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ABSTRACT

Score-based density ratio estimation is essential for measuring discrepancies be-
tween probability distributions, yet existing methods often suffer from high com-
putational costs, requiring many function evaluations to maintain accuracy. We
propose One-Step Score-Based Density Ratio Estimation (OS-DRE), an analytic
and efficient framework that eliminates the need for numerical solvers. Our ap-
proach is based on a spatiotemporal decomposition of the time score function,
where its temporal component is represented with an RBF-based (radial basis
function) analytic frame. This transforms the intractable temporal integral into
a closed-form weighted sum, enabling OS-DRE to estimate density ratios with
only one function evaluation while preserving high accuracy. Theoretical analysis
provides a rigorous truncation error bounds, ensuring provable accuracy with finite
bases. Empirical results show that OS-DRE achieves competitive performance
while completing density ratio estimation in a single step, effectively resolving the
long-standing accuracy-efficiency trade-off in score-based methods.

1 INTRODUCTION

Density ratio estimation (DRE) is a fundamental task in machine learning and statistics, used to
quantify the discrepancies between two probability distributions (Sugiyama et al., 2012). It plays
a central role in a variety of applications, including continual learning (Zhang et al., 2023), mutual
information estimation (Letizia et al., 2024; Chen et al., 2025), Large Language Models (LLMs)
alignment (Higuchi & Suzuki, 2025; Xiao et al., 2025), and causal inference (Wang et al., 2025).
However, classical DRE faces a significant challenge known as the density-chasm problem, where
non-overlapping (Srivastava et al., 2023; Chen et al., 2025) or high-discrepancy distributions (Rhodes
et al., 2020; Wang et al., 2025) lead to unstable and inaccurate estimates.

A significant advance has been the emergence of t ty ts pa—
continuous, score-based methods (Choi et al., 2022; l | | |
Yu et al., 2025; Chen et al., 2025), which reframe

the log-density ratio as the path integral of a time- * ™ z z I

dependent score function along a smooth interpola- | I I

tion betyveen the two d1§tr1but10ns (see Elg. 5 for Meané logr ()
illustration). This continuous formulation trans-
forms the DRE between py and pq, i.e., r(x) =
p1(x)/po(x), into solving the integral log r(x) =
fol 9 log pi(x)dt, with 9 log p;(x) being the time
score. While this mitigates the density-chasm prob-
lem, existing score-based methods still rely on com-
putationally expensive numerical integration tech-
niques, including ODE solvers (Choi et al., 2022)
and fine-grained quadratures (Norcliffe & Deisen-
roth, 2023). Achieving reliable estimates requires  Figure 1: Illustrative comparison of conven-
many repeated score evaluations, which results in  tional (i) and proposed (ii) score-based DRE
a high number of function evaluations (NFE) and  methods. The NFE of conventional methods
substantial computational overhead. depends on the chosen numerical solver.

(i) Conventional : NFE neural network evaluations.

Spatial Coefficients

logr(x)

Temporal Integrals

D : Neural Network (NN) O:Analytic Frame
(i) Ours: only 1 NN evaluation (NFE=1).

In this work, we introduce One-Step Score-Based Density Ratio Estimation (OS-DRE), a novel
framework that is solver-free and computes the density ratio integral in a single step. Our key
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innovation is to replace numerical integration with an analytic solution. We achieve this by proposing
a spatiotemporal decomposition of the time score, where we represent its temporal component using
an analytic frame, which is a mathematical frame whose elements {g; }7° , possess closed-form
temporal integrals. This allows us to re-express the mtegral as a simple weighted sum:

logr(x /Btlogpt )dt = th / (t)dt = <h(K)( ),g(K)>, (D
0

where B (z) = [h{") (@), 15 (@), , th )(z)] and g&) = [g1, s, ..., 9x] are two K-
dimensional vectors with g = fo gx(t)dt. As illustrated in Fig. 1, our method employs a neural
network (blue squares) to predict the spatial coefficients h(*)(z) in a single forward pass, which
then weight the pre-computed, analytic integrals of our frame elements (red circles). This approach
reduces the NFE to just one, drastically improving computational efficiency.

Our framework is grounded in rigorous approximation theory. We construct our analytic frames using
radial basis functions (RBFs) and prove that this construction yields a temporal basis that is both
complete in the infinite limit (guaranteeing convergence) and stable for any finite number of basis
functions (ensuring numerical robustness). Furthermore, we provide a theoretical truncation error

bound, which guarantees that the approximation accuracy can be systematically controlled. The main
contributions of this work are:

* We propose OS-DRE, the first path-integral-based, score-based DRE method that analytically
estimates the density ratio in a single step, eliminating the need for numerical solvers while
preserving the flexibility of the continuous formulation.

* We introduce the concept of an analytic frame, a temporal basis with closed-form integrals,
which enables the direct, analytic computation of the density ratio integral.

* We provide a complete theoretical framework for our method, including proofs for the
completeness of our RBF-based construction, and a formal analysis of the truncation error.

* We validate OS-DRE through extensive experiments, demonstrating that it achieves compet-
itive performance on several benchmark datasets with unparalleled computational efficiency.

2 RELATED WORKS AND PROBLEM STATEMENT

Related Works. Density Ratio Estimation (DRE) is a cornerstone task in machine learning
(Sugiyama et al., 2012). Research in this area has largely followed two main trajectories. The
first line of work is based on discriminative or contrastive objectives, such as in KLIEP (Sugiyama
et al., 2012), NCE (Gutmann & Hyvirinen, 2012), and TR-DRE (Liu et al., 2017). While founda-
tional, these methods often struggle with the “density-chasm” problem, where distributions with high
discrepancies or complex settings lead to unstable training and poor estimates. Subsequent efforts to
mitigate this issue within the same paradigm, such as FDRE (Choi et al., 2021), iterated regularization
(Gruber et al., 2024), v-DRE (Nagumo & Fujisawa, 2024), IMDRE (Kimura & Bondell, 2025) and
PP-DRE (Wang et al., 2025), have often introduced significant computational overhead by requiring
complex machinery like normalizing flows or additional importance sampling steps. A second, more
recent line of research, known as score-based DRE, emerged as a powerful alternative for resolving
the density-chasm problem. Pioneered by methods like TRE (Rhodes et al., 2020) and DRE-co
(Choi et al., 2022), this approach reframes the problem in a continuous setting, which inherently
provides a smoother and more stable estimation path between the two distributions. Despite their
robustness, subsequent innovations within this paradigm (Chen et al., 2025; Yu et al., 2025) have
remained dependent on computationally expensive numerical solvers for integration. A related line of
work, Guth et al. (2025), trains a time-varying energy via dual score matching, enabling single-step
evaluation of normalized log-densities when pg or p; is Gaussian and global calibration is available.
However, it does not address general DRE between two arbitrary non-Gaussian distributions, where
aligning the global constants of separately trained energy models is infeasible. Our work, OS-DRE,
operates within the robust score-based framework of the path integral but is the first to propose a
solver-free approach that entirely eliminates the computational bottleneck by providing an analytic
solution to the integral itself, thereby preserving the core advantages of the integration paradigm.

Problem Statement. Modern score-based DRE reframes the estimation of the ratio r(x) =
p1(x)/po(x) as the computation of an integral. By constructing a continuous path of densities p; ()
that interpolates between pg and p1, the log-density ratio is expressed as:

log (@) = log %) _ log py (@) — log po(a / Oy log pi(x )
po(x)
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The integrand, 0 log p; (), is known as the time score. In practice, the true time score is unknown and
is approximated by a neural network, s¥ (z, t), trained to match the true score, typically by minimizing
a time score matching (TSM) objective (Choi et al., 2022). After training, the log-density ratio is
estimated by computing the integral of the learned score model: log 7 (x) = fol s9" (x,t)dt. The
central problem addressed in this work is the computational bottleneck of this final step. Existing
methods rely on expensive numerical techniques like ODE solvers or quadratures to approximate this
integral, requiring numerous iterative evaluations of the model sto*. Our goal is to develop a method
that computes this integral accurately and efficiently, without resorting to any numerical solvers.

3 ONE-STEP DENSITY RATIO ESTIMATION

Notations. LetS = {s; | s¢(x,t) 2 O logpi(x), © € X, p; € P(X), t € [0,1]} denote the set
of time score functions, where P(X’) is a family of probability densities over the sample space X.

To ensure the analytical tractability of the time score function s;, we impose some mild regularity
conditions on the probability density p;(x), which are detailed in Sec. A.1. Under these conditions,
the space S is embedded in the Hilbert space L?(X x [0, 1]).

Lemma 3.1. Under Assumptions A.1 and A.2, the space S is a subset of L?(X x [0,1]).

See Sec. A.3 for a detailed proof. This embedding allows us to leverage the tools of Hilbert space
theory to analyze and approximate the time score function s;.

For notational convenience, we denote L?(X x [0, 1]) by H, + throughout this paper. The Hilbert
space Hg ; is isometrically isomorphic to the Hilbert tensor product H,®%H; (Kadison & Ringrose,

1986), where H, = L?(X) and H; = L%([0, 1]). This equivalence guarantees that any time score
s¢ € S can be represented by separating its spatial and temporal components (see Lemma A.3).

Decomposition via Orthonormal Bases. We first propose to represent the temporal component of
the time score using a complete orthonormal basis { g, } 72 ; for H,. This decomposition, analogous
to the Karhunen-Logve expansion (Karhunen, 1947; Loeve, 1977), allows us to express the time
score s¢(x, t) for each fixed « as a weighted sum of its spatial and temporal components:

so(@,t) = 3 h(@)ge(t),  where hy(x) = (so(, ), g, 2 / si(@, Ogn(t)dt. ()
k=1

By integrating this series with respect to time, we derive our initial formulation for the log r(x).

Lemma 3.2. Let {g;}7°, be a complete orthonormal basis for H;. The target log-density ratio
log () can be estimated by:

g r(2) = 3 hule) / ge(t)dt. 4

See Sec. A.4 for details. While theoretically sound, this approach faces a critical practical limitation.
For many standard orthonormal bases (e.g., Fourier or Legendre bases), all basis elements except the
constant function (say, g;) have zero integrals, i.e., fol gk (t)dt = (gx, 1), = 0,Vk > 1, causing the
expansion of Eq. (4) to collapse to a single term and discard high-frequency information.

Generalization via Frame-Based Decomposition. To resolve this degeneracy, we relax the strict
orthogonality condition and adopt a more flexible frame for ;. Frames retain the completeness
property of orthonormal bases but allow for redundancy and non-orthogonality, enabling the use of
elements with non-zero integrals.

Definition 3.3 (Frame, Mallat (2009)). Let H be a Hilbert space with inner product (-, -)3,. A
sequence {gx } 32 ; in a Hilbert space H is a frame if there exist constants 0 < A < B < oo, called
the frame bounds, such that for any g € H:

Allglize <D g, gi)ul* < Blglle- ®)
k=1

The frame bounds ensure that {gy, } 72 ; provides a stable representation of any g € H, even if the
frame elements gy, are not linearly independent Mallat (2009).
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By employing frames for both the spatial and temporal spaces, we arrive at our final, powerful
representation for the time score and log-density ratio.

Theorem 3.4. Let {f;}7°, and {gi};2, be frames for Hy and H,, respectively. Then, any time
score function sy € S can be expressed as:

= ZZQ kfi(x)gr(t), (6)
=1 1=1

where the coeﬁ?czents cl i depend on s;. By defining spatial coefficients hi(x) = Y2, ¢ fi(z)
and integral gy, = fO gx()dt, the time score and the corresponding log-density ratio can be expressed

as.
= hi(@)gi(t), logr(x Z hy, (@ (7
k=1

This representation resolves the degeneracy issue, as the integrals g are generally non-zero for all &
if {gr}72, is a frame. Furthermore, Theorem 3.4 allows for the computation of derivatives.

Corollary 3.5. If each function gy, in the frame expansion belongs to the Sobolev space W'2([0, 1])
and the coefficients {hj,(x)} are such that the series Y p-_ | hi,(x)g}, (t) converges in Hg 1, then the
weak derivative of the time score sy with respect to t exists and is given by term-by-term differentiation:

8,53,5 :13 t th (8)

See Sec. A.5 and Sec. A.6 for the proofs of Theorem 3.4 and Corollary 3.5, respectively.

The infinite-dimensional representation in Theorem 3.4, while theoretically powerful, is not directly
computable. This necessitates a transition to a practical, finite-dimensional approximation. The
subsequent section is dedicated to this crucial step, detailing the construction of a suitable temporal
basis {gx }72 , using RBFs (Sec. 4.1) and providing a theoretical analysis of the error introduced by
truncating the series to a finite number of terms (Sec. 4.2).

4 CONSTRUCTING THE TEMPORAL BASIS FOR OS-DRE

In the preceding section, we established the theoretical foundation for our method using an infinite-
dimensional series expansion (Theorem 3.4). To operationalize this framework, we now transition
from the infinite-dimensional ideal to a practical, finite-dimensional approximation scheme. This
section details the construction of this scheme, analyzes its theoretical error bounds, and presents
concrete examples of the basis functions used.

4.1 THE FINITE-DIMENSIONAL APPROXIMATION SCHEME

General RBF Construction. The core idea of our scheme is to project the target function onto
a sequence of nested, finite-dimensional subspaces {Vx }%2_,, where each Vi is spanned by a set
of RBFs. For this scheme to be a valid and stable implementation of the frame-based theory from
Sec. 3, the chosen RBF family { g }7° ; must inherit the two essential properties of a mathematical
frame: completeness, which ensures the approximation can converge, and stability, which ensures the
computation is robust. This leads to the following formal requirements.

Proposition 4.1. Let {g;, }3° | be an infinite family of RBFs in M, defined by gi.(t) = ¢(|t — ck|/o%).
c, and oy, are the center and shape paramaters of gi. This family generates a convergent and
well-posed approximation scheme if it meets two conditions: (i) Denseness: The infinite family’s
linear span is dense in Hy, i.e., span{gy }7° | = H. (ii) Finite-dimensional stability: For any finite
K > 1, the subset {gi }1_, is linearly independent.

see Sec. A.8 for a detailed proof. Proposition 4.1 provides a clear blueprint for our construction.
The abstract conditions (i) and (ii) can be satisfied by imposing concrete requirements on the RBF
generating function ¢. Specifically, the denseness condition (i) is fulfilled when ¢ and the RBF
parameters are chosen to satisfy the premises of our Denseness Lemma (Lemma A.4). The stability
condition (ii) is ensured by requiring ¢ to correspond to a strictly positive definite kernel, which
guarantees that the basis functions generated from distinct centers are linearly independent.
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With these requirements for ¢ in mind, we construct our basis functions in the general form gy, (t) =
(|t — ck|/ok). A key advantage of this approach is the potential for closed-form expressions for
their integrals and derivatives, which are crucial for our application. The temporal integral g; and
derivative g; (¢) are given by:

1
a= | ¢('tc’“|)dt, gz(t):sgn(tc’“)sb’('tc’“'). ©)
0 Ok Ok Ok

Application to Time Score Approximation. We now connect this approximation scheme back to
the central goal of our work. For a fixed &, we approximate the true time score s;(x, t) by its orthog-

onal projection onto the finite-dimensional subspace Vi = span{ gk}szl. Let this approximation be
SEK) (z,t). The stability guaranteed by Proposition 4.1 ensures that the coefficients {hECK) ()},
in the expansion are unique and can be robustly computed. By integrating this finite expansion, we

obtain a practical, computable approximation for the log-density ratio, denoted log (/) (x):

si(x,t) ~ St Zh(K) x)ge(t), logr(z) ~logr® Zh(K) (10)

These equations form the basis of our numerical implementation. The subsequent sections will detail
specific choices for the generating function ¢ and analyze the error introduced by this truncation.

4.2 TRUNCATION ERROR ANALYSIS

The truncation of the infinite series to a finite sum of K terms introduces an approximation error. We
now provide a rigorous theoretical analysis of this error.

Convergence Rates for RBF Approximation. The convergence rate of the error ||s; — ng) 17,
depends on the interplay between the smoothness of the target function s, and the regularity of the
RBF generating function ¢. This regularity is characterized by the kernel’s native space Ny, the
Reproducing Kernel Hilbert Space (RKHS) for which the kernel of ¢ serves as the reproducing kernel.
Informally, it consists of functions that are naturally smooth with respect to ¢. To derive a rigorous
error bound, we link this native space to standard Sobolev spaces, following the foundational work
on Sobolev error estimates for RBFs (Narcowich et al., 2006).

Proposition 4.2. Let the RBF generating function ¢ be such that its native space Ny is equivalent
to WT2(R) for some 7 > 1/2. Let the target function s;(x, -) belong to a Sobolev space of lower
smoothness, si(x,-) € W52([0, 1]) with 1/2 < < 1. Let S,E )( ,-) be the best approximation of
S¢ in the subspace Vi = span{gy }._,, where the centers Ci = {cy }}_, are quasi-uniform. Then,
there exists a constant C, independent of sy and K, such that the approximation error is bounded by:

Ise(@, ) — s (@, Yo, < C- K7 - |lse(@, ) ws.2(po.1))- (11)

See Sec. A.9 for details. This proposition complements Proposition 4.1 by establishing a quantitative
convergence rate. It introduces a third requirement for the generating function ¢, the native space
condition, which ensures rapid convergence of the approximation error for smooth target functions.

4.3 A SUITE OF ANALYTIC RBF KERNELS

We conclude with specific choices for the RBF generating function ¢. In our implementation, the
centers {cj 5, are fixed to a quasi-uniform grid over [0, 1] (e.g., equispaced points), while the
shape parameters {0}/, are learnable. This design satisfies the denseness and quasi-uniformity
conditions from our theory. The required linear independence is guaranteed when ¢ corresponds to
a strictly positive definite kernel. The kernels below are chosen because they meet the denseness,
stability and native space conditions and admit closed-form integrals and derivatives.

Example 1: Gaussian RBFs. The generating function is ¢(r) = exp(—r?). It satisfies all
theoretical requirements: (1) continuity and integrability for the Denseness Lemma, (2) strict positive
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definiteness for stability, and (3) infinite smoothness, making its native space equivalent to W ™2 for
any 7 > 1/2. The basis function is g (t) = exp( ”(T&) with integral and derivative:
k

1-— 2t —
gk = % {erf (U:k> + erf <§iﬂ , gk(t) = *(72%)91@@), (12)

Tk
where erf(-) is the error function, erf(z) = % Iy exp(—z?)dz.

Example 2: Inverse Multiquadric RBFs. The generating function is ¢(r) = (2 + 1)~1/2,
which likewise meets the three conditions: (1) denseness, (2) stability via strict positive definiteness,

and (3) infinite smoothness, ensuring a Sobolev-equivalent native space. The basis function is
Ok

gk(t) = JeiTer with integral and derivative:

(1—Ck)+ (1—0;@)24-0']% , U}C(t—ck)
= 1 , t) = — 13
Jr = 0k In ( P T n U;% g5, (t) (t—ca)? +0 )3/2 (13)

We also implement other RBFs, including rational quadratic and Matérn kernels (detailed in Sec. B).

4.4 TRAINING OBJECTIVE AND COMPUTATIONAL ADVANTAGES

To implement OS-DRE, we parameterize the spatial coefficients {h,(CK)(a:)} using a single neu-
ral network with parameters 8. Given an input sample x, the network outputs K coefficients:
[ (), ..., h% (x)] = NN(x;8). Our time score model and its derivative and integral are given by:

1
s?(x,t) = th g(t), Ops?(x,t) = Zh" ,/Ost:ctdt Zh" T)ge. (14)

We train this model by minimizing the sliced time score matching (STSM) objective from Choi et al.
(2022), a tractable objective function independent of the unknown true score:

»CSTSM(e) = ZEPo(mo)Pl(-’El) [/\(O)Ste(:lto, 0) — )\(1)8?(%1, 1)]
+ Epuypi () [2A()0es7 (2, ) + 2N (1)s7 (2, 1) + A(1)s? (2, 1)*]
where p(t) = U[0,1] and A(+) : [0, 1] — R is a weighting function with \’ being its derivative.

15)

Our framework offers key computational benefits in both training and inference. During training, the
derivative term 0,5 is computed analytically using Eq. (14). This eliminates the need for automatic
differentiation w.r.t. ¢, which in prior work (e.g., DRE-0c0) required expensive second-order gradients.
By reducing optimization to a first-order problem, we enable faster and more stable training.

Once the optimal parameters 6* are found, the log-density ratio is estimated in a single step:

1
log #() = / (@, 1)dt = th z)ge= (NN(:0%),6), (16)

0
where (-,-) denotes the inner product operator, NN(z; 8*) = [h9" (), h§ (x),...,h% (z)] and
g = = [31,G2, - .., JK] are two vectors. Since the basis integrals g are pre-computed analytic

constants (e.g., Eq. (12)), estimation requires only a single forward pass to obtain the coefficients,
leading to only 1 NFE and offering a substantial speedup over iterative ODE-based or quadrature
methods. The training and inference procedures of OS-DRE are summarized in Algorithms | and 2.
See Algorithm 3 for details of training procedure and Algorithm 4 for Pytorch implementation.

Algorithm 1 One Training Step of OS-DRE Algorithm 2 One-Step Estimation

Input: A batch xy ~ po, €1 ~ p1,t ~U(0,1). Input: Sample  and pre-calculated {gx }<_,.
1: Derive x; with (zo, 1) (see Sec. C.1.3).  Output: Estimated log-density ratio log 7 ().
2: Compute s? and 9;s? using Eq. (14). 1: {h®" (z)}< | « NN(z;0").

3: Compute loss Lstsm(6) using Eq. (15). 2: Compute log () using Eq. (16).
4: Update trainable parameters 6 and {0y} |.
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5 EXPERIMENTAL SETTINGS AND RESULTS

We conduct extensive experiments to evaluate OS-DRE, using DRE-co (Choi et al., 2022) and D3RE
(Chen et al., 2025) as baselines. For fair comparison, all methods adopt the same quadrature scheme
(trapezoidal rule) and weighting function \(¢) = ¢(1 — t).

Density Estimation. In density estimation, let py(x) = N (0, I;) be a simple noise distribution,
and p;(x) denote the complex and intractable data distribution. The log-likelihood of p; for a
given sample x can be estimated as log p1 () = logr(x) + log po(x), where r(x) = p1(x)/po(x)
is the density ratio between p; and py. After training, the estimated log-density ratio log 7 can
be derived based on Eq. (16). Thus, the log-likelihood of p; can be estimated as log p;(x) =
log 7(x) + log po(x). Detailed experimental settings can be found in Sec. C.3.

swissroll circles checkerboard tree

STRUCTURED AND MULTIMODAL DATASETS.

We evaluate OS-DRE on nine standard synthetic
benchmarks (Bansal et al., 2023; Chen et al.,  Ground Truh
2025). Results are shown part in Fig. 2 and

full in Fig. 7 (Sec. C.3). As shown in Fig. 2,

our solver-free method achieves accurate den- REae
sity estimates with only one function evalua-  ®FE=2)
tion (NFE = 1), while DRE-co and D3RE with

NFE = 2 often yield blurred or distorted re-

sults. OS-DRE reliably captures challenging D3RE
structures, including disconnected rings (cir- ™2
cles), curved manifolds (swissroll), sharp discon-

tinuities (checkerboard), and branching topolo-

gies (tree). These results demonstrate that OS-  brRE-

. .. NFE=10
DRE learns complex multimodal densities effi- ‘ )
ciently under tight inference constraints.
REAL-WORLD TABULAR DATASETS. We fur- 5.0

ther test OS-DRE on five real-world tabular =1
datasets (Grathwohl et al., 2019), spanning do-

mains from physics to image statistics. As

shown in Tab. 1, our one-step method (NFE = 0S-DRE
1) not only demonstrates remarkable efficiency
but also achieves state-of-the-art (SOTA) per-
formance in terms of negative log-likelihood Figure 2: Comparison of density estimates from
(NLL). Notably, OS-DRE with the IMQ and RQ three score-based DRE methods on four structured
kernels consistently outperforms the baseline and multimodal datasets. DRE-co and D*RE use
methods across all datasets, even when the base- NFE = 2, whereas our OS-DRE uses only NFE =
lines are allocated a significantly larger compu- 1. Additional results are in Fig. 7 (Sec. C.3). OS-
tational budget (NFE up to 50). This result is DRE is the best one with lowest NFE.
particularly pronounced on the high-dimensional MINIBOONE and BSDS300 datasets, where OS-
DRE achieves superior accuracy with a fraction of the model parameters used by competing methods.
These findings confirm that our analytic framework successfully resolves the efficiency-accuracy
trade-off, delivering both speed and SOTA performance.

Table 1: Comparison of negative log-likelihood (NLL) and wall-clock time on five tabular datasets.
Lower is better. All timing results were obtained on a single NVIDIA TITAN X GPU. The best NLL
in each dataset is shown in bold, and the best wall-clock time is underlined.

POWER GAS HEPMASS MINIBOONE BSDS300
Method NFE RBF Kernel NLL | Time (s) NLL | Time(s) NLL| Time(s) NLL| Time (s) NLL | Time (s)
DRE-o00 2 - 0.05+1.84 0.317  —4.37+144 0207 19.30+131 0.311  41.55+2.07  0.099 —130.68+4.17  0.448
D°RE 2 - 3.57+1.84  0.334 5.74+1528  0.218  23.90+036 0.319 55.83+9.36  0.100 —149.53+9.06 0.454
DRE-00 5 - 0.35+0.50  0.561  —3.63x0.78  0.310 20.24x+0.47 0.612  20.90z0s84 0.113  —83.70+1.35  1.061
D°RE 5 - 1.26+0.38  0.579  —1.15x420 0.316 21.05+0.52 0.554 43.11+26.20 0.117 —101.97+167 1.057
DRE-co 10 - 0.03+0.17  0.982  —4.34z0.60 0.517 20.43+052 0.987 20.57+0.93 0.146  —87.65+2.24  2.043
D®RE 10 - 0.49+0.39 1.051 —3.27+2.00  0.544  20.30+0.55 0.987 42.65+26.87 0.123 —102.01+2.43 2.042
DRE-co 50 - 0.25+0.28  4.128  —4.33x071  2.018 20.67x0.57 4.078 20.97x051  0.223  —90.24x2.14  10.035
D°RE 50 - 0.89+033  4.232  —3.16x0.62 2.072 20.05x0.35 4.002 42.73x26.78 0.216  —78.26x0.96 10.062
OS-DRE (ours) 1 Matérn 0.57+0.11 0.084  —3.49+0.01  0.025 23.66+0.02 0.064 31.71+0.11  0.003 —52.38+0.42  0.073
OS-DRE (ours) 1 Gaussian  —0.35+0.10 0.104 —16.39+0.17  0.038 17.44+0.00 0.118 10.95+0.33 0.005 —191.22+3.19 0.076
OS-DRE (ours) 1 IMQ —0.69+0.18 0.084 —18.33+0.04 0.039 17.45+005 0.071 9.97+037 0.005 —217.99+3.39 0.070
OS-DRE (ours) 1 RQ —0.66+0.17  0.082 —17.86+0.03 0.037 16.88+0.03 0.051 11.34+0.28 0.003 —201.37+2.21 0.071
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ENERGY-BASED MODELING ON MNIST. We Table 2: Energy-based modeling on MNIST.
conduct density estimation on the MNIST dataset, Results are reported in bits-per-dim (BPD).
leveraging pre-trained energy-based models (EBMs) Timing measured over the full test set on a
following (Choi et al., 2022; Chen et al., 2025). The single TITAN X GPU. “BS” = batch size.
log-likelihood of the data distribution p; () is esti-
mated via the density ratio and reported in bits-per- ~_Method Params BS NFE Time (s) BPD |
dimension (BPD) (see Sec. C.3 for a detail). We use DRE-co 11.2M 512 75 21.443 1.302
IMQ kernel. The results are summarized in Tab. 2. D°RE 112M 512 75 21.424 1.281
OS-DRE achieves a BPD of 1.278, setting a new OS-DRE 11.5M 512 1 0312 1.278
SOTA for DRE-based methods on this benchmark, surpassing both D®RE (1.281) and DRE-oco
(1.302). Crucially, while achieving better accuracy, OS-DRE maintains its computational advantage.
It estimates the BPD with NFE = 1, achieving a test-set inference time of 0.312 seconds, representing
a ~ 68 x speedup over D?RE and DRE-co (NFE = 75, ~ 215).

Mutual Information Estimation. Mutual information (MI) quantifies the dependency between
random variables x ~ p(x) and y ~ ¢(y), quantifying how much information one reveals about the
other. We estimate MI between two d-dimensional variables using OS-DRE. Formally, MI(x,y) =

p(z,y) p(z,y)

Epz,y) {log p(m)q(y)] , where the density ratio @) is directly approximable via DRE.

BEYOND NORMAL: GEOMETRICALLY PATHOLOGICAL DISTRIBUTIONS. We further probe the
robustness of OS-DRE on a suite of four MI estimation tasks involving geometrically pathological
distributions. These benchmarks, inspired by the suite from Czyz et al. (2023), are specifically
designed to challenge the underlying assumptions of many standard estimators by featuring properties
like heavy tails, sharp density peaks, and non-differentiable boundaries. For each task, we compute
the MI estimate over 10 random seeds and report the mean squared error (MSE) against the known
ground-truth MI value. The results, presented in Tab. 3 (full in Tab. 6), demonstrate the stability and
accuracy of our method. OS-DRE consistently achieves a lower MSE than the baseline methods
across the wide range of challenging data geometries, particularly in scenarios with heavy tails
(Half-Cube Map) and complex dependencies (Gamma-Exponential). This highlights the robustness
of our analytic, one-step framework in scenarios where traditional score-based methods can struggle.

Table 3: MSE results on the Additive Noise (sharp discontinuities, top) and Gamma-Exponential
(non-linear dependency, bottom) datasets. Across all correlation levels (top row of each sub-table),
OS-DRE achieves consistently superior or competitive performance. Full results given in Tab. 6.

Method RBF Kernel 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DRE-infty - 0.0029  0.0018  0.0015 0.0012 0.0013 0.0013 0.0011  0.0011 0.000
D3RE 0.0108  0.0077  0.0065 0.0071  0.0085  0.0076  0.0064  0.0045  0.0055

OS-DRE (ours) Matérn 0.0061  0.0029 0.0017 0.0015 0.0015 0.0013 0.0011  0.0009  0.0008
OS-DRE (ours) Gaussian 0.0016  0.0015 0.0016 0.0011 0.0015 0.0014 0.0012 0.0010 0.0010

OS-DRE (ours) IMQ 0.0010 0.0010 0.0010 0.0012 0.0009 0.0008 0.0007 0.0009 0.0007
OS-DRE (ours) RQ 0.0019  0.0015 0.0015 0.0012  0.0010  0.0010  0.0010  0.0010  0.0009
Method RBF Kernel 1.0 1.1 1.2 13 14 1.5 1.6 1.7 1.8

DRE-infty - 2.1328  0.8939  0.0725 0.0115 0.0213  0.0051  0.0114  0.0069  0.0051
D3RE 0.1919  0.1018 0.0154 0.0119  0.0063  0.0110  0.0050  0.0125  0.0114

OS-DRE (ours) Matérn 0.1768 0.0315 0.0035 0.0026 0.0008 0.0017 0.0009 0.0006 0.0005
OS-DRE (ours) Gaussian 0.2933  0.0503  0.0060  0.0028 0.0032 0.0014 0.0014 0.0007  0.0009
OS-DRE (ours) IMQ 0.2821  0.1185 0.0901  0.0492  0.0200  0.0275 0.0072  0.0080  0.0087
OS-DRE (ours) RQ 0.5182  0.0925 0.0330 0.0109  0.0052  0.0040  0.0015 0.0015 0.0012

HIGH-DISCREPANCY & HIGH-DIMENSIONAL DISTRIBUTIONS. To evaluate OS-DRE under
extreme conditions, we test mutual information estimation between two high-dimensional Gaussians
with large and increasing discrepancy, a setup that triggers the “density-chasm” problem (Rhodes
et al., 2020). Results in Tab. 4 (full in Tab. 6) show that, unlike DRE-co and D®*RE, which fail at low
NFE and remain unstable even with NFE = 50, OS-DRE with Gaussian or IMQ kernels achieves
accurate and stable estimates across all dimensions. This demonstrates that our analytic framework
effectively overcomes the density-chasm challenge where iterative methods falter.

Continual Learning. To evaluate OS-DRE in online scenarios such as real-time change point
detection (Chen et al., 2021) and continuous covariate shift adaptation (Zhang et al., 2023), we test
its ability to track evolving distributions across three challenging benchmarks, termed as Linearly
Drifting Gaussian, Progressive Noise Corruption and Controlled Divergence Shift (see Sec. C.4 for
a detail). In this continual learning setup, the target distribution p; shifts over discrete timesteps,
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Table 4: MI estimation under high-discrepancy settings (MI € {10, 20, 30,40} nats). We report the
estimated MI (mean = std over 3 seeds), MSE and wall-clock time. All timing results were obtained
on a single NVIDIA TITAN X GPU. Bolded MSE values indicate the best performance for each
setting. The best wall-clock time is underlined. Full results for NFE € {2,5,10, 50} given in Tab. 7.

| MI = 10 MI = 20 MI = 30 MI = 40
Method NFE RBF Kernel ‘ Est. MI MSE Time(s) Est. MI MSE Time(s) Est. MI MSE Time(s) Est. MI MSE Time (s)
DRE-0o 2 - 1.40+0.01 73.91 0.045 | 3.16+0.01 283.52 0.045 | 5.21+0.00 614.62 0.045 | 5.13+0.02 1215.69 0.046
D’RE 2 - 11.61+0.0s 2.58 0.048 |21.91x0.08 3.65 0.047 |27.51+0.07 6.21 0.046 |17.64=0.17 500.04 0.044
DRE-co 50 - 9.84+0.06 0.03 0.226 |19.81+0.04 0.04 0.249 [29.31+0.06  0.48 0.228 |38.06+0.07 3.77 0.271
D’RE 50 - 10.07+0.04 0.01 0.234 |20.30+0.03 0.09 0.256 |27.01+0.03 894 0.256 |32.37+0.04 58.19 0.260
OS-DRE (ours) 1 Matérn 10.31+0.02  0.09 0.024 |15.73+0.05 18.30 0.028 |15.55+0.02 208.98 0.032 |18.65+0.15 456.11 0.028
OS-DRE (ours) 1 Gaussian | 10.05+0.04 0.01  0.025 |20.03+0.04 0.00 0.027 |29.37+0.07 0.07 0.013 |38.68+0.09 2.30 0.014
OS-DRE (ours) 1 IMQ 10.37+0.02  0.11  0.035 |21.25+0.04 1.56 0.030 |28.10+0.08 5.86 0.029 |39.35+0.09 0.47 0.028
OS-DRE (ours) 1 RQ 9.89+0.03 0.03 0.022 |19.49+0.04 0.83 0.012 |28.94+0.0 1.52 0.012 |38.92+0.07 1.41 0.019

creating a challenging environment that requires the model to continuously adapt to and quantify the
change from a fixed source distribution py. We measure this ability by estimating the KL-divergence
pi(x) :|

between pg and the evolving target p; at each step via DRE, i.e., Dk (p¢|[po) = Ep, (a) {log

po(x)
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(a) Linearly Drifting Gaussian. (b) Progressive Noise Corruption. (c) Controlled Divergence Shift.

Figure 3: Kullback-Leibler (KL) divergence tracking on time-varying distributions. OS-DRE (NFE =
1) provides stable, low-variance estimates that track the ground truth (black line), while baselines
(NFE = 50) exhibit significant lag and high variance.

As shown in Fig. 3, OS-DRE delivers real-time, low-variance KL estimates with only a single function
evaluation (NFE = 1), closely matching the ground truth across dynamic shifts. In contrast, baseline
methods, even with NFE = 50, suffer from lag, variance, and instability, especially under rapid or
large shifts. Together, these results demonstrate that our analytic, solver-free formulation avoids the
error accumulation and instability inherent in iterative solvers, enabling real-time, reliable tracking of
distributional dynamics in continual learning.

Ablation Studies. Proposition 4.2 highlights two key hyperparameters: the number of basis
functions K and the choice of kernel ¢, both governing the trade-off between accuracy and complexity.
NUMBER OF BASIS FUNCTIONS (K). We varied K € {100, 200,400, 800} to study its effect. On
GAS, performance improved with larger K up to 400 (NLLs: —14.51, —15.82, —16.39) but degraded
at 800 (-11.12) due to ovetfitting, confirming that excessively large K harms generalization. For MI
estimation, results were stable across K (e.g., MSEs at MI = 40 with IMQ: 0.55, 0.48,0.47, 0.49),
indicating diminishing returns once K is sufficient. We thus use K = 400 for tabular data and
K = 200 for pathological distributions as a balanced choice.

CHOICE OF RBF KERNEL (¢). The kernel ¢ determines inductive bias and approximation power.
Among four tested kernels (Gaussian, Inverse Multiquadric (IMQ), Rational Quadratic (RQ), and
Matérn), IMQ and RQ were strong general-purpose options, achieving state-of-the-art density
estimation (Tab. | and Fig. 6) and robust MI estimation (Tab. 4), while also stabilizing continual
learning tasks (Fig. 3). The Gaussian kernel, with localized influence, excelled at capturing sharp
or disconnected structures in 2D synthetic benchmarks (Fig. 7) and moderate-discrepancy MI tasks.
The Matérn kernel, with limited smoothness, was best on geometrically pathological tasks such as
Gamma-Exponential, where less smooth inductive bias aligned with the target function.

Error of the Density Ratio (NLL / MSE) vs. Computational Cost (NFE). In score-based DRE,
the overall error is often dominated by the bias introduced by numerical integration at low NFE,
rather than by the score estimation itself. OS-DRE eliminates this bottleneck by replacing numerical
integration with a closed-form, solver-free estimation. We measure computational cost using the
NFE and evaluate the error of the density ratio using NLL for density estimation and MSE for MI
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estimation. As shown in Fig. 4, OS-DRE consistently matches or surpasses the estimation quality of
DRE-o0 and D3RE while using only NFE = 1. In the density estimation task (Tab. | and Fig. 4a),
it achieves comparable or better NLL across all five tabular datasets, whereas the baseline methods
require NFE values between 2 and 50 to reach similar performance. This corresponds to a 50x
reduction in computation. A similar pattern is observed in MI estimation (Tab. 4 and Fig. 4b), where
OS-DRE attains near-zero MSE at NFE = 1 for MI € {10, 20, 30}, while the other methods rely on
substantially larger NFE. These results show that OS-DRE maintains high estimation quality without
costly numerical integration and is therefore well suited for real-time applications.

POWER GAS HEPMASS MINIBOONE BSDS300

s
15 - 0 100
10 -
3 22 50 120
5
1 | N
G E -200 <+ DRE=-
-15 18 .
* * 10 % -220{ & &+ 0S-DRE (ours, IMQ)
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(a) NLL (Error) vs. NFE (Cost) for density estimation on five tabular datasets. See Tab. 8 for a detail.
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(b) MSE (Error) vs. NFE (Cost) for MI estimation under high-discrepancy settings. See Tab. 9 for a detail.

Figure 4: Trade-off between error of the density ratio and computational cost. The error is measured
by negative log-likelihood (NLL) and mean squared error (MSE), and the computational cost by the
number of function evaluations (NFE). OS-DRE maintains high estimation quality with minimal
computational cost (NFE = 1), whereas the baseline methods require substantially larger NFE to
reach comparable performance. This shows that OS-DRE effectively resolves the longstanding
trade-off between estimation quality and integration cost in score-based DRE methods.

6 CONCLUSION

We proposed OS-DRE, a one-step, solver-free framework for score-based density ratio estimation that
resolves the long-standing trade-off between accuracy and computational efficiency. By introducing a
spatiotemporal decomposition of the time score, our method replaces expensive numerical integration
with a single, analytic computation. This is achieved by representing the temporal component of the
time score using what we term an analytic frame, a stable approximation basis constructed from radial
basis functions, for which the necessary temporal integrals are known in closed form. Our theoretical
analysis provides a complete framework for this approach, with proofs for the completeness and
stability of the basis, alongside a rigorous truncation error bound that guarantees convergence. Our
empirical results demonstrate that this analytic approach achieves competitive accuracy with only
a single function evaluation, drastically outperforming iterative, solver-based methods in terms of
speed. These findings establish OS-DRE as a powerful and practical tool, opening up new directions
for efficient probabilistic inference and statistical estimation.

Limitations and Future Works. While OS-DRE achieves efficient and accurate DRE, its effec-
tiveness partly depends on the choice of the target time score function {0; log p; }+e[o,1], analyzed
in Proposition 4.2. When this target is misaligned with the ideal score (optimal yet unknown),
approximation quality may deteriorate. While our work provides a comprehensive analysis of the
approximation error, future research could explore training objectives beyond standard time score
matching to improve robustness and calibration. For instance, integrating conditional score matching
(Yu et al., 2025) or dual score matching (Guth et al., 2025) into our framework could merge analytic
integration with energy consistency, potentially yielding more reliable density ratio estimates.

10
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide a comprehensive account of our work. All
experimental setups, including dataset descriptions and key hyperparameter settings, are detailed in
the main paper and this appendix. We provide clear pseudocode for our core algorithms, detailing
the training procedure (Algorithm 3) and the final one-step estimation process (Algorithm 2). A
complete implementation of our OS-DRE framework, along with scripts to replicate all experiments,
will be made publicly available upon publication. All experiments were conducted using the PyTorch
framework on a single NVIDIA RTX 3070 GPU and four TITAN X GPUs.

LLM DISCLAIMER

The authors acknowledge the use of a large language model (LLM), specifically Google’s Gemini, to
assist in the writing and editing process of this paper. The uses of the LLM were primarily for two
purposes: (1) to assist in polishing the writing, including improving grammar, clarity, and phrasing
of sentences; and (2) for retrieval and discovery, such as finding related work and summarizing
existing literature to help situate our contributions within the broader academic context. The core
ideas, theoretical derivations, experimental design, and interpretation of results were conducted by
the authors.

BROADER IMPACT

This paper presents work whose goal is to advance the field of density ratio estimation, which does
not involve any potential ethical risks. While direct societal impacts are limited, future extensions
to applied domains (e.g., via our open-source codebase) should incorporate domain-specific ethical
reviews per deployment contexts.
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A ASSUMPTIONS AND PROOFS

A.1 ASSUMPTIONS

The theoretical results in Sec. 3 rely on the following mild assumptions regarding the analytical
properties of the probability density function p; ().

Assumption A.1. There exists a constant C' > 0 such that p;(z) > C forallx € X and ¢ € [0, 1].

Assumption A.2 (Uniformly boundedness). The partial derivative 0;p; () is uniformly bounded,;
that is, there exists a constant D > 0 such that |0;p;(x)| < D forall x € X and t € [0, 1].

Assumption A.1 ensures that log p, () is well-defined, while Assumption A.2 ensures that the time
score s, is well-behaved, specifically that it is an element of L*(X x [0, 1]), as stated in Lemma 3.1.

A.2 THEORETICAL FOUNDATION FOR SPATIOTEMPORAL DECOMPOSITION

This section establishes the mathematical foundation for the frame-based decomposition of the
spatiotemporal Hilbert space H, ;, which underlies Theorem 3.4. The key observation is that Hg ¢
can be realized as the tensor product of the spatial and temporal Hilbert spaces (i.e., 5 and H;), and
that frames of the product space can be constructed from those of the constituent spaces.

We begin with the algebraic tensor product H, & H;, consisting of finite sums of elementary tensors
f ® gwith f € Hy and g € H,. Although dense in #, ;, this space is not complete. Its completion
under the induced inner product is the Hilbert tensor product, H,®H,, which is isometrically
isomorphic to the space of square-integrable functions on the product domain, H,, ; = L*(X x [0,1])
(Kadison & Ringrose, 1986). This isomorphism allows us to construct a frame for the spatiotemporal
space from frames of the individual spaces, a result we formalize in the following lemma.

Lemma A.3. Let {f;}{°, be a frame for the spatial space H,, with frame bounds Ay, By, and
let {gr}72 | be a frame for the temporal space H, with frame bounds Ay, By. Then, the set of
elementary tensors { fi ® gk}ﬁzl forms a frame for the Hilbert tensor product space Hz @M, with
frame bounds Ay A, and By B,,.

Proof. Let F be an arbitrary element in H,@H; = Hy 4. Let hy(x) = (F(x, ), gr) 2, The sum of
the squared frame coefficients for /' can be bounded as follows:

ZZ|<F’fl®gk>|2:Z< |<hkafl>7-£m|2> (%)
=1 k=1 k=1 \Il=1

<> Billhillz, = B Y Il  (x%)
k=1 k=1

:Bf/X <;I<F(w7-),gk>ytl2> dz (% * %)

< By /X By|F(e, )%, dz (% %%%)

= ByBy|F|,,-

)

An analogous derivation provides the lower bound, AfAy||F|j3, = < durlF i@ gr)|?. The

key steps are: (%) Rewriting the sum by substituting the definition of hy. (x%) Applying the upper
frame bound for the spatial frame { f;} for each fixed k. (% * x) Using Fubini’s theorem to swap the
summation and integration. (x * x*) Applying the upper frame bound for the temporal frame {g; }
for each fixed . This completes the proof. [

This lemma provides the direct theoretical justification for the spatiotemporal expansion used in
Theorem 3.4, allowing us to represent any time score function s; € S C H, + as a double summation
over the tensor product frame elements.
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A.3 PROOF OF LEMMA 3.1

Lemma 3.1. Under Assumptions A.1 and A.2, the space S is a subset of L>(X x [0,1]).

Proof. We want to show that for Vs; € S. It satisfies:

1
sl = [ [ lsi(a ) dede < . ()
X JO

Based on Assumption A.1 and Assumption A.2, we have: (1) py(z) > C' > 0,50 - 1@ <52

|0¢p+ ()| < D. Then, using the chain rule, we write s;(x, t) as:
2 2
D
<l=]) . 19
< (2) o
We now integrate over X x [0, 1]:

Jselscentoan = | / [so(a, 1) ddz
< — | dtdz
<[ L@
o)LL
== didx
) L]
D 2/
= = dx.
@) /.

Since p;(x) is a probability density function, we know that [, pi(x)de = 1,V¢ € [0,1], which
means that the integral over X is finite, i.e., f Py dx < co. Therefore, the space S of functions s, is a
subspace of L?(X x [0, 1]). This complete the proof.

atpt(w)
pe(x)

|s¢(@,1)|* = 0; log py(@)|* =

(20)

O

A.4 PROOF OF LEMMA 3.2

Lemma 3.2. Let {g;}7°, be a complete orthonormal basis for H;. The target log-density ratio
log r(x) can be estimated by:

log 7 ( Z (e / (t)dt. 4)

Proof. The target log-density ratio is defined as the temporal integral of the time score function:

1
log r(x) :/ st(x, t)dt. (21)
0

For a fixed , we can express this integral as an inner product in the Hilbert space H; = L?([0, 1])
between the function s;(x, -) and the constant function 1(¢) = 1.

logr(x) = (s¢(x, ), 1), - (22)

Since {gx 52 1s a complete orthonormal basis for H;, the time score has the series expansion
si(x,t) = Z ey I (@) g (t), which converges in the L?-norm. Due to the continuity of the inner
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product in a Hilbert space, we can interchange the inner product and the infinite summation:

logr(x <Z hy(x )>
He
<hk (m)gk (t)v 1(t)>Ht

tqu

. (23)
= (@) (ge(t), 1(t)) 2,
k=1
o0 1
= th(az) / gk(t)dt.
k=1 0
This completes the proof. O

A.5 PROOF OF THEOREM 3.4

Theorem 3.4. Let {f;}7°, and {gi};2, be frames for Hy and H,, respectively. Then, any time
score function sy € S can be expressed as:

=33 arh(@)g(t), (6)
k=11=1

where the coeﬁ‘iczents cl i depend on s;. By defining spatial coefficients hi(x) = > 2, ¢ fi(z)
and integral g, = fo gx(t)dt, the time score and the corresponding log-density ratio can be expressed

as.
t) = Z hi(x)gr(t), logr(z Z hi(x 7
=1

Proof. The proof proceeds in three steps: establishing the existence of the expansion for s;, deriving
the corresponding expansion for log (), and simplifying the expressions.

By Lemma A.3, since { f;} and {g; } are frames for H,, and H, respectively, the set of elementary
tensors { f; ® gk}ffk:l forms a frame for the spatiotemporal space H, ;. A fundamental property of
a frame is that any element in the Hilbert space can be represented as a series expansion of the frame
elements. Therefore, for any s, € S C H, ¢, there exist coefficients {c; j } such that:

se(@,t) =Y Y ar(fi@ge)(@t) =YY arfi(@)gi(t), (24)

I=1 k=1 =1 k=1
where the series converges in the norm of H; ;.

The log- density ratio is obtained by integrating the time score. For a fixed «, the integration operator

I:h(t)— f h(t)dt is a continuous linear functional on H;. The continuity allows us to interchange
the functlonal w1th the infinite summations:

log (x) = /O (@ 1)t
[ (B2

[ olNe o}

:chl,kfl(w)/o gr(t)dt

1 1

Cz,kfl(w)gk(t)> dt

(25)

Il
ol
Il

ek fi() g

M
NE

1 k=1
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By defining the spatial coefficient functions hy(z) £ Y77, ¢, 1 fi(x), we can group the terms in
the double summations. This simplification yields the final expressions for the time score and the
log-density ratio as presented in the theorem statement:

Z (Z akfi(® ) () =Y hi(a)gu(t), (26)
=1 k=1

k=1
log (@ z(zcl e ) =3 (@) o
k=1 \I=1 k=1
This completes the proof. O

A.6 PROOF OF COROLLARY 3.5

Corollary 3.5. If each function gy, in the frame expansion belongs to the Sobolev space W12([0,1])
and the coefficients {hy,(x)} are such that the series > - | hi(z)g},(t) converges in H 4, then the
weak derivative of the time score s; with respect to t exists and is given by term-by-term differentiation:

8t5t (I: t th (8)

Proof. Letv(z,t) = Ek 1 hie(x)g;,(t). By assumption, this series converges to a function v € Hg ;.
We must show that v is the weak derlvatwe of s¢(x, t) with respect to time.

By definition, this requires showing that for any smooth test function ¢ € C2°((0, 1)), the following
equality holds for almost every « € X:

/ 52 (@, )/ (£)dt = — / o(@, ) (t)dt. (28)
0 0

Let’s evaluate the left-hand side. For a fixed x, we have:

/ St(%t)w'(t)dt:/ (th(w)gk(t)> Y/ (t)dt
0 0 k=1

_;M@A%wWth

oo 1

_ o (- 29
kﬂm(%ﬁAgawow)<ﬂ> 29)

1
= —/ v(x, t)Y(t)dt.
0

The key steps are justified as follows: (x) The interchange of summation and integration is permitted
because the series for s; converges in L?, and the operator h — [ hi)’dt is a continuous linear
functional on L2. (%*) Since each g, € W12([0, 1]), it has a weak derivative gj,. By the definition
of the weak derivative and the fact that ¢ has compact support in (0, 1) (meaning boundary terms
vanish), we can apply integration by parts. (* * x) The interchange of integration and summation is
again justified by the assumed L? convergence of the series defining v(x, t).

This confirms that v(x, t) is the weak derivative of s;(x, t), completing the proof. O
A.7 DENSENESS OF TEMPORAL BASIS IN H;

Lemma A4. Let H, = L*([0,1]). Consider a family of radial basis functions {gx }3°, defined by

%w=¢(“‘%>,temﬂ, (30)

Ok
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subject to the following conditions:

(i) The generating function ¢ : [0,00) — Ry is continuous, non-negative, not identically zero,
and integrable, i.e., fooo o(r)dr < oc.

(ii) The set of centers {cy }32 , is dense in [0, 1].

(iii) For any point ty € (0,1), there exists a subsequence of indices {ky}5>, such that the
centers c,, — to and the corresponding shape parameters oy, — 0 asn — oo.

Then, the linear span of this family, A £ span{gy. }3<_,, is dense in H,.

Proof. We use a proof by contradiction. Assume that the linear span A is not dense in H;. A
fundamental theorem of Hilbert spaces states that a subspace is dense if and only if its orthogonal
complement contains only the zero vector. Therefore, our assumption implies the existence of a
non-zero function u € H; (i.e., ||u| 3, > 0) that is orthogonal to every function in the basis family
{9x}72 ;. This orthogonality condition is expressed as:

1
(u, ge)n, = / u(t)gr(t)dt =0, Vk=>1. (31
0

Our objective is to show that this assumption forces u to be the zero function in H;, which will
establish the contradiction.

By the Lebesgue Differentiation Theorem, for any function € L'([0, 1]) (and thus for any u €
L?([0,1])), almost every point in (0, 1) is a Lebesgue point. Let us choose an arbitrary such Lebesgue
point, ty € (0,1).

Based on our assumptions, we can construct a specific sequence of functions. Since the centers
{ck} are dense and condition (iii) holds, we can select a subsequence of indices {k, }52 ; such that

ck, — to and oy, — 0asn — oo. Let us denote the corresponding functions as g,,(t) = g, (t).

We now define a sequence of normalized functions { F}, ()} ;:

Fo(t) = g;)(t), where D, = / gn(s)ds. (32)

The normalization constant D,, is computed over R to capture the total mass of the kernel, which
is standard practice for constructing an approximate identity. It can be calculated via a change of

variables:
D, = / 5 (‘S—Ck|> ds = 0%, / S(v])dv = 201, / (r)dr. (33)
oo 0

— 00 Ok

— 00

LetCy =2 fooo ¢(r)dr. By condition (i), Cy is a finite positive constant, so D,, = Cy0%,, > 0. The
sequence {F},} forms an “approximate identity” (or a summability kernel) centered around ¢,, which
is characterized by three key properties:

1. Non-negativity: Since ¢(r) > 0 and D,, > 0, we have F,,(t) > 0 for all ¢.
2. Unit Integral: By construction, [*_F,(t)dt = 1 for all n.

3. Concentration of Mass: For any fixed § > 0, the integral of F}, outside the neighborhood
(¢, — 0,ck, + 0) vanishes as n — oo.

1 t—cp
lim Fo(t)dt = lim 7/ ¢<|0k|> "
70 Jt—ck,, |26 n—00 Dy Jit_c, |26 Ok,

= lim & / o(Jv))dv  (letting v = (t — cx)/ox.)
0|26/,

n—00 n

1 o0
= — lim 2/ r)dr. (34)
C¢ n—oo 5/0-kn ¢( )

Since oy, — 0, the lower limit of integration § /o), — co. As fooo ¢(r)dr is finite, the tail
of the integral must go to zero, i.e., lim; o fmoo ¢(r)dr = 0. Thus, this limit is zero.
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Now, let us examine the convolution-like integral fol u(t) Fy,(t)d¢. From our initial orthogonality
assumption in Eq. (31), we have (u, gy, )7, = 0 for all n. This directly implies:

1 1
1 1
/ w(t) Fo ()t = —— / W(B)gn (D)t = —— (1, g)3e, = 0, V. (35)
0 Dy Jo Dy,
On the other hand, because ¢ is a Lebesgue point of w and {F}, } is an approximate identity sequence
concentrating at to (since c;, — tg), a standard result of analysis (a key part of the Lebesgue
Differentiation Theorem’s proof) states that:

1
lim [ w(t)F,()dt = ulto). (36)
n— o0 O

Comparing Eq. (35) and Eq. (36), we must conclude that u(tg) = 0.

Since to was an arbitrary Lebesgue point and the set of Lebesgue points has full measure in [0, 1], we
have shown that u(t) = 0 almost everywhere on [0, 1]. In the space L?([0, 1]), a function that is zero
almost everywhere is equivalent to the zero vector.

This contradicts our initial assumption that v was a non-zero function. Therefore, the assumption that
A is not dense in H; must be false. This completes the proof. O

A.8 PROOF OF PROPOSITION 4.1

Proposition 4.1. Let {gi }3° | be an infinite family of RBF's in H,, defined by gi,(t) = ¢(|t — cx|/o®).
¢, and oy, are the center and shape paramaters of gi. This family generates a convergent and
well-posed approximation scheme if it meets two conditions: (i) Denseness: The infinite family’s
linear span is dense in Hy, i.e., span{gy }7° | = H. (ii) Finite-dimensional stability: For any finite
K > 1, the subset {gi }1_, is linearly independent.

Proof. The proof consists of verifying that these two conditions ensure the desired properties of the
approximation scheme.

Convergence: Condition (i), established by our Denseness Lemma (Lemma A.4), guarantees the
scheme’s convergence. It ensures that for any function h € H; and any error tolerance € > 0, there
exists a sufficiently large dimension K and a function g € Vi such that ||h — ¢||, < €. This means
the approximation error of the best-fit projection, inf ey, ||k — g||, can be made arbitrarily small.

Well-posed Approximation: Condition (ii) guarantees that for any fixed, finite K, the approximation
problem within the subspace Vi is well-posed. Since {gk}f:1 is a linearly independent set, it forms
a basis for the subspace Vx = span{gk}kK:l. In a finite-dimensional Hilbert space, any basis is a
Riesz basis (a specific type of frame). This implies the existence of frame bounds A and By that
depend on K, satisfying 0 < Ax < Bg < oo. The existence of a strictly positive lower bound A x
ensures that the projection of any function onto Vi is a stable and well-defined operation. O

A.9 PROOF OF PROPOSITION 4.2

Proposition 4.2. Let the RBF generating function ¢ be such that its native space N is equivalent
to WT2(R) for some T > 1/2. Let the target function s;(x, -) belong to a Sobolev space of lower
smoothness, si(x,-) € W2([0,1]) with 1/2 < B < 7. Let S,EK) (z,-) be the best approximation of
s in the subspace Vi = span{gy, }1< |, where the centers Cxx = {c;}5_, are quasi-uniform. Then,
there exists a constant C, independent of sy and K, such that the approximation error is bounded by:

lse(@, ) = st @, e, < C- K7+ [lsi(@, ) lwszo.- (11)

Proof. The proof is a direct application of the main results presented in Narcowich et al. (2006).

Let I¢, s; denote the RBF interpolant to s; at the centers Cx. The best approximation error in the

subspace Vi is, by definition, the infimum of the error over all functions in that subspace, which is

bounded above by the error of any specific function in Vi, such as the RBF interpolant I¢,, s¢. Thus,
K .

e = st llse = inf lse = Pllse, < llse = Texesill- (37)
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We now bound the interpolation error using the results from Narcowich et al. (2006). The cited work
provides error estimates for functions defined on a general compact domain  C R<. Crucially, the
validity of these results hinges on the assumption that the RBF generating function ¢ has a native
space Ny equivalent to W™2(R). Their key result, Theorem 4.2, provides an estimate for functions

f € WP2(Q) that are less smooth than the native space order 7. Applying this theorem to our
specific one-dimensional case where 2 = [0, 1] and setting the error norm order . = 0 (for the L?
norm) gives:

st — IexsellLz(o,1)) < Ath’[o’l]PZK,[o,l]||5tHWﬁv2([0,1])a (3%)
where he,. [0,1] i the fill distance and pc, [0,1] is the mesh ratio.

The proposition assumes that the centers Cx are quasi-uniform. For such a set of points, the mesh
ratio is bounded by a constant independent of K, i.e., pc,. [0,1] < Pmaz- Furthermore, the fill distance
is directly related to the number of points, h¢, 0,1] = O(1/K).

Substituting these into the bound in Eq. (38):
st = Tessellzzqo,) < AO/K))? (pmaz) Istllwe2qo,1))- 39)

By defining a new constant C £ 4. (Pmaz)” that absorbs all terms independent of s; and K, we
arrive at the final error bound:

K
Ise(@,-) — s (@, e, < llse(@, ) = Tewse(@, )|,

< A(O(L/K ) (pmac)" |sellwezoapy  (He = L*([0,1]))  (40)
=C-K 7 |si(x,)lwe(o1))-

This completes the proof. O

B ANALYTIC FORMULAS FOR RBF KERNELS

This section provides a summary of the Radial Basis Function (RBF) generating functions, ¢(r),
used and referenced in this work. All kernels listed below are strictly positive definite, satisfying the
conditions of our approximation framework. Their respective closed-form integrals and derivatives
are detailed in the subsequent sections.

Table 5: A summary of different RBF generating functions used in this paper.

Kernel Name o(r) Key Properties Analytic Formulas
Gaussian exp(—r?) Infinitely smooth, localized influence (fast decay).  Eqgs. (41) and (42)
Inverse Multiquadric (2 + 1)’1/ 2 Infinitely smooth, global influence (slow decay). Eqgs. (43) and (44)
Rational Quadratic (r? 4 )7t Infinitely smooth, multi-scale, medium decay. Eqs. (45) and (46)
Matérn (v = 3/2) (1+ v/3r)exp(—+/3r) Limited smoothness (C?), local influence. Eqgs. (47) and (48)

B.1 GAUsSIAN RBFs

The Gaussian RBF is defined by the generating function ¢(r) = exp(—r?). The basis functions are

therefore given by:
|t —Ck |2
ge(t) =exp | ——5— ], (4D
Ok

where ci and oy, > 0 are the center and shape parameters of gy,.

Closed-Form Expression for the Temporal Integral. The integral g;, = fol gx(t)dt is calculated
as follows. We use the substitution v = (¢ — ¢ ) /o, which implies dt = o du.

1 2 (1701@)/0‘1‘:
t —
gk = / exp <—| §k| > dt = Uk/ exp(—u?)du.
0 O —ck/ok
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This integral can be expressed using the error function, erf(z) = —= [ exp(—a?)dz. Since

J
fab exp(—u?)du = g(erf(b) —erf(a)), we have:

= on VT [erf (1_%> et <_Ck>]
2 Ok Ok
= TkVT [erf(l _c’“> +erf (c’“ ] ’
2 O Ok

where the last step uses the property erf(—z) = —erf(z).

Closed-Form Expression for the Temporal Derivative. The derivative g (¢) is found by applying
the chain rule:

() 2 )

The final expressions for the integral and derivative are summarized below.

. 1— .
gk:o—kﬁ [erf( Ck)—s—erf(ckﬂ,
2 Ok Ok

go(ty = ~ 2= g ),

2
O

(42)

B.2 INVERSE MULTIQUADRIC RBFs

The Inverse Multiquadric (IMQ) RBF is defined by the generating function ¢(r) = (2 4 1)~1/2,
The basis functions are therefore given by:

(t—Ck)Q >_é Ok
= —_— 1 = 43
gr(t) ( 2t T (43)

Closed-Form Expression for the Temporal Integral. The temporal integral g, = |, 01 gk (t)dt is
calculated using the standard integral for the inverse hyperbolic sine function. We use the substitution
u =t — ¢, which implies d¢ = du.

1 176k 1
T = / L N — — _du
0o V(t—ck)?+o0o} e VUl + 0}

The integral of 1/v/u? + a? is In(u + vu? + a?). Applying this, we get:

Jk = Ok {ln (u + mﬂ N
= oy, (ln ((1 —cp)+ /(1 —cx)?+ a,%) —In (—ck + m»

(1—ck)+ V(A —cp)?+0}
=orln .
—ck 4+ /¢t + o}
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Closed-Form Expression for the Temporal Derivative. The derivative g (¢) is found by applying
the chain rule to g, (t) = o ((t — cx)* + Uz)_l/gz

q
Ea
—
=
=
|
o
ol
S—
[\v]
_|_
Q
ol
S—

gk()

(-2 o)

The final expressions for the integral and derivative are summarized below.

gk = orIn (L—c) +V{1 =)’ +op
k — Uk )
—cr + /¢ +op

by okt —ck)
k(1) (=0 102)

(44)

3/2°

B.3 RATIONAL QUADRATIC RBFs
The Rational Quadratic (RQ) kernel can be viewed as an infinite sum of Gaussian kernels of different

scales. This property makes it a robust choice, capable of modeling data at multiple scales. It is
strictly positive definite, and its generating function is ¢(7) = (1 + r?)~!. The basis functions are

therefore given by:
-1
(t—cr)? o}
t)=(1+ ——— =, 45
gk (t) (+ 3 (=) o7 (45)

Closed-Form Expression for the Temporal Integral. The temporal integral g = f o gk(t)dt is
calculated using the standard integral for the arctangent function. We use the substitution u = t — Ck,
which implies dt = du.

1 0_]% ) 1—cg 1
= | ot [
o (t—ck)?+o} k e UPH O}

The integral of 1/(u? + a?) is L arctan(%). Applying this, we get:

1—cg
Jx = 0’]% [ arctan ( )]
ek
Ck
= O} (arctan ( ) arctan ( ))
Ok
= 0 (arctan ( ) —+ arctan ( )) ,

where the last step uses the property arctan(—z) = — arctan(z).

Closed-Form Expression for the Temporal Derivative. The derivative g, (¢) is found by applying
the chain rule to g (t) = of ((t — c)? + 02)71'
d -1
gi(t) = o 2 ((t =) + o)

=t (D) (e o) (e o)
= ot ((t =) +0})
20k(t—ck) .
((t — )2 + 02)°

. 2(t — Ck)
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The final expressions for the integral and derivative are summarized below.

1-— 207 (t —
Gk = Ok (arctan ( Ck) + arctan <Ck>> . gR(t) = — %3t = cx) 5. (40)

o Ok ((t —cx)? +03)

B.4 MATERN RBFs

The Matérn family of RBFs is widely used in machine learning, particularly in Gaussian processes,
as their smoothness is controlled by a parameter v. We consider the common case where v = 3/2,
which corresponds to a once-differentiable function. The generating function is strictly positive
definite and is given by ¢(r) = (14 /37) exp(—+/3r). The basis functions, which are in the Sobolev

space WZ(R), are:
ault) = (H \/§|t; k> ox <\/§|t0k|> . “
k

Ok

Closed-Form Expression for the Temporal Integral. The integral g;, = fol gx(t)dt is computed
by splitting the integral at the center cj due to the absolute value. The indefinite integral of the

generating function is [ ¢(r)dr = —re=V3r— %e_\/gT. Evaluating this over the respective intervals
yields the final closed form.

Closed-Form Expression for the Temporal Derivative. The derivative of the generating function
is ¢/(r) = —3r exp(—+/3r). Applying the chain rule, we find the derivative of g (t):

ditt) o (11l zenl =0

Ok Ok
|t — ckl \/g‘t—cﬂ t—c 1
:—376Xp —_ . . —_—
O O ‘t70k| O
3(t — ) ( ﬁ|t—ck>
=———>5—~ep|——7—|.
O Ok

The final expressions are summarized below.

_ 20 [(l—ck+ 2 ) M+(Ck+ 2 ) \/§ck.,:|
=5 ¢ -t =€ 7k — 4+ — e 7 |,
9k \/g k Ok \/g Ok \/§ )
3(t — cp V3|t — ¢
g;(t) = —(72) exp <—|| .

O (o
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C EXPERIMENTAL DETAILS AND MORE RESULTS

All experiments were conducted on four NVIDIA TITAN X (Pascal) 12GB GPUs using PyTorch
(2.1.2) and PyTorch-Lightning (2.1.2). Our code is developed based on the official code for both DRE-
oo at https://github.com/ermongroup/dre—infinity and Neural ODE at https:
//github.com/rtgichen/torchdiffeq. Our code will be made available once the paper
is accepted.

C.1 EXPERIMENTAL DETAILS
C.1.1 INTERPOLATING PATHS AND THE TEMPORAL-INTEGRAL VIEW

This section clarifies how interpolating paths are constructed and why the resulting temporal integral
offers a stable formulation of density ratio estimation (DRE), addressing a common source of
confusion for readers outside the score-based modeling community.

Temporal Integral Intuition. The log-density ratio can be written as log r(x) = fol O log py(x)dt.
Here, 0; log p;() is the instantaneous rate of change of the log-density along a smooth interpolation
p¢. The integral simply accumulates these infinitesimal changes over ¢ € [0, 1]. Because the path
is smooth and non-vanishing, this temporal accumulation remains numerically stable. This avoids

the divergence that occurs when directly computing log g ;Eg between distributions with little or no

overlapping support (the density-chasm problem (Rhodes et al., 2020)).

Path Schedules Used in This Paper. Let x( and x; be samples drawn from py and p;, respectively.
We consider two standard path schedules. The first is the Linear path, a widely-used schedule in
stochastic interpolants (Albergo et al., 2023), defined by a; = 1 — ¢t and b, = ¢. The second is the
variance-preserving (VP) path (Song et al., 2021), satisfying a; = exp (—0.25t*(81 — o) — 0.5t53)

and b, = /1 — a?. We use the standard diffusion constants 3y = 0.1 and 3; = 20.

Path Visualization. Fig. 5 shows the VP path on the checkerboard dataset. The samples x; and
densities p; evolve smoothly from a simple Gaussian (pg) to a complex multimodal target (py).
The color-coded time steps illustrate that the support remains connected and well-behaved for all
t € (0,1), confirming the existence of a tractable and stable path integral.

0.6
Zo Tt=0.25 Lt=0.50 Lt=0.75 Zq

Po Pt=0.25 Pt=0.50 Pt=0.75

0.4
IU.Z

0.0
Figure 5: Traditional DRE methods require directly estimating log %(1; between potentially non-
overlapping densities, leading to numerical instability. Continuous score-based DRE avoids this by
constructing a smooth interpolating path {p; };c[o,1]. The figure visualizes this path at five time steps
(t € {0,0.25,0.50,0.75,1.0}) under a variance-preserving (VP) schedule, showing the transition
from a simple Gaussian (pg) to a multimodal checkerboard distribution (p;). Along the path, all
intermediate densities remain connected and well-behaved, turning the hard ratio estimation into the

tractable path integral fol 0y log pt(x)dt. The top row shows sample evolution (color-coded by t),
and the bottom row shows the corresponding density contours.
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C.1.2 JOINT SCORE MATCHING

Let s; = 0, logpi(x) and s, = V5 log p(x) be the time score and data score, respectively. In this
section, we integrate the parameterized time score model s¢ € R and data score model s¢ € R4
to formulate the joint score model s?, : [s?, s8] € R?*+1. This joint score is incorporated into the

training objective defined in Eq. (15), resulting in a joint score matching objective (Choi et al., 2022):
Lioin (8) = 2B, (2)ps (1) A (0) 87 o (0, 0)[t] — A(1) 87 (21, 1) [£]]
+ Ep(t)pe (@) Ep(v) [2A)D187 g (. 1)[t] + 2X (1)8 (1) [1] (49)
AW |80 o (@, ) [@]|[3 + 2M(1)0 Vst o (2. ) [z]0] .

where v ~ p(v) = N(0, I,;) follows a standard Gaussian distribution, the terms s? . (z, t)[z] and

9 ¢ (x,t)[t] represent the data and time score components of s?  (x, t), respectively.

st,a:

C.1.3 TRAINING PROCEDURE

In each training step, we sample a batch of pairs (g, 1) from the source and target distributions, pg
and p1, respectively. We also sample a time ¢ from a distribution p(t) over [0, 1]. The interpolated
sample x; is then constructed via a interpolation &; = a;xg + bx;. We use the coefficients (a¢, b;)
corresponding to the variance-preserving (VP) and linear path schedules following Choi et al. (2022);
Chen et al. (2025), as detailed in Sec. C.1.1. The detailed training process is outlined in Algorithm 3.

Algorithm 3 Training of OS-DRE

Input: Data distributions pg and p;, number of basis functions K.
Output: Trained model parameters 8* and {o}} X ;.
1: Initialize trainable parameters @ of neural network NN and shape parameters {ak}le.
2: Define fixed, quasi-uniform centers {c; }_; over [0, 1].
3: for each training step do
4:  Sample a batch: xg ~ pg, 1 ~ p1,t ~ p(t).
5:  Construct interpolated samples x; = a;xg + b1 (see Sec. C.1.1 for details).
6:  Compute coefficients: {hf(x)}X_, < NN(z; ) for each sample in the batch.
7. Construct score model s¢ and its derivative 9;s¢ using the model definition in Sec. 4.4.
8:  Compute the STSM loss Lsrsm (@) using Eq. (15).
9
0:

Update trainable parameters 8 and {ak}szl via gradient descent on the loss.

10: end for

C.2 MODEL PARAMETERIZATION AND IMPLEMENTATION DETAILS

Our implementation of the OS-DRE framework consists of two main components: the neural network
that parameterizes the spatial coefficients and the RBF temporal basis itself.

C.2.1 IMPLEMENTATION DETAILS

Network Architecture. Our model maps an input sample x to its K spatial coefficients through
a feed-forward network with a backbone and a single output head. The backbone is formed by a
sequence of residual blocks that transform @ into a high-level feature embedding, which is then fed
into the spatial-coefficient head, which applies another set of residual blocks and a final linear layer
to produce a K -dimensional vector. The output directly corresponds to the spatial coefficients:

(RS (x), hS(x),...,hS (x)] = NN(z; ). (50)

For each input x, the network computes all K scalar coefficients in a single forward pass.

Trainable Parameters. The trainable parameters of our model consist of two groups: (1) The
parameters (weights and biases) of NN, collectively denoted by 0; (2) The shape parameters {crk.}kK:1
of the RBF temporal basis {gx }2_,. The RBF centers {c; }1*_, are fixed hyperparameters, chosen
as a quasi-uniform grid over [0, 1] to satisfy the theoretical conditions. All trainable parameters are
optimized jointly by minimizing the STSM loss Lsysym defined in Eq. (15).
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C.2.2 NEURAL NETWORK PARAMETERIZATION

To implement OS-DRE, we employ a neural network to approximate the joint score. Its core function
is to map an input & to the spatial coefficients {hy(x)}£_, and data score. The network consists of a
shared backbone and two lightweight task-specific heads for time and data score estimation.

Architectural Overview. The model computes the time score s;(x,t) and, optionally, the data
score 84 (x,t) = V4 log pi(z) for joint score matching (see Eq. (49)). The architecture consists of
three main components:

* Shared Backbone: Extracts a high-level feature embedding from . The backbone is a

stack of residual blocks mapping « to a latent representation ®(z) € R This shared
embedding serves as input to both heads.

Spatial Coefficient Head: Predicts the K spatial coefficients {h (x)}X_,. This head pro-
cesses @ () through additional residual blocks and a final linear layer nn.Linear(dpigden, K),
producing

(RS (x), he (x),...,h% | (x)] = SpatialCoefficientHead(®(zx)). (51)

Hence, all K coefficients are predicted in one forward pass.

Data Score Head: (Optional) Predicts the data score s%(x,t). For joint score matching,
this head augments ®(x) with a positional encoding of time ¢ (Vaswani et al., 2017). The
fused representation is processed by residual blocks and projected to a d-dimensional output
approximating s (x, t).

Algorithm 4 PyTorch implementation of RBF-based Analytic Frame (for instance, Gaussian RBF).

)

class GaussianRBFFrame ( Module) :

"""Gaussian Radial Basis Function (RBE)."""
def _init__(self, K):

super () .__init__(K)

pi = tensor ( pi)

self.register_buffer ("sgrt_pi", sqgrt (pi))

self.sigma_fn = lambda : exp (self.log_sigma)
@property

def sigma (self):
return self._compute_sigma ()

def _compute_sigma (self):
return self.sigma_fn ()

def forward(self, t):
sigma_squared = self.sigma *x* 2
squared_dist = (t - self.c_k) »x 2 # [batch_size, K]
return exp (-squared_dist/ sigma_squared) # [batch_size, K]

def grad_function(self, t):
sigma_squared = self.sigma ** 2
squared_distances = (t - self.c_k) xx 2
exp_term = exp (-squared_distances / sigma_squared)
return -2« (t-self.c_k)/sigma_squaredxexp_term #[batch _size, K]

def _compute_integrals(self):

sigma = self.sigma

sigma_sqrt_pi = sigma * self.sqgrt_pi
erf_term_1 = erf((l - self.c_k) / sigma)
erf_term_2 = erf(self.c_k / sigma)

return (sigma_sqrt_pi / 2) % (erf_term_1 + erf_term_ 2)
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C.3 EXPERIMENTAL SETTINGS AND RESULTS FOR DENSITY ESTIMATION

In density estimation, let po(x) = N(0, I;) be a simple noise distribution, and p; () denote the
complex and intractable data distribution. The log-likelihood of p; for a given sample « can be
estimated as log p1(z) = logr(x) + log po(x), where r(x) = p1(x)/po(x) is the density ratio
between p; and py. After training, the estimated log-density ratio log 7 can be derived based on
Eq. (16). Thus, the log-likelihood of p; can be estimated as log p1 () ~ log #(x) + log po ().

Structured and Multimodal Datasets. This section provides a detailed analysis of the density
estimation results presented in Fig. 7, covering all nine benchmark datasets. In all experiments, our
OS-DRE model was configured with K = 400 basis functions using the RQ kernel and was restricted
to NFE = 1 for inference. The baseline methods, DRE-co and D3RE, were evaluated using a simple
quadrature method (the trapezoidal rule) with a fixed NFE = 2. We optimize the model using the
joint score matching loss with a learning rate of 0.01. The batch size is set to 10,000, with 100
batches per epoch. The weighting function is defined as A(t) = ¢(1 — ¢).

* Disconnected Topologies. The circles and rings datasets test the model’s ability to capture
distributions with multiple, disconnected components and assign zero density to the regions
between them. Fig. 7 shows that OS-DRE perfectly learns both topologies, generating
crisp rings with sharp boundaries. The baselines, particularly DRE-oco, struggle with this,
producing blurry estimates that incorrectly assign density to the space between the rings.
The 8gaussians dataset, featuring eight distinct clusters, further showcases this strength.
OS-DRE accurately identifies and models all eight modes, whereas the competing methods
tend to merge some of the clusters.

* Intricate Structures. The 2spirals, pinwheel, and swissroll datasets feature highly struc-
tured, non-linear manifolds that require the model to learn complex, curving paths. OS-DRE
demonstrates exceptional performance on all three, accurately tracing the thin spiral arms
and the swiss roll manifold. D3RE captures the general shape but loses significant detail,
while DRE-co fails to resolve the structures, resulting in a single, diffuse cloud of density.

* Discontinuous and Branching Densities. The checkerboard dataset presents a particularly
difficult challenge with its discontinuous, grid-like density. OS-DRE successfully recovers
the sharp, alternating high-density squares, a task where both baseline methods fail, produc-
ing heavily smoothed and inaccurate approximations. Similarly, the tree dataset is designed
to assess a model’s capacity to generate sharp, branching topological structures. OS-DRE
excels, yielding crisp, well-defined branches. In contrast, the solver-based methods are
unable to capture these fine details, illustrating a fundamental advantage of our analytic,
one-step approach for modeling distributions with complex, high-frequency features. The
moons dataset further confirms this, with OS-DRE producing significantly sharper and
better-separated modes than the baselines.

Real-world Tabular Datasets. We evaluate on five tabular datasets that are standard benchmarks in
density estimation: POWER, GAS, HEPMASS, MINIBOONE, and BSDS300. These datasets pose
challenging, non-Gaussian structures with unknown generative processes and complex correlations,
making them suitable for testing model expressiveness. We follow the preprocessing and data
splits of Papamakarios et al. (2017); Grathwohl et al. (2019) for a fair comparison. All baseline
methods were evaluated using a quadrature scheme with varying numbers of function evaluations
(NFE = {2,5,10,50}). Our method, OS-DRE, was evaluated with a fixed NFE = 1. In this
experiment, K is set to 400. We use joint score matching loss with learning rate 0.01. The weighting
function is set to A(t) = (1 — ¢).

The full quantitative results are presented in Tab. 1. The results clearly demonstrate the superiority of
OS-DRE. Across all five datasets, OS-DRE with an appropriate RBF kernel achieves a significantly
lower (better) NLL than both DRE-00 and D3RE, regardless of the NFE allocated to the baselines.

An interesting observation is the instability of the baseline methods. Their performance does not
consistently improve with an increased NFE. For example, on MINIBOONE, the performance of
DRE-co is better at NFE = 10 than at NFE = 50. This highlights the inherent difficulty and potential
instability of relying on numerical quadrature for complex, high-dimensional score functions. In
contrast, OS-DRE’s analytic, one-step computation is deterministic and robust.

29



Under review as a conference paper at ICLR 2026

swissroll circles moons 8gaussians pinwheel  checkerboard rings 2spirals tree

Ground Truth

Matérn

Gaussian

IMQ

RQ

Figure 6: Ablation study on the choice of RBF kernel for structured and multimodal datasets.
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Figure 7: Comparison of density estimates using three score-based DRE methods on nine datasets.

Finally, we observe a clear performance difference among the RBF kernels within OS-DRE. While all
kernels outperform the baselines, the IMQ and RQ kernels consistently deliver the best or near-best
performance. The Gaussian kernel is also a strong performer, particularly on GAS and BSDS300.
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This confirms the importance of the kernel choice as a key hyperparameter, as discussed in our
theoretical analysis, with the heavier-tailed IMQ and RQ kernels often providing the best inductive
bias for these complex, real-world data distributions.

Energy-based modeling on MNIST. We applied our OS-DRE framework for density estimation
on the MNIST dataset, leveraging pre-trained energy-based models (EBMs) as the target density
p1(x). We specifically use the setup described in Chen et al. (2025) and replicate the results for
DRE-co and D?RE for a direct comparison. Let p;(z) denote the MNIST data distribution, and
po(x) = N(0, I;) be the simple Gaussian noise distribution. We applied an variance-preserving
interpolant (Song et al., 2021; Choi et al., 2022) of the form x; = a;xo+b;EBM(x1)++/t(1 — t)72z,
where x¢ ~ po(x),x1 ~ p1(x), z ~ N(0, 1), a; = exp{—0.25(bmax — bmin)t> — 0.5bmint} and
by =+/1— af. bmin and by, are set to 0.1 and 20, respectively. We employ the joint score matching
objective and set v2 = 2, consistent with the framework used in Chen et al. (2025). We use IMQ
kernel.

A specific advantage of OS-DRE is its one-step evaluation of the log-density ratio log7(x) =

Zkl-(=1 hZ (z)g,. We exploit this speed to introduce an additional regularization term during training.
This term minimizes the NLL of the MNIST datasets:

1
LNLL1eg(0) = —m]Epl(m) [log #(EBM(x)) + log po(EBM(x))] . (52)

This regularization helps align the OS-DRE prediction directly with the desired log-density, which
we find beneficial for high-dimensional, complex data.

C.4 EXPERIMENTAL SETTINGS AND RESULTS FOR f-DIVERGENCE ESTIMATION

Continual Learning. To demonstrate the applicability of OS-DRE to online settings, such as
real-time change point detection, we evaluate its ability to track dynamically evolving distributions.
In this continual learning setup, the target distribution p; shifts over discrete timesteps, creating a
challenging environment that requires the model to continuously adapt to and quantify the change
from a fixed source distribution py. We measure this ability by estimating the KL-divergence between
po and the evolving target p; at each step. The following complex benchmarks are used.

* Linearly Drifting Gaussian. This benchmark simulates a gradual, linear drift in both
the mean and covariance of a Gaussian distribution, testing the model’s ability to track a
smoothly evolving target. The source distribution is a standard d-dimensional Gaussian,
po(x) = N (0, I,). At each discrete step s, the target distribution p; is defined as p(x) =
N (ps, Xs), where the parameters evolve linearly:

s =s5-Ap, Y= (1-—s-Ac)ly, (53)
with small, constant drift rates Ay and Ao.

* Progressive Noise Corruption. Inspired by the Gaussian noise corruption in the CIFAR-
10-C benchmark (Hendrycks & Dietterich, 2019), this task evaluates the model’s response
to a progressive increase in isotropic variance, simulating a common type of data corruption.
The source distribution is po(z) = N(0, I;). At each step s, the target distribution is a
zero-mean Gaussian with a linearly increasing covariance p;(z) = N(0,021,), where
02 = 1+ s- Ac?, with Ao? being a constant factor determining the rate of variance
inflation.

* Controlled Divergence Shift. We follow the setup in Zhang et al. (2023) to derive this
benchmark. This setup provides a stringent test of the model’s ability to track a distribution
whose mean shifts in a random direction at each step, while the KL divergence between
the current and initial distribution is precisely controlled. The source distribution is again
po(x) = N(0,1,). At each step s, the target distribution p;(x) = N (us, I4) is defined
such that the KL divergence KL(p||po) = s. Since the KL divergence for two Gaussians
with identity covariance is 0.5||5]|?, the mean vector p is constructed to satisfy ||ps|| =

v/ 2s, with its direction chosen uniformly at random on the unit hypersphere at each step.

The full results are presented in Fig. 3. The plots clearly show the superior stability and responsiveness
of OS-DRE across all three dynamic scenarios.
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* On the Linearly Drifting Gaussian benchmark (Fig. 3a), OS-DRE, particularly with the
IMQ and RQ kernels, provides a smooth and low-variance estimate that closely follows the
ground-truth KL divergence. In contrast, DRE-co shows a significant underestimation bias,
while D®RE’s estimates are plagued by extremely high variance, making them unreliable.

* The Progressive Noise Corruption task (Fig. 3b) presents a more challenging, accelerating
shift. OS-DRE again provides stable estimates that follow the general trend of the ground
truth. The baseline methods fail dramatically in this setting, with their estimates exhibiting
massive variance and becoming completely decorrelated from the ground truth as the
corruption intensifies.

* In the Controlled Divergence Shift experiment (Fig. 3c), the KL divergence increases in
discrete steps. OS-DRE demonstrates excellent responsiveness. Its estimates are sharp and
quickly adapt to the new ground truth level after each change point, with very low variance.
The baselines, especially D®RE, are characterized by such high variance that they are unable
to reliably detect these discrete changes.

These results collectively highlight the key advantage of our analytic, solver-free approach in continual
learning settings. By avoiding the iterative computations that can accumulate error and lead to
instability, OS-DRE provides a real-time, robust, and reliable tool for tracking distributional changes.

Mutual Information Estimation. Mutual information (MI) measures the dependency between two
random variables x ~ p(x) and y ~ ¢(y), quantifying how much information one variable contains

p(z,y)
p(x)q(y)

about the other. The MI between x and y is defined as MI(X,y) = Ej (4.4 [log } , which we

approximate using DRE.

BEYOND NORMAL: GEOMETRICALLY PATHOLOGICAL DISTRIBUTIONS. We evaluate the perfor-
mance of OS-DRE and baseline methods on four mutual information (MI) estimation tasks involving
geometrically challenging distributions, inspired by the benchmark suite from Czyz et al. (2023). The
parameter p controls the strength of the dependency between the two random variables. The four
benchmarks are detailed below:

» Half-Cube Map. This task tests robustness to heavy-tailed data. Correlated Gaussian
variables (x,y) are transformed by the homeomorphism x’ = sign(x)|x|*/? and y' =
sign(y)|y|/2. While this preserves the true MI, I(x’;y") = I(x;y), it creates distributions
with significantly heavier tails that challenge methods relying on local density assumptions.

* Asinh Mapping. Designed to test performance on distributions with highly concentrated

densities, this task applies the inverse hyperbolic sine transformation, asinh(z) = log(z +

22 + 1), to two independent Gaussian variables. This creates sharp peaks and regions of
high curvature that can cause numerical instability in many estimators.

* Additive Noise. This scenario evaluates performance on distributions with sharp, non-
differentiable boundaries. We define y = x + n, where x ~ U(0,1) and n ~ U(—¢, €) are
independent. The resulting joint distribution has a fragmented, piecewise-constant support
that violates the smoothness assumptions of many score-based methods. The true MI is
I(x;y) = log(2¢) + 0.5 for e < 0.5.

* Gamma-Exponential. This task features a complex, non-linear, and asymmetric depen-
dency. One variable is drawn from a Gamma distribution, x ~ Gamma(p, 1), and its
value is then used as the rate parameter for an Exponential distribution from which the
second variable is drawn: y | x = x ~ Exponential(z). The true mutual information is
I(x;y) = ¥(p+ 1) — log(p), where 1 is the digamma function.

The full results are presented in Tab. 6. OS-DRE demonstrates a clear advantage across all four
challenging scenarios. On the Half-Cube and Asinh mapping tasks, OS-DRE, particularly with the
Gaussian and Matérn kernels, achieves an MSE that is orders of magnitude lower than the baselines
across nearly all correlation levels. This indicates that our analytic basis is better equipped to handle
the heavy tails and high-curvature densities introduced by these transformations. In the Additive
Noise scenario, which features sharp discontinuities, the IMQ kernel shows remarkable stability,
consistently outperforming the baselines. This suggests that the global nature of the IMQ basis
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functions provides a more robust representation for distributions with non-differentiable boundaries.
Finally, the Gamma-Exponential task highlights the flexibility of our approach. The Matérn kernel,
which has limited smoothness, provides the most accurate estimates, significantly outperforming
the baselines, especially in the high-dependency regime (p > 1.2). This demonstrates the benefit
of being able to select a kernel whose inductive bias (in this case, limited smoothness) matches the
complex dependency structure of the data.

Table 6: MSE results for MI estimation on four geometrically pathological datasets. The top row of
each sub-table indicates the varying correlation coefficient p. Our OS-DRE method demonstrates con-
sistently superior or competitive performance across the wide range of challenging data geometries.

(a) MSE results for the Half-Cube Map dataset.

Method RBF Kernel -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

DRE-c0 - 0.0054  0.0029  0.0037 0.0023 0.0015 00021 00013 0.0015 00010 00014 0.0015 00022 00015 0.0027 00033 0.0029 00030 0.0037  0.0056
DRE - 0.0014  0.0006  0.0005 0.0003  0.0003  0.0003 0.0004 0.0003 0.0003 0.0003 0.0004 0.0009 0.0012 0.0006 0.0005 0.0004 0.0006 0.0008 0.0012
OS-DRE (ours) Matérmn 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
OS-DRE (ours) Gaussian 0.0002  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000
OS-DRE (ours) IMQ 0.0001  0.000L  0.0001 0.0001 0.0002 0.0001 00001 0.0001 0.0001 00002 0.0001 00001 0.0001 0.0001 00001 0.0002 00001 0.0001 0.0002
OS-DRE (ours) RQ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(b) MSE results for the Asinh Mapping dataset.

Method RBF Kernel -0.9 -0.8 -0.7 0.6 0.5 0.4 -0.3 -0.2 0.1 0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

DRE-oc0 - 0.0005  0.0006  0.0006  0.0006 0.0005 0.0004 0.0004 0.0004 0.0003 0.0003 0.0005 0.0006 0.0007 0.0006 0.0007 0.0006 0.0006 0.0007  0.0005
D’RE - 0.0014  0.0010  0.0006  0.0006  0.0005 0.0003 0.0003 0.0003 0.0003 00003 0.0004 00004 00004 0.0005 0.0008 0.0005 00006 00011 0.0014
OS-DRE (ours) Matérn 0.0004  0.0001  0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001  0.0004
OS-DRE (ours) ~ Gaussian ~ 0.0002 0.0001 0.0001 ~ 0.0001 ~ 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002
OS-DRE (ours) MQ 0.0002  0.0002  0.0002  0.0002 0.0002 0.0002 0.0002 0.0002 00002 00002 0.0002 0.0002 00003 0.0003 00003 0.0003 00003 00003 0.0004
OS-DRE (ours) RQ 0.0002  0.0002  0.0001  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003

(c) MSE results for the Additive Noise dataset.

Method RBF Kernel 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DRE-o0 - 0.0029  0.0018  0.0015 0.0012  0.0013  0.0013  0.0011  0.0011 0.000
D°RE - 0.0108  0.0077  0.0065 0.0071  0.0085 0.0076  0.0064  0.0045  0.0055

OS-DRE (ours) Matérn 0.0061  0.0029 0.0017  0.0015 0.0015 0.0013 0.0011  0.0009  0.0008
OS-DRE (ours) Gaussian 0.0016  0.0015 0.0016 0.0011 0.0015 0.0014 0.0012  0.0010  0.0010
OS-DRE (ours) IMQ 0.0010 0.0010 0.0010 0.0012 0.0009 0.0008 0.0007 0.0009 0.0007
OS-DRE (ours) RQ 0.0019  0.0015  0.0015 0.0012  0.0010  0.0010  0.0010  0.0010  0.0009

(d) MSE results for the Gamma-Exponential dataset.

Method RBF Kernel 1.0 1.1 1.2 1.3 14 1.5 1.6 1.7 1.8
DRE-co - 2.1328 0.8939  0.0725 0.0115 0.0213  0.0051  0.0114  0.0069  0.0051
D*RE - 0.1919  0.1018 0.0154  0.0119  0.0063  0.0110  0.0050  0.0125  0.0114

OS-DRE (ours) Matérn 0.1768 0.0315 0.0035 0.0026 0.0008 0.0017 0.0009 0.0006 0.0005
OS-DRE (ours) Gaussian 0.2933  0.0503  0.0060 0.0028 0.0032 0.0014 0.0014  0.0007  0.0009
OS-DRE (ours) IMQ 0.2821  0.1185 0.0901  0.0492  0.0200 0.0275 0.0072  0.0080  0.0087
OS-DRE (ours) RQ 0.5182  0.0925 0.0330  0.0109  0.0052  0.0040  0.0015 0.0015  0.0012

We also compare OS-DRE with KSG (Kraskov et al., 2004), MINE (Belghazi et al., 2018) and
InfoNet (Hu et al., 2024), as illustrated in Fig. 8. Here, Gauss denotes 2-D complex Gaussian
distributions, where ¢(y) = N(0,X) and p(x) = N (0, I;), with 3 = [[1, p], [p, 1]] and p varying
in [—0.9,0.9]. OS-DRE yields MI estimates that closely match the ground truth (with lower mean
absolute error (MAE) values), demonstrating high accuracy in Gaussian scenarios.

—— MINE (error=0.0221) —— MINE (error=0.0252) . —— MINE (error=0.0255) _ —— MINE (error=0.2942)
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Figure 8: Comparison of MI estimates under four complex settings proposed in (Hu et al., 2024)
(mean absolute error (MAE) included). OS-DRE consistently outperforms existing methods across all
settings, providing estimates that are both accurate and robust. These results highlight the superiority
of OS-DRE in estimating MI under challenging, nontrivial distributions.

HIGH-DISCREPANCY & HIGH-DIMENSIONAL DISTRIBUTIONS. To systematically evaluate model
robustness as the density-chasm problem becomes progressively more severe, we designed an
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experiment for MI estimation between two high-dimensional Gaussian distributions. We define
the two distributions as po(z) = N(0,1;) and p;(x) = N(0,%). The covariance matrix 3 is
constructed to be block-diagonal, where each 2 x 2 block along the diagonal is given by A = (ll) 7 ),
with p = 0.5. This structure creates strong pairwise correlations, leading to a highly ill-conditioned
covariance matrix, a known challenge for score-based DRE methods (Choi et al., 2022). The
experiments are conducted across several dimensions, d € {40, 80,120, 160}, which correspond
to true MI values of approximately {10, 20, 30,40} nats, respectively. We report the estimated MI
(mean =+ std over 3 seeds) and the Mean Squared Error (MSE).

The full results are presented in Tab. 7. The data clearly illustrates the limitations of iterative, solver-
based methods in high-discrepancy scenarios. At low NFE (e.g., NFE= 2), both DRE-00 and D*RE
fail completely, severely underestimating the true MI. Even with a large computational budget of
NFE= 50, DRE-co provides reasonable estimates, but D®RE remains unstable, collapsing entirely at
the highest discrepancy level (MI= 40).

In stark contrast, our one-step OS-DRE demonstrates remarkable robustness. The choice of kernel
is critical. The Matérn kernel, which has limited smoothness, struggles as the dimensionality
and discrepancy increase, as predicted by theory. However, the infinitely smooth kernels deliver
exceptional performance. The Gaussian kernel provides the most accurate estimates for MI levels of
10, 20, and 30 nats, achieving an MSE that is competitive with or better than the best-performing
baseline (DRE-oco at NFE= 50), but with only a single function evaluation. At the most extreme
setting of MI= 40, the IMQ kernel proves to be the most robust, delivering the lowest MSE by a
significant margin. This highlights the key advantage of our analytic framework: by avoiding the
accumulation of numerical errors inherent in iterative solvers, OS-DRE can successfully navigate the
density chasm and provide stable, accurate estimates in a single step.

Table 7: Mutual information estimation under high-discrepancy settings (MI € {10, 20, 30, 40} nats).
We report the estimated mutual information (mean = std) and MSE across different RBF kernels. All
timing results were obtained on a single NVIDIA TITAN X GPU. Bolded MSE values indicate the
best performance for each setting. The best wall-clock time is underlined.

| MI = 10 MI = 20 MI = 30 MI = 40
Method NFE RBF Kernel \ Est. MI MSE Time(s) Est. MI MSE Time(s) Est. MI MSE Time (s) Est. MI MSE Time (s)
DRE-co 2 - 1.40+0.01 73.91 0.045 | 3.16x0.01 283.52 0.045 | 5.21+0.01 614.62 0.045 | 5.13x0.02 1215.69 0.046
D°RE 2 - 11.61+0.08 2.58 0.048 |21.91+0.08  3.65 0.047 |27.51+0.07 6.21 0.046 |17.64+0.7 500.04 0.044
DRE-00 5 - 8.31+0.05 2.86 0.055 |17.34+0.04 7.09 0.060 |24.97+0.05 2529 0.068 |31.61x0.06 70.36 0.057
D°RE 5 - 9.91+0.04 0.01 0.056 |19.46+0.04 0.29 0.061 |27.26+0.03 7.50 0.058 |31.24+0.05 76.80 0.058
DRE-00 10 - 9.48+0.06 0.27 0.075 |19.27+0.04 0.54 0.100 |28.37+0.05 2.66 0.085 |37.34+0.06 7.08 0.083
D°RE 10 - 10.13+0.04 0.02 0.075 |20.45+0.03 0.21 0.094 |27.22+0.03 7.72 0.076 |32.27+0.04  59.70 0.080
DRE-o00 50 - 9.84+0.06 0.03 0.226 |19.81+0.04 0.04 0.249 |29.31+0.06  0.48 0.228 |38.06=+0.07 3.77 0.271
D°RE 50 - 10.07+0.04  0.01 0.234 |20.30+0.03  0.09 0.256 |27.01+0.03 894 0.256 |32.37+0.04 58.19 0.260
DRE-co 100 - 9.87+0.06 0.02 0.475 |19.89+0.04 0.01 0.493 29.30+0.06 0.50 0.478 |38.18+0.07 3.31 0.554
D°RE 100 - 10.01+0.04 0.00 0.498 |20.29+0.03 0.08 0.546 27.00+0.03  9.00 0.487 |32.37+0.04  58.20 0.514
DRE-co 200 - 9.86+0.06 0.02 0.819 |19.89+0.04 0.01 0.954 29.29+0.06 0.50 0.879 |38.18+0.07 3.31 0.956
D°RE 200 - 10.04+0.04 0.00 0.816 |20.23+0.03 0.05 0.922 26.94+003 9.36 0.907 |32.43+0.04 57.28 0.955
OS-DRE (ours) 1 Matérn 10.31+0.02 0.09 0.024 |15.73+0.05 18.30 0.028 |15.55+0.02 208.98 0.032 |18.65+0.15 456.11 0.028
OS-DRE (ours) 1 Gaussian | 10.05+0.04 0.01 0.025 |20.03+0.04 0.00 0.027 [29.37+0.07 0.07 0.013 |38.68+0.09 2.30 0.014
OS-DRE (ours) 1 MQ 10.37+0.02  0.11 0.035 |21.25+0.04 1.56 0.030 |28.10+0.08 5.86 0.029 |39.35+0.09 0.47 0.028
OS-DRE (ours) 1 RQ 9.89+0.03 0.03 0.022 |19.49+0.04 0.83 0.012 |28.94+0.10 1.52 0.012 |38.92+0.07 1.41 0.019
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Table 8: Accuracy-efficiency trade-off on tabular datasets. Accuracy is measured by NLL, and
efficiency is measured by NFE. Lower is better. Each method is evaluated at different NFE settings.
The best results are highlighted in bold. In this table, OS-DRE uses the IMQ kernel. See Fig. 4a for a
visual comparison of this trade-off.

Dataset Method NFE =1 NFE = 2 NFE =5 NFE = 10 NFE = 50
DRE-oco - 0.05 £+ 1.84 0.35 4+ 0.50 0.03 £0.17 0.25 £ 0.28
POWER D*RE - 3.57 £ 1.84 1.26 + 0.38 0.49 £0.39 0.89 +£0.33
OS-DRE (ours) —0.69 +0.18 - - - -
DRE-oco - —4.37+1.44 —3.63 £0.78 —4.34 +£0.60 —4.33+0.71
GAS D*RE - 5.74 £15.28 —1.154+4.20 —3.27+2.00 —3.16+0.62
OS-DRE (ours) —18.33 +0.04 - - - -
DRE-co - 19.30 £ 1.31 20.24 +0.47 20.43 +0.52 20.67 + 0.57
HEPMASS D?RE - 23.90 + 0.36 21.05 4+ 0.52 20.30 + 0.55 20.05 + 0.35
OS-DRE (ours) 17.45 4 0.05 — - - -
DRE-co - 41.55 + 2.07 20.90 +0.84 20.57 +0.93 20.97 + 0.51

MINIBOONE D3RE - 55.83 + 9.36 43.11 £26.20 42.65 +26.87 42.73 +26.78
OS-DRE (ours) 9.97 +0.37 - - _ _

DRE-co - —130.68 £4.17 —83.70 +£1.35 —87.65+2.24 —90.24+2.14
BSDS300 D3RE - —149.53 £9.06 —101.97 +£1.67 —102.01 +2.43 —78.26 + 0.96
OS-DRE (ours) —217.99 + 3.39 - - - -

Table 9: Accuracy-efficiency trade-off in MI estimation. Accuracy is measured by MSE, and
efficiency is measured by NFE (NFE =€ {1, 2,5, 10,50, 100, 200}). Lower is better. Results are
shown across different MI settings (MI € {10, 20, 30, 40}). The best results are highlighted in bold.
OS-DRE uses the Gaussian RBF kernel. See Fig. 4b for a visual comparison of this trade-off.

MI Setting Method 1 2 5 10 50 100 200
DRE-co — 73.91 2.86 0.27 0.03 0.02 0.02
MI = 10 D3RE - 2.58 0.01 0.02 0.01 0.00 0.00
OS-DRE (ours) 0.01 - - - - - -
DRE-oco - 283.52 7.09 0.54 0.04 0.01 0.01
MI = 20 D3RE - 3.65 0.29 0.21 0.09 0.08 0.05
OS-DRE (ours) 0.00 - - - - - -
DRE-co - 614.62 2529 2.66 0.48 0.50 0.50
MI = 30 D3RE — 6.21 7.50 7.72 8.94 9.00 9.00
OS-DRE (ours) 0.07 — - - - - -
DRE-0c0 - 1215.69 70.36  7.08 3.77 3.31 3.31
MI = 40 D°RE

- 500.04  76.80 59.70 58.19 5820 57.28
OS-DRE (ours) 2.30 - - - _ _ _
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