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Abstract

Direct application of Transformer architectures in scientific domains poses1

computational challenges, due to quadratic scaling in the number of inputs.2

In this work, we propose an alternative method based on hierarchical semi-3

separable matrices (HSS), a class of rank-structured operators with linear-4

time evaluation algorithms. Through connections between linearized atten-5

tion and HSS, we devise an implicit hierarchical parametrization strategy6

that interpolates between linear and quadratic attention, achieving both sub-7

quadratic scaling and high accuracy. We demonstrate the effectiveness of the8

proposed approach on the approximation of potentials from computational9

physics.10

1 Introduction11

Many problems in computational physics require the evaluation of all pair-wise interactions in large12

ensembles of particles [1]. We consider learning scalar (potential) functions of the form13

Φ(xλ) =

N−1∑
µ=0

A(xλ, xµ)vµ (1.1)

where xµ ∈ Rd represent the generalized location (in a possibly high-dimensional abstract space)14

of the particle, A : Rd × Rd → R is the associated kernel operator and vµ ∈ R is a physical feature15

of each particle. Expressions of this type are pervasive and include electrical and gravitational16

potentials, as well as other interaction potentials that play a pivotal role in determining forces and17

influencing the dynamics of a system. Since the total number of particles in a system can grow large,18

a model approximating Φ(xλ) should offer an efficient evaluation algorithm in order to be utilized19

in the inner loop of numerical solvers.20

A rigorous analysis of Equation (1.1) reveals structural parallels with components of recent deep21

learning architectures, most notably the self-attention mechanism intrinsic to the Transformer. In22

this context, the kernel function A(xλ, xµ) delineated in our scalar potential formulation bears a23

resemblance to the interaction computations inherent to the self-attention process. Specifically, the24

linearized self-attention [2], [3] can be seen as a separable (low-rank) approximation of A25

A(xλ, xµ) =

p∑
ν=1

ϕν(xλ)ψν(xµ) (1.2)

where ϕν and ψν are parametric functions (e.g. linear operators) Rd → R, ν = 1, . . . , p ≪ N .26

The kernel function, which in the realm of physics might represent physical interactions between27
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particles, in the domain of deep learning encapsulates the interaction strengths between different28

tokens in a sequence. The separability property grants approximated kernels – and linear attention29

– a O(N) complexity to be evaluated.30

Introducing the softmax normalization, which is customary in the Transformer’s attention mecha-31

nism, results in an operator that deviates from the canonical form of (1.1) due to the normalization32

component. We write,33

Att(x, s(x)) =
N−1∑
µ=0

1

sλ(x)
A(xλ, xµ)vµ, (1.3)

where A(xλ, xµ) = eϕ(xλ)ψ(xµ), sλ(x) =
∑N−1
γ=0 e

ϕ(xλ)ψ(xγ) and vµ serves as the value in the34

Transformer. The appeal of the self-attention mechanism with softmax, despite its expressivity, is35

overshadowed by its computational constraints. Specifically, the kernel A(xλ, xµ) = eϕ(xλ)ψ(xµ) is36

inherently non-separable. Unlike separable kernels, where fast algorithms exist to exploit structure37

for efficient computation, non-separable kernels are bound to an O(N2) complexity to evaluate the38

potential.39

Existing approaches to approximate potentials rely on the application of stacks of self-attention oper-40

ators, arranged in a Transformer architecture [4]. Other methods instead exploit locality assumptions41

and employ graph neural networks to reduce computational cost [5].42

In this work, we aim to bridge the approximation capabilities of generic non-separable kernels such43

as self-attention with the fast evaluation of separable kernels. To do so, we devise a class of learnable44

kernels based on hierarchical semi-separable (HSS) matrices [6], [7]. Such matrices inherently45

support efficient matrix-vector multiplication due to their hierarchical, low-rank structure. HSS46

operators provide favourable rates of approximation for generic dense matrices while offering a47

tunable trade-off between computational overhead and rank of approximation, and further capture48

various other structured matrices arising in applications [8].49

2 Hierarchical Semi-Separable Operators50
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Figure 2.1: Complete binary associated
with a L = 2 HSS decomposition of H

The HSS representation of an operatorH ∈ RN×N is ob-51

tained through a recursive row and column partitioning.52

A common partitioning strategy is to hierarchically bisect53

column and row indices up to a base level L, uniquely54

identifying 2L blocks on the diagonal of H . Let such55

blocks be denoted as DL
m for m = 1, 2, . . . , 2L. We can56

then recursively compose increasingly larger blocks by57

bottom-up composition. Indeed, every HSS decomposi-58

tion of this type can be paired with a binary tree, shown59

in Figure 2 for reference.60

Definition 2.1 (HSS matrix [7]). A matrix H is said to be hierarchically semi-separable (HSS) if61

there exist matrices Dℓ ∈ RN/2ℓ×N/2ℓ , U ℓ ∈ RN/2ℓ×r, V ℓ ∈ Rr×N/2ℓ , Rℓ ∈ Rr×r, W ℓ ∈ Rr×r,62

Bℓ ∈ Rr×r that satisfy the following recursion:63

Dℓ−1
m =

(
Dℓ

2m−1 U ℓ2m−1B
ℓ
2m−1V

ℓ⊤

2m

Uℓ;2mBℓ;2mV
⊤
ℓ;2m−1 Dℓ;2m

)
,

U ℓ−1
m =

(
U ℓ2m−1R

ℓ
2m−1

U ℓ2mR
ℓ
2m

)
, V ℓ−1

m =

(
V ℓ2m−1W

ℓ
2m−1

V ℓ2mW
ℓ
2m

)
,

m = 1, 2, . . . , 2ℓ−1, ℓ = 0, 2, . . . , L.

(2.1)

and the condition D0
1 = H .64
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Note: We are interested in hierarchical matrices with fast evaluation algorithms. Thus, we
seek factors UBV ⊤ where either the rank r of B, is sufficiently small or the decomposition
admits a fast evaluation algorithm itself. In example, let U and V be diagonal matrices, and
further let B be Toeplitz. Then, Bu can be evaluated in O(N logN) via a Fast Fourier Trans-
form [9]. When the off-diagonal terms are not low-rank, we refer to this class of operators as
pseudo-HSS, due to their hierarchical structure.

65
HSS matrices have found use in deep learning architectures, as a way to replace generic dense weight66

matrices [10], [11]. Instead, we seek to develop an efficient implicit class of learnable HSS kernels.67

3 Learning via Implicit HSS68

The self-attention kernel is a canonical example of an implicit operator. Implicit operators are effec-69

tive primitives for architecture design, as they decouple parameter counts from some critical input70

dimensions1.71

We can therefore find a link between attention and HSS through linear attention, which is low-rank72

and hence separable:73

Theorem 3.1. Linear self-attention is HSS.74

A sketch of the proof is provided in Appendix A. Other subquadratic implicit operators commonly75

used as attention replacements can similarly be shown to satisfy (2.1).76

Corollary 3.1 (Efficient implicit operators are HSS). Sparse attention, gated convolutions and re-77

currences (Hyena [12], H3 [13], S4 [14]) are pseudo-HSS.78

Dense attention, however, is not separable, and thus is not HSS. This is due to the nonlinearity79

introduced via softmax. A hierarchical pseudo-HSS approximation, however, can be given as the80

following:81

Definition 3.1 (IHSS). Let H(x) be an implicit operator defined via the recurrence82

Dℓ−1
m =

(
Dℓ

2m−1 S(U ℓ2m−1B
ℓ
2m−1V

ℓ⊤
2m , s

ℓ
2m−1 + βℓ2m−1)

S(Uℓ;2mBℓ;2mV
⊤
ℓ;2m−1, s

ℓ
2m + βℓ2m) Dℓ

2m

)
,

U ℓ−1
m =

(
qℓ2m−1

qℓ2m

)
V ℓ−1
m =

(
kℓ2m−1

kℓ2m

)
, βℓ−1

m =

(
βℓ2m−1

βℓ2m

)
+

(
sℓ2m−1

sℓ2m

)
m = 1, 2, . . . , 2ℓ−1, ℓ = 0, 2, . . . , L.

(3.1)
with leaf nodes DL

m = Att(uLm), where we denote with S(U, s) elementwise exponentiation of the83

matrix U , and row-wise division by elements of the state s. Then, H(x) is a IHSS.84

The main idea behind the above is to leverage the tree structure of a pseudo-HSS decomposition to85

obtain an approximation of attention with fewer operations.86

Lemma 3.1 (Cost of IHSS). Evaluating partial resultsDℓ
m(uℓm)uℓm form = 1, 2, . . . , 2ℓ−1 of IHSS87

requires O(22n−ℓd) arithmetic operations, with n = log2N88

Note that if ℓ = log2N = n, the asymptotic complexity is linear in the number of particles. This89

suggests a path forward: we can hybridize IHSS, performing log2N levels of the approximation90

(3.1), then complete the bottom-up recursion with a different, linear-time IHSS recursion (e.g., linear91

attention) for levels L+ 1− log2N levels.92

3.1 Additional properties of IHSS93

Directional approximation The IHSS is a directional approximation of softmax attention. Di-94

rectionality is a consequence of the state s in the softmax function, which couples elements across95

1In the attention example, parameter counts are independent of N , instead scaling as O(d2).
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Figure 3.1: [Top]: Attention T (u) and IHSS with L = 3. [Bottom]: Approximation error. The
average error is minimum at the last level, in off-diagonal blocks.

blocks. Traversing the HSS tree in a bottom-up fashion, the approximation error between atten-96

tion and IHSS on the off-diagonal entries decays, as shown in Figure 3.1. One implication of this97

property is that IHSS is a more accurate approximation of attention on long interactions.98

A similar argument can be used for hierarchical decompositions of implicit operators with other99

coupling operations, by augmenting the recurrence with additional states2.100

Local permutation equivariance IHSS is equivariant to structured permutations that preserve101

some block membership. In particular,102

H(Pu) = PH(u)

will hold if Pu shuffles elements inside any linear attention levels of a hybrid IHSS or if the permu-103

tation shuffles the elements of leaf blocks DL
m. Equivariance can be a desirable property in the task104

of approximating potentials in computational physics.105

4 Numerical Experiments106

We investigate how accurately different implicit operators can approximate example potentials with107

different characteristics. Denote with dλ,µ the distance between d(xλ, xµ) We consider:108

• Coulomb-like potentials:109

A(dλ,µ) =
1

dλ,µ

• Lennard-Jones potential:110

A(dλ,µ) =
1

dλ,µ

6

− 1

dλ,µ

12

• Morse potential111

A(dλ,µ) = (1− e−dλ,µ)2.

Protocol We prepare a dataset of 32k samples on a one-dimensional domains. Each sample in112

the dataset contains a 256 or 8192 particles, with positions sampled from an isotropic Gaussian113

distribution. Figure 4.1 shows the scalar potentials on the sorted particle positions. We train single114

2In (3.1), β ∈ RN acts as an accumulator for the softmax normalizing factors.
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Figure 4.1: Target potential functions considered for the approximation task.

Implicit Operator Coulomb Lennard-Jones Morse
256 8192 256 8192 256 8192

Attention 0.211 0.128 0.358 0.327 0.104 0.074
Linear Attention 0.207 0.112 0.391 0.321 0.081 0.063
Hyena 0.189 0.107 0.298 0.264 0.083 0.067

IHSS 0.172 0.124 0.294 0.278 0.081 0.066

Table 4.1: Validation loss of different methods.

layer models comprised on an implicit operator in the class of self-attention [15], linear attention115

[2], Hyena [12] and IHSS with d = 32. We apply RBF positional embeddings to the particle116

position, following [4]. All models are optimized with the Adam optimizer, learning rate 10−3,117

1000 epochs, cosine scheduler down to 10−4. The loss function is normalized mean-squared error.118

Table 4 reports validation loss in different experimental setups. IHSS is competitive with other119

implicit operators, consistently outperforming self-attention. Note that all operators have less than120

2000 learnable parameters, which is 3% of the 65536 values required to represent the potential when121

N = 256.122

5 Conclusion123

In this work, we introduced the IHSS, an implicit parametrization for hierarchical kernels that inter-124

polates between linear and quadratic attention, achieving both subquadratic scaling and high accu-125

racy. Through numerical experiments, we demonstrated its competitive performance against existing126

kernels such as self-attention [15].127
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A Proofs166

Lemma A.1 (Linear Attention is HSS). Linear self-attention A(x)v = q(x)k(x)T v(x) is HSS.167

Proof. To show that linear self-attention A(x)v = q(x)k(x)T v is HSS, we need verify that the168

matrices Dℓ
m, U ℓm, and V ℓm can be constructed in a way that satisfies the recursion formula given by169

HSS.170

For the base case of ℓ = L, let DL
m = qLmk

L⊤
m = A(xLm).171

At each lower level ℓ, we construct Dℓ−1
m , U ℓ−1

m , and V ℓ−1
m from the level ℓ as172

Dℓ−1
m =

(
Dℓ

2m−1 qℓ2m−1k
ℓ⊤

2m

qℓ2mk
ℓ⊤

2m−1 Dℓ2m

)
, m = 1, 2, . . . , 2ℓ−1

U ℓ−1
m =

(
qℓ2m−1

qℓ2m

)
V ℓ−1
m =

(
kℓ2m−1

kℓ2m

)
.

The induction step is173

Dℓ−1
m =

(
qℓ2m−1k

ℓ⊤

2m−1 qℓ2m−1k
ℓ⊤

2m

qℓ2mk
ℓ⊤

2m−1 qℓ2mk
ℓ⊤

2m

)
= qℓ−1

m kℓ−1⊤

m .

This implies the HSS recurrence will terminate with the linear attention matrix at root level ℓ = 0.174

175
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