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ABSTRACT

We propose a canonical approach for feature selection, sparse learnable masks
(SLM). SLM integrates learnable sparse masks into end-to-end training. For
the fundamental non-differentiability challenge of selecting a desired number of
features, we propose duo mechanisms for automatic mask scaling to achieve the
desired feature sparsity, and gradually tempering this sparsity for effective learning.
In addition, SLM employs a novel objective that maximizes the mutual information
(MI) between the selected features and the labels, in an efficient and scalable way.
Empirically, SLM achieves state-of-the-art results on several benchmark datasets,
often by a significant margin, especially on real-world challenging datasets.

1 INTRODUCTION

R1: In many machine learning scenarios, a significant portion of the input features may be irrelevant
to the output, especially with modern data management tools allowing easy construction of large-
scale datasets by combining different data sources. ‘Feature selection’, filtering the most relevant
features for the downstream task, is an everlasting problem, with many methods proposed to date and
used (Guyon & Elisseeff, 2003; Li et al., 2017; Dash & Liu, 1997). Feature selection can bring a
multitude of benefits. Smaller number of features can yield superior generalization and hence better
test accuracy, by minimizing reliance on spurious patterns that do not hold consistently (Sagawa et al.,
2020), and not wasting model capacity on the irrelevant features. In addition, reducing the number
of input features can decrease the computational complexity and cost for deployed models, as the
models need to learn the mapping from smaller dimensional input data, and the reduced infrastructure
requirement to support only the selected features. Lastly, feature selection helps with interpretability,
as the users can focus their efforts to understand the model to a smaller subset of input features.

R1: How can we select the target number of features in an optimal way? Feature selection has been
studied with numerous approaches, as summarized in §2. For superior task accuracy, the feature
selection method should consider the predictive model itself, as the optimal set of features would
depend on the how the mapping is done between the inputs and outputs. Such methods have been
approached in different ways, such as via sparse regularization and its extensions (Lemhadri et al.,
2019). In the context of deep learning, the fundamental challenge is the selection operation (given
the target number of selected features) being non-differentiable. This necessitates design of soft
approximations for feature selection operator, incorporated into end-to-end task learning.

R1: To address these fundamental challenges, we propose Sparse Learnable Masks (SLM), a novel
approach for scalable feature selection. SLM can be integrated into any deep learning architecture,
given the optimization is gradient-descent based for joint training. SLM proposes an effective
way of adjusting the learnable masks to select the exact number desired features, addressing the
differentiability challenges. In addition, SLM uses a novel mutual information (MI) regularizer, based
on a quadratic relaxation of the MI between the labels and the selected features, conditioned on the
probability that a feature is selected. SLM comes with scaling benefits, yielding efficient feature
selection even when the number of features or samples are very large. We demonstrate state-of-the-art
feature selection results with SLM in different scenarios across a wide range of datasets.

2 RELATED WORK

Feature selection methods: Numerous methods have been studied for feature selection, and broadly
fall under three categories (Guyon & Elisseeff, 2003):
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• Wrappers recompute the predictive model for each subset of features. As exhaustive search is
NP-hard and computationally intractable, efficient search strategies such as forward selection
or backward elimination have been developed. For instance, HSIC-Lasso (Yamada et al., 2014)
proposes a feature-wise kernelized Lasso for capturing non-linear dependencies. Wrappers are
difficult to integrate with modern deep learning, as the training complexity gets prohibitively large.

• Filters select subsets of variables as a pre-processing step, independent of the predictive model.
(Gu et al., 2012) developed the Fisher score, which selects features to maximize (minimize) the
distances between data points in different (same) classes in the space spanned by the selected
features. Principal feature analysis (PFA) (Lu et al., 2007b) selects features based on principal
component analysis. (Pan et al., 2020) uses adversarial validation to select the features, based
on how much their characteristics differ between training and test splits, as a way to improve
robustness. There are also various methods based on MI maximization (Ding & Peng, 2005),
selecting features independent of the predictive model (unlike SLM). CMIM (Fleuret, 2004)
maximizes the conditional MI between selected features and the class labels to account for feature
inter-dependence. JMIM (Bennasar et al., 2015) maximizes the joint MI between class labels
and the selected features, while addressing overconfidence in features that correlate with already-
selected features, with greedy search that selects features one at a time. (Zadeh et al., 2017)
formulates feature selection as a diversity maximization problem using a MI-based metric amongst
features. The fundamental disadvantage of filter-based methods, of not being optimized with the
predictive models, results in them often yielding suboptimal performance.

• Embedded methods combine selection into training and are usually specific to given predictive
models. Lasso regularization (Tibshirani, 1996) employs feature selection by varying the strength
of the L1 regularization. (Feng & Simon, 2017) extends this idea by proposing an input-sparse
neural network, where the input weights are penalized using the group Lasso penalty. (Lemhadri
et al., 2019) selects only a subset of the features using input-to-output residual connections,
allowing features to have non-zero weights only if their skip-layer connections are active. R3:
Concrete Autoencoder (Abid et al., 2019) proposes an unsupervised feature selector based on using
a concrete selector layer as the encoder and using a standard neural network as the decoder. FsNet
(Singh et al., 2020) uses a concrete random variable for discrete feature selection in a selector layer
and a supervised deep neural network regularized with the reconstruction loss. STG (Yamada et al.,
2020) learns stochastic gates with a probabilistic relaxation of the count of the number of selected
features, it selects features and learns task prediction end-to-end.

Masking in deep neural networks: Masking the inputs to control information propagation is a
commonly-used approach in deep learning. Attention-based architectures, such as the Transformer
(Vaswani et al., 2017) and the Perceiver (Jaegle et al., 2021), show strong results across many
domains, with learnable key and query representations, whose alignment yield the masks that control
the contribution of corresponding value representations. While these effectively reweight the inputs,
they typically do not completely mask out (i.e. yielding zero attention weight) the inputs. Towards
this end, various works have focused on bringing sparsity into masking, such as based on thresholding
(Zhao et al., 2019) or sparse normalization (Correia et al., 2019). TabNet (Arik & Pfister, 2019)
directly generates sparse attention masks and applies them sequentially to input data, which can
perform sample-dependent feature selection. R1: (Correia et al., 2020) achieves sparsity in latent
distributions in neural networks, by using sparsemax and its structured analogs, allowing for efficient
latent variable marginalization. (Lei et al., 2016) and (Bastings et al., 2019) learn Bernoulli variables,
which are analogous to our feature mask but in a local setting, for extractive rationale prediction
in text. (Paranjape et al., 2020) extends these ideas by proposing to control sparsity by optimizing
the Kullback–Leibler (KL) divergence between the mask distribution and a prior distribution with
controllable sparsity levels. (Guerreiro & Martins, 2021) develops a flexible rationale extraction
mechanism using a constrained structured prediction algorithm on factor graphs. All these perform
sample-wise, not global, input selection. R3: In this work, our goal is to explore global feature
selection. When train and test sets perfectly align in distribution, local feature selection can give
superior performance due to its input-dependence. However, there is rarely such perfect alignment,
and global selection provides robustness benefits when there is distribution shift between train and
test sets, in addition to allowing more computational efficiency by globally removing features.

3 METHODS

Algorithm 1 describes SLM’s end-to-end feature selection and task learning. The predictor fθ can be
any gradient-descent based model, such as an MLP, with a R3: task-specific loss function l such as
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cross entropy for classification or MAE for regression. The following sections present SLM’s key
components in detail.

Notation. R1: R2: R3: Throughout this work, we let X ∈ Rn×d denote the input data,
Xsp ∈ Rn×d the selected features, and msp ∈ Rd the learned feature selection mask. We use �
to denote element-wise multiplication between each input sample and msp: Xsp = X�msp. We
let Ft denote the number of selected features at step t, and N the total training steps. Furthermore,
I(X,Y ) denotes the mutual information between X and Y , and Iq(X,Y ) its quadratic relaxation.

ALGORITHM 1 Training for SLM-based feature selection.

Input: Input data X with target labels Y
Input: Total training steps N
Initialize: Learnable mask argument m← all ones vector
for t = 1 to N do

Obtain the number of selected features Ft using Eq 4 for step t.
Generate sparse mask msp = sparsemax(m).
Select and weight input features: Xsp = X�msp. Non-selected features are zeroed out.
Input the selected features into the predictor fθ(Xsp) for the downstream task.
Compute training task loss l(Xsp,Y) and MI loss E(Xsp,Y) in Eq 9.
Update the parameters θ and m, using task loss l and MI loss E.

3.1 MASK SPARSITY

R1: R3: SLM selects features by learning a mask msp ∈ Rd, and zeroing out the features in the
input X ∈ Rn×d whose corresponding mask entries are zero. We use sparsemax normalization
(Martins & Astudillo, 2016) to achieve sparsity in m. Sparsemax achieves sparsity in its output
by returning the Euclidean projection of the input vector v ∈ Rd onto the probability simplex
∆d−1 := {f ∈ Rd≥0|

∑
k fk = 1}:

sparsemax(v) := argminp∈∆d−1‖p− v‖2. (1)

We apply sparsemax to the mask argument m ∈ Rd to obtain sparse feature mask:
msp := sparsemax(m) ∈ Rd≥0. (2)

For the commonly-used softmax normalization is employed with thresholding, the probability simplex
projection in sparsemax(v) scales the top values in v so they are more equidistributed over [0, 1].
This equidistribution leads to greater feature weight separation, encouraging the model to discriminate
amongst the features.

3.2 MASK SCALING TO YIELD DESIRED NUMBER OF SELECTED FEATURES

Following its formulation, sparsemax does not yield a predetermined number of non-zero elements,
as the sparsity depends on the location on the probability simplex ∆d−1 that v projects onto. For a
non-uniform vector v ∈ Rd, we can adjust its projection onto ∆d−1 by multiplying v by a positive
scalar. In particular, a sufficiently large scalar increases the sparsity, while a sufficiently small scalar
decreases the sparsity. To illustrate this, we give a simple example in Fig 1.
Example 3.1 (Adjusting sparsemax(v) sparsity by scaling). The probability simplex ∆1 in R2 is the
line connecting (0, 1) and (1, 0), with these two points as the simplex boundary. Let v = (x, y) be a
point in R2, and (z, w) its projection onto ∆1. We show that by varying multiplierm, sparsemax(mv)
would have a varying degree of sparsity. The projection (z, w) = sparsemax((x, y)) is the unique
point that satisfies (z, w) = argmin(z,w)(‖y − w‖2 + ‖x− z‖2), (z, w) elementwise positive, and
z +w = 1. As we scale (x, y) with m, sparsemax(m(x, y)) = argmin(z,w)(‖my −w‖2 + ‖mx−
z‖2). This projection distance expands to

d(z, w) := ‖my − w‖2 + ‖mx− z‖2

= m2y2 − 2myw + w2 +m2x2 − 2mxz + z2

Hence, d(0, 1)− d(0.5, 0.5) = mx−my + 0.5, which means that for any (x, y) and m with y > x,
sparsemax(m(x, y)) is closer to (0, 1) ∈ ∆1 whenever m > 1/(2(y − x)), and closer to (0.5, 0.5)
otherwise. Since projection is linear, this means varying the multiplier m varies the sparsity of
sparsemax((x, y)).
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Figure 1: Scaling v
from the black to the red
point moves its projec-
tion (green dotted line)
onto ∆1 closer to the sim-
plex boundary, increas-
ing sparsemax(v) spar-
sity.

This example conveys the intuition that larger multipliers lead to sparser
outputs. More generally, one can show:
Lemma 3.2. Given a non-uniform vector v ∈ Rd, to obtain F nonzero
elements in sparsemax(v), v should be multiplied with the scalar

m =


(∑F+1

i=1 v(i) − (F + 1) · v(F+1)

)−1

if |sparsemax(v) > 0| > F(∑F
i=1 v(i) − F · vF

)−1

if |sparsemax(v) > 0| < F,

(3)
where v(1) ≥ v(2) . . . ≥ v(d) denote sorted elements of v in descending
order.

The proof can be found in §A.3. Lemma 3.2 allows us to scale the mask
to achieve the desired number of non-zero features. R1: Note that since
sparsemax has a particular Fenchel-Young loss (Blondel et al., 2020),
scaling its argument by m is equivalent to scaling the regularizer by 1/m
in the Fenchel-Young formulation (Blondel et al., 2020; Peters et al.,
2019).

3.3 TEMPERING FEATURE SPARSITY

Starting training on only a randomly selected subset of features likely
leads to suboptimal learning in the initial steps, and if feature selection converges before the predictor
converges, the predictor would be trained with suboptimal features. To alleviate these and improve
training stability, we propose gradually decreasing the number of features selected until reaching the
target FN :

Ft =

{
F0 − t/Ntmp(F0 − FN ) if t < Ntmp
FN if t ≥ Ntmp,

(4)

where Ft is the number of selected features at step t, Ntmp is the tempering threshold. In our
experiments, we simply set Ntmp = N/2 as it was observed to be a reasonable value across a wide
range of datasets. To further stabilize training, instead of continuously decreasing the number of
features, we decrease the number of features at five evenly spaced steps. This tempering allows the
model to learn from more than the final target number of features during training – an advantage
not shared by baseline methods. Furthermore, learning from all features initially likely provides a
more robust initialization compared to starting learning with the target number of features, as the
randomness in the initial selection is seldom optimal.

3.4 MUTUAL INFORMATION MAXIMIZATION

As an inductive bias to the model that accounts for sample labels during feature selection, we propose
to maximize the mutual information (MI) between the distribution of the selected features and the
distribution of the labels. Specifically, we condition the MI on the probability that a feature is selected,
as given by the mask m. This stands in contrast to prior MI-based feature selection works such as
(Fleuret, 2004; Bennasar et al., 2015), which yield binary decisions on whether to select a feature.

Let X denote the random variable representing the features, and Y the random variable representing
the labels, with value spacesX ∈ X and Y ∈ Y . Methods based on maximizing either the conditional
or the joint MI between selected features and labels require the computation of an exponential number
of probabilities, the optimization of which is intractable (Fleuret, 2004). R2: Therefore, we propose
a quadratic relaxation of MI, which is end-to-end differentiable. When we model X and Y as random
variables, their MI I(X,Y ) can be defined and reformulated as:

I(X,Y ) :=
∑

x∈X

∑
y∈Y

PX,Y (x, y) log
Px,y(x, y)

PX(x)PY (y)

=

(∑
x∈X

∑
y∈Y

PX,Y (x, y) log
PX,Y (x, y)

PX(x)

)
−
∑

y∈Y
PY (y) logPY (y), (5)

where the second step derives from marginalizing over X . Since the second term above does not
depend on features X , it can be ignored during optimization.
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Quadratic relaxation. We propose a quadratic relaxation Iq(X,Y ) of Eq 5 to simplify I(X,Y ) and
its optimization, while retaining much of its properties:

Iq(X,Y ) :=
(∑

x∈X

∑
y∈Y

PX,Y (x, y)2/PX(x)
)
−
∑

y∈Y
PY (y)2. (6)

Here, terms of the form p log q are relaxed to pq. Note that both p log q and pq are convex
with respect to p and q, and hence have the same correlation behavior with respect to p and
q. From an optimization perspective, Iq(X,Y ) is a good approximation of I(X,Y ) where
PX,Y (X,Y )/PX(x) and PY (y) in Eq 6 lie in the neighborhood (1−δ, 1+δ). In this neighbor-
hood, using Taylor expansion: log(q)= log(q0) + (q−q0)/q0−(q−q0)2/2q2

0+ · · · When q0=1, this
becomes log(q)≈(q−1)−(q−1)2/2=−3/2+2q−q2/2, hence, p log(q) has the second order approx-
imation −3p/2+2pq (or −3p/2+2p2 when p=q). Applying this to Eq 5, p is PX,Y (x, y) in the first
term and PY (y) in the second. Since both PX,Y (x, y) and PY (y) are probabilities, and hence must
sum to 1 across the label space for any given sample, the linear term −3p/2 does not affect gradient
descent optimization. Normalization is a hard constraint enforced during training that supersedes this
linear term in the objective. Therefore, during optimization, PX,Y (x, y) log(PX,Y (x, y)/PX(x)) and
PX,Y (x, y)2/PX(x), and thus Iq(X,Y ) and I(X,Y ), agree on their second order approximation.
Note that the proposed relaxation is a variant of the commonly-used quadratic approximation based
on Taylor’s theorem (Shafer, 1974; Hsieh et al., 2011).

Relating MI Iq(X,Y ) to model error E(X,Y ). Next we connect Iq(X,Y ) with the model’s
predictions using Lagrange multipliers. Let R(x, y) : X × Y → [0, 1] denote the model’s probability
output for sample x and outcome y. Below we model the discrete label case, e.g. for classification;
the case where labels are continuous can be reduced to the discrete case by quantization (Fleuret,
2004). First, we define the quadratic error term E(X,Y ) in terms of R(x, y), and expand:

E(X,Y ) :=
∑

x∈X ,y∈Y
PX,Y (x, y)

(
(1−R(x, y))2 +

∑
y′∈Y\y

R(x, y′)2

)
=
∑

x∈X ,y∈Y
PX,Y (x, y)

(
1− 2R(x, y) +R(x, y)2 +

∑
y′∈Y\y

R(x, y′)2

)
=
∑

x∈X ,y∈Y
PX,Y (x, y)− 2

∑
x∈X ,y∈Y

PX,Y (x, y)R(x, y)

+
∑

x∈X ,y∈Y,y′∈Y
PX,Y (x, y)R(x, y′)2 / Combine last two terms and expand.

= 1− 2
∑

x∈X ,y∈Y
PX,Y (x, y)R(x, y) +

∑
x∈X ,y′∈Y

PX(x)R(x, y′)2 /Marginalize.

(7)

Theorem 3.3. Let X and Y denote the random variables representing the features and labels,
respectively, and Y the value space for Y , then maximizing the quadratic relaxation of mutual
information Iq(X,Y ) is equivalent to minimizing the error E(X,Y ). More specifically,

E(X,Y ) = 1−
∑

y∈Y
PY (y)2 − Iq(X,Y ).

The proof uses Lagrange multipliers to solve for the optimal model predictions in terms of PX,Y (x, y)
and PX(x), this can then be used to express the objective E(X,Y ) as a function of Iq(X,Y ). The
full proof can be found in §A.4.

Application to feature selection. Now, we apply this finding concretely to feature selection, by
selecting a given number of features that minimize E(X,Y ). Given a dataset, let I denote the index
set of the dataset samples, J the index set of the features, and L the set of possible labels. Let S ⊂ J
denote the index set of features selected, XSi the random variable representing a selected subset
of features for the ith sample, and Yi the random variable representing the label for the ith sample.
Then, the joint probability can be written as PX,Y (x, y) = |{i ∈ I|XSi = x, Yi = y}|/|I|. Plugging
this into the definition of E(X,Y ) we obtain:
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E(X,Y ) :=
∑

x∈X ,y∈Y
PX,Y (x, y)

(
(1−R(x, y))2 +

∑
y 6=Yi

R(x, y′)2
)

=
∑

x∈X ,y∈Y

|{i ∈ I | XSi = x, Yi = y}|
|I|

(
(1−R(XSi , Yi))

2 +
∑

y 6=Yi

R(XSi , y)2
)

=
∑

i∈I

(
(1−R(XSi , Yi))

2 +
∑

y 6=Yi

R(XSi , y)2/|I|
)

(8)

During training, Eq. 8 is minimized under the following consistency constraint: for two samples i1
and i2 that have the same values in the selected features, i.e. XSi1 = XSi2 , their model predictions
must be the same, i.e. R(XSi1 , Yi1) = R(XSi2 , Yi2). To encourage the model to satisfy this constraint,
we turn it into a soft consistency regularization term rcs, converting constrained optimization to
unconstrained optimization with regularization:

rcs :=
∑
{i1,i2}∈I2,i1<i2

P (XSi1 = XSi2)
(
R(XSi1 , Yi1)−R(XSi2 , Yi2)

)2
,

where P (XSi1 = XSi2) is the probability that the samples Xi1 and Xi2 take the same values in the
selected feature set S.

Let the learned mask consists of probabilities m = {pj}j∈J , i.e. pj is the probability that feature
j is selected, then P (XSi1 = XSi2) =

∏
X

(j)
i1
6=X(j)

i2

(1 − pj), i.e. P (XSi1 = XSi2) is the product over

probabilities that feature j is not selected, if Xi1 and Xi2 differ at feature j. (The difference in
a feature that is not selected does not contribute to P (XSi1 = XSi2)). In this probabilistic form,
the consistency regularizer also encourages the selection of features with diverse ranges, since it
encourages high pj for the features with many X(j)

i1
6= X

(j)
i2

pairs. Therefore, the regularized
objective to maximize the MI I(X,Y ) between the selected features and the labels becomes:

E(X,Y ) =
∑

i∈I

(
(1−R(XSi , Yi))

2 +
∑

y 6=Yi

R(XSi , y)2
)
/|I|+ rcs, (9)

where

rcs =
∑
{i1,i2}∈I2,i1<i2

(∏
X

(j)
i1
6=X(j)

i2

(1− pj)
(
R(XSi1 , Yi1)−R(XSi2 , Yi2)

)2)
. (10)

R1: In practice, rcs can be enforced batch-wise, and can be efficiently vectorized for the parallel
computation of all X(j)

i1
6= X

(j)
i2

pairs per batch using tensor operations. Note that since R(XSi , Yi)
are just model predictions, and pj are learned feature mask probabilities, each component in E(X,Y )
is easily accessible. When the labels are in the continuous space, the minimization objective with the
consistency regularizer is derived the exact the same way to yield:

E(X,Y ) =
∑

i∈I

(
Yi −R(XSi )

)2
/|I|+ rcs.

Our analysis is done with random variables X and Y to apply tools from probability theory, the
data samples X and labels Y can be thought of as samples drawn from the distributions to which
X and Y belong, where in the limit with infinitely many samples X and Y perfectly reflect these
distributions.

3.5 COMPUTATIONAL COMPLEXITY

R1: As above, let h be the hidden dimension, n denote the number of samples, b the batch size, and
N the total number of train steps; let F0 be the total number of features, and FN the target number
of features. We first discuss the complexity of individual components. The sparsemax operation is
dominated by sorting, and hence has complexityO(F0 logF0) per sample, with an overall complexity
of O(nF0 logF0). The consistency regularizer rcs in the MI-maximizing objective E(X,Y ) has
complexity O(nbFN ), as the calculation

∏
X

(j)
i1
6=X

(j)
i2

(1 − pj)
(
R(XSi1 ,Yi1)−R(XSi2 ,Yi2)

)2
in

Eq 10 occurs over the selected feature index set j ∈ S, and is done between each sample and others
in its batch. The non-regularizer component in E(X,Y ) has complexity nc, where c is the constant
for the number of discrete or binned labels. Assuming an MLP classifier with h hidden units, which
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has complexity O(nh2), the overall algorithm has complexity O(nF0 logF0 + nbFN + nc+ nh2),
making SLM amenable to scaling to a large number of features. R3: In addition, SLM amortizes the
cost of feature selection across batches throughout training, making it more scalable with respect
to the number of samples. This is in contrast to PFA (Lu et al., 2007a) or many other MI-based
methods such as CMIM (Fleuret, 2004) or JMIM (Bennasar et al., 2015), which place the memory
and compute burden of selection for the entire dataset in the same step.

4 EXPERIMENTS
4.1 DATASETS AND SETTINGS

We present the efficacy of SLM in feature selection on wide range of datasets from numerous domains.
For all experiments, we ensure fair comparison by employing similar hyperparameter search space
and budget – to search for hyperparameters such as batch size and learning rate for each baseline
method and dataset, we conduct an extensive random search within the search grid, by randomly
generating a value within a conceivable range. We run a total of 300 trials for each method-dataset
combination to ensure sufficient coverage, and tune all hyperparameters based on the validation
accuracy. R1: R2: R3: Additional experiments on selected feature interpretability, compute
timings and synthetic data experiments to demonstrate SLM’s scalability, as well as comparison with
further end-to-end baselines, can be found in §A.6, §A.7, §A.8, §A.9, respectively.

We benchmark on a variety of real-world datasets across many domains, including computer vision,
biological data, financial data, etc. Concretely, we benchmark on Mice, MNIST, Fashion-MNIST,
Isolet, Coil-20, Activity, Ames Housing, and IEEE-CIS Fraud datasets. R3: We use a 70-10-20
train/validation/test split; and when available, we use the exact same train/validation/test samples
as (Lemhadri et al., 2019) for fair comparison. We give further detailed descriptions in §A.1. Cross
entropy is used as the task loss function for classification tasks, and MAE the task loss for regression.

We benchmark SLM against a variety of competitive methods. The mutual information (MI) based
feature selection baseline uses entropy estimation from k-nearest neighbors distances as described
in (Kraskov et al., 2004; Ross, 2014) to estimate MI. Tree-based methods yield Gini importance
scores, which can be used for feature selection. For this we benchmark two commonly used methods:
random forest (RF) (Breiman, 2001), an ensemble of independent trees, and XGBoost (Chen &
Guestrin, 2016), a scalable end-to-end tree boosting system. We furthermore benchmark against
methods as discussed in §2: LassoNet (Lemhadri et al., 2019), which uses residual connections to
allow the network to learn whether to use any given feature in a particular layer; feature importance
ranking based on the Fischer score (Gu et al., 2012); principal feature analysis (PFA) (Lu et al.,
2007a), a PCA-based method; and HSIC-Lasso (Yamada et al., 2014), which uses kernel learning to
find non-linear feature interactions. Lastly, we benchmark against linear regression, where feature
importance is determined by the learned feature coefficients. When available, we use results from
(Lemhadri et al., 2019). R1: For consistency and fairness, each baseline method uses the same input
as SLM to select features, which are then passed to an MLP to compute the task metric.

4.2 TASK PERFORMANCE WITH FEATURE SELECTION

R1: In this work, we consider feature importance to be measured by contribution towards the
task metric, as accurate predictor performance is typically the end goal, and the importance of
each individual feature is not well-defined due to feature interactions. Therefore, we focus on
benchmarking task predictive accuracy given the selected features as the metric.

First, we study selecting a fixed number of features across a wide range of high dimensional datasets
(most with >400 features) and feature selection methods. R3: We consistently choose 50 selected
features, as this represents a small fraction of the total features for most datasets, as often done in
practice. This number is kept consistent without tuning for any given method, to avoid favoring any
given one. Table 1 shows that the SLM consistently yields competitive performance, outperforming
all methods in all cases except on Mice and Ames, for which the performance is saturated due to
small numbers of original features, making feature selection less relevant. Most feature selection
methods are not consistent in their performance. On the other hand, SLM’s strong performance is
consistent. Interestingly, we observe that there are cases where SLM even outperforms the baseline
of using all features, which can likely be attributed to superior generalization when the limited model
capacity is focused on the most salient features.

Next, we focus on the Fraud dataset, a large-scale dataset for the complex task from many heteroge-
neous features. It is highly non i.i.d. (Grover et al., 2022), thus making feature selection important
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Method Mice↑ MNIST↑ Fashion↑ Isolet↑ Coil-20↑ Activity↑ Ames↓ Fraud↑
All-features 0.990 0.928 0.833 0.953 0.996 0.956 0.283 0.782
SLM (ours) 0.981 0.953 0.835 0.919 0.996 0.947 0.274 0.911
Fisher 0.944 0.813 0.671 0.793 0.986 0.769 0.286 0.743
HSIC-Lasso 0.958 0.870 0.785 0.877 0.972 0.829 0.273 0.846
PFA 0.939 0.873 0.793 0.863 0.975 0.779 0.356 0.852
XGBoost 0.968 0.913 0.832 0.879 0.986 0.926 0.403 0.872
MI 0.949 0.882 0.645 0.751 0.976 0.883 0.335 0.711
Linear 0.982 0.452 0.787 0.760 0.983 0.914 0.318 0.871
Anova 0.995 0.113 0.719 0.811 0.986 0.901 0.358 0.744
RF 0.967 0.928 0.829 0.892 0.993 0.893 0.303 0.773
Lassonet 0.958 0.873 0.800 0.885 0.991 0.849 0.342 0.842

Table 1: Test performance on real-world benchmarks with 50 selected features. SLM outperforms
competitive baselines. The metrics reported are AUC for Fraud, since there is a high class imbalance;
hence AUC is reported; the median MAE on standard-normalized labels is reported for Ames; and
accuracy is reported on all other datasets. The arrow next to each dataset indicates whether a higher
or lower value is more optimal. These test results are selected based on the best validation set
performance during 300 hyperparameter grid search trials.

given that high capacity models can be prone to overfitting and poor generalization. Table 2 shows
that SLM outperforms other methods consistently for different number of selected features, and its
performance degradation with much less number of features is smaller. Indeed, the AUC with 20
features out of 432, is >10% better than using all features, indicating improved generalization.

Method Test AUC ↑
20 features 50 features 100 features

SLM (ours) 89.32 91.06 91.75
Anova 71.81 74.41 82.91
RF 72.16 77.29 78.72
Linear 84.32 87.11 87.46
MI 65.37 71.05 74.91
XGBoost 85.45 87.24 81.67

Table 2: Test AUC on Fraud dataset with different feature selection methods, choosing 20, 50 or 100
features. The superiority of SLM persists across different numbers of selected features.

4.3 ABLATION STUDIES

Figure 2: (1) and (2) show ablation studies on the effect of MI regularization and tempering the
number of features. R3: Both ablation studies have the same number (50) of selected features on all
datasets. (3) shows the task accuracy as a function of the number of features selected on the activity
dataset. The dark line shows the average of ten random hyperparameter trials, shown with light hue,
demonstrating that task performance can be near-optimal even with a small subset of features.
We study the utility of SLM components in this section, in particular the effects of the MI regularizer
and tempering the number of features, which gradually decreases the number of selected features

8
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from the full feature set to the target number. The effects are measured by randomly selecting ten
hyperparameter settings and a seed, and recording the average performance R3: with or without
either MI regularizer or tempering (without tempering refers to keeping the number of selected
features constant throughout training.). Fig 2 shows that both MI regularization and tempering
positively affect task performance. This is consistent with the theory developed in §3: the MI
regularizer encourages maximal mutual information sharing between the labels and the selected
features; and tempering allows the model to initialize learning based on all features, rather than a
randomly selected subset.

5 DISCUSSION

Feature importance intepretability. SLM learns a sparse maskM that contains the feature selection
coefficients. We show that this approach yields superior results with end-to-end learning by allowing
a smooth transition between selecting and un-selecting features. In addition, SLM can also be used
for interpretation of global feature importance during inference, yielding the importance ranking of
selected features, similar to other commonly-used methods like SHAP (Lundberg & Lee, 2017). This
can be highly desired in high-stakes applications such as healthcare or finance, where an importance
score can be more useful than simply whether a feature is selected or not.

Feature interdependence during selection. Compared to prior MI-based feature selectors (Ding &
Peng, 2005; Fleuret, 2004; Bennasar et al., 2015), SLM accounts for feature inter-dependence by
learning inter-dependent probabilities {pj}j for the selected feature, where {pj}j jointly maximize
the MI between features and labels. Furthermore, SLM learns feature selection and the task objective
in an end-to-end way, which alleviates the selection of repetitive features that may individually
be predictive, as gradient descent favors increasing the probability for a non-redundant and loss
decreasing but less predictive feature over an individually predictive but redundant feature.

Improved model generalization via feature selection. Feature selection can help improve general-
ization beyond the training set, especially for high capacity models like deep neural networks, which
can easily overfit patterns from spurious features that do not hold across training and test data splits
(Arjovsky et al., 2019). For instance, Table 1 shows that on some datasets, especially with SLM,
prediction on a subset of features can outperform that on all features. Furthermore, Fig 2 shows that
task performance can reach near-optimum with even a small subset of all features. Therefore, feature
selection is a potential alternative for alleviating compute cost during training and inference, without
sacrificing on accuracy.

Relation to other MI estimations in deep learning. R2: MI-based objectives have been used in
other deep learning methods, such as InfoNCE (Oord et al., 2018), InfoGAN (Chen et al., 2016), and
Deep Graph Infomax (Velickovic et al., 2019). To estimate MI, these typically train classifiers on
samples drawn from the joint distribution and the product of the marginals, whose exact distributions
can be intractable. In contrast, for feature selection, while the exact distributions of the features
and the labels are known, the computation of their mutual information and its maximization is
computationally intractable. To address this, SLM proposes a quadratic relaxation of MI optimization,
applied to feature selection by converting MI maximization to minimizing a loss function. SLM
does not need to sample from the joint or marginal distributions, a potentially computationally
intensive process. Furthermore, prior works (Chen et al., 2016; Velickovic et al., 2019) often require
a contrastive term in estimation of MI with negative sampling, a process that is not needed in SLM.

Future work. SLM can be integrated into unsupervised or semi-supervised learning, with modified
objectives. In addition, our results indicate more significant outperformance for datasets with non
i.i.d. characteristics as feature selection can effectively reduce the feature dimensionality and reduce
the risk of overfitting to the spurious correlations of irrelevant features. Lastly, feature selection for
data with structure (e.g. temporal or graph) is an interesting extension, which might be based on
modifying SLM to apply masking to entire time-series or graph data.

6 CONCLUSION

We introduce SLM, a sparse learnable mask based feature selection framework that maximizes the
MI between features and labels, while optimizing the training objective end-to-end. Learning the
feature masks allows a smooth, probabilistic selection of features as well as insights on feature
importance. SLM demonstrates competitive performance against SOTA baselines, and opens door to
future applications in domains such as graph or time series representation learning.
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REPRODUCIBILITY STATEMENT

§3 gives detailed description of the methodology used. All results derive from repeated cross
validation. In particular, the main results reported in 1 derive from extensive grid search during
300 trials for each method-dataset combination, where the test result based on the best validation
performance is reported. Code will be open-sourced after the review process.
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Hjelm. Deep graph infomax. ICLR, 2(3):4, 2019.

Makoto Yamada, Wittawat Jitkrittum, Leonid Sigal, Eric P. Xing, and Masashi Sugiyama. High-
dimensional feature selection by feature-wise kernelized lasso. Neural Computation, 26(1):
185–207, jan 2014. doi: 10.1162/neco a 00537.

Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban, and Yuval Kluger. Feature selection using
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A APPENDIX

A.1 DATASET DETAILS

This section provides additional details on the experimental data. We first consider the real-world
benchmark datasets in (Lemhadri et al., 2019). Mice consists of protein expression levels measured
in the cortex of normal and trisomic mice who had been exposed to different experimental conditions.
Each feature is the expression level of one protein. MNIST and Fashion-MNIST consist of 28-by-28
grayscale images of hand-written digits and clothing items, respectively. The images are converted to
tabular data by treating each pixel as a separate feature. Isolet consists of preprocessed speech data
of people speaking the names of the letters in the English alphabet with each feature being one of the
preprocessed quantities, including spectral coefficients and sonorant features. Coil-20 consists of
centered gray-scale images of 20 objects taken at certain pose intervals, hence the features are image
pixels. Activity consists of sensor data collected from a smartphone mounted on subjects while they
performed several activities such as walking or standing. For these datasets, we use the exact same
data splits and preprocessing approaches with (Lemhadri et al., 2019) for fair comparison, as well as
the same model hyperparameter search space.1 In addition, we consider the Ames housing dataset
(Cock, 2011), with the goal of predicting residential housing prices based on each home’s features; as
well as the IEEE-CIS Fraud Detection dataset (Kaggle, 2022), with the goal of identifying fraudulent
transactions from numerous transaction and identity dependent features. Table 3 summarizes the
characteristics of the datasets used in the experiments.

Dataset Number of samples Number of features Number of classes
Mice 1080 77 8
MNIST 10000 784 10
Fashion 10000 784 10
Isolet 7797 617 26
Coil-20 1440 400 20
Activity 5744 561 6
Ames 1460 81 N/A
IEEE Fraud 590540 432 2

Table 3: Attributes of datasets used in experiments.

A.2 EXPERIMENTAL DETAILS

As described, we use hyperparameter tuning based on the validation accuracy for all cases. We use
the Adam optimizer for training, with exponential decay. For benchmarks from (Lemhadri et al.,
2019), for a fair comparison, our hyperparameter search space is same as the original paper. For
Fraud, which is larger and more complex, we extend the search space as in Table 4.

Hyperparameter Search space
Batch size [512, 1024, 2048, 4096]

Learning rate [0.001, 0.003, 0.01]
Decay steps [1000, 10000]
Decay rate [0.7, 0.9, 0.95, 0.99]

Number of epochs [30, 100, 200]
Number of hidden units [50, 100, 200]

Number of layers [1, 2, 3, 4]

Table 4: Hyperparameter tuning search space for experiments on the Fraud dataset.

For baselines such as LassoNet, we tune additional method-specific hyperparameters. For instance,
for LassoNet, in addition to the hyperparameters, we also tune the `2 penalization on the skip
connection, the hierarchy parameter, and the dropout rate. For XGBoost, we also tune the number of
estimators and the maximum tree depth.

1We use a single layer multi-layer perceptron (MLP) as the predictor, where the number of units is chosen
from [M/3, 2M/3,M, 4M/3].
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A.3 PROOF OF LEMMA 3.2

Lemma 3.2. Given a nonuniform vector v ∈ RK , to obtain F nonzero elements in sparsemax(v), v
should be multiplied with the scalar

m =


(∑F+1

i=1 v(i) − (F + 1) ∗ v(F+1)

)−1

if |sparsemax(v) > 0| > F(∑F
i=1 v(i) − F ∗ vF

)−1

if |sparsemax(v) > 0| < F,
(11)

where v(1) ≥ v(2) . . . ≥ v(K) denote sorted elements of v in descending order.

Proof. We first show the case when |sparsemax(v) > 0| > F , i.e. the sparsity needs to be increased
(the case where sparsity needs to be decreased works analogously). By (Martins & Astudillo,
2016), the projection of v onto ∆K−1 in Eq 1 takes the form sparsemax(v) = [v − τ(v)]+, where

[x]+ = max{0, x}, and τ takes the form τ =
(
∑

i≤k(v) v(i))−1

k(v) with k(v) defined as the index

k(v) := max
{
k ∈ {1, . . . ,K} | 1 + kv(k) >

∑
i≤k

v(i)

}
. (12)

Hence, increasing the sparsity such that sparsemax outputs only F nonzero elements, i.e. de-
creasing the index k(v) to F , requires finding the smallest m such that 1 + (F + 1)mv(F+1) >∑
i≤(F+1) mv(i) does not hold, i.e. F + 1 must be the first k to fail the condition 1 + kv(k) >∑
i≤k v(i). Rewriting this condition in terms of F we obtain:

1 + (F + 1)mv(F+1) >
∑

i≤(F+1)
mv(i)

implies 1 >m

(∑
i≤(F+1)

v(i) − (F + 1)v(F+1)

)
(13)

The smallest m such that condition Eq. 13 does not hold is m =((∑F+1
i=1 v(i)

)
− (F + 1) ∗ v(F+1)

)−1

, which given Eq 12 implies mv has F nonzero elements.
Analogously, to derive the multiplier for v to decrease sparsemax(v) sparsity, we need to increase
the index k(v) to F . This requires finding the largest m such that 1 + F (mvF ) >

∑
i≤F mv(i)

holds, which implies: m =
(∑F

i=1 v(i) − F ∗ v(F )

)−1

.

A.4 PROOF OF THEOREM 3.3

Theorem 3.3. Let X and Y denote the random variables representing the features and labels,
respectively, and Y the value space for Y , then maximizing the quadratic relaxation of mutual
information Iq(X,Y ) is equivalent to minimizing the error E(X,Y ). More specifically,

E(X,Y ) = 1−
∑

y∈Y
PY (y)2 − Iq(X,Y )

Proof. During training, the model seeks to produce the optimal predictions R(x, y) that minimize
E(X,Y ), while satisfying the constraint

∑
y∈Y R(x, y) = 1. Hence we can apply Lagrange mul-

tipliers to solve for the optimal R(x, y). Taking the derivatives of E(X,Y ) and the constraint
g(X,Y ) =

∑
x∈X ,y∈Y R(x, y)− |X | with respect to R(x, y):

E′(X,Y ) =
∑

x∈X ,y∈Y
−2PX,Y (x, y) + 2PX(x)R(x, y) (14)

g′(X,Y ) =
∑

x∈X ,y∈Y
1

By Lagrange multiplier theory, for an optimum set of model predictions R∗(X,Y ), there exists some
λ such that E′(X,Y ) = λg′(X,Y ). Marginalizing E′(X,Y ) over Y yields:

E′(X,Y ) =
∑

x∈X
−2PX(x) + 2PX(x) = 0 / Since

∑
y∈Y

R(x, y) = 1
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Therefore, by Eq 14,R(x, y) = PX,Y (x, y)/PX(x). Plugging this into Eq 7, we obtain an expression
relating the mutual information Iq(X,Y ) and the error E(X,Y ):

E(X,Y ) = 1− 2
∑

x∈X ,y∈Y
PX,Y (x, y)R(x, y) +

∑
x∈X ,y∈Y

PX(x)R(x, y)2

= 1− 2
∑

x∈X ,y∈Y
PX,Y (x, y)

PX,Y (x, y)

PX(x)
+
∑

x∈X ,y∈Y

PX,Y (x, y)2

PX(x)

= 1−
∑

x∈X ,y∈Y

PX,Y (x, y)2

PX(x)

= 1−
∑

y∈Y
PY (y)2 − Iq(X,Y ) / By Eq 6

Since PY (y) is fixed for a given dataset, maximizing Iq(X,Y ) is equivalent to minimizing E(X,Y ).

A.5 SPARSEMAX VS SOFTMAX WITH THRESHOLDING

Besides using sparsemax, an alternative method for learning the sparse maskMsp is to apply softmax
normalization, followed by a top-k operation, and an additional normalization to render it a probability
mask. This method is not only unwieldy with additional steps, but also from an optimization point of
view, the top-k operation can only pass gradients through the top k values of softmax(v), whereas
sparsemax can pass gradients through all of sparsemax(v). Furthermore, because the softmax-top-k
normalization normalizes with respect to the absolute value of v, whereas sparsemax normalizes
with respect to its relative values (by subtracting a v-dependent threshold), sparsemax(v) is more
equi-distributed over the interval [0, 1] than softmax-top-k normalization (i.e. sparsemax(v) has
lower entropy than softmax-top-k normalization), making it more discriminatory for feature selection.

A.6 R1: R3: FEATURE INTERPRETABILITY RESULTS

While SLM optimizes feature selection for the task metric, the fact that the selected features are global
readily opens the door for feature importance interpretability applications, as the chosen features
can give insights about the task. To this end, we focus on the Ames housing dataset (Cock, 2011),
as its features are easily understandable. As mentioned in §A.1, the features in the Ames dataset
consist of characteristics of houses, and the prediction target is the house price. We use the model
parameters found in the best validation trial reported in Table 1, and select the top ten out of the 81
features. To obtain importance scores of the selected features, we study the selection probabilities
learned in the feature mask. Using this, the ten highest-probability features in terms of determining
a house’s prices are, with learned feature probabilities: ‘OverallQual’ (0.211), ‘FullBath’ (0.182),
‘GarageCars’ (0.124), ‘BsmtFullBath’ (0.0795), ‘MSSubClass’ (0.0758), ‘GarageFinish’ (0.0739),
‘HalfBath’ (0.0718), ‘PoolArea’ (0.0562), ‘Fireplaces’ (0.0473), ‘HouseStyle’ (0.0403).

Some aspects of this selection conform to common sense: the overall quality of the property, the
number of bathrooms, and the size of the garage or pool are good predictors of housing value. Other
aspects are more surprising, for instance the feature ’BedroomAbvGr’ – the number of bedrooms
above ground – is not selected, even though one would expect the number of bedrooms to be an
important selling factor. However, on further thought, as the number of bedrooms is positively
correlated with the number of bathrooms (Eggers & Moumen, 2013), SLM is avoiding feature
redundancy by only selecting one of the correlated features. The same reasoning applies for the
features ’OverallQual’, the overall quality, which is selected, and ’OverallCond’, the overall condition,
which is not selected.

A.7 R1: R3: COMPUTATIONAL COMPLEXITY EXPERIMENTS

As stated in § 3.5, let F0 be the total number of features, and n the number of samples, SLM has
O(nF0 logF0) dependence on F0. To test that this low complexity in theory translates to actual fast
feature selection in practice, we present the wall clock timing of SLM. We compare specifically
against LassoNet, a strong baseline that also selects features end-to-end. Table 5 shows the timing
results for one epoch on the mice dataset, demonstrating that SLM’s low complexity in theory also
translates to fast execution in practice.
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Feature Selection Method Timing (s)
SLM 1.21 ± 0.016

LassoNet 19.62 ± 0.796

Table 5: Timing results for one epoch on the mice dataset between SLM and LassoNet. This
comparison is down under the exact same settings for both methods: hidden dimension 64, batch size
256, 1 MLP predictor layer, selecting 50 features, run on a single V100 GPU. The result statistics
are collected over five different runs. Only the training component is measured, not including data
splitting and processing.

A.8 R2: R3: SYNTHETIC DATA EXPERIMENTS

We demonstrate the performance of SLM on a synthetic dataset that is specifically constructed such
that only a small subset of features affect the output value while the vast majority are not useful for
the task. All input features Xi,j are sampled from the uniform distribution U [−1, 1] and the noise at
the end εi,j are sampled from standard Gaussian random variable with zero mean and unit variance.
The input-output relationship are governed by the equations shown below:

T
(1)
i,j =

1

L

L∑
i=1

exp(Xi,j), (15)

T
(2)
i,j = exp(

1

L

2L∑
i=L+1

| sin(2πXi,j|), (16)

T
(3)
i,j =

1

L

3L∑
i=2L+1

− log(1.1 + Xi,j)), (17)

T
(4)
i,j =

1

L

4L∑
i=3L+1

Xi,j, (18)

T
(5)
i,j = 1/(1 +

1

L

5L∑
i=4L+1

| tanh(Xi,j)|), (19)

Yi,j =

{
1, if (T

(1)
i,j + T

(2)
i,j + T

(3)
i,j + T

(4)
i,j + T

(5)
i,j − 3 + 0.2εi,j) > 0,

0, otherwise
. (20)

As can be seen, the function is highly nonlinear in dependence to the input features, and in total 5L
features are salient.

Hyperparameter Search space
Batch size [128, 256, 512]

Learning rate [0.001, 0.003, 0.01]
Decay steps [1000, 10000]
Decay rate [0.7, 0.9, 0.95, 0.99]

Number of epochs [30, 100, 200]
Number of hidden units [30, 50, 100]

Number of layers [1, 2, 3,]

Table 6: Hyperparameter tuning search space for experiments on the Synthetic dataset.

We construct the dataset with 3000 features among which only 100 or 300 are salient, i.e. L =
20 or L = 60 for two different training dataset size values, 35000 and 14000 training samples
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respectively. Train-validation-test are split with 0.7-0.1-0.2 ratio, similar to all other experiments and
hyperparameter tuning is done with the search space presented in 6. We compare SLM with other
feature selection methods, when they are used to select the 300 features. Table 7 and 8 highlight the
superior performance of SLM compared to the alternative methods for challenging datasets with a
very large number of features.

Feature selection method Test accuracy (%)
SLM 71.5

Anova 67.9
RF 62.6

Linear 67.0
MI 63.0

Table 7: Test accuracy (%) on the Synthetic dataset with 300 salient features (L = 60) and 14000
training samples.

Feature selection method Test accuracy (%)
SLM 73.9

Anova 69.0
RF 69.9

Linear 69.7
MI 61.2

Table 8: Test accuracy (%) on the Synthetic dataset with 100 salient features (L = 20) and 35000
training samples.

A.9 R3: FURTHER COMPARISON WITH END-TO-END BASELINES

One of SLM’s strengths is end-to-end feature selection along with task learning, which allows the
model to incorporate inductive biases from the task directly into feature selection. Therefore, we
specifically focus on comparing SLM with additional end-to-end feature selection methods, beyond
the results in Table 1. As discussed in §2, Concrete Autoencoder (Abid et al., 2019) proposes an
unsupervised feature selector based on using a concrete selector layer as the encoder and using a
deep neural network as the decoder. FsNet (Singh et al., 2020) uses a concrete random variable
for discrete feature selection in a selector layer and a supervised deep neural network regularized
with the reconstruction loss, with a focus on biological data, which are often high-dimensional with
limited sample size. STG (Yamada et al., 2020) develops a fully embedded supervised method that
learns stochastic gates with a probabilistic relaxation of the count of the number of selected features.
While all these works selects features and learns task prediction end-to-end, given that SLM is a
supervised model, with a general focus beyond the high-dimensionality and low-sample-size setting,
STG (Yamada et al., 2020) is the strongest, most related baseline to compare SLM with. Table 9
shows the comparison between SLM and STG on the Isolet and Activity datasets with 50 selected
features. There are certain similarities between how SLM and STG control which feature to select:
SLM learns a sparse probability mask m for the features, whereas STG learns learn the parameters
of the approximate Bernoulli distributions via gradient descent for each feature. While STG learns
the parameters for each Bernoulli variable independently, one advantage SLM has is accounting
for interdependence amongst selected features, through both the fact that the probabilities in m are
interdependent, and through the MI regularizer (further details discussed in §5).
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Feature Selection Method Isolet ↑ Activity ↑
SLM 92.49 ± 0.20 93.35 ± 0.82
STG 84.50 ± 1.98 91.81 ± 0.71

Table 9: Test accuracy (%) comparison between SLM with a closely related, end-to-end feature
selection baseline STG, which controls feature selection via learned stochastic gates, on the Isolet
and Activity datasets with 50 features selected. The two methods are compared under the exact
same conditions to the largest extent possible: using the same hidden dimension, number of epochs,
batch size, learning rate, etc., all randomly generated from within a feasible range. The non-shared
hyperparameters are also generated from random within a feasible range. The results are averaged
over ten different runs. SLM is able to account for interdependence amongst selected features,
through the learned mask m and the MI regularizer.
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