐 or 𝑟 ≥ FME𝑐, thus skipping fine-grained masking and avoiding extra masking overhead.172

To avoid redundant computations in the FlashAttention-2 compute loop, we precompute173

max(FME𝑐0:𝑐1) and min(FME𝑐0:𝑐1) for each block before the execution loop using a kernel. This174

computation has a complexity of O(𝑁) and can be easily distributed over 𝑇𝑐 =

⌈
𝑁
𝐵𝑐

⌉
thread blocks. A175

5

parallel reduction operation within each thread block then computes the maximum and minimum176

values, yielding 𝑇𝑐 values. The additional space complexity introduced here is O(𝑇𝑐). Similar177

computations are made for max(FMS𝑐0:𝑐1), min(FMS𝑐0:𝑐1),.178

The backward computation in FlashAttention-2, which is typically column-parallel, benefits more179

from the column sparse mask approach. Blocks for which
⌊max(FMS𝑐0:𝑐1)

𝐵𝑟

⌋
< 𝑖 <

⌊min(FME𝑐0:𝑐1)
𝐵𝑟

⌋
are180

fully masked, allowing skipping of these intervals directly. Only blocks satisfying
⌊min(FMS𝑐0:𝑐1)

𝐵𝑟

⌋
≤181

𝑖 ≤
⌊max(FME𝑐0:𝑐1)

𝐵𝑟

⌋
require fine-grained masking.182

It is important to note that unlike various approximate attention algorithms, our method ensures183

that each effective element of the attention score matrix is computed identically to FlashAttention-2,184

with masked elements explicitly set to −∞, thus maintaining the accuracy of the algorithm’s results.185

Futhermore, FlashMask is easily extendable to bidirectional attention computations.186

3.3 Complexity Analysis187

We define sparsity as 𝜌 =
𝑝

𝑁 2 , where 𝑝 is the number of masked elements in the attention score matrix,188

and 𝑁 is the maximum sequence length of Q and K, 𝑁2 being the total number of elements in the189

attention score matrix. For a causal mask, 𝜌 =
2×𝑝
𝑁2 since half of the elements in the attention score190

matrix are already masked by the causal mask. The block sparsity 𝛼 is defined as 𝛼 = 𝑎⌈
𝑁
𝐵𝑟

⌉
×
⌈

𝑁
𝐵𝑐

⌉ ,191

where 𝐵𝑟 , 𝐵𝑐 are block sizes, and 𝑎 is the number of completely masked blocks. For a causal mask,192

𝛼 = 2×𝑎⌈
𝑁
𝐵𝑟

⌉
×
⌈

𝑁
𝐵𝑐

⌉ .193

Space complexity. The dense mask is represented as D ∈ R𝑁×𝑁 , with a space complexity of O(𝑁2).194

FlashMask denotes as FMS,FME ∈ R𝑁 , occupying O(𝑁) space, along with four precomputed195

arrays maxFMS,minFMS,maxFME,minFME ∈ R
⌈

𝑁
𝐵𝑐

⌉
, also occupying O(𝑁) space. Thus, the196

total space complexity for FlashMask is O(𝑁), significantly reducing memory usage and supporting197

training on longer sequences.198

Memory access complexity. The dense mask accesses the entire D ∈ R𝑁×𝑁 matrix in line 20 of199

Algorithm 1, totaling 𝑁2 memory accesses on HBM. FlashMask reads the FMS,FME ∈ R𝑁 vectors200

from HBM as shown in lines 17 and 18 of Algorithm 1, with each Q𝑖 reading the entire FMS,FME,201

totaling 2×𝑇𝑟 ×𝑁 memory accesses. This reduces the memory access to approximately 2×𝑇𝑟×𝑁
𝑁2 ≈ 2

𝐵𝑟
,202

significantly boosting performance. Due to FlashMask’s smaller space usage, it is possible to preload203

FMS,FME into SRAM using only 2 × 𝐵𝑐 SRAM, enhancing memory access efficiency. For the204

backward process, which uses a column-parallel approach, SRAM-stored FMS,FME can be well205

reused, further reducing the total memory access on HBM to 2 × 𝑁 .206

Computational complexity. The attention computation process normally iterates over the entire207

attention score matrix, with a computational complexity of O(𝑁2). By skipping entirely masked208

blocks, FlashMask leverages block sparsity to reduce computational complexity to O((1 − 𝛼)𝑁2).209

4 Experiments210

4.1 Setup211

Experiments were conducted using GPU A800-SXM 80G, Intel(R) Xeon(R) Platinum 8350C CPUs,212

CUDA 12.0, and driver version 525.125.06. We evaluated FlashMask against various methods213

including Vanilla Attention, FlashAttention with dense mask (FA-DenseMask), variable length (FA-214

Varlen), and sliding window (FA-Window) across different scenarios and sequence lengths. Both215

kernel-level and end-to-end performance demonstrated the effectiveness of our method.216

4.2 Data Construction217

As mentioned in the Background section, commercial large models now support sequences up to218

128K in length. FlashMask, with its lower memory overhead, can facilitate training with even longer219

6

2 4 8 16 32 64 128
Sequence Length(K)

100

101

102

103

104

La
te

nc
y(

m
s)

SFT
FA-Varlen
FA-DenseMask
VanillaAttention
FlashMask

2 4 8 16 32 64 128
Sequence Length(K)

100

101

102

103

104

La
te

nc
y(

m
s)

DPO
FA-DenseMask
VanillaAttention
FlashMask

2 4 8 16 32 64 128
Sequence Length(K)

100

101

102

103

104

La
te

nc
y(

m
s)

RM
FA-DenseMask
VanillaAttention
FlashMask

Figure 3: Comparison of Kernel Latency Based on Varying Sequence Lengths. FlashMask achieves
substantial computational speedups, up to 6.7x (SFT), 6.9x (DPO), and 8.3x (RM).

contexts. However, currently available public datasets do not contain training data for scenarios220

exceeding 128K. For comprehensive testing of FlashMask, we constructed synthetic data to simulate221

long-sequence training.222

For a given sequence length 𝐿, sequences were generated by mimicking InToken method with several223

sub-sequences. Randomly selecting 𝑠 ∈ [1, 10] split points uniformly within the range (0, 𝐿), the224

sequence was divided into 𝑠 sub-sequences. The segment from the last split point to the end of the225

sequence was considered as Padding. For the RM scenario, shorter sequence lengths used a smaller226

upper limit on the number of splits: 𝑠 ∈ [1, 3] for 𝐿 ∈ (0, 4096] and 𝑠 ∈ [1, 4] for 𝐿 ∈ (4096, 8192].227

By discarding samples not meeting size requirements, we ensure each sub-sequence length was228

at least 128 (SFT, LoRA, DPO) or 512 (RM) and padding not exceeding 128 (SFT, LoRA, DPO)229

or 512 (RM). Suppose one sub-sequence with length 𝐿′ was further divided into a query and 𝑘230

answers based on the scenario. The length of each answer was randomly determined from the231

range [0.1𝐿′
1+0.1×𝑘 ,

0.2𝐿′
1+0.2×𝑘], making the answer lengths approximately [0.1, 0.2] of the query length.232

Therefore, the query length was equal to 𝐿′ minus the total answer lengths. A total of 240 valid233

samples per given sequence length 𝐿 were collected and binned into 10 categories by sparsity 𝜌, as234

shown in Appendix A.2.235

256 512 1024 2048 4096 8192
WindowSize

0

2

4

6

8

10

12

La
te

nc
y(

m
s)

Sequence Length 8K
FA-Window
FlashMask

256 512 1024 2048 4096 8192
WindowSize

0

5

10

15

20

25

30

La
te

nc
y(

m
s)

Sequence Length 16K
FA-Window
FlashMask

256 512 1024 2048 4096 8192
WindowSize

0

10

20

30

40

50

60

70

La
te

nc
y(

m
s)

Sequence Length 32K
FA-Window
FlashMask

0 20 40 60 80 100
Sparsity(%)

0

20

40

60

80

100

120

140

160

180

La
te

nc
y(

m
s)

SFT
FA-Varlen
FlashMask

0 20 40 60 80 100
Sparsity(%)

0

20

40

60

80

100

120

140

160

180

La
te

nc
y(

m
s)

DPO
FlashMask

0 20 40 60 80 100
Sparsity(%)

0

20

40

60

80

100

120

140

160

180

La
te

nc
y(

m
s)

RM
FlashMask

Figure 4: Top: Comparison of Kernel Latency while Varying Window Size. Bottom: Comparison of
Kernel Latency while Varying Input Sparsity.

4.3 Kernel Experiments236

We conducted tests with batch sizes of 1, 2, and 4 using Vanilla Attention, FA-DenseMask, and237

FlashMask. Each experiment began with 5 warm-up runs followed by 50 measurements, totaling 55238

runs with kernel latency as the performance metric. Additional comparisons were made with FA-239

Varlen in the SFT scenario. Results for batch size 1 are shown in Figure 3 (results for batch sizes 2 and240

7

4 8 16 32 64 128 256
Sequence Length(K)

600

800

1000

1200

1400

1600

1800

To
ke

ns
/S

ec
/G

PU

Speed Up 2.46x

LLaMA-7B

VanillaAttention
FA-DenseMask
FA-Varlen
FlashMask

4 8 16 32 64 128 196
Sequence Length(K)

300

400

500

600

700

800

900

1000

To
ke

ns
/S

ec
/G

PU

Speed Up 2.35x

LLaMA-13B

VanillaAttention
FA-DenseMask
FA-Varlen
FlashMask

4 8 16 32 64 96
Sequence Length(K)

100

120

140

160

180

200

To
ke

ns
/S

ec
/G

PU

Speed Up 1.96x

LLaMA-70B

VanillaAttention
FA-DenseMask
FA-Varlen
FlashMask

(a) SFT

4 8 16 32 64 128 256 512 544
Sequence Length(K)

2000

3000

4000

5000

6000

7000

8000

To
ke

ns
/S

ec
/G

PU

Speed Up 4.16x

LLaMA-7B
VanillaAttention
FA-DenseMask
FA-Varlen
FlashMask

4 8 16 32 64 128 224
Sequence Length(K)

400

600

800

1000

1200

To
ke

ns
/S

ec
/G

PU

Speed Up 2.59x

LLaMA-13B
VanillaAttention
FA-DenseMask
FA-Varlen
FlashMask

4 8 16 32 64 128
Sequence Length(K)

100

120

140

160

180

200

220

240
To

ke
ns

/S
ec

/G
PU

Speed Up 2.10x

LLaMA-70B

VanillaAttention
FA-DenseMask
FA-Varlen
FlashMask

(b) LoRA

4 8 16 32 64 96
Sequence Length(K)

600

800

1000

1200

1400

To
ke

ns
/S

ec
/G

PU

Speed Up 2.49x

LLaMA-7B

VanillaAttention
FA-DenseMask
FlashMask

4 8 16 32 64 128 180
Sequence Length(K)

300

400

500

600

700

800

To
ke

ns
/S

ec
/G

PU

Speed Up 2.46x

LLaMA-13B

VanillaAttention
FA-DenseMask
FlashMask

4 8 16 32 64 80
Sequence Length(K)

80

100

120

140

160

To
ke

ns
/S

ec
/G

PU

Speed Up 2.02x

LLaMA-70B

VanillaAttention
FA-DenseMask
FlashMask

(c) DPO

4 8 16 32 64 128 256
Sequence Length(K)

600

800

1000

1200

1400

1600

1800

2000

To
ke

ns
/S

ec
/G

PU

Speed Up 2.60x

LLaMA-7B

VanillaAttention
FA-DenseMask
FlashMask

4 8 16 32 64 128 196
Sequence Length(K)

300

400

500

600

700

800

900

1000

To
ke

ns
/S

ec
/G

PU

Speed Up 2.51x

LLaMA-13B

VanillaAttention
FA-DenseMask
FlashMask

4 8 16 32 64 96
Sequence Length(K)

100

120

140

160

180

200

220

To
ke

ns
/S

ec
/G

PU

Speed Up 2.04x

LLaMA-70B

VanillaAttention
FA-DenseMask
FlashMask

(d) RM
Figure 5: Comparison of End-to-End Training Throughput on Synthetic Dataset.

4 can be found in Appendix A.3). FlashMask demonstrated significant latency advantages across all241

lengths, up to 8.3-fold time saving compared to FA-DenseMask. Vanilla Attention was significantly242

more time-consuming and exceeded memory limits at lengths greater than 32K. The closest competitor243

to FlashMask, FA-Varlen, exhibited higher latencies as sequence lengths increased. Similar trends244

were observed in the DPO and RM scenarios, with FlashMask significantly outperforming FA-245

DenseMask and Vanilla Attention, especially in the RM scenario where higher sparsity levels246

further enhanced FlashMask’s effectiveness. Performance benefits from varying sparsity levels247

were also quantified, with FlashMask showing linear negative correlation with increasing sparsity,248

demonstrating efficient utilization of sample sparsity for acceleration. FlashMask’s capability to249

perform sliding window attention was further tested against FA-Window with window sizes of 256,250

512, 1024, 2048, 4096, and 8192, as shown in Figure 4 Top. FlashMask matched FA-Window in251

latency across sequence lengths of 8K, 16K, and 32K, showing comparable delay performances at252

increasing window sizes.253

4.4 End-to-End Experiments254

The end-to-end performance1 of the model was tested using synthetic datasets across three scales of the255

LLaMA2 model and four downstream scenarios (SFT, LoRA, DPO, RM) at various sequence lengths,256

measuring throughput in average Tokens/Sec/GPU. Each sequence length of 240 valid samples was257

trained for one epoch, with results presented in Figure 5. In the SFT scenario, FlashMask showed a258

clear throughput advantage over FA-DenseMask and Vanilla Attention, performing comparably to FA-259

Varlen. As sequence lengths increased, the throughput advantage of FlashMask over FA-DenseMask260

and Vanilla Attention also enhanced, even enabling the completion of longer sequence tasks within the261

same computational resources. In LoRA, DPO, and RM scenarios, FlashMask consistently showed262

significant advantages. Notably, in the LoRA scenario at the LLaMA2-7B, FlashMask achieved a263

4.16x throughput improvement over FA-DenseMask, supporting sequence lengths up to 544K. It’s264

important to note that FA-Varlen was unable to support the DPO and RM scenarios with the answers265

sharing one question, whereas FlashMask was capable of handling various scenarios including DPO266

and RM.267

Additional experiments were conducted on the open-source dataset LongBench [45], comparing the268

end-to-end performance of FA-DenseMask, FA-Varlen, and FlashMask at sequence lengths of 16K,269

32K, and 64K. The performance improvements were consistent with those observed in the synthetic270

dataset. The detailed results are presented in Appendix A.3. Memory usage during the experiments271

was also recorded, showing significant reductions for FlashMask compared to FA-DenseMask, with272

detailed results presented in Appendix A.3.273

1To simplify the tuning of hyperparameters, we standardize the global batch size to 16, with a batch size of 1
per device. Additional training hyperparameters are detailed in Table 1

8

5 Discussion274

Several key topics emerge that are crucial for comprehending the full scope and implications of275

FlashMask. These include the rationale behind the design choices, adaptations for supporting276

bidirectional and other custom masks, and the necessity as well as limits of the current approach.277

Necessity and Scope of the Study. The substantial advancement rendered by FlashMask in improving278

attention mask computation is a significant evolution over the current FlashAttention framework.279

Notably, FlashMask addresses and significantly mitigates the limitations observed with FlashAttention280

in handling conventional and custom mask computations. This enhancement not only broadens the281

applicative reach of FlashAttention but also signifies a key shift in efficiency metrics critical for282

Transformer architectures. More importantly, the flexibility of FlashMask extends beyond the283

proprietary boundaries of FlashAttention, offering potential benefits to a wider range of Transformer-284

based models. By facilitating more efficient computation of the attention mechanism, FlashMask285

enables innovations in processing vast datasets and complex models, thereby improving performances286

across varied applications in the LLM field. This cross-model adaptability confirms the robustness287

and utility of FlashMask as a universally applicable enhancement tool within and potentially outside288

the Transformer architecture spectrum, promising substantial gains in computational efficiency and289

model scalability.290

Bidirectional and Custom Masks. In the exploration of attention mechanisms, the introduction of291

FlashMask as discussed in this study offers a significant leap in computational efficiency, particularly292

for masking processes in unidirectional attention mechanisms. By extending this approach to293

bidirectional networks through the simple addition of vectors indicating the start and end indices294

of the mask, FlashMask transcends conventional computational bounds, casting itself not just as295

a sparse attention methodology, but as a versatile computational paradigm. Its adaptability across296

various custom masking tasks and ability to effectively manage diverse types of mask combinations297

underscores its potential to greatly enhance the efficiency of attention computations. Moreover, the298

inherent sparsity of the attention mask during inference provides a robust justification for employing299

FlashMask, indicating its utility and effectiveness in practical applications. This paradigm shift300

highlights the importance of developing scalable and efficient computational strategies in the evolving301

landscape of transformer architectures, suggesting that future research should continue to leverage302

these innovations to tackle increasing computational demands.303

Limitations and Future Directions. While FlashMask demonstrates impressive performance in304

handling long-context sequences, it is observed that the computational cost of training Transformers305

increases more than linearly as the sequence length grows—not only due to the computation of306

masked attention but also because of the extensive use of other operators. This scenario highlights the307

inevitable need for leveraging or integrating distributed computing strategies or further algorithmic308

enhancements to elevate training efficiency. Such advancements could be practical in managing309

the computationally intensive tasks involved in processing extended contexts efficiently. As a part310

of future research directions, exploring synergistic solutions that combine the strengths of both311

algorithmic innovation (like FlashMask) and distributed system designs stands as a promising venture.312

This approach is anticipated to address scalability challenges and could set the stage for breakthroughs313

in handling unprecedentedly large data sets and complex model architectures.314

6 Conclusion315

In this paper, we introduced FlashMask, a groundbreaking attention computation paradigm designed316

to tackle the high computational and memory demands inherent in conventional attention mechanisms317

in large-scale transformers. By implementing a novel column-wise sparse representation of attention318

masks, FlashMask substantially reduces the memory and computational complexity from quadratic to319

linear with the sequence length, thereby enhancing processing speeds and efficiency. Our algorithm320

demonstrates versatility across various masking scenarios and retains robust performance in different321

training pipelines. Extensive empirical analysis confirms that FlashMask accelerates computational322

speed significantly, achieving up to 8.3x speedup in common modalities comparable to state-of-the-art323

methods like FlashAttention. This advancement marks a significant leap forward in the design of324

attention computation, offering the potential for broader applications and setting a new benchmark in325

the efficiency of processing long-context sequences.326

9

References327

[1] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient328

exact attention with io-awareness. Advances in Neural Information Processing Systems, 35:16344–16359,329

2022.330

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz331

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,332

30, 2017.333

[3] Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru, Todor Mihaylov, Daniel Simig, Ping Yu, Kurt334

Shuster, Tianlu Wang, Qing Liu, Punit Singh Koura, et al. Opt-iml: Scaling language model instruction335

meta learning through the lens of generalization. arXiv preprint arXiv:2212.12017, 2022.336

[4] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi337

Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models.338

Journal of Machine Learning Research, 25(70):1–53, 2024.339

[5] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,340

Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with341

human feedback. Advances in neural information processing systems, 35:27730–27744, 2022.342

[6] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and343

Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv344

preprint arXiv:2402.03300, 2024.345

[7] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,346

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv347

preprint arXiv:2303.08774, 2023.348

[8] Anthropic. Introducing claude. https://www.anthropic.com/news/introducing-claude, 2024.349

Accessed: May 20, 2024.350

[9] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste351

Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini 1.5: Unlocking352

multimodal understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.353

[10] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse354

transformers. arXiv preprint arXiv:1904.10509, 2019.355

[11] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Unifying356

sparse and low-rank attention. Advances in Neural Information Processing Systems, 34:17413–17426,357

2021.358

[12] Zhiqing Sun, Yiming Yang, and Shinjae Yoo. Sparse attention with learning to hash. In International359

Conference on Learning Representations, 2021.360

[13] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and361

Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,362

2021.363

[14] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-364

Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv preprint365

arXiv:2402.09353, 2024.366

[15] Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:367

Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307, 2023.368

[16] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.369

Direct preference optimization: Your language model is secretly a reward model. Advances in Neural370

Information Processing Systems, 36, 2024.371

[17] Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao, Jipeng372

Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative foundation model373

alignment. arXiv preprint arXiv:2304.06767, 2023.374

[18] Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and Jialu Liu.375

Statistical rejection sampling improves preference optimization. arXiv preprint arXiv:2309.06657, 2023.376

10

https://www.anthropic.com/news/introducing-claude

[19] Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model377

alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.378

[20] Tianqi Liu, Zhen Qin, Junru Wu, Jiaming Shen, Misha Khalman, Rishabh Joshi, Yao Zhao, Mohammad379

Saleh, Simon Baumgartner, Jialu Liu, et al. Lipo: Listwise preference optimization through learning-to-rank.380

arXiv preprint arXiv:2402.01878, 2024.381

[21] Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language models.382

arXiv preprint arXiv:2303.00001, 2023.383

[22] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John384

Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint arXiv:2305.20050,385

2023.386

[23] Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie Jin, Enyu387

Zhou, Chenyu Shi, et al. Secrets of rlhf in large language models part ii: Reward modeling. arXiv preprint388

arXiv:2401.06080, 2024.389

[24] Alexandre Rame, Guillaume Couairon, Corentin Dancette, Jean-Baptiste Gaya, Mustafa Shukor, Laure390

Soulier, and Matthieu Cord. Rewarded soups: towards pareto-optimal alignment by interpolating weights391

fine-tuned on diverse rewards. Advances in Neural Information Processing Systems, 36, 2024.392

[25] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy393

optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.394

[26] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-395

tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.396

[27] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language397

models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.398

[28] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,399

Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation400

language models. arXiv preprint arXiv:2302.13971, 2023.401

[29] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay402

Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and403

fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.404

[30] Wei Huang, Xudong Ma, Haotong Qin, Xingyu Zheng, Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan Qi,405

Xianglong Liu, and Michele Magno. How good are low-bit quantized llama3 models? an empirical study.406

arXiv preprint arXiv:2404.14047, 2024.407

[31] Mario Michael Krell, Matej Kosec, Sergio P Perez, and Andrew Fitzgibbon. Efficient sequence packing408

without cross-contamination: Accelerating large language models without impacting performance. arXiv409

preprint arXiv:2107.02027, 2021.410

[32] Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde Caron,411

Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim M Alabdulmohsin, et al. Patch n’pack: Navit, a412

vision transformer for any aspect ratio and resolution. Advances in Neural Information Processing Systems,413

36, 2024.414

[33] PaddleNLP Contributors. Paddlenlp: An easy-to-use and high performance nlp library. https://github.415

com/PaddlePaddle/PaddleNLP, 2021.416

[34] BYTEDANCE INC. Effective transformer. https://github.com/bytedance/effective_417

transformer, 2021.418

[35] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and419

Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.420

[36] Amanda Bertsch, Maor Ivgi, Uri Alon, Jonathan Berant, Matthew R Gormley, and Graham Neubig.421

In-context learning with long-context models: An in-depth exploration. arXiv preprint arXiv:2405.00200,422

2024.423

[37] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language424

models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.425

11

https://github.com/PaddlePaddle/PaddleNLP
https://github.com/PaddlePaddle/PaddleNLP
https://github.com/PaddlePaddle/PaddleNLP
https://github.com/bytedance/effective_transformer
https://github.com/bytedance/effective_transformer
https://github.com/bytedance/effective_transformer

[38] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,426

Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for longer sequences.427

Advances in neural information processing systems, 33:17283–17297, 2020.428

[39] Markus N Rabe and Charles Staats. Self-attention does not need o (n2) memory. arXiv preprint429

arXiv:2112.05682, 2021.430

[40] Tri Dao, Daniel Haziza, Francisco Massa, and Grigory Sizov. Flash-decoding for long-context inference,431

2023.432

[41] Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Kangdi Chen, Hanyu Dong,433

and Yu Wang. Flashdecoding++: Faster large language model inference on gpus. arXiv preprint434

arXiv:2311.01282, 2023.435

[42] Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-infinite436

context. arXiv preprint arXiv:2310.01889, 2023.437

[43] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv preprint438

arXiv:2001.04451, 2020.439

[44] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear440

complexity. arXiv preprint arXiv:2006.04768, 2020.441

[45] Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao442

Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual, multitask443

benchmark for long context understanding. arXiv preprint arXiv:2308.14508, 2023.444

12

A Appendix / supplemental material445

A.1 Algorithm Details446

The detail implementation of FlashMask Backward Pass is presented in Algorithm 2. We do447

precomputations of max and min values of FMS and FME similar to the Forward Pass. Then the448

FMS 𝑗 and FME 𝑗 can be loaded to SRAM outside the inner loop (line 14-15), reducing the HBM449

accesses to 2 × 𝑁 . Then, we do inner loop on 𝑄𝑖 (line 16), computing the two valid parts and450

bypassing the masked part 𝑖 ∈ (
⌊

maxFMS 𝑗

𝐵𝑟

⌋
,

⌊
minFME 𝑗

𝐵𝑟

⌋
).451

Algorithm 2 Optimized Backward Pass with FlashMask
Require: Matrices Q,K,V,O, dO ∈ R𝑁×𝑑 in HBM, vector 𝐿 ∈ R𝑁 in HBM, block sizes 𝐵𝑐 , 𝐵𝑟 , dense bias

mask 𝐷 ∈ R𝑁×𝑁 , column-wise sparse mask starting rows FMS ∈ R𝑁 , ending rows FME ∈ R𝑁 .
1: Divide Q into 𝑇𝑟 =

⌈
𝑁
𝐵𝑟

⌉
blocks Q1, . . . ,Q𝑇𝑟 of size 𝐵𝑟 × 𝑑 each, and divide K,V in to 𝑇𝑐 =

⌈
𝑁
𝐵𝑐

⌉
blocks

K1, . . . ,K𝑇𝑐 and V1, . . . ,V𝑇𝑐 , of size 𝐵𝑐 × 𝑑 each.
2: Divide O into 𝑇𝑟 blocks O𝑖 , . . . ,O𝑇𝑟 of size 𝐵𝑟 × 𝑑 each, divide dO into 𝑇𝑟 blocks dO𝑖 , . . . , dO𝑇𝑟 of size
𝐵𝑟 × 𝑑 each, and divide 𝐿 into 𝑇𝑟 blocks 𝐿𝑖 , . . . , 𝐿𝑇𝑟 of size 𝐵𝑟 each.

3: Initialize dQ = (0)𝑁×𝑑 in HBM and divide it into 𝑇𝑟 blocks dQ1, . . . , dQ𝑇𝑟 of size 𝐵𝑟 × 𝑑 each. Divide
dK, dV ∈ R𝑁×𝑑 in to 𝑇𝑐 blocks dK1, . . . , dK𝑇𝑐 and dV1, . . . , dV𝑇𝑐 , of size 𝐵𝑐 × 𝑑 each.

4: Divide the dense mask D into 𝑇𝑟 × 𝑇𝑐 blocks D1,1, ...,D𝑇𝑟 ,𝑇𝑐
5: Divide FMS into 𝑇𝑐 blocks FMS1, ...,FMS𝑇𝑐 , and divide FME into FME1, ...,FME𝑇𝑐 .
6: Precompute the max value maxFMS1, ...,maxFMS𝑇𝑐 for each FMS1, ...,FMS𝑇𝑐 , write to HBM.
7: Precompute the max value maxFME1, ...,maxFME𝑇𝑐 for each FME1, ...,FME𝑇𝑐 , write to HBM.
8: Precompute the min value minFMS1, ...,minFMS𝑇𝑐 for each FMS1, ...,FMS𝑇𝑐 , write to HBM.
9: Precompute the min value minFME1, ...,minFME𝑇𝑐 for each FME1, ...,FME𝑇𝑐 , write to HBM.

10: Compute 𝐷 = rowsum(dO ◦O) ∈ R𝑑 (pointwise multiply), write 𝐷 to HBM and divide it into 𝑇𝑟 blocks
𝐷1, . . . , 𝐷𝑇𝑟 of size 𝐵𝑟 each.

11: for 1 ≤ 𝑗 ≤ 𝑇𝑐 do
12: Load K 𝑗 ,V 𝑗 from HBM to on-chip SRAM.
13: Initialize dK 𝑗 = (0)𝐵𝑐×𝑑 , dV 𝑗 = (0)𝐵𝑐×𝑑 on SRAM.
14: Load FMS 𝑗 from HBM to on-chip SRAM.
15: Load FME 𝑗 from HBM to on-chip SRAM.

16: for 1 ≤ 𝑖 ≤
⌊maxFMS 𝑗

𝐵𝑟

⌋
𝑎𝑛𝑑

⌊minFME 𝑗

𝐵𝑟

⌋
≤ 𝑖 ≤ 𝑇𝑟 do

17: Load Q𝑖 ,O𝑖 , dO𝑖 , dQ𝑖 , 𝐿𝑖 , 𝐷𝑖 from HBM to on-chip SRAM.
18: On chip, compute S(𝑗)

𝑖
= Q𝑖K𝑇

𝑗
∈ R𝐵𝑟×𝐵𝑐 .

19: On chip, set S(𝑗)
𝑖

= S(𝑗)
𝑖
+ 𝐷𝑖, 𝑗

20: if
⌊maxFME 𝑗

𝐵𝑟

⌋
≤ 𝑖 ≤

⌊minFMS 𝑗

𝐵𝑟

⌋
then

21: On chip, set S(𝑗)
𝑖
[𝑥] [𝑦] = −∞, for every 𝑖 ∗ 𝐵𝑟 + 𝑥 ≥ 𝑀 𝑗 [𝑦].

22: end if
23: On chip, compute P(𝑗)

𝑖
= exp(S𝑖 𝑗 − 𝐿𝑖) ∈ R𝐵𝑟×𝐵𝑐 .

24: On chip, compute dV 𝑗 ← dV 𝑗 + (P(𝑗)𝑖
)⊤dO𝑖 ∈ R𝐵𝑐×𝑑 .

25: On chip, compute dP(𝑗)
𝑖

= dO𝑖V⊤𝑗 ∈ R
𝐵𝑟×𝐵𝑐 .

26: On chip, compute dS(𝑗)
𝑖

= P(𝑗)
𝑖
◦ (dP(𝑗)

𝑖
− 𝐷𝑖) ∈ R𝐵𝑟×𝐵𝑐 .

27: Load dQ𝑖 from HBM to SRAM, then on chip, update dQ𝑖 ← dQ𝑖 + dS(𝑗)
𝑖

K 𝑗 ∈ R𝐵𝑟×𝑑 , and write
back to HBM.

28: On chip, compute dK 𝑗 ← dK 𝑗 + dS(𝑗)
𝑖

⊤
Q𝑖 ∈ R𝐵𝑐×𝑑 .

29: end for
30: Write dK 𝑗 , dV 𝑗 to HBM.
31: end for
32: Return dQ, dK, dV.

A.2 Supplementary Experimental Details452

All end-to-end training and testing in this paper were conducted on 4 servers, each equipped with 32453

NVIDIA A800-SXM 80G GPUs. We comprehensively evaluated the performance of the LLaMA2454

13

model across three different parameter scales, four downstream task scenarios, and various sequence455

lengths. Given the diversity of experimental combinations and the specific distributed parallel456

strategies required by models, in varying parameter scales, the primary goal of the experiments is457

not to achieve optimal end-to-end training performance but to demonstrate the effectiveness of the458

FlashMask method. Therefore, to ensure consistency, we set the following hyperparameters in Table 1459

with the same hardware configuration.460

Table 1: Training Hyperparameters for Various Scales of LLaMA2 Models.

Model LLaMA2-7B LLaMA2-13B LLaMA2-70B
Global Batch Size 16 16 16
Gradient Accumulation Step 2 4 16

Sharding Stage1 Degree 8 4 1
Tensor Parallel Degree 4 4 8
PipeLine Parallel Degree 1 2 4
Sequence Parallel Degree ✓ ✓ ✓

To verify the representativeness of our synthetic dataset, sparsity distribution histograms of synthetic461

dataset are presented in Figure 6. Then we use InToken method with max sequence length of 16K,462

32K, 64K, and 128K on the open-source dataset LongBench, and compute the distribution histograms,463

presented in Figure 7. Note that many long sentences are truncated for max sequence length 16K,464

and 32K. Results indicate that the sparsity distributions of LongBench dataset and synthetic dataset465

are similar.466

0 20 40 60 80 100
Sparsity(%)

0

20

40

60

80

100

Co
un

t

SFT 2K

0 20 40 60 80 100
Sparsity(%)

0

20

40

60

80

Co
un

t

SFT 4K

0 20 40 60 80 100
Sparsity(%)

0

10

20

30

40

50

60

70

Co
un

t

SFT 8K

0 20 40 60 80 100
Sparsity(%)

0

10

20

30

40

50

60

Co
un

t

SFT 16K

0 20 40 60 80 100
Sparsity(%)

0

10

20

30

40

50

60

70

Co
un

t

SFT 32K

0 20 40 60 80 100
Sparsity(%)

0

10

20

30

40

50

60

70

Co
un

t

SFT 64K

0 20 40 60 80 100
Sparsity(%)

0

10

20

30

40

50

60

70

Co
un

t

SFT 128K

0 20 40 60 80 100
Sparsity(%)

0

20

40

60

80

100

Co
un

t

DPO 2K

0 20 40 60 80 100
Sparsity(%)

0

20

40

60

80

Co
un

t

DPO 4K

0 20 40 60 80 100
Sparsity(%)

0

10

20

30

40

50

60

70

80

Co
un

t

DPO 8K

0 20 40 60 80 100
Sparsity(%)

0

10

20

30

40

50

60

Co
un

t

DPO 16K

0 20 40 60 80 100
Sparsity(%)

0

10

20

30

40

50

60

70

80

Co
un

t

DPO 32K

0 20 40 60 80 100
Sparsity(%)

0

10

20

30

40

50

60

70

Co
un

t

DPO 64K

0 20 40 60 80 100
Sparsity(%)

0

10

20

30

40

50

60

Co
un

t

DPO 128K

0 20 40 60 80 100
Sparsity(%)

0

10

20

30

40

50

60

Co
un

t

RM 2K

0 20 40 60 80 100
Sparsity(%)

0

10

20

30

40

50

60

Co
un

t

RM 4K

0 20 40 60 80 100
Sparsity(%)

0

10

20

30

40

50

60

Co
un

t

RM 8K

0 20 40 60 80 100
Sparsity(%)

0

20

40

60

80

100

Co
un

t

RM 16K

0 20 40 60 80 100
Sparsity(%)

0

20

40

60

80

100

Co
un

t

RM 32K

0 20 40 60 80 100
Sparsity(%)

0

20

40

60

80

Co
un

t

RM 64K

0 20 40 60 80 100
Sparsity(%)

0

20

40

60

80

Co
un

t

RM 128K

Figure 6: Sparsity Distribution of Synthetic Dataset.

0 20 40 60 80 100
Sparsity(%)

0

200

400

600

800

1000

1200

1400

1600

Co
un

t

SFT 16K

0 20 40 60 80 100
Sparsity(%)

0

100

200

300

400

500

600

Co
un

t

SFT 32K

0 20 40 60 80 100
Sparsity(%)

0

50

100

150

200

250

300

350

400

Co
un

t

SFT 64K

0 20 40 60 80 100
Sparsity(%)

0

50

100

150

200

250

300

350

Co
un

t

SFT 128K

Figure 7: Sparsity Distribution of LongBench Dataset.

A.3 Full Experiment Results467

Kernel experiments are also conducted on batch sizes 4, and 8. FA-Varlen is excluded by default.468

Results are presented in Figure 8 and 9. The trends are identical to Figure 3 in Section 4.3, except469

memory exhaustion occurred with less sequence length, especially for FA-DenseMask and Vanilla470

Attention which require 𝑂 (𝑁2) memory to launch.471

14

2 4 8 16 32 64 128
Sequence Length(K)

101

102

103

104

La
te

nc
y(

m
s)

SFT
FA-DenseMask
VanillaAttention
FlashMask

2 4 8 16 32 64 128
Sequence Length(K)

101

102

103

104

La
te

nc
y(

m
s)

DPO
FA-DenseMask
VanillaAttention
FlashMask

2 4 8 16 32 64 128
Sequence Length(K)

101

102

103

104

La
te

nc
y(

m
s)

RM
FA-DenseMask
VanillaAttention
FlashMask

Figure 8: Kernel Latency Comparison with Varying the Length of Sequence.(Batch Size = 4)

2 4 8 16 32 64 128
Sequence Length(K)

101

102

103

La
te

nc
y(

m
s)

SFT
FA-DenseMask
VanillaAttention
FlashMask

2 4 8 16 32 64 128
Sequence Length(K)

101

102

103

La
te

nc
y(

m
s)

DPO
FA-DenseMask
VanillaAttention
FlashMask

2 4 8 16 32 64 128
Sequence Length(K)

101

102

103

La
te

nc
y(

m
s)

RM
FA-DenseMask
VanillaAttention
FlashMask

Figure 9: Kernel Latency Comparison with Varying the Length of Sequence. (Batch Size = 8)

We evaluate the effectiveness of FlashMask on the open-source dataset LongBench. The throughput of472

LoRA fine-tuning for LLaMA2-7B are shown in Figure 10. FlashMask performed close to FA-Varlen,473

showcasing 4.12x faster than FA-DenseMask, proving that FlashMask can deliver significant training474

accelerations in generalized real-world scenarios.475

16 32 64
Sequence Length(K)

2000

3000

4000

5000

6000

7000

To
ke

ns
/S

ec
/G

PU

Speed Up 4.12x

LLaMA-7B

FA-DenseMask
FA-Varlen
FlashMask

Figure 10: Comparison of End-to-End Training Throughput on LongBench Dataset.

Figure 11 presents the GPU memory consumption in End-to-End training. FlashMask showed linear476

memory consumption with increasing sequence length, far less than FA-DenseMask. Therefore,477

FlashMask supports training with much longer sequences in memory limits of 80G.478

15

4 8 16 32 64 128 256
Sequence Length(K)

0

10

20

30

40

50

60

70

GP
U

M
em

or
y(

GB
)

LLaMA-7B
VanillaAttention
FA-DenseMask
FA-Varlen
FlashMask

4 8 16 32 64 128 196
Sequence Length(K)

0

10

20

30

40

50

60

70

GP
U

M
em

or
y(

GB
)

LLaMA-13B
VanillaAttention
FA-DenseMask
FA-Varlen
FlashMask

4 8 16 32 64 96
Sequence Length(K)

0

10

20

30

40

50

60

70

GP
U

M
em

or
y(

GB
)

LLaMA-70B
VanillaAttention
FA-DenseMask
FA-Varlen
FlashMask

(a) SFT

4 8 16 32 64 128 256 512 544
Sequence Length(K)

0

10

20

30

40

50

60

70

GP
U

M
em

or
y(

GB
)

LLaMA-7B
VanillaAttention
FA-DenseMask
FA-Varlen
FlashMask

4 8 16 32 64 128 224
Sequence Length(K)

0

10

20

30

40

50

60

70

GP
U

M
em

or
y(

GB
)

LLaMA-13B
VanillaAttention
FA-DenseMask
FA-Varlen
FlashMask

4 8 16 32 64 128
Sequence Length(K)

0

10

20

30

40

50

60
GP

U
M

em
or

y(
GB

)

LLaMA-70B
VanillaAttention
FA-DenseMask
FA-Varlen
FlashMask

(b) LoRA

4 8 16 32 64 96
Sequence Length(K)

0

10

20

30

40

50

60

70

GP
U

M
em

or
y(

GB
)

LLaMA-7B
VanillaAttention
FA-DenseMask
FlashMask

4 8 16 32 64 128 180
Sequence Length(K)

0

10

20

30

40

50

60

70

GP
U

M
em

or
y(

GB
)

LLaMA-13B
VanillaAttention
FA-DenseMask
FlashMask

4 8 16 32 64 80
Sequence Length(K)

0

10

20

30

40

50

60

70

GP
U

M
em

or
y(

GB
)

LLaMA-70B
VanillaAttention
FA-DenseMask
FlashMask

(c) DPO

4 8 16 32 64 128 256
Sequence Length(K)

0

10

20

30

40

50

60

70

GP
U

M
em

or
y(

GB
)

LLaMA-7B
VanillaAttention
FA-DenseMask
FlashMask

4 8 16 32 64 128 196
Sequence Length(K)

0

10

20

30

40

50

60

70

GP
U

M
em

or
y(

GB
)

LLaMA-13B
VanillaAttention
FA-DenseMask
FlashMask

4 8 16 32 64 96
Sequence Length(K)

0

10

20

30

40

50

60

70

GP
U

M
em

or
y(

GB
)

LLaMA-70B
VanillaAttention
FA-DenseMask
FlashMask

(d) RM
Figure 11: Comparison of End-to-End Training GPU Memory.

16

NeurIPS Paper Checklist479

1. Claims480

Question: Do the main claims made in the abstract and introduction accurately reflect the481

paper’s contributions and scope?482

Answer: [Yes]483

Justification: This paper’s contributions and scope are described in Abstract and Introduction.484

Guidelines:485

• The answer NA means that the abstract and introduction do not include the claims486

made in the paper.487

• The abstract and/or introduction should clearly state the claims made, including the488

contributions made in the paper and important assumptions and limitations. A No or489

NA answer to this question will not be perceived well by the reviewers.490

• The claims made should match theoretical and experimental results, and reflect how491

much the results can be expected to generalize to other settings.492

• It is fine to include aspirational goals as motivation as long as it is clear that these goals493

are not attained by the paper.494

2. Limitations495

Question: Does the paper discuss the limitations of the work performed by the authors?496

Answer: [Yes]497

Justification: The paper includes a discussion section about limitations.498

Guidelines:499

• The answer NA means that the paper has no limitation while the answer No means that500

the paper has limitations, but those are not discussed in the paper.501

• The authors are encouraged to create a separate "Limitations" section in their paper.502

• The paper should point out any strong assumptions and how robust the results are to503

violations of these assumptions (e.g., independence assumptions, noiseless settings,504

model well-specification, asymptotic approximations only holding locally). The authors505

should reflect on how these assumptions might be violated in practice and what the506

implications would be.507

• The authors should reflect on the scope of the claims made, e.g., if the approach was508

only tested on a few datasets or with a few runs. In general, empirical results often509

depend on implicit assumptions, which should be articulated.510

• The authors should reflect on the factors that influence the performance of the approach.511

For example, a facial recognition algorithm may perform poorly when image resolution512

is low or images are taken in low lighting. Or a speech-to-text system might not be513

used reliably to provide closed captions for online lectures because it fails to handle514

technical jargon.515

• The authors should discuss the computational efficiency of the proposed algorithms516

and how they scale with dataset size.517

• If applicable, the authors should discuss possible limitations of their approach to518

address problems of privacy and fairness.519

• While the authors might fear that complete honesty about limitations might be used by520

reviewers as grounds for rejection, a worse outcome might be that reviewers discover521

limitations that aren’t acknowledged in the paper. The authors should use their best522

judgment and recognize that individual actions in favor of transparency play an impor-523

tant role in developing norms that preserve the integrity of the community. Reviewers524

will be specifically instructed to not penalize honesty concerning limitations.525

3. Theory Assumptions and Proofs526

Question: For each theoretical result, does the paper provide the full set of assumptions and527

a complete (and correct) proof?528

Answer: [Yes]529

17

Justification: In sec 3.3 Complexity Analysis530

Guidelines:531

• The answer NA means that the paper does not include theoretical results.532

• All the theorems, formulas, and proofs in the paper should be numbered and cross-533

referenced.534

• All assumptions should be clearly stated or referenced in the statement of any theorems.535

• The proofs can either appear in the main paper or the supplemental material, but if536

they appear in the supplemental material, the authors are encouraged to provide a short537

proof sketch to provide intuition.538

• Inversely, any informal proof provided in the core of the paper should be complemented539

by formal proofs provided in appendix or supplemental material.540

• Theorems and Lemmas that the proof relies upon should be properly referenced.541

4. Experimental Result Reproducibility542

Question: Does the paper fully disclose all the information needed to reproduce the main ex-543

perimental results of the paper to the extent that it affects the main claims and/or conclusions544

of the paper (regardless of whether the code and data are provided or not)?545

Answer: [Yes]546

Justification: The source code will be public available and can reproduce the results accord-547

ing README.548

Guidelines:549

• The answer NA means that the paper does not include experiments.550

• If the paper includes experiments, a No answer to this question will not be perceived551

well by the reviewers: Making the paper reproducible is important, regardless of552

whether the code and data are provided or not.553

• If the contribution is a dataset and/or model, the authors should describe the steps taken554

to make their results reproducible or verifiable.555

• Depending on the contribution, reproducibility can be accomplished in various ways.556

For example, if the contribution is a novel architecture, describing the architecture fully557

might suffice, or if the contribution is a specific model and empirical evaluation, it may558

be necessary to either make it possible for others to replicate the model with the same559

dataset, or provide access to the model. In general. releasing code and data is often560

one good way to accomplish this, but reproducibility can also be provided via detailed561

instructions for how to replicate the results, access to a hosted model (e.g., in the case562

of a large language model), releasing of a model checkpoint, or other means that are563

appropriate to the research performed.564

• While NeurIPS does not require releasing code, the conference does require all submis-565

sions to provide some reasonable avenue for reproducibility, which may depend on the566

nature of the contribution. For example567

(a) If the contribution is primarily a new algorithm, the paper should make it clear how568

to reproduce that algorithm.569

(b) If the contribution is primarily a new model architecture, the paper should describe570

the architecture clearly and fully.571

(c) If the contribution is a new model (e.g., a large language model), then there should572

either be a way to access this model for reproducing the results or a way to reproduce573

the model (e.g., with an open-source dataset or instructions for how to construct574

the dataset).575

(d) We recognize that reproducibility may be tricky in some cases, in which case576

authors are welcome to describe the particular way they provide for reproducibility.577

In the case of closed-source models, it may be that access to the model is limited in578

some way (e.g., to registered users), but it should be possible for other researchers579

to have some path to reproducing or verifying the results.580

5. Open access to data and code581

Question: Does the paper provide open access to the data and code, with sufficient instruc-582

tions to faithfully reproduce the main experimental results, as described in supplemental583

material?584

18

Answer: [Yes]585

Justification: The source code will be public available.586

Guidelines:587

• The answer NA means that paper does not include experiments requiring code.588

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/589

public/guides/CodeSubmissionPolicy) for more details.590

• While we encourage the release of code and data, we understand that this might not be591

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not592

including code, unless this is central to the contribution (e.g., for a new open-source593

benchmark).594

• The instructions should contain the exact command and environment needed to run to595

reproduce the results. See the NeurIPS code and data submission guidelines (https:596

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.597

• The authors should provide instructions on data access and preparation, including how598

to access the raw data, preprocessed data, intermediate data, and generated data, etc.599

• The authors should provide scripts to reproduce all experimental results for the new600

proposed method and baselines. If only a subset of experiments are reproducible, they601

should state which ones are omitted from the script and why.602

• At submission time, to preserve anonymity, the authors should release anonymized603

versions (if applicable).604

• Providing as much information as possible in supplemental material (appended to the605

paper) is recommended, but including URLs to data and code is permitted.606

6. Experimental Setting/Details607

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-608

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the609

results?610

Answer: [Yes]611

Justification: Refer to Experiments section.612

Guidelines:613

• The answer NA means that the paper does not include experiments.614

• The experimental setting should be presented in the core of the paper to a level of detail615

that is necessary to appreciate the results and make sense of them.616

• The full details can be provided either with the code, in appendix, or as supplemental617

material.618

7. Experiment Statistical Significance619

Question: Does the paper report error bars suitably and correctly defined or other appropriate620

information about the statistical significance of the experiments?621

Answer: [Yes]622

Justification: All our experimental results are run multiple times and then averaged.623

Guidelines:624

• The answer NA means that the paper does not include experiments.625

• The authors should answer "Yes" if the results are accompanied by error bars, confi-626

dence intervals, or statistical significance tests, at least for the experiments that support627

the main claims of the paper.628

• The factors of variability that the error bars are capturing should be clearly stated (for629

example, train/test split, initialization, random drawing of some parameter, or overall630

run with given experimental conditions).631

• The method for calculating the error bars should be explained (closed form formula,632

call to a library function, bootstrap, etc.)633

• The assumptions made should be given (e.g., Normally distributed errors).634

• It should be clear whether the error bar is the standard deviation or the standard error635

of the mean.636

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should637

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis638

of Normality of errors is not verified.639

• For asymmetric distributions, the authors should be careful not to show in tables or640

figures symmetric error bars that would yield results that are out of range (e.g. negative641

error rates).642

• If error bars are reported in tables or plots, The authors should explain in the text how643

they were calculated and reference the corresponding figures or tables in the text.644

8. Experiments Compute Resources645

Question: For each experiment, does the paper provide sufficient information on the com-646

puter resources (type of compute workers, memory, time of execution) needed to reproduce647

the experiments?648

Answer: [Yes]649

Justification: Referring to the Experiments section, we provide a running environment.650

Guidelines:651

• The answer NA means that the paper does not include experiments.652

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,653

or cloud provider, including relevant memory and storage.654

• The paper should provide the amount of compute required for each of the individual655

experimental runs as well as estimate the total compute.656

• The paper should disclose whether the full research project required more compute657

than the experiments reported in the paper (e.g., preliminary or failed experiments that658

didn’t make it into the paper).659

9. Code Of Ethics660

Question: Does the research conducted in the paper conform, in every respect, with the661

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?662

Answer: [Yes]663

Justification: We follow the NeurIPS Code of Ethics properly.664

Guidelines:665

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.666

• If the authors answer No, they should explain the special circumstances that require a667

deviation from the Code of Ethics.668

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-669

eration due to laws or regulations in their jurisdiction).670

10. Broader Impacts671

Question: Does the paper discuss both potential positive societal impacts and negative672

societal impacts of the work performed?673

Answer: [NA]674

Justification: There is no societal impact of the work performed.675

Guidelines:676

• The answer NA means that there is no societal impact of the work performed.677

• If the authors answer NA or No, they should explain why their work has no societal678

impact or why the paper does not address societal impact.679

• Examples of negative societal impacts include potential malicious or unintended uses680

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations681

(e.g., deployment of technologies that could make decisions that unfairly impact specific682

groups), privacy considerations, and security considerations.683

• The conference expects that many papers will be foundational research and not tied684

to particular applications, let alone deployments. However, if there is a direct path to685

any negative applications, the authors should point it out. For example, it is legitimate686

to point out that an improvement in the quality of generative models could be used to687

20

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out688

that a generic algorithm for optimizing neural networks could enable people to train689

models that generate Deepfakes faster.690

• The authors should consider possible harms that could arise when the technology is691

being used as intended and functioning correctly, harms that could arise when the692

technology is being used as intended but gives incorrect results, and harms following693

from (intentional or unintentional) misuse of the technology.694

• If there are negative societal impacts, the authors could also discuss possible mitigation695

strategies (e.g., gated release of models, providing defenses in addition to attacks,696

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from697

feedback over time, improving the efficiency and accessibility of ML).698

11. Safeguards699

Question: Does the paper describe safeguards that have been put in place for responsible700

release of data or models that have a high risk for misuse (e.g., pretrained language models,701

image generators, or scraped datasets)?702

Answer: [NA]703

Justification: The paper poses no such risks.704

Guidelines:705

• The answer NA means that the paper poses no such risks.706

• Released models that have a high risk for misuse or dual-use should be released with707

necessary safeguards to allow for controlled use of the model, for example by requiring708

that users adhere to usage guidelines or restrictions to access the model or implementing709

safety filters.710

• Datasets that have been scraped from the Internet could pose safety risks. The authors711

should describe how they avoided releasing unsafe images.712

• We recognize that providing effective safeguards is challenging, and many papers do713

not require this, but we encourage authors to take this into account and make a best714

faith effort.715

12. Licenses for existing assets716

Question: Are the creators or original owners of assets (e.g., code, data, models), used in717

the paper, properly credited and are the license and terms of use explicitly mentioned and718

properly respected?719

Answer: [Yes]720

Justification: CC BY-NC-ND 4.0721

Guidelines:722

• The answer NA means that the paper does not use existing assets.723

• The authors should cite the original paper that produced the code package or dataset.724

• The authors should state which version of the asset is used and, if possible, include a725

URL.726

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.727

• For scraped data from a particular source (e.g., website), the copyright and terms of728

service of that source should be provided.729

• If assets are released, the license, copyright information, and terms of use in the730

package should be provided. For popular datasets, paperswithcode.com/datasets731

has curated licenses for some datasets. Their licensing guide can help determine the732

license of a dataset.733

• For existing datasets that are re-packaged, both the original license and the license of734

the derived asset (if it has changed) should be provided.735

• If this information is not available online, the authors are encouraged to reach out to736

the asset’s creators.737

13. New Assets738

Question: Are new assets introduced in the paper well documented and is the documentation739

provided alongside the assets?740

21

paperswithcode.com/datasets

Answer: [NA]741

Justification: The paper does not release new assets.742

Guidelines:743

• The answer NA means that the paper does not release new assets.744

• Researchers should communicate the details of the dataset/code/model as part of their745

submissions via structured templates. This includes details about training, license,746

limitations, etc.747

• The paper should discuss whether and how consent was obtained from people whose748

asset is used.749

• At submission time, remember to anonymize your assets (if applicable). You can either750

create an anonymized URL or include an anonymized zip file.751

14. Crowdsourcing and Research with Human Subjects752

Question: For crowdsourcing experiments and research with human subjects, does the paper753

include the full text of instructions given to participants and screenshots, if applicable, as754

well as details about compensation (if any)?755

Answer: [NA]756

Justification: The paper does not involve crowdsourcing nor research with human subjects.757

Guidelines:758

• The answer NA means that the paper does not involve crowdsourcing nor research with759

human subjects.760

• Including this information in the supplemental material is fine, but if the main contribu-761

tion of the paper involves human subjects, then as much detail as possible should be762

included in the main paper.763

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,764

or other labor should be paid at least the minimum wage in the country of the data765

collector.766

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human767

Subjects768

Question: Does the paper describe potential risks incurred by study participants, whether769

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)770

approvals (or an equivalent approval/review based on the requirements of your country or771

institution) were obtained?772

Answer: [NA]773

Justification: The paper does not involve crowdsourcing nor research with human subjects.774

Guidelines:775

• The answer NA means that the paper does not involve crowdsourcing nor research with776

human subjects.777

• Depending on the country in which research is conducted, IRB approval (or equivalent)778

may be required for any human subjects research. If you obtained IRB approval, you779

should clearly state this in the paper.780

• We recognize that the procedures for this may vary significantly between institutions781

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the782

guidelines for their institution.783

• For initial submissions, do not include any information that would break anonymity (if784

applicable), such as the institution conducting the review.785

22

	Introduction
	Background
	Attention Computation
	Masking Variable-Length Sequences
	Attention Optimization Techniques

	FlashMask: Algorithm and Analysis
	Column-wise Sparse Mask Representation
	Integration with FlashAttention
	Complexity Analysis

	Experiments
	Setup
	Data Construction
	Kernel Experiments
	End-to-End Experiments

	Discussion
	Conclusion
	Appendix / supplemental material
	Algorithm Details
	Supplementary Experimental Details
	Full Experiment Results

