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ABSTRACT

Recent advancements in Multimodal Large Language Models (MLLMs) have
demonstrated impressive capabilities in visual-text processing. However, exist-
ing static image-text benchmarks are insufficient for evaluating their dynamic per-
ception and interactive reasoning abilities. We introduce Vision-centric Multiple
Abilities Game Evaluation (V-MAGE), a novel game-based evaluation frame-
work designed to systematically assess MLLMs’ visual reasoning in interactive,
continuous-space environments. V-MAGE features five distinct video games com-
prising over 30 carefully constructed evaluation scenarios. These scenarios are
set in free-form, visually complex environments that require models to interpret
dynamic game states and make decisions based solely on visual input, thereby
closely reflecting the conditions encountered by human players. To ensure robust
and interpretable comparisons across models, V-MAGE employs a dynamic ELO-
based ranking system that accounts for varying difficulty levels and task diversity.
Benchmarking state-of-the-art MLLMs against human baselines reveals that while
leading models approach human-level performance in simple tasks, their perfor-
mance drops significantly in complex scenarios requiring advanced reasoning and
task orchestration. This persistent performance gap highlights fundamental lim-
itations in current MLLMs’ ability to perform real-time, vision-grounded inter-
actions. Through extensive analyses, we demonstrate the utility of V-MAGE in
uncovering these limitations and providing actionable insights for improving the
visual and reasoning capabilities of MLLMs in dynamic, interactive settings.

1 INTRODUCTION

Building on the success of Large Language Models (LLMs) in text-based tasks(Bai et al.| (2023);
Cai et al.[(2024); |[OpenAl| (2023b)), researchers have extended their capabilities to visual-text mul-
timodal tasks through Multimodal Large Language Models (MLLMs)(OpenAl| (2023a)); Liu et al.
(2023a); Team|(2023); |Yang et al.|(2023); Li et al. (2024); Wang et al.|(2024); Bai et al.|(2025a); Zhu
et al.| (2025)). Various multimodal evaluation benchmarks, such as MME(Fu et al.| (2023)), MM-
Bench(Liu et al.| (2023b)), SEED-Bench(Li et al.| (2023)) have driven improvements in MLLM per-
formance. With improving model capabilities, researchers are shifting toward open-world, dynamic,
multi-round tasks beyond static benchmarks with fixed image-text inputs, as these better reflect real-
world interaction and reasoning challenges. Among the promising approaches for evaluating models
in such dynamic settings, game-based evaluation has emerged as a promising alternative, offering a
more natural and interactive assessment of a model’s perception and reasoning abilities.

While progress has been made in game-based MLLM benchmarks, current approaches predomi-
nantly rely on text-based (Costarelli et al.| (2024); Hu et al.| (2024); |Duan et al.| (2024)) or grid-
based(Zhang et al.|(2024); [Wang et al.|(2025)); Paglieri et al.|(2024)) games. In such settings, limited
visual reasoning demands and static, fully textually renderable content restrict evaluation of spatial,
temporal, and dynamic complexities crucial for real-world problem-solving. In contrast, the rich vi-
sual information inherent in video games presents a valuable opportunity to assess MLLMSs’ genuine
visual reasoning capabilities, potentially addressing the limitations of current methodologies.
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Figure 1: The overview of the V-MAGE benchmark, designed to evaluate vision-centric capabilities and
higher-level reasoning of MLLMs across 5 free-form games with 30+ levels. V-MAGE assesses critical abil-
ities in visual reasoning, providing a comprehensive evaluation of model performance in complex, dynamic
environments.

To address the lack of vision-centric video game benchmarks, we present Visual-centric Multiple
Abilities Game Evaluation (V-MAGE) , which allows for a thorough assessment of diverse model
and agent abilities within dynamic, interactive game environments and addresses key limitations in
current game-based evaluations of MLLM capabilities.

With V-MAGE, we evaluate leading MLLMs across five interactive games across 30+ levels. Results
highlight significant challenges posed by the dynamic visual interaction environment for MLLMs.
The results reveal that current MLLMs, despite excelling in static benchmarks, lack the perception,
multi-step reasoning, and task orchestration required for human-level gameplay in dynamic settings.

Our contributions are summarized as follows:

* We established V-MAGE, an interactive and visually rich evaluation framework focused on dy-
namic interaction and vision-centric reasoning. It also serves as a sandbox environment con-
ducive to vision agent development.

* We evaluated various publicly available MLLMs with V-MAGE, measuring model performance
with ELO scores and highlighting the significant gap between model performance and human-
level proficiency on complex tasks.

* Through the evaluation results of V-MAGE, we further analyzed the reasons for the suboptimal
performance of current MLLMs on video game tasks, including deficiencies in several funda-
mental visual capabilities, challenges in reasoning during prolonged interactions, and issues such
as anchoring bias, among others.

2 RELATED WORK

MLLMs and Multimodal Agents. As LLMs(Qwen et al.| (2025); Cai et al| (2024); OpenAl
(2023b)) advance, MLLMs have emerged to handle multimodal tasks by integrating text and vi-

sual inputs(Zhu et al| (2025); Bai et al. (2025b); [Chen et al| (2024c); Wang et al. (2024); [Liu]
2023a)). Open-source models like InternVL and QwenVL are narrowing the gap (Chen et al.

(2024b)) with closed-source models such as GPT-40(OpenAl| (2024)), and Gemini(Team|(2023)).

MLLMs are evolving into interactive multimodal agents, finding applications in areas such as

robotics(Driess et al] (2023))), virtual assistants(Brohan et al] (2023} [2022)), GUI automation(Xul
et al.| (2024); Bonatti et al.| (2024); [Zhang et al| (2023)), and game agents(Tan et al.| (2024); |Chen

et al.|(2024a)). These domains necessitate capabilities like sequential reasoning, memory, and adapt-
ability, which are not adequately captured by static benchmarks.

MLLM Benchmarks. Classic MLLM benchmarks have focused on tasks like Visual Question An-

swering (VQA)(Antol et al.| (2015); [Goyal et al.| (2017); [Li et al.| (2018); Marino et al.| (2019)) and
image captioning(Chen et al.|(2015); Agrawal et al.[(2019); Sidorov et al.|(2020)). More comprehen-
sive benchmarks, such as MME(Fu et al.| (2023)), MMBench(Liu et al.| (2023b))), SEED-Bench(Li
(2023)), MMMU (Yue et al.| (2024)), and MM-Vet(Yu et al.| (2023; 2024))), introduce broader

assessments across multiple domains.
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Most of these evaluations rely on structured multiple-choice and VQA-style tasks, limiting their
ability to measure real-world problem-solving and interactive reasoning. Recent multimodal agent
benchmarks like OSWorld(Xie et al.[ (2024)), Windows Agent Arena(Bonatti et al.| (2024)), and
COMMA (Ossowski et al.| (2024))) assess broader capabilities such as open-ended tasks in real envi-
ronments, OS interaction, and multi-agent collaboration.

Evaluating MLLMs in Games. Recent work(Tan et al.| (2024); (Chen et al.| (2024a)); [Ruoss et al.
(2024)) has explored MLLMs in interactive gaming environments. Meanwhile, game-based evalu-
ation has evolved from text-only benchmarks(Costarelli et al.| (2024); Hu et al.| (2024); |Duan et al.
(2024)) to vision-integrated tests(Zhang et al. (2024); [Wang et al.| (2025)); [Paglieri et al.| (2024)).
However, most existing benchmarks rely on grid-based games (e.g., Tic-Tac-Toe, Chess)(Zhang
et al.[(2024); Wang et al.| (2025); Paglieri et al.| (2024)), which can be fully represented in text. These
evaluations primarily test game-state recognition, and in some cases, additional visual input even
confuses models, reducing performance(Paglieri et al.| (2024))). Consequently, by primarily focus-
ing on or being reducible to text-based representations, these benchmarks offer limited insights into
MLLMSs’ visual perception and reasoning abilities, providing little guidance for improving vision-
centric skills.

3 V-MAGE BENCHMARK

We present V-MAGE, a benchmark built on video game environments designed to evaluate the
comprehensive performance of MLLMs, with a focus on vision-centric capabilities. Its defining
features are as follows:

* Vision Centric Gameplay. Models receive only visual input, requiring pixel-level scene under-
standing, object tracking, and spatial-temporal reasoning. V-MAGE features continuous-space
environments, allowing models to explore the almost infinite state space. Each game is designed
with different difficulty levels that target various skill dimensions.

* Extensible Evaluation Framework. = V-MAGE extends beyond model evaluation to assess
agentic skills that are out-of-scope for current MLLMs. Our game-agent-model three-module
evaluation pipeline allows optimizations in both MLLMs and their agent strategies.

¢ Adaptive ELO-based Ranking. V-MAGE uses a dynamic ELO system to provide a unified
and interpretable metric across diverse games and difficulty levels. Unlike raw scores, which
vary in scale across tasks, the ELO rating captures relative skill levels by modeling win—loss
dynamics between model performances on shared levels.

3.1 EVALUATION PIPELINE

V-MAGE separates the game environment from the MLLM, ensuring that all information is con-
veyed solely through visual input. The MLLM interacts with games in a human-like manner: it
observes real-time screen states and generates actions based on continuous visual interpretation,
mirroring human gameplay dynamics.

As depicted in Figure |2 the system operates through iterative action cycles, comprising three se-
quentially linked components. The Game Module serves as the environment interface, executing
game logic, capturing real-time screenshots of the current game state, and transmitting these visual
frames to subsequent modules. The Agent Module functions as the perceptual-cognitive processor,
integrating three critical data streams: (1) raw visual inputs from the current frame, (2) tempo-
ral context from past observations, and (3) task-specific textual prompts such as game rules. This
synthesized input is structured into a multimodal format compatible with the MLLM’s processing
requirements. The Model Execution Phase completes the cycle, wherein the MLLM generates an
action command that undergoes semantic validation by the Agent Module before being relayed back
to the Game Module for environmental state updates.

To prioritize unbiased evaluation of core MLLM capabilities, V-MAGE’s architecture adopts a delib-
erately minimalistic design, avoiding auxiliary subsystems that might obscure model performance.
The framework simultaneously retains modular extensibility, allowing researchers to modify agent
strategies without altering core evaluation protocols. This dual emphasis on streamlined standardiza-
tion and controlled customization ensures methodological rigor in benchmarking while maintaining
compatibility with specialized investigative requirements.
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Figure 2: V-MAGE games and evaluation pipeline. V-MAGE employs five distinct games, each with
several levels, to facilitate a decomposed evaluation of model performance. These games include
FlappyBird, Race, SuperMario, Pong and TempestRun. During the evaluation process, the Agent
module receives visual game state information directly from the Game module, primarily in the
form of screenshots. The Agent module then structures these screenshots, combined with prompts
containing the game rules, into the appropriate input format for MLLMs. Subsequently, the model’s
output is processed by the Agent module to generate executable actions, which are then transmitted
back to the Game module to update the environment state.

3.2 GAMES AND LEVELS

V-MAGE incorporates five human-playable video games (Figure [2), each featuring 3 to 10 levels,
culminating in over 30 distinct evaluation environments. In contrast to traditional grid-based eval-
uation setups, V-MAGE selects games based on specific principles. The games feature free-form
or continuous-space visual environments, facilitating more nuanced and flexible model movement
and interaction. Crucially, to effectively assess vision-centric capabilities, the game environments
are designed to be visually irreducible. This characteristic ensures that the system state cannot be
fully discretized or textually summarized without significant information loss, thereby necessitating
continuous visual grounding throughout the reasoning process. Detailed discussions regarding the
game selection criteria and sources are provided in Appendix
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stratified tasks. Specifically, levels are designed \_
for each game with gradually increasing com-
plexity, varying control paradigms and percep- Figure 3: Race level design. Six levels pro-
tual challenges. For instance, Figure [3] illus- gressively increase in difficulty while sharing the
trates the level design in Race. Detailed infor- core objective: navigating a car to a trophy. De-
mation on the level design for all games can be tailed Race level configurations are provided in
found in Appendix[C.2} Appendix TabldT9}

3.3 EVALUATION METRICS

V-MAGE employs a robust implementation of the ELO rating system to evaluate MLLMs, building
on recent advancements in LLM benchmarking(Duan et al.| (2024); Jiang et al.| (2024)). This com-
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petitive evaluation framework ensures reliable model rankings by leveraging competitive evaluation
mechanisms, ensuring robustness through dynamically balanced interactions.

Games demonstrate diverse scales and difficulty thresholds. The ELO system mitigates this vari-
ability by providing a standardized metric for comparing model performance across heterogeneous
environments. Moreover, ELO is inherently sensitive to performance consistency. A model that
achieves a high average score through a mix of exceptional successes and frequent failures may still
be ranked lower, as its instability would likely lead to more losses in direct, pairwise matchups. This
allows the ELO system to reward reliable performance over erratic, high-variance gameplay, which
simple score averaging might otherwise obscure.

Furthermore, it skillfully measures incremental advancement in games featuring non-linear scoring
plateaus, where minor improvements can differ greatly depending on the performance range. For
instance, it can differentiate between progress made from 80 to 85 and significant breakthroughs
from 95 to 100.

We introduce an ELO-based ranking system to assess model performance by means of competitive
pairwise comparisons. In each game level, models are randomly matched in pairs for up to 100
evaluation rounds. The outcomes are determined based on their gameplay scores and the rates of
valid actions taken. Detailed mathematical formulations of the pairing mechanism, rating updates,
and stabilization process are provided in Appendix

3.4 COMPARISON TO EXISTING WORKS

Humans play dynamic games using visual perception and intuitive reasoning, a process largely un-
captured by most existing MLLM game benchmarks. Many of these rely on grid-based games (Wang
et al. (2025); [Zhang et al.| (2024)) where states are textually representable. While such benchmarks
assess text-based reasoning, similar to traditional LLM tasks (Paglieri et al.|(2024)), they offer lim-
ited insights into MLLMs’ visual intuitive reasoning. Models often bypass genuine visual perception
here, acting more like OCR converters, which hinders assessing and improving vision-centric abili-
ties. |Park et al.|(2025) also employed video games as a testbed, wherein visual information remained
auxiliary, and the game’s state and information were accessed chiefly through text-based inputs.

In contrast to this paradigm, V-MAGE shifts the evaluation focus by embedding models in dynamic
visual environments that fundamentally necessitate real-time perception and action grounded in vi-
sual input. V-MAGE deliberately adopts environments lacking rigid grid structures, where the states
of characters and objects cannot be easily simplified into sparse, coordinate-based textual descrip-
tions. This design compels models to continuously leverage the visual modality throughout the
reasoning process, rather than discarding it after an initial conversion.

Furthermore, unlike benchmarks where decisions are made based on a single static frame, such as
in many chess-like environments, V-MAGE requires sophisticated temporal reasoning across se-
quences of frames to make informed decisions, more closely mirroring human gameplay dynamics.

By shifting evaluation to more naturalistic and visually complex dynamic game environments, V-
MAGE provides a more rigorous and representative test of MLLM capabilities, particularly in as-
sessing their visual intuitive reasoning. A holistic comparison between V-MAGE and existing game
benchmarks is presented in Table [I]

Table 1: The comparison of V-MAGE with existing game-based evaluation benchmarks. *Text in
V-MAGE only represents the instructions for game rules and output format.

Game Benchmarks Game Type Input Reasoning Type Level Design

GameBench(Costarelli et al.|(2024)) Word Text-Only Text Reasoning X

GameArena(Hu et al.|(2024)) Word Text-Only Text Reasoning X

GTBench(Duan et al.|(2024)) Word Text-Only Text Reasoning X
ING-VP(Zhang et al.|(2024)) Grid Based Single-Image-Text Visual Aid
LVLM-Playground(Wang et al.|(2025)) Grid Based Single-Image-Text Visual Aid

BALROG(Paglieri et al.|(2024)) Word / Grid Based  Single-Image-Text Text / Visual Aid X

Orak(Park et al.|(2025)) Video Single-Image-Text Text / Visual Aid X

V-MAGE Video Multi-Images-Text*  Vision-Centric Reasoning
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4 EXPERIMENTS

As the baseline settings for the V-MAGE benchmark, we evaluate state-of-the-art MLLMs using
full-precision models under a minimal naive agent strategy(Appendix to ensure a fair com-
parison. The naive agent utilizes the most recent k frames (typically k=3) for reasoning, integrating
them with reasoning history, action decisions, and game rules as input for the models. Detailed
experiments settings and prompts can be found in Appendix [BJand[C.4]

4.1 MAIN RESULT

Table 2: Performance comparison across different games based on the ELO ranking system. The
Random baseline refers to randomly selecting actions from the predefined action space during
decision-making phases. Average performance ratio, abbreviated as Avg. Ratio, refers to the aver-
age percentage of the model’s score compared to the human baseline score.

Model | Flappybird Pong Race Supermario Tempestrun | Avg. ELO Score | Avg. Ratio (%)
GPT-40 1618 1531 1716 1582 1548 1599 26.6
Gemini-2.0-Flash-Thinking 1579 1552 1648 1631 1525 1587 22.6
Gemini-2.0-Flash 1559 1541 1582 1561 1541 1557 16.7
Qwen2.5-VL-72B-Instruct 1563 1525 1624 1620 1559 1578 21.5
InternVL2.5-78B 1529 1539 1577 1614 1541 1560 19.2
Qwen2-VL-72B-Instruct 1490 1527 1587 1576 1561 1548 16.5
InternVL2.5-8B 1521 1530 1556 1438 1506 1510 12.9
Qwen2.5-VL-7B-Instruct 1469 1530 1548 1476 1494 1503 12.7
Random 1493 1516 1561 1490 1456 1503 11.0
LLaVA-Onevision-Qwen2-7B 1489 1495 1522 1448 1538 1498 13.0
Keye-VL-8B-Preview 1487 1518 1566 1401 1513 1497 13.1
Qwen2-VL-7B-Instruct 1484 1506 1529 1426 1518 1493 11.4
LLaVA-v1.6-Mistral-7B 1513 1512 1470 1396 1385 1455 9.2
Phi-4-multimodal-instruct 1441 1510 1388 1502 1389 1446 13.7
LLaVA-1.5-7B 1425 1304 1214 1473 1356 1354 14.1

Scores and Rankings. The evaluation results clearly demonstrate a performance gradient across
models ranging from 7B to 70B+ parameters. This also highlights that the dynamic visual reasoning
tasks we propose represent a universal challenge for current MLLMs. We note that rankings from
ELO scores and the Average Ratio may occasionally differ. This discrepancy arises because the ELO
system rewards performance consistency (penalizing unstable, high-variance results) and provides
a more balanced, holistic assessment across games with varying score scales. In contrast, the Avg
Ratio metric can be skewed when averaging across tasks with imbalanced performance levels. More
detailed analysis are provided in Appendix [B.2]and[B.3]
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Figure 4: The MLLM trails humans by a large margin in all six games. The levels with an
asterisk (*) represent ‘no history’. Detailed performance metrics for each model across individual
game levels are provided in Appendix (Tables[5}9).
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Significant Performance Gap Between MLLMs and Humans in Complex Scenes.  We in-
vited 5 human participants to play the game in the same environment as the MLLMs and calculated
their average score, which served as the baseline for human performance. Figure ] compares the
performance of leading MLLMs and human players across different game levels. The significant
performance gap observed as task complexity increases underscores a critical limitation of current
MLLMs in dynamic environments: they struggle to integrate real-time visual perception with the
sophisticated reasoning and planning necessary for human-level gameplay, particularly in tasks de-
manding temporal understanding and flexible strategic adaptation.

4.2 FURTHER ANALYSIS

Unit Tests for Core Visual Abilities. We devised a unit test for vision-centric abilities by extract-
ing foundational levels from V-MAGE. Figure [5] presents the capability profiles of various models
across four core visual competencies. Scores near or below baseline suggest little effective relevant
reasoning, while higher scores indicate a greater likelihood of correct reasoning. For each capabil-
ity, effective reasoning was evaluated by calculating the percentage of model scores that exceeded a
random baseline score on the corresponding unit test levels (as defined in Appendix [FI).

As depicted, most models substantially outperform the random baseline in Positioning and Vi-
sual Grounding, indicating a degree of proficiency in single-frame image comprehension and basic
visual information perception. However, performance notably declines in Tracking and Timing,
which require processing continuous frame information and executing precise spatiotemporal judg-
ments. For the Tracking task, nearly all models fail to significantly surpass the random baseline.
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Figure 5: Capability maps of the underlying  Figure 6: Model performance with vs. with-
visual capabilities of each model. out text information on Pong Level 2 (top) and
Flappy Bird Level 3 (bottom).

Limitations Beyond Visual Perception. While visual perception constitutes a critical assessment
dimension in V-MAGE’s game tasks, our experiments revealed additional limitations and deficien-
cies in other aspects. To validate this, we conducted supplementary experiments in relatively simple
levels providing textual descriptions of important game state information, thereby bypassing the
perception process.

As shown in Figure [f] providing textual descriptions of the game state significantly improved the
performance of most evaluated models, with this gain being particularly prominent in larger models
such as Gemini and in games requiring precise state understanding like Pong. This notable perfor-
mance increase when perception is bypassed strongly suggests that limitations in processing visual
information are indeed a significant bottleneck for current MLLMs.

However, despite this substantial performance gain, the models’ scores still remained considerably
lower than the human baseline in most cases. This persistent gap indicates that while visual per-
ception challenges are critical, the models’ limitations extend beyond merely “seeing” the state



Under review as a conference paper at ICLR 2026

accurately. It highlights that significant bottlenecks also exist in the downstream processes responsi-
ble for robust interpretation of information (even when provided textually or perceived imperfectly),
strategic planning, and effective action generation in complex and dynamic environments. Further-
more, the less pronounced performance improvement observed in smaller models(like Qwen2.5VL
7B) suggests that inherent limitations in their core reasoning capabilities may also act as a perfor-
mance bottleneck. Check Appendix [F.2]for more experimental details.

Table 3: Average number of rounds for each model to generate different responses.

Model Race FlappyBird Pong TempestRun Avg.
Qwen2VL 7B 4.3 259 13.7 7.3 12.8
Qwen2.5VL 72B 2.3 19.3 2.6 53 7.4
InternVL2.5 8B 2.0 6.9 6.7 8.0 5.9
InternVL2.5 78B 6.8 16.0 2.0 3.0 7.0
GPT40 1.0 1.6 1.0 1.0 1.1
PCCr -0.57 2071 -0.87 0.72 -0.72

(Avg. Rounds vs. ELO)

Anchoring Bias in Model Inference Processes. When provided with historical information to aid
reasoning in dynamic game progression, MLLMs often exhibit anchoring bias, particularly when
processing similar consecutive frames. This bias manifests as an undue influence of prior infer-
ences on current reasoning, hindering the accurate identification of subtle visual changes and unique
frame details. Models tend to favor relying on historical textual descriptions over nuanced visual
input, making them less sensitive to fine-grained visual updates, consequently leading to unchanged
reasoning content over extended game sequences.

As shown in Table 3] models vary significantly in their responsiveness; for instance, in FlappyBird,
Qwen2.5VL 72B altered its reasoning only once every 19.3 responses on average, significantly
less frequently than GPT-40 (1.6 responses). The Pearson correlation coefficients (PCC r) reveal a
consistent negative correlation between the average rounds to change response and ELO score across
games, with an average r of -0.72. This highlights a critical challenge in maintaining responsiveness
to dynamic visual input and its direct impact on task success. To investigate the impact of settings
within the pipeline (e.g., frame sampling and decision frequency) on anchoring bias, we conducted
corresponding experiments, with results presented in Appendix [F.3]

Race FlappyBird Pong SuperMario TempestRun
(Total Errors: 78) (Total Errors: 131) (Total Errors: 49) (Total Errors: 90) (Total Errors: 73)
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Figure 7: Error type probability distribution for GPT40 across 494 samples.

Analysis of Model Errors in V-MAGE. For GPT-40’s complete inputs and responses across all
game levels after one to two rounds of gameplay, we uniformly sampled 494 interaction sets for
manual annotation and categorized the primary error types. The visualization results depicting the
distribution of these errors are presented in Figure[7] The annotation method for error distribution
and the details of statistical data are provided in Appendix

The predominant error type was perception error, with direction error being particularly prevalent.
In such cases, the model frequently misidentified directional cues in visual content, leading to incor-
rect inferences. Another major category was reasoning error, primarily involving logical flaws and
decision-making failures, including misinterpretation of historical information (history misinterpre-
tation) and selection of suboptimal actions (action inappropriate). Figure §] presents case examples
illustrating perception error and reasoning error.
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FlappyBird GPT4o0
Description: The bird is slightly below the center of the pipe gap. The gap between the upper and lower pipe appears vertically aligned to allow
I E safe passage if the bird is centered. Currently, the bird is a bit too low relative to the middle of the gap.
Reasoning: Since the bird is positioned slightly below the center of the gap, and the goal is to move horizontally through the gap without
touching either the top or bottom pipe, the bird needs to ascend slightly to align with the center of the gap. There is no gravity, so unless it is
moved manually, the bird will stay at the same height.
Action: UP (%4

5 InternVL2.5-78B
Description: The bird is currently positioned below the upper pipe and above the lower pipe, which means it is aligned well enough with the gap
between the pipes. There is sufficient space for the bird to pass through without needing an adjustment.

Reasoning: Since the bird is already correctly positioned within the gap between the pipes, taking an action like UP or DOWN would
unnecessarily risk moving out of alignment with the gap. Therefore, the best course of action is to maintain its current position until it
successfully passes through the gap.

Action: KEEP Perception Error l X
Level 2
Gemini-2.0-Flash
R Description: The trophy is located to the right and slightly below the car.
ace

Reasoning: There is a checkered finish line obstacle situated vertically between the car and the trophy. Moving directly right would resultin a

collision with this obstacle and a game over. To reach the trophy, the car needs to move downwards first to avoid the finish line, and then move

right.

Action: DOWN V

Qwen2.5VL 72B

Description: The trophy is positioned to the right and slightly below the car. There is a vertical line of blocks between the car and the trophy,

which acts as an obstacle.

Reasoning: To reach the trophy, the car needs to move to the right first to bypass the obstacle. Moving directly down or up would not help in

Level 3 reaching the trophy due to its current position relative to the car. Once the car moves to the right past the obstacle, it can then adjust its path if
necessary to align with the trophy's position.

Action: RIGHT I

Reasoning Error l b 4

Figure 8: Case examples illustrating Perception Error and Reasoning Error in FlappyBird and Race.
The FlappyBird example shows a Perception Error where the model misjudges the bird’s vertical
position relative to the pipe gap. The Race example illustrates a Reasoning Error where the model
fails to plan a path around a obstacle between the car and the trophy, resulting in a suboptimal action.

Additionally, perception incomplete errors were commonly observed, where the model failed to
fully extract useful information from visual inputs, resulting in partial information acquisition. In-
consistency errors mainly occurred in scenarios permitting multiple valid solutions, where the model
exhibited unstable decision-making by frequently revising its choices, ultimately leading to timeout
failures due to excessive deliberation. Notably, instruction following errors were virtually absent,
as GPT-4o consistently adhered to the provided prompts. Additional case study analyses are docu-
mented in Appendix [G]

V-MAGE Poses Significant Challenges to MLLMs. Unlike conventional static VQA or text-
reducible grid-based benchmarks, V-MAGE necessitates real-time interaction within dynamic,
vision-centric game environments, demanding human-like gameplay capabilities. The framework
effectively exposes significant challenges and persistent limitations in current MLLMs. MLLMs
demonstrate difficulty in processing and integrating information across sequences of dynamic
frames, which impacts critical tasks like tracking, temporal reasoning, and trajectory understand-
ing. This difficulty may contribute to anchoring bias, as models overly rely on prior inferences due
to an insensitivity to subtle visual changes in consecutive frames, hindering their ability to adapt
reasoning to dynamic game states. Furthermore, MLLMs demonstrate fundamental reasoning de-
ficiencies that affect complex planning, strategic decision-making, and optimal action generation.
These limitations persist even when initial visual processing challenges are mitigated, highlighting
that deficiencies in the core reasoning process itself extend beyond perception.

5 CONCLUSION

This paper introduces V-MAGE, a pioneering game-based evaluation framework designed to assess
the vision-centric capabilities of MLLMs in dynamic, interactive environments. Utilizing over 30
levels across 5 distinct games, our evaluation reveals significant limitations in current MLLM:s.
Specifically, models exhibit insufficient multi-image perception, leading to issues like anchoring
bias, and demonstrate fundamental deficiencies in complex reasoning and strategic planning that
persist even when perceptual challenges are mitigated. These findings highlight critical needs for
future research, primarily in enhancing multi-frame visual processing and advancing higher-level
reasoning capabilities. By systematically diagnosing these core deficiencies, V-MAGE sets a new
and more demanding standard, challenging the field to develop MLLMs with robust, human-like
visual intelligence for dynamic interactions.
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APPENDIX OVERVIEW

In the appendix, we provide the following contents:
Sec[Al Provides additional discussion of current limitations and directions for future work.

Sec|B} Introduces experimental settings and provides detailed information on the experiments, mod-
els, and their performance.

Sec |C; Delineates the game selection methodology and sources, including all level designs and
prompts.

Sec|D} Presents specific details of ELO-based ranking system in V-MAGE.

Sec[E} Provides ablation studies on pipeline settings(e.g., frame sampling strategy, resolution, etc.)
Sec[F} Provides details of supplemental experimental analyses.

Sec|Gl Presents some case studies.

Sec[H} Provides details on miscellaneous material, including a statement of LLLM usage(Sec. [H.1)
and a discussion about broader impacts.

A LIMITATIONS AND FUTURE WORK

Limitations of Current Game Environments. While V-MAGE represents a significant step to-
wards evaluating MLLMs in interactive, dynamic, and visually complex environments that closer
resemble real-world tasks, the current benchmark is still constrained by the inherent scale and com-
plexity of the included games. Although these environments probe crucial vision-centric abilities
and reasoning in continuous spaces, they cannot fully encompass the vast diversity and intricate
challenges present in unrestricted real-world scenarios. This is a current boundary imposed by bal-
ancing complexity with controllability for systematic evaluation. As MLLM capabilities continue
to advance and hardware performance improves, we anticipate being able to incorporate larger and
more complex game environments in future iterations of V-MAGE. These future environments will
be designed to offer a wider array of challenges, further pushing the limits of MLLM evaluation and
narrowing the gap between simulated and real-world performance assessment.

Future Directions in Agent Evaluation. The primary focus of this work is the evaluation of MLLM
capabilities under a predefined baseline agent strategy, which utilizes a simple historical information
processing approach. However, we strongly believe that advancements in agent design and sophis-
ticated strategies can yield substantial performance improvements within the V-MAGE evaluation
environment. While our current findings highlight the limitations of the MLLM models themselves,
the overall performance in complex game tasks is a product of both the MLLM’s core abilities and
the agent’s effectiveness in perception processing, information utilization, and action generation.
Therefore, a crucial direction for future work involves conducting further testing and evaluation
specifically on the impact of novel and more advanced agentic approaches within V-MAGE. We
look forward to exploring how enhanced agents can leverage MLLM capabilities more effectively,
thereby driving further development in the field of multimodal agents.

B EXPERIMENTS DETAILS

B.1 EVALUATION PIPELINE DETAILS

V-MAGE employs a three-module architecture, as illustrated in Figure[2] The specific configurations
and details within each module are as follows:

B.1.1 GAME MODULE

The Game module encompasses the game simulators and their operational parameters. In V-MAGE,
game simulators, representing environments developed with Pygame, are configured to present tasks
that test specific visual and reasoning capabilities. To address potential confounding factors such as
API latency and computational constraints, V-MAGE employs a frame-pausing mechanism during
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model inference. This ensures that the game environment remains static while the model processes
visual inputs and generates actions, effectively decoupling timing evaluation from raw inference
speed.

Regarding real-time execution and inference delays, the frame-pausing mechanism ensures fairness
across models. While current models may not consistently achieve real-time inference due to API
or GPU limitations, V-MAGE automatically pauses the game environment during model process-
ing. This approach isolates the model’s temporal reasoning ability (strategic “when to act”) from
infrastructure-related delays, enabling a focused assessment of capabilities such as Timing. In V-
MAGE, Timing is explicitly designed to evaluate the model’s ability to choose the optimal timing of
actions, not the system’s response speed.

The frames per second (FPS) for all our games is 30. In our standard benchmark setting, we use
a sample rate of 3. This corresponds to the model making a decision approximately every 100
milliseconds (30 FPS / 3) in the game.

B.1.2 AGENT MODULE

Researchers can modify the agent’s operational mode by adjusting the configuration file. This in-
cludes altering historical strategies, such as employing a longer history of steps or sparsely sampling
more distant historical records to provide different contextual information to the models. However,
for fairness in evaluation and due to resource constraints, we present results obtained using only the
naive configuration as a baseline in our main findings. This allows for standardized comparisons
across different MLLM:s.

In the baseline agent strategy, we utilize historical information comprising three preceding screen-
shots and the model’s reasoning outputs associated with these screenshots, combined with the cur-
rent game screenshot, to form the <history> and <image_current_step> components (as
shown in Sec. [C.4) that are incorporated into the model’s input framework.

The <history> component is structured as follows:

This screenshot is <step> steps before the current step of the game. After this frame, your rea-
soning message was <history_reasoning>. After the action was executed, the game info was
<history_action_info>.

Upon obtaining the model’s output, the system parses the structured response format specified in
the prompt to systematically extract both the cognitive reasoning log and action parameters. These
extracted elements are subsequently stored and fed back to the game module through a standard-
ized data pipeline. This process ensures consistent interpretation of the model’s decision-making
trajectory while maintaining synchronization with the game state.

Taking an input from the actual evaluation process in the Tempest Run as an example:

Assume you are playing a PC game called *Tempest Run’.

You need to control a character who moves through a three-dimensional space inside a futuristic
tunnel filled with various obstacles and enemies. Your goal is to navigate through the tunnel, avoid
or overcome obstacles, and run as far as possible. Avoid colliding with red spikes, purple walls, or
failing to deal with green enemies.

Use the optimal combination of movements to progress through the tunnel smoothly and efficiently.
Monitor the character’s position relative to obstacles and react appropriately to avoid losing progress.
Now, I will give you some history screenshots in the game for decision making.

<image>

This screenshot is three steps before the current step of the game. After this frame, your reasoning
message was ~’observation’: ’The character is running forward in a narrow tunnel with blue lines
forming the walls and ceiling. Red spikes are visible on the ground ahead, and green enemies are
further down the tunnel. The path appears clear with no immediate obstacles or enemies to avoid.’,
’reasoning’: *Maintaining the current trajectory with no action is optimal to continue moving straight
towards the green enemy and prepare for a potential slide to eliminate it.’, action’: "NONE’”. After
the action was excuted, the game info was ”Game is running.”
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<image>

This screenshot represents the current step of the game.

The last frame shows the current state of the game, while the previous frames show the character’s
previous movements.

Important notes: 1. Use JUMP to jump over red spikes on the ground. 2. Use SLIDE to duck and
kick green enemies to eliminate them.

You should think step by step and respond with the following format, remember to respond with
plain text without any special characters or symbols, DO NOT respond in markdown or Latex or
any other format.

Response:

Observation: ... (Describe the character’s current position and nearby obstacles or enemies.)
Reasoning: ... (Think step by step and explain how you choose the action.)

Action: ... (Choose ONE of the six actions to control the character. Do NOT add any other words.)

B.1.3 MODEL MODULE

The Model module is primarily responsible for model deployment and parameter control. In addition
to closed-source models accessed via APIs, we deployed open-source models on an 8xV100 GPU
Azure cluster for our experiments, utilizing the vLLLM library for efficient serving. For text output
generation across all models, we standardized the decoding parameters by setting top_p=0.9 and
temperature=0.8.

The following models are involved in the V-MAGE evaluation:

Table 4: Models involved in V-MAGE.

Model Organization Website Open Source
GPT-40-2024-08-06 OpenAl https://openai.com/index/hello-gpt-40/ N
Gemini-2.0-Flash Google DeepMind | https://deepmind. google/technologies/gemini/flash/i °
InternVL2.5-78B https://huggingface.co/OpenGVLab/InternVL2_5-78B
Shanghai Al Lab +—- | -
InternVL2.5-8B https://huggingface.co/OpenGVLab/InternVL2_5-8B
Qwen2.5VL-72B-Instruct https://huggingface.co/Qwen/Qwen2.5-VL-72B-Inst ru;A Yes
Qwen2VL-72B-Instruct Alibaba Cloud i https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct i
Qwen2VL-7B-Instruct B https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct ]

B.2 DETAILED STATISTICS

B.2.1 SCORE-BASED PERFORMANCE

Cross-task result analysis reveals the limitations of parameter scaling: In RaceGame Level 1 (with
historical frame input), Qwen2VL showed a 429% improvement in score when scaling from 7B to
72B (from 10.43 to 55.19), reaching about 55% of the human baseline score. However, in more
complex tasks such as Tempestrun Level 4, InternVL2.5-78B (199.78 points) only improved by
14.4% compared to its 8B version (174.58 points), still achieving only 25% of the human score
(800 points). This suggests that parameter scaling cannot compensate for the inherent ability gap in
complex dynamic tasks. The detailed scores are presented below:

B.2.2 ADDITIONAL INDICATORS

Due to the dynamic game environments inherent in the V-MAGE evaluation process, certain lev-
els may necessitate a considerable number of tokens during assessment. In this section, using the
Qwen2.5VL-72B model deployed with vLLM as an illustrative example, we provide the statisti-
cally averaged frame counts (equal to the number of frames between two neighboring interactions
multiplied by the number of interactions) and the average input and output token consumption per
game round, serving as a reference.
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Table 5: Performance analysis based on average scores in Race

Gemini Qwen2.5VL | Qwen2VL | Qwen2VL | InternVL2.5 | InternVL2.5
Level GPT-40 Random | Human
2.0-flash 72B 7B 72B 8B 78B

Levell 99.99 35.41 76.01 10.43 55.19 28.12 64.56 7.30 100.00
Levell No History 97.87 98.91 99.95 87.46 97.87 89.54 99.99 1.06 100.00
Level2 67.68 7.30 14.59 0.00 1.06 3.14 15.63 1.06 100.00
Level2 No History 39.57 22.92 26.04 1.06 23.96 522 26.04 1.06 100.00
Level3 48.94 522 20.84 4.18 7.30 6.26 11.47 0.02 100.00
Level3 No History 14.59 4.18 25.00 4.18 16.67 11.47 22.92 0.00 100.00
Level4 22.92 6.26 21.88 0.02 2.10 0.00 2.10 14.59 100.00
Level5 16.67 8.34 12.51 13.55 4.18 20.84 7.30 522 100.00

Table 6: Performance analysis based on average scores in Pong

Gemini | Qwen2.5VL | Qwen2VL | Qwen2VL | InternVL2.5 | InternVL2.5
Level GPT-40 Random | Human

2.0-flash 72B 7B 72B 8B 78B
Levell 0.51 0.54 0.56 0.59 0.54 0.68 0.77 0.63 10.00
Level2 0.39 0.41 0.35 0.31 0.33 0.31 0.38 0.39 10.00
Level3 0.19 0.32 0.21 0.18 0.20 0.18 0.15 0.06 10.00

Table 7: Performance analysis based on average scores in Supermario
Gemini | Qwen2.5VL | Qwen2VL | Qwen2VL | InternVL2.5 | InternVL2.5

Level GPT-40 Random | Human

2.0-flash 72B 7B 72B 8B 78B
Levell0 18.77 108.30 339.57 12.51 29.16 14.61 80.19 8.36 800.00
Levell 372.85 109.41 142.76 33.41 216.67 69.83 203.12 86.50 800.00
Level2 424.92 127.17 244.78 102.12 338.47 102.12 186.48 94.83 800.00
Level3 802.99 429.10 697.91 188.54 565.46 286.44 610.26 53.19 1000.00
Level4 369.76 251.07 499.89 112.53 346.84 151.09 447.84 52.15 1400.00
Level5 125.08 258.33 242.72 232.29 192.75 209.41 433.23 380.13 800.00
Level6 233.36 325.96 311.36 324.96 296.79 267.70 344.74 472.78 800.00
Level7 440.66 527.96 585.21 161.48 490.48 220.86 491.52 268.74 800.00
Level8 91.75 211.43 248.96 51.13 179.20 76.09 168.74 68.79 900.00
Level9 693.56 594.67 690.46 162.62 508.24 201.12 756.02 329.19 | 1300.00

Table 8: Performance analysis based on average scores in Flappybird

Gemini | Qwen2.5VL | Qwen2VL | Qwen2VL | InternVL2.5 | InternVL2.5
Level GPT-40 Random | Human

2.0-flash 72B 7B 72B 8B 78B
Levell 3.30 2.38 1.70 0.76 0.47 1.20 1.54 1.45 10.00
Level2 0.71 0.47 0.38 0.20 0.12 0.36 0.39 0.34 10.00
Level3 0.57 0.41 0.45 0.20 0.35 0.33 0.43 0.52 10.00
Level4 1.33 1.50 0.79 1.52 0.38 1.43 0.64 0.16 10.00
Level5 1.74 1.38 0.71 1.44 0.51 1.20 0.49 0.10 10.00
Level6 1.88 1.05 0.73 1.62 0.56 1.14 0.66 0.17 10.00
Level7 0.60 0.07 0.66 0.03 0.14 0.00 0.13 0.00 10.00
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Table 9: Performance analysis based on average scores in Tempestrun

Gemini | Qwen2.5VL | Qwen2VL | Qwen2VL | InternVL2.5 | InternVL2.5
Level GPT-40 Random | Human
2.0-flash 72B 7B 72B 8B 78B
Levell | 466.25 478.35 549.98 446.92 519.22 444.71 475.22 385.72 | 2000.00
Level2 | 361.44 356.05 349.06 352.76 370.13 327.38 333.37 271.65 1500.00
Level3 | 213.73 197.91 238.74 208.75 220.21 197.71 216.64 190.71 1000.00
Leveld | 177.60 201.67 192.79 182.91 195.19 174.58 199.78 157.17 800.00

Depending on the differences in the models and the randomness of the games and reasoning, as well
as other further experiments, the full research project may require more compute than the experi-
ments reported here. The time of execution of the experiment depends on the network environment
and computational power.

Table 10: SuperMario Average Frames and Tokens Consumed

Metric ‘ Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9 Level 10 All
Average Frames 400 655.56 1000 641.2 234.00 300 300 148.06 504.35 950.45 5133.62
Average Prompt Tokens 150004.78  253457.38  379649.92 266125.09 100595.30 112241.57 111288.00 54231.22 192642.31 361208.32 1981443.89

Average Completion Tokens | 10054.86 18437.53  25428.29 18242.65 7075.53 7639.30 7314.46 3710.36 1349279 24197.61 135593.38

Table 11: Race Average Frames and Tokens Consumed

Level 1 Level 2 Level 3
Metric Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 All

No History  No History = No History

Average Frames 12.66 1539 16.66 29.20 30.69 32.14 58.07 98.06 3246 32533
Average Prompt Tokens 1738.83 2309.85 2562.15 12317.22  14044.87 14934.32  31164.03 54346.81 17399.59 255136.23
Average Completion Tokens 275.35 531.41 595.91 693.11 937.66 1060.77 224355  3898.42 1517.55  20798.72

Table 12: FlappyBird Average Frames and Tokens Consumed

Metric Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 All
Average Frames 224.73 133.34 76.49 153.11 153.87 152 143.28 1036.82
Average Prompt Tokens 98273.78 5733259 3232691 65853.39 66500.27 65322.27 56528.63 442137.84

Average Completion Tokens | 9979.17  5772.39  3319.76 ~ 714232  7309.31  7082.73  6259.62  46865.30

Table 13: TempestRun and PongGame Average Frames and Tokens Consumed

Metric Level 1 Level 2 Level 3 Level 4 All Level 1 Level 2 Level 3 All
Average Frames 173.58 92.70 38.98 28.72 333.98 221.79 83.98 47.00 352.77
Average Prompt Tokens 108291.56  57096.18 33218.84 22874.80 237820.07 | 136254.76 50056.53 26981.30 213292.59

Average Completion Tokens | 7000.84 3799.28  2316.48 1619.33 15942.53 10998.40  4064.67  2208.39 17271.46
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B.2.3 MORE MODELS

In addition to the models mentioned in Table[B.1.3] we also evaluated the more recent Claude-3.7-
sonnet[ﬂ Due to budgetary constraints, we were only able to conduct approximately 5 to 10 rounds

of testing. When we included Claude-3.7-sonnet in the ELO calculation, the results are shown in
Table T4

Table 14: Performance comparison across different games based on the elo ranking system.

Model Pong Race Flappybird Tempestrun SuperMario Average
Closed-Source Models

Claude-3.7-sonnet 1607 1626 1578 1513 1601 1591

GPT-40 1487 1582 1573 1514 1512 1526

Gemini-2.0-Flash 1518 1550 1533 1498 1588 1553

(Thinking)

Gemini-2.0-Flash 1502 1498 1513 1515 1512 1510

Open-Source Models

Owen2VL-7B 1464 1417 1438 1488 1361 1412

Owen2VL-72B 1479 1527 1521 1530 1580 1543

QOwen2.5VL-72B 1485 1489 1440 1531 1509 1494

InternVL2.5-8B 1489 1442 1481 1471 1372 1428

InternVL2.5-78B 1492 1447 1481 1514 1546 1510
Baseline

Random 1477 1424 1440 1424 1419 1431

It is important to note that these results may be biased because the number of evaluation rounds is
incomplete compared to other models, which is why the Claude-3.7-sonnet model was not included
in the main results discussed.

Nevertheless, based on the current findings, it is one of the best-performing models on V-MAGE to
date.

B.3 INCONSISTENCY BETWEEN ELO AND PERFORMANCE RATIO RANKINGS

As shown in Table E] in the main text, ELO and Performance Ratio sometimes do not align in
rankings.

We examine Keye-VL-8B-Preview and Qwen2.5-VL-7B-Instruct, with LLaVA-v1.6-Mistral-7B
as a control.

Table 15: Elo Scores and Average Performance Ratios (E/R) Across Games.

Race(E/R) SuperMario(E/R) Pong(E/R) FlappyBird(E/R) TempestRun(E/R)

Qwen2.5-VL-7B-Instruct | 1487/0.120 1459/0.239 1503/0.035 1431/0.030 1485/0.210
Keye-VL-8B-Preview 1487/0.118 1430/0.217 1495/0.039 1450/0.044 1513/0.239
LLaVA-v1.6-Mistral-7B | 1462/0.051 1374/0.127 1494/0.035 1489/0.077 1379/0.169

In Pong, Qwen shows higher ELO but lower average ratio. We analyzed level-wise scores and

variances to explore this. The variance is calculated as: variance = —

! Anthropic, https://www.anthropic.com/claude/sonnet

20


https://www.anthropic.com/claude/sonnet

Under review as a conference paper at ICLR 2026

Table 16: Pong Scores by Level (Avg: average score, Var: variance).

L1Avg L1Var | L2Avg L2Var | L3Avg L3 Var

Qwen2.5-VL-7B-Instruct 0.48 0.50 0.37 0.25 0.20 0.18
Keye-VL-8B-Preview 0.68 0.67 0.26 0.33 0.23 0.36
LLaVA-v1.6-Mistral-7B 0.48 0.58 0.29 0.26 0.29 0.34

Keye’s higher variance across all Pong levels indicates unstable performance, where high-scoring
outliers mask frequent weak results. In the ELO system, this instability leads to more losses against
a consistent opponent, resulting in a lower rating despite a competitive average score.

Additionally, current models perform poorly on Pong, with ratios tightly clustered in the 0-10%
range. When calculating the performance ratio by averaging across games, minor differences in
Pong (3.5% vs. 3.9%) are overshadowed by larger gaps in other games(21% vs. 24%). The ELO
system, in contrast, is based on the aggregate outcomes of all pairwise matchups. The ELO rating
boost from a consistent pattern of wins in Pong is just as significant as from wins in any other game.
This demonstrates that ELO is more robust in fairly assessing a model’s holistic capabilities across
tasks with imbalanced performance levels.

We also observed that in terms of Response Format Accuracy, GPT-4o is slightly lower than Gemini
model (by 0.04%), and InternVL2.5-78B is slightly lower than Qwen2-VL-72B (by 0.25%). This
may also be an influencing factor.
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C GAMES IN V-MAGE

C.1 PRINCIPLES AND STANDARDS FOR GAME SELECTION

Simplified and unrealistic considerations. While the simplified visuals in these games differ
from real-world scenes, empirical evidence demonstrate that MLLMs comprehend core game se-
mantics (objectives, rules, entities) despite stylistic simplifications. Performance limitations primar-
ily emerge from perceptual inaccuracies (e.g., dynamic object tracking) and multi-step reasoning
deficiencies rather than misinterpretation. V-MAGE therefore focuses more on precise evaluation
than visual realism to drive targeted improvements in visual reasoning.

Selection criteria. The five games in V-MAGE share critical characteristics (e.g., non-textual
state representation, free-form gameplay, and continuous-space environments) while offering di-
verse challenges.

Our current minimal set covers four 2D game types through this matrix:

Table 17: 2D Game Taxonomy in V-MAGE

XY-axis XZ-axis

Linear Process PongGame FlappyBird

Open Planning RaceGame SuperMario

The Linear Process implies that the game’s progression is, to some extent, enforced. In PongGame,
the ball’s movement direction is determined by the game environment, requiring the model to move
paddles on both sides to catch the ball, while in FlappyBird, the forward movement of the bird
is compulsory, with the model controlling the height to navigate through pipes. OpenPlanning,
in contrast, is relatively more open-ended. In RaceGame, the model can freely control the car’s
movement and direction on a plane to reach a trophy. In SuperMario, the model can move and jump
in a relatively open environment to collect rewards and earn points.

For 3D environments, we selected Tempest Run for its streamlined visual elements.

V-MAGE's flexible framework allows seamless integration of new PyGame-based environments.
For instance, Tempest Run (one of our five games) was sourced from PyWeek[3], a community-
driven game jam with thousands of open-source entries. This demonstrates our framework’s capacity
to incorporate externally developed, human-designed games. We provide APIs to wrap new games
into V-MAGE’s evaluation pipeline. This allows researchers to easily integrate additional games.

We will continue expanding the benchmark with more diverse titles that meet our selection criteria
(e.g., Player vs Player (PVP) games) and will open-source both the codebase and detailed documen-
tation to facilitate community contributions.

C.2 DESIGN AND IMPLEMENTATION

As previously mentioned, V-MAGE enhances the diversity of the evaluation environment by expand-
ing it through level design. Tables in this section detail the settings, rewards, and design objectives
for each game’s levels. For more comprehensive visual comparisons and prompt information, please
refer to Appendix [C.4]

Race Game is a skill-based driving game where the objective is to control a car through a maze-like
track to reach the trophy while avoiding obstacles. The car is represented by a red or white vehicle
with a visible front and back, while the trophy is shown as a golden cup icon. The surrounding
white-lined boundaries represent walls, which the car must avoid. For the overall observation and
action spaces of the game, including the task and reward definitions, please refer to Table

Each level in Race has a different set of rules and challenges. As presented in Table[T9] we manually
designed six levels. Levels 1-3 use a map-view perspective(’map” view), where models adjust ab-
solute coordinates. The four types of movement operations directly translate the vehicle on the map
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Table 18: Race Environment Details (* means potentially requires observation).

Observation space | Action Space | Task Reward

Car Position UP, DOWN, Move the car +100 Success
Trophy Position LEFT, RIGHT | to reach the trophy | +0 Timeout
Obstacle Position* +0 Destroyed
Speed*

Acceleration™

Facing Angle*

according to the direction of action. Conversely, Levels 46 shift to a first-person perspective(’car”
view), the observation is centered on the vehicle, and movements are performed based on the vehi-
cle’s perspective, Requiring real-time interpretation of velocity vectors and acceleration constraints.
Furthermore, acceleration is introduced in the high-difficulty levels, which further expands the ob-
servation space. This requires the model to extract more information from the visual input, including
current speed and acceleration, in order to perform rational reasoning.

Table 19: Race Level Configurations

Level | View | bstacle Initial Direction Acceleration | Max Rounds | Sample Frames
1 Map No - No 100 1
2 Map Yes - No 150 1
3 Map Yes - No 150 1
4 Car No Vertical(up) Low 150 3
5 Car No Horizontal(random) Mid 150 3
6 Car Yes Vertical(up) Mid 150 1

SuperMario is a two-dimensional side-scrolling platformer where the player controls the character
Mario navigating through environments populated with various platforms, enemies, and obstacles.
The goal is to traverse the level, collect coins, evade or defeat enemies, and reach the flagpole at the
stage’s conclusion. Players must avoid falling off platforms, colliding with enemies, or being struck
by obstacles. Successful gameplay involves employing optimal movement combinations for smooth
and efficient progression, alongside monitoring Mario’s position relative to environmental elements.
Task and reward defination is shown in Table 20|
Table 20: SuperMario Environment Details.

Observation space | Action Space Task Reward

Mario Position UP, UP+LEFT, Collect coins and | +100 for collecting a coin
Platforms Position | UP+RIGHT, LEFT, | evade or defeat +100 for defeating a Goomba
Enemies Position | RIGHT, NONE enemies Penalties for falling or collisions

Obstacles Position

Table 21: SuperMario Level Configurations

Level | Enemy count | Coin Count | CoinBox Count | Max Rounds Gameplay
1 0 6 2 400 Common
2 2 6 2 1000 Common
3 0 17 4 1000 Long History (Two ways)
4 2 17 4 1000 Long History (Two ways)
5 3 8 0 300 Left or Right
6 0 13 0 300 Left or Right
7 0 8 0 300 Left or Right
8 0 12 0 1000 Jump Only
9 5 8 0 1000 Jump and Enemy
10 12 0 9 5000 Classic W1-1
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To provide a comprehensive evaluation of MLLMs’ visual reasoning and planning capabilities, Su-
perMario features ten levels with configurations detailed in Table These levels vary in enemy
count, coin and coinbox quantities, maximum allowed rounds, and specific gameplay mechanics or
focuses. Of these, level 10 serves as a standard human-difficulty benchmark, providing a 1:1 replica
of the original Super Mario game’s World 1-1 stage.

Flappy Bird is a widely recognized side-scrolling mobile game serving as a common benchmark in
reinforcement learning. The objective is to control a bird’s vertical movement to navigate through
a continuous series of horizontal gaps within vertically oriented pipes. Successful traversal of a
pipe pair increments the player’s score, while collision with any pipe or the ground constitutes a
terminal state, ending the game. The game mechanic involves a constant downward gravitational
pull, counteracted by discrete upward ’flaps’ initiated by the player.

Table 22: Flappy Bird Environment Details (* means only available at certain levels).

Observation space Action Space | Task Reward
Bird Position UP Maneuver the bird to avoid | +1 per pipe pair passed
Bird Velocity NONE hitting the pipes +0 Collision

Next Pipe Distance DOWN*
Gap VerticalPosition | KEEP*

Given the high difficulty of human-standard levels for MLLMs, we designed seven levels with pro-
gressive difficulty. Specifically, as presented in Table 23] levels 1-3 constitute a simplified game
environment where the gravity factor is removed, and height is controlled via UP and DOWN ac-
tions to navigate through the pipes. Levels 4-6 are based on the standard difficulty but incorporate
a ’KEEP’ option, enabling the model to maintain the bird’s altitude through this action. Within the
same difficulty tier, levels are differentiated by varying the bird’s forward speed and the pipe gap
width. Level 7 represents the standard human game difficulty, retaining the original game settings.
Table 23: FlappyBird Level Configurations

Level | Gravity | Availability of ’]DOWN” | Availability of ”KEEP” Others

1-3 No Yes Yes Distinguished by gap

4-6 Yes No Yes clearance and speed
7 Yes No No Human Standard

Pong Game is a classic two-player adversarial game. The objective is to control the paddles on the
left and right sides of the screen to return the ball, preventing it from passing one’s own paddle while
simultaneously attempting to make the ball pass the opponent’s paddle. One point is awarded to the
player for each successful return of the ball. The final score is the sum of both players’ scores. Task

and reward defination is shown in Table 24]
Table 24: Pong Game Environment Details.

Observation space Action Space Task Reward
Left Paddle Position LEFTUP Track the ball’s trajectory | +1 per successful hit
Right Paddle Position | LEFTDOWN and maneuver the left and | +0 if ball passes paddle
Ball Position RIGHTUP right paddles to intercept
Ball Trajectory RIGHTDOWN | and return the ball.

NONE

Table 25: Pong Game Level Configurations

Level | Paddle Width | Ball Speed | Ball Size Others
1 Big Slow Big Ball initial position
2 Mid Mid Mid randomly changes.
3 Small Fast Small

Considering the challenges MLLMs face in tracking and temporal tasks, we designed levels with
varying difficulty. As shown in Table difficulty for Levels 1-3 is differentiated by adjusting the
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paddle width and the speed of the ball. Within the same level, the initial position of the ball is
randomized, but the relative difficulty remains consistent.
Table 26: Tempest Run Environment Details.

Observation space Action Space Task Reward

Current Character State JUMP, LEFT, RIGHT, | Perform corresponding | Score increases
Nearby Obstacles Position SLIDE, RISE, NONE | actions to avoid or with distance run.
Nearby Obstacles Type destroy obstacles.

Visual Information Quantity

Tempest Run is a third-person perspective 3D runner game where the player controls a character
moving within a futuristic tunnel filled with various obstacles and enemies. The objective is to
navigate through the tunnel, avoiding or overcoming impediments, and to run as far as possible.
Players must specifically avoid colliding with red spikes, purple walls, or failing to manage green
enemies. Successful gameplay requires employing optimal combinations of movements for smooth
and efficient tunnel traversal, alongside monitoring the character’s position relative to obstacles and
reacting appropriately. Task and reward defination is shown in Table

To evaluate MLLMs’ visual comprehension and reactive capabilities within a dynamic 3D environ-
ment, Tempest Run includes four levels of varying difficulty. As outlined in Table[27] Levels 1-4 are
primarily differentiated by parameters including role speed, cell length (denoting the distance be-
tween environmental segments), and random rate (controlling obstacle spawning frequency). These
parameters collectively influence the pace of barrier generation and the overall visual complexity of
the tunnel environment, thereby varying the level of challenge. Within the same level, the position-
ing of environmental elements is randomized, while maintaining consistent relative difficulty.
Table 27: Tempest Run Level Configurations

Level | Role Speed | Cell Length | Random Rate | Others
1 Slow Large Low Environmental elements initial
2 Medium Medium Medium-Low | positions randomly change.
3 Fast Small Medium-High
4 Very Fast Small High

C.3 ORIGINAL SOURCES

Thanks to the open-source community, we are able to leverage existing game codebases to build our
benchmark. Here are the codebases we used:

Table 28: Game Codebase Sources

Codebase

https://github.com/tdostilio/Race_Game

Pong https://github.com/pyGurul23/Python-Games/tree/master/Pong

SuperMario https://github.com/mx0c/super-mario-python

FlappyBird ‘ https://github.com/agneay/pygame-projects/tree/master/Flappy%20Bird

Tempest Run | https://github.com/davidpendergast/pygame—summer—-team—jam

In most cases, the original codebases lacked comprehensive difficulty settings and level designs
suitable for systematic evaluation. We therefore modified the default human-oriented game config-
urations to adapt them for benchmarking purposes, while meticulously designing a diverse set of
challenging levels to ensure rigorous assessment.
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C.4 GAMES AND PROMPTS

All the games have been modified based on publicly available code. The detailed design is provided
below:

RaceGame

Level 1

Prompt:

You are playing the Racing Game.

<$history$>

<$image_current_step$>

These pictures depicts some game scenes with a trophy and a car.

The last frame shows the current state of the game, while the previous frames show the car's previous
movements.

First, describe the relative position of the trophy with respect to the car currently.

Now, | want to move the car to reach the trophy. Please tell me which direction the car should move to reach
the trophy.

You can choose four directions: UP, DOWN, LEFT, RIGHT.

You should think step by step and response with the following format, rememer to response in plain text
format, not in markdown or any other format:

Description: ...
Reasoning: ...
Action: ... (one of the four directions)

- J

Figure 9: RaceGame Level 1: Level Design and Prompt Overview. The images showcase the
scene from Level 1, illustrating the level design and corresponding prompt. Elements in the same
level will randomly change their initial positions while maintaining consistent relative difficulty.

26



Under review as a conference paper at ICLR 2026

RaceGame

Level 2 -3

Prompt:

You are playing the Racing Game.

<$history$>

<$image_current_step$>

These pictures depicts some game scenes with a trophy and a car.

The last frame shows the current state of the game, while the previous frames show the car's previous
movements.

First, describe the relative position of the trophy with respect to the car currently.

Then, judge if there are obstacles between the car and the trophy. If there are, describe them and how they
affect the car's movement.

Now, | want to move the car to reach the trophy. Please tell me which direction the car should move to reach
the trophy. Remember, if the car collides with an obstacle, it will be game over.

You can choose four directions: UP, DOWN, LEFT, RIGHT.

You should think step by step and response with the following format, rememer to response in plain text
format, not in markdown or any other format:

Description: ...
Reasoning: ...
Action: ... (one of the four directions)

- J

Figure 10: RaceGame Level 2-3: Level Design and Prompt Overview. The images showcase the
scene from Level 2-3, illustrating the level design and corresponding prompt. Elements in the scene
will randomly change their initial positions while maintaining consistent relative difficulty.
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RaceGame
Level 1 - 3 No History

Prompt:

You are playing the Racing Game.
<$image_current_step$>
These pictures depicts some game scenes with a trophy and a car.

The last frame shows the current state of the game, while the previous frames show the car's previous
movements.

First, describe the relative position of the trophy with respect to the car currently.
(Only for Level 2/3)

Then, judge if there are obstacles between the car and the trophy. If there are, describe them and how
they affect the car's movement.

Now, | want to move the car to reach the trophy. Please tell me which direction the car should move to
reach the trophy. Remember, if the car collides with an obstacle, it will be game over.

You can choose four directions: UP, DOWN, LEFT, RIGHT.

You should think step by step and response with the following format, rememer to response in plain
text format, not in markdown or any other format:

Description: ...

Reasoning: ...
Action: ... (one of the four directions)

- /

Figure 11: RaceGame Level 1-3 No History: Level Design and Prompt Overview. The im-
ages showcase the scene from Level 1-3 No History, illustrating the level design and corresponding
prompt. Elements in the scene will randomly change their initial positions while maintaining con-
sistent relative difficulty. Same as the original levels except the input sequence has been changed to
the single image.
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RaceGame
Level 4

RIGHT FORWARD FORWARD

Prompt:

Assume you are playing a PC game called 'Racing Game'.
<$history$>

<$image_current_step$>

These pictures depicts some game scenes with a trophy and a car.

The last frame shows the current state of the game, while the previous frames show the car's previous
movements.

First, describe the relative position of the trophy with respect to the car currently, and judge if there are
obstacles between the car and the trophy. If there are, describe them and how they affect the car's
movement.

Then, | want you to move the car to reach the trophy. Remember, if the car collides with an obstacle, it will
be game over.

You should imagine you are the driver of the car, which means you are facing the same direction as the car.
Then you should think about the car's movement from the driver's perspective.

To do this, you should judge if the car is moving, and if so, in which direction it is moving. You should also
consider the car's current position and the direction it is facing.

You should think step by step and make some reasoning about the car's movement.
You can choose four actions: FORWARD, BACKWARD, LEFT, RIGHT.

Response with the following format, rememer to response in plain text format, not in markdown or any
other format:

Description: ...(including the relative position, obstacles, and the car's movement)
Reasoning: ...
Action: ... (one of the four actions)

- J

Figure 12: RaceGame Level 4: Level Design and Prompt Overview. The images showcase the
scene from Level 4, illustrating the level design and corresponding prompt. Elements in the same
level will randomly change their initial positions while maintaining consistent relative difficulty.
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4 N\
RaceGame
Level 5 -6
RIGHT FORWARD FORWARD
FORWARD FORWARD RIGHT
\ \ \
RIGHT FORWARD LEFT
\\§ /

Figure 13: RaceGame Level 5-6: Level Design and Prompt Overview. The images showcase the
scene from Level 5-6, illustrating the level design and corresponding prompt. Elements in the same
level will randomly change their initial positions while maintaining consistent relative difficulty.
The prompt is the same as in Level 4.

30



Under review as a conference paper at ICLR 2026

SuperMario

Level 1

UP+RIGHT RIGHT UP+RIGHT

Prompt:

Assume you are playing a PC game called 'Super Mario'.

You need to control Mario, who can move in a two-dimensional space consisting of various platforms,
enemies, and obstacles. Your goal is to navigate through the level, collect coins, avoid or defeat enemies,
and reach the flagpole at the end of the stage. Avoid falling off the platforms, colliding with enemies, or
being hit by obstacles.

Use the optimal combination of movements to progress through the level smoothly and efficiently. Monitor
Mario's position relative to obstacles, platforms, and enemies.

<$history$>

<$image_current_step$>
This screenshot represents the current step of the game.

The last frame shows the current state of the game, while the previous frames show Mario's previous
movements.

**Important notes:**

1. Mario can jump (actions involving UP) only if he is on the ground or on a solid surface like a platform or
pipe.

2. If Mario is in mid-air, he can only use LEFT or RIGHT to adjust his position, or NONE to continue falling or
moving with momentum.

You can make six types of actions to control Mario:

1. UP: Makes Mario jump upward (only available when Mario is on the ground or solid platforms).

2. LEFT: Moves Mario left.

3. RIGHT: Moves Mario right.

4. UP+LEFT: Makes Mario jump upward and left simultaneously (only available when on the ground or solid
platforms).

5. UP+RIGHT: Makes Mario jump upward and right simultaneously (only available when on the ground or
solid platforms).

6. NONE: No new action is performed; Mario continues to be affected by gravity (if airborne) or momentum
from previous movements.

Note that DOWN has no effect and cannot be used, so you should never attempt to use it.

You should think step by step and respond with the following format, remember to respond with plain text
without any special characters or symbols, DO NOT respond in markdown or Latex format.

Response:

Observation: ... (Describe Mario's current position, nearby platforms, enemies, and obstacles.)
Reasoning: ... (Think step by step and explain how you choose the action.)
Action: ... (Choose one of the six actions to control Mario. Do NOT add any other words.)

- J

Figure 14: SuperMario Level 1: Level Design and Prompt Overview. The images showcase the
scene from Level 1, illustrating the level design and corresponding prompt.
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1res Figure 15: SuperMario Level 2-4: Level Design and Prompt Overview. The images showcase
1724 the scene from Level 2-4, illustrating the level design and corresponding prompt.The prompt is the
1725 same as in Level 4.
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4 . N
SuperMario
Level 5 -9
UP+RIGHT
UP+RIGHT
~ - - ,4
UP+RIGHT NONE UP+RIGHT
\§ J

Figure 16: SuperMario Level 5-9: Level Design and Prompt Overview. The images showcase
the scene from Level 5-9, illustrating the level design and corresponding prompt.The prompt is the

same as in Level 4.
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This level is a 1:1 replica of the World 1-1 scene from the original SuperMario game.

https://www.mariowiki.com/World_1-1_(Super_Mario_Bros.)

1809 UP+RIGHT UP+RIGHT LEFT
1810
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1826
1827
1828
1829 \§ J
1830

1831 Figure 17: SuperMario Level 10 (Standard Level): Level Design and Prompt Overview. The
122 images showcase the scene from Level 10, illustrating the level design and corresponding prompt.
122 This is The standard level that matches the difficulty of the human game. The prompt is the same
1524  asinLevel 4.
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1836
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1851
1852
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1854
1855 \ - \ ¢ ' ~ ~ - /4
1856 -~ -~ -— -
KEEP UpP DOWN

1857 Prompt:
1858 . .
1859 Assume you are playing a PC game called ‘Flappy Bird'.
1860 You need to control a bird that moves towards the right of the screen automatically. Your goal is to navigate

through gaps between pipes without hitting them. Avoid hitting pipes or screen boundaries. Pass through as
1861 many gaps as possible to maximize your score.
1862
1863 Monitor the bird’s position, the gap’s height, and distance to the pipe.
1864 In this version of the game, to make the game easier, there is no gravity, and the bird will NOT fall
1865 automatically. You can make the bird rise or fall by using the UP or DOWN action. Besides, you can also
1866 choose to keep the bird's current position without making it rise or fall.
1867 In other words, you only need to determine the height of the bird can pass through the pipe at this time, if

not, then through the UP or DOWN to adjust, when the height is appropriate, you can choose KEEP to let the
1868 bird through the pipe!
1869
1870 <$history$>
1871 <$image_current_step$>
1872 This screenshot represents the current step of the game.
1873 The last frame shows the current state of the game, while the previous frames show the car's previous
1874 movements.
1875 You can make two types of actions to control the bird:
1876 1. UP: Makes the bird rise a bit of distance.
1877 2. DOWN: Makes the bird fall a bit of distance.

3. KEEP: The bird will keep the current position.

1878
1879 You should think step by step and response with the following format, remember to response the plain text
1880 without any special characters or symbols, DO NOT response in markdown or Latex format.
1881 Observation: ... (describe the current position of the bird and the gap.)

Reasoning: ... (think step by step and explain how you choose the action.)
1882 Action: ... (choose one of the three actions (UP or NONE or KEEP) to control the bird.)
1883 \§ J
1884

1885  Figure 18: FlappyBird Level 1-3: Level Design and Prompt Overview. The images showcase the
1gas  scene from Level 1, illustrating the level design and corresponding prompt. Levels are differentiated
1aa7 by the pipe gap width and the bird’s forward speed. Elements in the same level will randomly change

1888 their initial positions while maintaining consistent relative difficulty.

1889
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1910 -~ -~ -~—
KEEP NONE UpP

1911 Prompt:
1912 . .
1913 Assume you are playing a PC game called ‘Flappy Bird'.
1914 You need to control a bird that moves towards the right of the screen automatically. Your goal is to navigate

through gaps between pipes without hitting them. Avoid hitting pipes or screen boundaries.Pass through as
1915 many gaps as possible to maximize your score.
1916
1917 Flap only when necessary to align with the next gap.

Monitor the bird’s position, the gap’s height, and distance to the pipe.
1918 Adjust timing to maintain smooth movement and avoid collisions.
1919

In this version of the game, to make the game easier, you can also choose to keep the bird's current
1920 position without making it rise or fall. This additional action can help you maintain the bird's height when
1921 needed. You can try to use this action to navigate through the gaps more effectively.
1922 <$history$>
1923
1924 <$image_current_step$>

This screenshot represents the current step of the game.
1925
1926 The last frame shows the current state of the game, while the previous frames show the car's previous

movements.
1927
1928 You can make two types of actions to control the bird:

1. UP: Makes the bird rise.

1929 2. NONE: The bird will falls a bit due to gravity.
1930 3. KEEP: The bird will keep the current position.
1931 You should think step by step and response with the following format, remember to response the plain text
1932 without any special characters or symbols, DO NOT response in markdown or Latex format.
1933

Response
1934
1935 Observation: ... (describe the current position of the bird and the gap.)

Reasoning: ... (think step by step and explain how you choose the action.)
1936 Action: ... (choose one of the three actions (UP or NONE or KEEP) to control the bird.)
1937 \§ J
1938

1039  Figure 19: FlappyBird Level 4-6: Level Design and Prompt Overview. The images showcase the
1040  scene from Level 4, illustrating the level design and corresponding prompt. Levels are differentiated
1941 by the pipe gap width and the bird’s forward speed. Elements in the same level will randomly change

1942 their initial positions while maintaining consistent relative difficulty.

1943
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1963 ‘o 4 ‘e 4 ‘e 4
1964 =" ==
1965 up NONE uP
1966
1967
1968 Assume you are playing a PC game called 'Flappy Bird".

1969 You need to control a bird that moves towards the right of the screen automatically. Your goal is to navigate

1970 through gaps between pipes without hitting them. Avoid hitting pipes or screen boundaries.Pass through as
1971 many gaps as possible to maximize your score.

FlappyBird

Level 7

Prompt:

1972 Flap only when necessary to align with the next gap.
1973 Monitor the bird’s position, the gap’s height, and distance to the pipe.
1974 Adjust timing to maintain smooth movement and avoid collisions.

1975 <$history$>

1976 <$image_current_step$>

1977 This screenshot represents the current step of the game.
1978

1979 The last frame shows the current state of the game, while the previous frames show the car's previous
1980 movements.

1981

1982 You can make two types of actions to control the bird:
1983 1. UP: Makes the bird rise.

2. NONE: The bird may fall a bit due to gravity.
1984

1985 You should think step by step and response with the following format, remember to response the plain text
1986 without any special characters or symbols, DO NOT response in markdown or Latex format.

1987 Response:

1988 Observation: ... (describe the current position of the bird and the gap.)
1989 Reasoning: ... (think step by step and explain how you choose the action.)
1990 Action: ... (choose one of the two actions (UP or NONE) to control the bird.)

1991 \§ J
1992

1093 Figure 20: FlappyBird Level 7 (Standard Level): Level Design and Prompt Overview. The
1004  images showcase the scene from Level 7, illustrating the level design and corresponding prompt.
1005  Elements in the same level will randomly change their initial positions while maintaining consistent
1996 relative difficulty. This is The standard level that matches the difficulty of the human game.

1997
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PongGame
Level1-3

| . I
\ \
' s ~ - /4 s ~ - /4 ~ ~ - ,4
NONE RIGHTUP RIGHTDOWN

Prompt:

Assume you are playing a PC game called 'Pong’.

You need to control two paddles on the left and right sides of the screen to hit a ball back and forth. Your
goal is to prevent the ball from passing your paddle while trying to make it pass the opponent's paddle.
Each time the ball is successfully hit by a paddle, that side gains one point. The final score is the sum of both
sides' points.

Control the paddles’ movements to align with the ball's trajectory and ensure successful hits. Adjust the
paddles' positions smoothly to respond to the ball's movement and maintain control over the game.

<$history$>

<$image_current_step$>
This screenshot represents the current step of the game.

The last frame shows the current state of the game, while the previous frames show the paddles' and ball's
previous movements.

You can make four types of actions to control the paddles:
1. LEFTUP: Moves the left paddle up.

2. LEFTDOWN: Moves the left paddle down.

3. RIGHTUP: Moves the right paddle up.

4. RIGHTDOWN: Moves the right paddle down.

5. NONE: No action.

You should think step by step and respond with the following format, remember to respond with plain text
without any special characters or symbols, DO NOT respond in markdown or Latex format.
Observation: ... (describe the current positions of both paddles, the ball, and the ball's movement trajectory.)

Reasoning: ... (think step by step and explain how you choose the action, including predictions about wall
reflections and the ball's trajectory.)

Action: ... (choose one of the four actions: LEFTUP, LEFTDOWN, RIGHTUP, RIGHTDOWN, NONE. Do NOT add
any other words.)

. J

Figure 21: PongGame Level 1-3: Level Design and Prompt Overview. The images showcase the
scene from Level 1, illustrating the level design and corresponding prompt. Levels are differentiated
by the paddle width and the ping pong ball’s speed. The ping pong ball in the same level will
randomly change its initial position while maintaining consistent relative difficulty.
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Tempest Run
Level1-4

Prompt:
Assume you are playing a PC game called 'Tempest Run'.

You need to control a character who moves through a three-dimensional space inside a futuristic tunnel
filled with various obstacles and enemies. Your goal is to navigate through the tunnel, avoid or overcome
obstacles, and run as far as possible. Avoid colliding with red spikes, purple walls, or failing to deal with
green enemies.

Use the optimal combination of movements to progress through the tunnel smoothly and efficiently.
Monitor the character's position relative to obstacles and react appropriately to avoid losing progress.

<$history$>

<$image_current_step$>
This screenshot represents the current step of the game.

The last frame shows the current state of the game, while the previous frames show the character's previous
movements.

Important notes:

1. Use JUMP to jump over red spikes on the ground.

2. Use SLIDE to duck and kick green enemies to eliminate them.

3. Use LEFT or RIGHT to move around obstacles, such as purple walls or spikes.

4. Use RISE to return to a normal running position after a SLIDE.

5. NONE is a valid action to maintain the current state if no immediate action is needed.

You can make six types of actions to control the character:

1. JUMP: Makes the character jump upward, useful for avoiding ground obstacles like red spikes.

2. LEFT: Moves the character to the left.

3. RIGHT: Moves the character to the right.

4. SLIDE: Makes the character duck and slide forward, useful for dealing with green enemies or passing
under certain obstacles.

5. RISE: Returns the character to a normal running position after sliding.

6. NONE: No new action is performed; the character maintains their current trajectory.

You should think step by step and respond with the following format, remember to respond with plain text
without any special characters or symbols, DO NOT respond in markdown or Latex or any other format.

Response:

Observation: ... (Describe the character's current position and nearby obstacles or enemies.)
Reasoning: ... (Think step by step and explain how you choose the action.)
Action: ... (Choose ONE of the six actions to control the character. Do NOT add any other words.)

- J

Figure 22: Tempest Run Level 1-4: Level Design and Prompt Overview. The images showcase
the scene from Level 1, illustrating the level design and corresponding prompt. Levels are differen-
tiated by the speed of barrier generation and the amount of visual information available. Elements
in the same level will randomly change their initial positions while maintaining consistent relative
difficulty.
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D ELO PERFORMANCE COMPARISON PROTOCOL DETAILS

The core methodology for metrics evaluation in V-MAGE comprises two interconnected compo-
nents: performance comparison and statistical stabilization.

Performance Comparison Protocol.

Each model begins with an initial Elo rating Rﬁg) = 1500, where m € M represents the set of
candidate models. We conducted 100 evaluation rounds for each game level ¢ where models were
randomly paired in each round through a shuffle operation:

P ={(Ar, Bt) | Av, By ML A A By} (L

where A; and B; denote the paired models in round .

For paired models (A, B), their game scores score4 and scorep are compared next. We first con-
struct

f(m) = (score,,, valid_rate,,) (2)

where valid_rate,,, represents the proportion of actions output by model m in this game round that
conform to the formatting requirements. The outcome (S4,Sg) € {(1,0),(0,1),(0.5,0.5)} is
determined by:

(1,0) if f(A) = f(B)
(54,58) = 4 (0,1) if f(A) < f(B) 3)
(0.5,0.5) otherwise

The rating update mechanism follows the classical Elo formulation with enhanced stability controls.
For models A and B with pre-match ratings R4 and Rp, their expected performance is calculated
as:

1 1

Eq= 1+ 10(R5—F)/400° Ep = 1 + 10(Ra—Rp)/400

“4)

where the denominator base 10 and scaling factor 400 establish a logarithmic relationship between
rating differences and expected outcomes. The post-match ratings become:

Ry =Ra+ K(Sa— Ea)

5 =Rp+ K(Sp — Ep) )

where K is a constant determining the sensitivity of the rating system (typically set to 32),
Stabilization through Randomized Iteration.

To ensure the robustness of rating updates, V-MAGE implements multi-pass stabilization protocol.
All historical comparisons are aggregated into a win/loss pool:

N
w=J U U, By, 55", 55) (6)

geGLleLy t=1

which undergoes T = 10* independent shuffles. For each permutation 7;(V), complete rating
recalculation yields R%). The final stabilized rating combines these trials:

1 T
R = — (1’)
Ry, T ;:1 Ry @)
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E ABLATION STUDY ON PIPELINE SETTINGS

E.1 IMPACT OF HISTORY SAMPLING CONFIGURATION

we conducted supplementary experiments on the Qwen2.5-VL-7B and Qwen2.5-VL-72B models
using various history strategies (including increasing the number of history steps and altering sam-
pling methods). The results are presented in the tables below. These scores were calculated as a
percentage of model scores versus human performance in a manner similar to Figure 4]

In the default setting of our main experiments, the history sampling configuration is one where
decisions are made using information from the most recent 3steps, and the game screen is sampled
every 3frames.

Table 29: Performance comparison of different history strategies for Qwen2.5-VL 7B and 72B
models.

Qwen2.5-VL-7B Qwen2.5-VL-72B

Game 3steps_2sample  3steps_Ssample 3steps Ssteps 8steps | 3steps_2sample 3steps. ple 3steps Ssteps 8steps
race 11.20 11.20 1260 1120 1240 30.00 29.00 29.60 32.60 33.60
supermario 20.10 22.10 22,60 2280 21.20 34.50 33.90 42.10 3640  39.80
pong 3.30 4.30 3.70 4.00 4.30 4.50 3.90 4.10 4.80 5.00

flappybird 6.70 11.20 3.40 2.10 5.00 17.70 13.10 8.10 13.30  13.60
tempestrun 18.80 17.80 21.10 18.80 17.80 22.00 21.10 2480 2270  23.70
average 12.02 13.32 12.68 11.78 12.14 21.74 20.20 21.74 2196 23.14

Table 30: Performance comparison of different frame sampling strategies for Qwen2.5-VL 7B and
72B models.

Qwen2.5-VL-7B Qwen2.5-VL-72B
Game 8frames Sframes 3frames 1frames | 8frames Sframes 3frames 1frames
race 13.80 11.60 12.60 10.40 19.60 27.20 29.60 26.00
pong 4.00 3.90 3.70 4.50 4.80 5.90 4.10 7.60
flappybird 3.40 5.70 3.40 7.60 10.80 14.00 8.10 14.10
tempestrun 19.00 19.30 21.10 16.50 23.40 18.50 24.80 26.60
average 10.05 10.13 10.20 9.75 14.65 16.40 16.65 18.58

The experimental results show that simply increasing the length of the history window (e.g., from 3
to 8 steps) does not yield significant performance gains. This finding supports our core argument:
the bottleneck for current MLLMs lies not in the quantity of historical information they receive,
but in their ability to understand and utilize this dynamic visual information.

Therefore, we chose a 3-frame history as our baseline configuration. This provides the necessary
temporal context while establishing a fair, simple, and effective standard for exposing the models’
core deficiencies, without confounding the evaluation with complex agent strategies.

As mentioned in the main text, to investigate the impact of settings within the sampling strategies
on anchoring bias, we also conducted relevant experiments, with the results presented in Appendix
IE3.2)

E.2 IMPACT OF INPUT RESOLUTION

To systematically investigate the impact of input resolution on model performance, we conducted a
new set of experiments, testing the Qwen2.5-VL 7B and 72B models on four different resolutions.
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The resolutions from 120 to 480 refer to images with heights of 120 to 480 pixels, respectively, with
the width scaled according to the original aspect ratio. We selected these four resolutions to cover
different levels of visual detail, from low to high. In the default setting of our main experiments,
the model’s input resolution was 360 pixels height. The scores were calculated as a percentage of
model scores versus human performance in a manner similar to Figure 4. The results are presented
in Table 371

Table 31: Performance comparison of Qwen2.5-VL 7B and 72B models across different input reso-
lutions (height in pixels). Scores are percentages relative to human performance.

Qwen2.5-VL 7B Qwen2.5-VL 72B
Game 120 (7B) 240 (7B) 360 (7B) 480 (7B) | 120 (72B) 240 (72B) 360 (72B) 480 (72B)
race 9.80 10.60 12.60 11.00 15.80 23.60 29.60 28.20
supermario 17.50 21.70 22.60 17.20 38.90 44.90 42.10 47.90
pong 4.00 3.90 3.70 3.60 3.50 3.50 4.10 3.60
flappybird 4.40 5.40 3.40 9.80 7.70 12.70 8.10 12.00
tempestrun 19.60 19.10 21.10 18.50 19.60 24.30 24.80 22.50
average 11.06 12.14 12.68 12.02 17.10 21.80 21.74 22.84

This data reveals a nuanced relationship: for the more capable 72B model, the overall performance
trend improves with higher resolution, peaking at 480px. This suggests it can benefit from the finer
details in higher-resolution images. However, for the smaller 7B model, performance peaks at our
default setting of 360px and declines at the higher 480px resolution.

This indicates that the relationship between model performance and input resolution is not simply
linear. For less capable models, excessive resolution might introduce ‘noise’ that they struggle to
filter effectively, thereby interfering with their decision-making process.
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F ADDITIONAL EXPERIMENTAL DETAILS
F.1 UNIT TESTS FOR CORE VISUAL ABILITIES EXPERIMENT

Table 32: Basic visual capabilities and their corresponding simple game levels.

Visual Abilities Game Levels
Tracking Pong 1,2,3
Positioning Race 1, 1_no_history

Visual Grounding TempestRun 1
Timing FlappyBird  1,2,3

The unit testing framework conducts a systematic assessment of fundamental visual capabilities by
drawing from the comprehensive V-MAGE benchmark. In each carefully designed level of a game, a
random baseline score is first determined by averaging scores from random actions. Following this,
the performance of each evaluated model on the said level is quantified by calculating the percentage
of rounds where the model’s score outperforms this established random baseline. The specific game
levels used for assessing each ability are listed in Table

As illustrated in Figure 5] model performances across representative levels for four fundamental vi-
sual competencies reveal critical insights: In tracking tasks requiring cross-frame analysis, nearly all
models underperform random baselines. This indicates that while current models achieve reasoning
through caption-based approaches in single-frame tasks, they struggle to extract discriminative fea-
tures in multi-frame scenarios requiring fine-grained spatiotemporal comparisons. The quantitative
results for each model across the four core visual abilities are presented in Table

Table 33: Performance of MLLMs on Core Visual Ability Unit Tests (% Exceeding Random Base-
line)

Model Positioning  Tracking Visual Grounding Timing
Qwen2VL 7B 0.50 0.27 0.56 0.36
Qwen2VL 72B 0.76 0.26 0.70 0.43
Qwen2.5VL 72B 0.88 0.25 0.68 0.51
InternVL2.5 78B 0.82 0.33 0.66 0.49
InternVL2.5 8B 0.60 0.28 0.55 0.39
Gemini-2.0-Flash 0.68 0.32 0.70 0.51
GPT4o0 0.98 0.29 0.66 0.58

It is important to interpret the results of these unit tests within their intended scope. Designed to
assess fundamental visual competencies, these tests utilize a random baseline score as the primary
reference point. While a model significantly outperforming this random baseline indicates a degree
of relevant reasoning ability in that specific task dimension, it does not necessarily imply a high level
of overall competence. The random baseline represents minimal performance, and even achieving
scores far exceeding it on these foundational tests serves primarily to diagnose basic capabilities
rather than validate advanced mastery required for complex gameplay.

F.2 PERCEPTUAL SKIPPING EXPERIMENT

To further investigate the interplay between visual perception and reasoning, we conducted supple-
mentary experiments where textual descriptions of the game state were provided, effectively bypass-
ing the visual perception module (see Table [34]for detailed results on Flappy Bird Level 3 and Pong
Level 2).
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Table 34: Model performance on simple levels with and without textual state information.

Model Flappy Bird Pong
w/o Text w/Text w/o Text w/ Text

Qwen2.5VL 7B 0.8 0.35 0.19 0.25
InternVL2.5 8B 0.31 0.76 0.19 0.31
Qwen2.5VL 72B 0.35 2.17 0.21 1.19
InternVL2.5 78B 0.59 2.39 0.16 0.52
GPT40 0.57 4.55 0.20 3.89
Gemini-2.0-Flash 0.42 4.89 0.32 ;10
random 0.52 0.18

human > 10 > 10

The results indicate that alleviating the perceptual challenge generally improves performance, partic-
ularly for larger models like GPT-40 and the 72B/78B parameter models, supporting the hypothesis
that visual perception is a significant bottleneck. However, even with this intervention, model scores
remained substantially lower than the human baseline (;10), underscoring the presence of critical
reasoning and planning deficiencies beyond visual perception, as discussed earlier.

Notably, the performance gains from text input were more pronounced for larger models, suggesting
their enhanced capacity to leverage structured textual information for reasoning, whereas smaller
models exhibited less consistent benefits or even performance degradation in some cases. This
finding further highlights that while perception is a challenge, fundamental reasoning limitations
persist across models and are not fully overcome even when provided with simplified, textual state
representations.

F.3 ANCHORING BIAS EXPERIMENTS

F.3.1 DETAILS AND EXAMPLES

Table 35: Average number of rounds for each model to generate different responses.

Model Race FlappyBird Pong TempestRun Avg.
Qwen2VL 7B 4.3 25.9 13.7 7.3 12.8
Qwen2.5VL 72B 2.3 19.3 2.6 53 7.4

InternVL2.5 8B 2.0 6.9 6.7 8.0 59

InternVL2.5 78B 6.8 16.0 2.0 3.0 7.0

GPT4o0 1.0 1.6 1.0 1.0 1.1

PCCr

(Ave. Rounds vs. ELO) -0.63 -0.86 -0.88 -0.64 -0.75

Due to the possibility of models receiving identical visual inputs over multiple rounds in Super Mario
(e.g., being stuck in a corner), we conducted a statistical analysis using lots of rounds of responses
from each model across the other four games. This was done by iterating through the recorded
interactions for each level and measuring the number of sequential rounds where the model’s output
response remained unchanged. The average of these durations across interactions within a game
provides the metric presented in Table 35

The results indicate that GPT-40 updates its responses more actively and frequently when the visuals
change, while other models do so less frequently. This may suggest that GPT-40 is more sensitive
to subtle visual updates, enabling it to make timely inferences and more accurately track game
progress.

In the example of Figure 23] GPT-40’s response during the final interaction is as follows:
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FORWARD FORWARD FORWARD FORWARD

Figure 23: In the prior reasoning processes, GPT-40 accurately identified the car’s orientation rel-
ative to the trophy’s position. However, in the final reasoning instance, due to anchoring bias, the
model misinterpreted previous historical information and incorrectly assumed that the car’s ori-
entation was already directed toward the trophy. Consequently, despite correctly determining the
direction, the model executed an erroneous action.

Description: The car is currently facing diagonally towards the bottom-right of the screen. The
trophy is positioned near the car, slightly to the right. There are no visible obstacles between
the car and the trophy, indicating a clear path. The car has been moving consistently forward in
the previous steps, maintaining its alignment towards the trophy.

Reasoning: Given the car’s orientation towards the trophy and the absence of obstacles, the car’s
current position and direction remain favorable for reaching the trophy. Continuing to move
forward is the most efficient strategy to maintain the direct path to the trophy. The car’s current
trajectory should allow it to reach the trophy without any adjustments.

Action: FORWARD

F.3.2 IMPACT OF FRAME SAMPLING AND DECISION FREQUENCY

To further quantify the relationship between perceptual sensitivity and anchoring bias, we have
conducted a deeper quantitative exploration of the relationship between anchoring bias and model
performance. To more objectively measure a model’s reaction to dynamic changes in the game
world, we introduced a new metric: Average Response Game Frames (abbreviated as ‘avg frames’
in the results). This metric is calculated by:

(sampling interval) x (average rounds to generate different responses)

and represents how many game frames, on average, have elapsed before a model makes a sub-
stantive change in its reasoning.

We performed a series of experiments with different sampling strategies, first testing the
Qwen2.5VL-72B model. The results are as follows:

Table 36: Performance of Qwen2.5VL-72B under different frame sampling strategies. The top
section shows response frequency metrics, while the bottom shows game scores.

Game [ 8frames Sframes 3frames(default) 1frames
Average Response Game Frames

race 5 1.8 2.3 10.8
pong 1.7 1.7 2.6 19.7
flappybird 1.5 2.3 19.3 64.2
tempestrun 1.8 14.2 5.3 23.2
avg request 2.5 5 7.4 29.5
avg frames 20 25 22.2 29.5
Game Score

race 19.60 27.20 29.60 26.00
pong 4.80 5.90 4.10 7.60
flappybird 10.80 14.00 8.10 11.90
tempestrun 23.40 18.50 24.80 26.60
avg score 14.65 |2.00 16.40 |0.25 16.65 10.00 18.03 11.38

Stable ‘visual reaction threshold’ in strong models: From the avg frames metric, the Qwen2.5VL-
72B model demonstrates remarkable consistency across different sampling strategies, with its av-
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erage response time stabilizing within a narrow range of 20-30 game frames. This suggests that
the model possesses a relatively constant intrinsic reaction threshold, where a certain amount of
accumulated visual change triggers a shift in its reasoning.

Regarding task score (avg score): The 72B model’s performance clearly improves as the sampling
interval decreases, with the highest score achieved at the highest decision frequency (1-frame inter-
val). Under such high-frequency decision-making, the model can capture crucial task timings with
the highest precision. As the decision frequency decreases, the opportunities for the model to take
appropriate action at the right moment are reduced, thus may leading to a drop in performance.

Next, we compared the Qwen2.5VL-7B and 72B models under the same sampling strategies:

Table 37: Comparison of Qwen2.5VL-7B and 72B models across sampling strategies. The 72B
model shows a consistently lower reaction threshold (avg frames) and higher scores.

Game | 8frames Sframes 3frames 1frames
Qwen2.5VL-7B

avg request 13.5 12.5 347 97.8
avg frames 108.0 62.5 104.1 97.8
avg score 10.1 10.1 10.2 9.8
Qwen2.5VL-72B

avg request 2.5 5 7.4 29.5
avg frames | 20.0 |88.0 25.0 |37.5 22.2/81.9 29.568.3
avg score 14.714.6 164 16.3  16.7 16.5 18.6 18.8

The correlation between the “visual reaction threshold” and task score” remains clear when com-
paring across models. The 72B model exhibits a lower Average Response Game Frames (indicating
higher perceptual sensitivity) and a higher task score, while the 7B model shows the opposite. This
is consistent with the conclusions about anchoring bias: a more powerful model possesses greater
sensitivity to dynamic visual perception, which forms the basis for more accurate decision-making
in interactive tasks.

F.4 ANALYSIS OF GPT40 ERRORS IN V-MAGE

We have collected 2,351 prompt-response pairs generated by GPT-4o0 while completing all levels for
1 to 5 rounds. From these, 494 examples were randomly and uniformly sampled for manual error
annotation. The frequency of occurrence for various error types is presented in Table

Table 38: Error count by error type and game environment

Error Type FlappyBird Pong Race SuperMario TempestRun
no error 30 18 54 88 21
perception error 80 26 26 47 42
direction error 2 19 13 16 8
recognition error 1 0 0 0 5
perception incomplete 3 0 8 10 10
reasoning error 24 4 9 10 6
history misinterpretation 21 0 1 6 2
action inappropriate 0 0 5 0 0
inconsistency 0 0 14 1 0
instruction following 0 0 2 0 0

The definitions of each error type are presented as follows:

* no error: There is no error in the response.

* perception error: Description misinterpreted elements.
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* direction error: A type of perception error. Confused directions (e.g., LEFT/RIGHT)
* recognition error: A type of perception error. Failed to identify key objects/elements.
* perception incomplete: Description missed important elements in the scene.

* reasoning error: Flawed logic in the reasoning section for the chosen action.

* history misinterpretation: A type of reasoning error. Misunderstood the game history.

* action inappropriate: A type of reasoning error. The chosen Action is clearly wrong given
the Observation/Reasoning.

* inconsistency: Inconsistent action plans in multiple response processes.

* instruction following: Failed to follow instructions in the prompt.
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GPT-do  (avg score. 373.43)

Observation;
Mario is standing on a platform, positioned near a pipe. To his right, there are
more platforms and several coins floating in mid-air. There are no visible
enemies near Mario, and the ground below him appears safe. There's a small
gap between platforms where Mario might need to jump if he wants to
move forward.

Reasoning: Since Mario s standing on a platform and the next set of platforms
is to the right, the most efficient move is to continue rightward to collect coins
and avoid missing out on platforms. There are no immediate threats, 5o a
simple move to the right is optimal.

et RIGHT X

InternVL2.5 788 (avg score. 205.08)
Observation
Mario is currently on the ground near some fioating platforms above him
which have coins fined up on them. There are also coins aligned along another
platform further ahead to the right. The environment appears clear with no
immediate enemies or obstacles visible.

asoning:
To efficiently collect the coins and proceed forward, | willfirst focus on jumping
onto the nearest floating platform to collect the coins there. This willinvolve an
upward movement since Mario needs to jump to reach the platform.

Action: UP+RIGHT v

GPT-d0 (aug score. 67.34)

Description:
The trophy is located to the left of the car. The car is currently positioned
towards the bottom right of the screen.

Reasoning

There is an obstacle (a white square) positioned between the car and the
trophy.

Moving UP would likely avoid the obstacle and clear the path, allowing the
car to move leftward afterward without hitting the obstacle.

Action:
up

v

InternVL2.5 788 (avg score. 16.32)

Description:
The trophy is to the left of the car, and there is an obstacle between them.

Reasoning.

The car needs to move towards the trophy, but there is an obstacle in the way.
‘The car should move to the left to avoid the obstacle and then move up to
reach the trophy

Action:

x

case studies group 1.

GPT-40

Observation: The character s currently running in the tunnel. There is a red spike
directly ahead on the ground, a purple wall to the left, and a green enemy on the path
in front.

Reasoning: The red spike must be avoided by jumping over it. The green enemy can
be dealt with by using the SLIDE action to kick it. The purple wallis on the left, so itis

safe to move right

Action: JUMP. x

Qwen2vL 728

Observation: The character is currently positioned in the center of the tunnel. There
are red spikes on the ground to the left and a green enemy directly ahead.

Reasoning: To avoid the red spikes, the character should move to the right. After
moving right. the character will be in a position to slide under the green enemy.

Action: RIGHT

v

-

input

/N

RIGHTUP. RIGHTDOWN

0 score

succ: +1 score

Gemi

2.0-flash-exp

Observation: The left paddle s in the middle left of the screen. The right padle is in
the middle right of the screen. The ball s slightly below the center of the screen and
moving towards the right padle. The score is Player A: O Player B: 0.

Reasoning: The bal is moving towards the right paddle. To prevent the ball from
passing the right paddle, the right paddle needs to move down to intercept the ball
The left paddie is not in immediate danger, so no action is needed for the left paddie.

Action: RIGHTDOWN v

Qwen2vL 728

Observation: The ball is moving towards the right padle. The right paddle is
currently positioned at the bottom of the screen, and the ball is above it

ssoning: To hit the ball, the right paddie needs to move up to align with the ball's
trajectory. Moving the paddle up willincrease the chance of successfully hitting the
ball

Action: RIGHTUP x

Figure 25: case studies group 2.
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History Misinterpretation
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Observation: The bird is positioned slightly below the
middle of the screen. The gap in the pipes is directly ahead
and is approximately at the same vertical level as the bird's
current position.

Reasoning: The bird has maintained its position over the
past several steps, which indicates it has been consistently
aligned with the gap. As there has been no change in the
relative positions of the bird and the gap, and since the
game continues without any issues, there is no need to
make any vertical adjustments. Keeping the current

Observation: The bird is positioned slightly below the
middle of the screen. The gap in the pipes is directly
ahead and is approximately at the same vertical level as
the bird's current position.

Reasoning: In the previous steps, the bird was well-
aligned with the gap, and the choice to keep the bird's
position allowed it to pass safely through the pipes. Since
the bird's position relative to the gap has remained
consistent and aligned over these steps, maintaining the
current altitude should continue to be a successful strategy.

There is no indication of any necessary adjustment as the
gap is still aligned with the bird's current trajectory.

altitude will allow the bird to safely pass through the gap.

Action: KEEP
Action: KEEP

Perception error

Observation: The bird is currently positioned slightly below the center
of the gap in the upcoming pipe. The alignment seems appropriate
for passing through the gap without hitting the pipes.

Reasoning: In the previous steps, the bird's position was maintained

because it was already at an optimal height to pass through the gap.

The current frame shows that the bird is still well-aligned with the

center of the gap. There has been no indication of any change in the

gap's position or size that would necessitate an adjustment. Since
there is no gravity affecting the bird, it will maintain its current height,
ensuring it passes through without any collision risk.

Action: KEEP

Description: The trophy is currently located to the left of the car.
Reasoning: The car is positioned to the right of the trophy, and
there are no visible obstacles directly between the car and the
trophy.

Action: LEFT

(No obstacle locations observed)

Figure 26: Error analysis in GPT4o cases.
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Inconsistency

Description: The trophy is currently positioned to the right of the car.

Reasoning: There is an obstacle, which appears to be a wall,
located between the car and the trophy. The obstacle is directly in
the path if the car attempts to move RIGHT towards the trophy.
Therefore, the car should avoid moving directly towards the
obstacle and instead find an alternative path.

Action: UP

Description: The trophy is located to the right and slightly below the
car.

Reasoning: There is an obstacle (a square block) directly between
the car and the trophy. Moving directly to the right would result in a
collision with the obstacle. Therefore, the car must first navigate
around the obstacle by moving downward, then move to the right to
approach the trophy safely.

Action: DOWN

Action Inappropriate

Description: The trophy is to the right of the car.

Reasoning: The trophy is directly to the right of the car. There is a
vertical obstacle (a wall) between the car and the trophy. The car
needs to avoid colliding with the obstacle to reach the trophy.

Action: RIGHT

Description: The car is currently facing diagonally towards the bottom-right of the screen. The trophy is positioned in front of
the car, slightly to the right. There are no visible obstacles between the car and the trophy, indicating a clear path. The car
has been moving consistently forward in the previous steps, maintaining its alignment towards the trophy.

Reasoning: Given the car's orientation towards the trophy and the absence of obstacles, the car's current position and
direction remain favorable for reaching the trophy. Continuing to move forward is the most efficient strategy to maintain the
direct path to the trophy. The car's current trajectory should allow it to reach the trophy without any adjustments.

Action: FORWARD

Figure 27: Error analysis in GPT4o cases.
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Direction Error

Description: The trophy is located to the top-left of the car. The car is currently facing diagonally upwards to the right side of
the screen. There is an obstacle (a wall) directly to the left and slightly above the car, which separates it from the trophy. To
reach the trophy, the car must navigate around this wall without colliding with any obstacles. The car is currently not moving
but is positioned at an angle facing towards the top-right corner of the screen.

Reasoning: Since the car is facing diagonally upwards to the right, the immediate path to the trophy is obstructed by the wall
directly to the left and slightly above. The car needs to move upwards and then turn left to navigate around the wall towards
the trophy. From the driver's perspective, the car needs to first orient itself to face upwards more directly. The immediate
action should be to adjust the car's direction by turning LEFT, which will help the car face upwards, allowing it to maneuver
around the wall and approach the trophy.

Action: LEFT

Action Inappropriate

|
i
L

Description: The trophy is positioned in the upper-right corner of the frame, relative to the car's current position. The car is
facing directly towards the right side of the frame. There is a vertical wall directly in front of the car, which extends upwards
and prevents the car from moving forward directly towards the trophy. This wall creates a barrier between the car and the
trophy, so the car cannot reach the trophy by moving straight ahead.

Reasoning: The car is positioned in such a way that if it moves forward, it will collide with the wall, resulting in game over.
Since the car is facing right and the path to the trophy is blocked by the wall, the car needs to navigate around the obstacle to
reach the trophy. The car must first turn right to begin moving around the wall. By turning right, the car can begin to reposition
itself and align with a path that allows it to bypass the wall and proceed towards the trophy.

Action: RIGHT

Instruction Following

(In the prompt, we ask the model to output only one word in the

Action, with no other content attached)

Description: The trophy is located to the right of the car.

Reasoning: There is a vertical obstacle (a white line) directly between
the car and the trophy. The car cannot move directly to the right
without colliding with this obstacle.

Action: UP (to move the car up and around the obstacle)

Figure 28: Error analysis in GPT4o cases.
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Direction Error

Player A: 0 | Player B: 0 Player A: 0 | Player B: 0

Observation: The left paddle is positioned in the middle of the left side. The right paddle is slightly above the center on the
right side. The ball is moving towards the right side of the screen and is slightly above the center line, continuing its
trajectory towards the right paddle.

Reasoning: The ball is heading towards the right paddle and is slightly above the center line. Given the ball's trajectory, it
appears to be on a direct path towards the upper part of the right paddle. The right paddle is already positioned slightly
above the center, which aligns well with the ball's current path. To ensure the ball is intercepted effectively, the right paddle
should be moved up slightly to account for any upward drift in the ball's trajectory. The left paddle does not need any
adjustment since the ball is moving away from it.

Action: RIGHTUP

| Direction Error |

Observation: The character is currently in a normal running position at the bottom center of the tunnel. There is a purple
wall approaching in the center of the tunnel.

Reasoning: The character is in a normal running position, and there is a purple wall directly ahead. To avoid the purple
wall, the character should move around it by using the LEFT action to shift to the left. This will help the character to safely
navigate through the tunnel without colliding with the wall.

Action: LEFT

Action Inappropriate

Observation: The character is currently running in the center of the
tunnel, and there is a green enemy approaching in the left section
of the tunnel ahead.

Reasoning: The green enemy is approaching on the left side, and
to eliminate it, the character needs to perform a slide. Sliding will
allow the character to duck and kick the green enemy. Since the
character is currently running in the center, sliding will position
them correctly to deal with the green enemy.

Action: SLIDE

Figure 29: Error analysis in GPT4o cases.
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H MISCELLANEOUS MATERIAL

H.1 LLM USAGE STATEMENT

Our research methodology centered on the evaluation of various MLLMs. Models such as GPT-40
served as the subjects within our V-MAGE pipeline, generating the outputs that form the basis of
our analysis and conclusions on MLLM performance. The role of these MLLMs was strictly limited
to this evaluation phase. The conceptualization and implementation of the V-MAGE framework and
its software were carried out entirely by the authors.

For the manuscript preparation, we employed LLMs for the sole purpose of improving grammar
and polishing the language. All scientific contributions, including the research ideas, experimental
design, and results interpretation, originate exclusively from the authors.

H.2 IMPACTS STATEMENT

This research contributes to the field of multimodal models by providing a novel and challenging
benchmark for evaluating vision-centric capabilities in dynamic environments. The primary positive
impact is facilitating the diagnosis of limitations in current MLLMs and guiding future research
towards developing more capable, robust, and potentially safer Al systems for real-world interaction.
As our work focuses on foundational evaluation in simulated environments and does not involve the
deployment of high-risk models or the collection of sensitive personal data, the potential for negative
societal impacts is considered minimal and indirect at this stage. We believe that developing better
evaluation tools is a crucial step towards building more reliable and trustworthy Al.
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