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Abstract
We develop a transformer-based conditional gen-
erative model for discrete point-objects and their
properties and use to to build a model for popu-
lating cosmological simulations with gravitation-
ally collapsed structures called dark matter ha-
los. Specifically, we condition our model with
dark matter distribution obtained from fast, ap-
proximate simulations to recover the correct three-
dimensional positions and masses of individual
halos. This leads to a first model that can re-
cover the statistical properties of the halos at small
scales to better than 3% level using an acceler-
ated dark matter simulation. This trained model
can then be applied to simulations with signifi-
cantly larger volume which would otherwise be
computationally prohibitive with traditional simu-
lations, and also provides a crucial missing link
in making end-to-end differentiable cosmological
simulations. The code, named GOTHAM (Gen-
erative Conditional Transformer for Halos And
their Masses) is made publicly available.

1. Introduction
Transformer-based architecture, that is now a staple in natu-
ral language processing (NLP) applications, excels at learn-
ing the conditional distribution of data. It scales well, is
highly flexible and has a native auto-regressive structure.
Through the attention mechanism, it is able to learn the syn-
tactical meaning of a token in relation to other surrounding
tokens. This property has remarkable applications beyond
NLP. Here we apply the transformer-based architecture to
solve one of the long standing cosmological problems: creat-
ing a differentiable end-to-end simulations that can be used
as a Bayesian forward model to exhaust the information
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content in the observations. However, the framework and
code developed here can in general be applied to any point
cloud generation problem that is conditioned on external
continuous field.

Cosmological N-body simulations evolve system of more
than a billion dark matter particles under gravity from initial
Gaussian random fluctuations to present state non-Gaussian
large scale structure. After billions of years of evolution,
most of the mass in the simulations ends up in the collapsed
dark matter structure called halos. These form the hosts of
the galaxies we observe and are, to first-order, described by
their masses. However, solving particle-particle interactions
of billions of particles for many time-steps makes these
simulations computationally intensive. Moreover, finding
and characterizing the collapsed dark matter structures fur-
ther exacerbates the computational requirements. Finally,
both the traditional N-body simulations and halo finders are
non-differentiable processes, making it challenging to use
machine learning based methods for their analysis.

Particle mesh (PM) simulations instead put all the particles
on a regular grid and solve their equations of motions using
fast Fourier transform techniques (Feng et al., 2016). These
simulations capture the large scale dark matter distribution
accurately, are significantly faster compared to N-body and
can also be written in a differentiable form (Modi et al.,
2021; Li et al., 2022). However, as the particles are placed
on a grid, it lacks the resolution capabilities of a N-body sim-
ulation and underestimates the small scale structures. As the
dark matter halos form and get their properties from small
scale interaction of the particles, this means that the PM sim-
ulations severely underestimate the number and properties
of dark matter halos. In this study, we learn the mapping be-
tween large scale dark matter distribution as obtained from
PM simulations and N-body like dark matter halos. This
architecture can also be made differentiable (Horowitz et al.,
2024), which when combined with PM simulations, leads
to an end-to-end differentiable cosmological simulator.

Having an accurate differentiable forward model is required
if we hope to extract most of the information in the ob-
served galaxy data. The volume of the galaxy survey (Alam
et al., 2015) that ended a decade ago is atleast a factor of
27 larger than available from the current best N-body simu-
lation suites (Villaescusa-Navarro et al., 2020) for forward
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modeling the observations. The model developed here de-
scribes a method to use fast and approximate dark matter
simulations that are easy to scale to obtain N-body like halo
catalogs.

2. Related Work
As halos are a set of discrete objects in 3D space, techniques
based on point cloud and their transformations are relevant.
Several studies have implemented various ways of complet-
ing a point cloud by leveraging the features learned from
the given partial set of points (Yan et al., 2022; Yu et al.,
2022). However, here we are interested in generating full
set of point cloud conditioned only on the surrounding dark
matter distribution which requires a different architecture.
Moreover, usually the point cloud transformers treat each
point as unweighted. However, for halos, their masses is
an important property to capture accurately as it can signif-
icantly impact the properties of galaxies it hosts which is
what we measure in the observations. Therefore, here we
develop an architecture that can jointly infer the position
and masses of the halos.

Several past studies have also aimed at learning a mapping
from simulated dark matter distributions to dark matter ha-
los. For example, Kodi Ramanah et al. (2019) trained a
Wasserstein GAN to predict counts of halos within four
mass bins based on gridded dark matter density from a full
N-body simulation. Jamieson et al. (2022) learn the cor-
rection to velocities and positions of the particles in PM
simulations to replicate N-body like simulations. However,
even after the correction, the statistical properties of halos
are only reproduced at 20-30% level. Pandey et al. (2023)
learn the mapping between PM simulation and halos, but
are limited to large scales (k < 0.2h/Mpc) in reproducing
the statistical properties of halos. In this work we treat the
conditional halo catalog generation like language translation
problem and use large language model like architecture to
solve it. The flexibility of such a model allows us to model
the halo distribution and their masses at the 2-3% level to
significantly smaller scales (k ∼ 1h/Mpc).

3. Dataset
The halo catalogs for training are obtained from the pub-
lic Quijote N-body ‘high-resolution’ simulation suite at a
fiducial cosmology (Villaescusa-Navarro et al., 2020) which
evolve 10243 particles inside a box with a side length of
1000 Mpc/h. We learn the distribution of these catalogs
when conditioned on 3D dark matter densities derived from
the low-resolution PM simulations.

3.1. Input : Continuous 3D conditional field
We run PM simulations with same initial conditions and
volume as the Quijote simulations. However, to significantly

reduce the run time, we run them with only 3843 particles
and the forces between particles are calculated in a 7683 grid.
When run on CPUs, each simulation has a runtime of 5 CPU
hours (c.f. 5000 CPU hours for N-body simulation), which
can be further reduced by using its GPU implementation
(Li et al., 2022). We run 11 different PM simulations for
different set of initial conditions to capture the stochastic
contribution. We sub-divide each parent 1000 Mpc/h box
into 323 sub-boxes (giving Lsub−box = 31.25Mpc/h) and
treat each of these sub-boxes as independent. We use the
sub-boxes from first three simulations for training (80%)
and validation (20%) and use remaining eight simulations
as test set.

3.2. Target: Weighted discrete 3D point cloud
We use an accurate definition of halos which uses phase
space distribution of dark matter particles to identify col-
lapsed structures and assign them masses (Behroozi et al.,
2012). In this study, we only focus on halos with masses
above Mhalo > 1013.5M⊙/h. We aim to learn the three spa-
tial coordinates and mass of each halo, when conditioned
on the input density field.

3.3. Tokenization
As the position and masses of the halos are continuous, we
tokenize them. First we scale each of 3D coordinate and
logarithm of masses in the range (0, 1). Then we divide
them into 64 bins and assign each halo four integers corre-
sponding to its 3D coordinate and mass. Therefore, each
halo effectively becomes a “word” with four characters. We
concatenate the tokens of all the halos in the sub-box by
spacing them with a <SPACE> token. Finally we pre-pend
a <START> token and append an <END> token to create a
“sentence” of halos for each sub-box (giving nvocab = 67).
As we physically expect the halo with heaviest mass to dom-
inate the structure formation in a sub-box, we concatenate
the halos with a descending order of their masses. This is
then padded with a <PAD> token to reach the maximum
sequence length of Nseq−dec = 101 (corresponding to hav-
ing a maximum of 20 halos in a sub-box). We then create a
right-shifted prediction vector to predict these tokens con-
ditioned on the input field. Therefore the task effectively
becomes understanding the “grammatical” structure of these
halo “sentences”.

4. Methodology
We use the transformer architecture along with residual
network in this task. Similar to NLP models (Vaswani
et al., 2023), we can divide our architecture into two parts,
encoder and decoder. We show the details of the architecture
in Fig. 1.
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Figure 1. Model architecture: On left we show the input dark matter density distribution for one training sub-box and on right we show
the target 3D distribution of halos colored by their masses. These four properties are tokenized and concatenated for all the halos in the
sub-box in a way that it forms a ‘sentence’. On the encoder side, we use stacks of 3D residual networks to extract the features from the
density field and input that to the cross-attention module of the decoder model to learn the conditional log-probability of the tokens. See
Sec. 3 and Sec. 4 for more details.

4.1. Encoder
To extract the feature vectors that can inform the halo se-
lection, we run stack of Nres−net = 4 residual networks.
We input three PM density fields to the network, each with
a resolution of 32 × 32 × 32, but obtained from a physi-
cal volume of 32, 48 and 96 Mpc/h respectively, centered
on each sub-box. This captures the information from the
surrounding environment that is crucial to capture halo for-
mation physics. After passing through the residual network
with a filter of size nf = 3, we obtain an output with
shape 16 × 16 × 16 × Nembed, where Nembed = 64 are
the features we extract. We then spatially downsample the
output with Npool = 4 layers to get the final output with
shape of 4× 4× 4×Nembed. This output is spatially flat-
tened to finally obtain a matrix of shape Nseq−enc×Nembed,
where Nseq−enc = 64 and this is used as input to the cross-
attention in the decoder module.

4.2. Decoder
The decoder part mostly follows the architecture introduced
in Vaswani et al. (2023). The tokenized halo “sentence”
(Sec. 3.3) is first embedded to Nembed = 64 dimensions.
We then add linear positional embedding to this input and
pass it to a stack of Nblock = 4 multi-head attention mod-
ules, each with Nhead = 4 heads. Note that the cross-
attention module gets its key and value from the encoder

described above whereas the query is generated from the
halo tokens. We use standard multi-class cross-entropy loss
over nvocab = 67 classes to predict the next token number,
conditioned on previous tokens and the features from the
PM density fields.

When predicting the mock halo catalog from test simula-
tions, we provide the encoder the dark matter density from
the PM simulations and a <START> token to the decoder
part. We end the prediction once the <END> token is pre-
dicted. The predicted token numbers are then used to con-
vert back to the 3D positions within the sub-box and the
masses of the halos.

5. Results
5.1. Local performance
We compare the histogram of the predicted mock halo cat-
alogs to the true N-body catalogs on 8 test simulations in
the top panel of Fig. 2. We find that the architecture can
correctly predict the number of the halos in each sub-box as
well as their masses. We show the mean of the histogram
obtained from 8 simulations as well as their standard devia-
tion, finding that the stochastic uncertainties due to varying
initial conditions are also correctly captured in the model.
This tests the local performance of the model.

3



Teaching dark matter simulations to speak the halo language

0 2 4 6 8 10 12 14 16 18 20
Nhalo

100

101

102

103

104

H
is

to
gr

am

Halo counts
in sub-boxes

Mock

Truth

13.5 14.0 14.5 15.0 15.5

log10(Mhalo)

Halo masses
in sub-boxes

Mock

Truth

10−2 10−1 100

k (h/Mpc)

105

P
(k

)
(M

p
c/
h

)3

Unweighted
Power spectra

2π
/L

su
b
−b

ox

Mock

Truth

10−2 10−1 100

k (h/Mpc)

Mass weighted
Power spectra

2π
/L

su
b
−b

ox

Mock

Truth

Figure 2. Top row, local performance: Histogram of the predicted and true halo number counts (left) and masses (right) in 8 test simulations.
We also show the standard deviation in true and mock halo catalogs, finding that the trained network can accurately capture the mean and
their uncertainties. Bottom row, global performance: Comparison of the power spectrum of the mock and true halo catalogs, unweighted
(left) or weighted by mass (right). We also show the Nyquist frequency of the sub-box (Lsub−box = 31.25Mpc/h).

5.2. Global performance
To test the global performance of the model, we take the
predicted mock catalogs in each sub-box (of box-length,
Lsub−box = 31.25Mpc/h) corresponding to one realiza-
tion and re-create the distribution in the full box of length
Lfull−box = 1000Mpc/h by stacking the sub-volumes. We
then measure the power spectrum of the halos in this full
box on a wide range of scales as shown in the bottom left
panel of Fig. 2. We find that the resulting mock power
spectrum matches to the true power spectrum at 3% level.
To test that the model has correctly captured the correla-
tion between halo masses and their spatial distribution, we
additionally weight each halo with their predicted mass
value using a power-law weighting (wi = (M/M1)

α, where
M1 = 1014M⊙/h and α = 0.66) and calculate the power
spectrum. The comparison is shown in the bottom right
panel of Fig. 2 and we again find a 3% agreement between
mock and truth catalogs. We show the mean and variance
of the prediction and true power spectra calculated from
8 test simulations and we find that the mock catalogs also

correctly capture the variance in the power. Note that as
the power matches well between true and mock catalogs on
both the scales much smaller and larger compared to the
size of sub-boxes (k ∼ 2π/Lsub−box = 0.2h/Mpc), the
model is capturing the correlation between spatial position
and masses correctly.

6. Conclusion
In this study we developed a novel model to generate
conditional distribution of weighted discrete point cloud
(dark matter halos) when conditioned on a correlated 3D
field (dark matter density field). We showed that such
a model can accurately reproduce the catalog such that
it has correct distribution and statistics. We plan to en-
hance the network to correctly predict even lower mass
halos and include more properties in the inference such
as velocity and concentration of the dark matter halo by
increasing the size of each “word” in the halo “sentence”
(see Sec. 3.3). We also plan to generalize the model for
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different cosmologies. The code is publicly available at
https://github.com/shivampcosmo/GOTHAM
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