

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 V-MAGE: A GAME EVALUATION FRAMEWORK FOR ASSESSING VISION-CENTRIC CAPABILITIES IN MULTIMODAL LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities in visual-text processing. However, existing static image-text benchmarks are insufficient for evaluating their dynamic perception and interactive reasoning abilities. We introduce **Vision-centric Multiple Abilities Game Evaluation (V-MAGE)**, a novel game-based evaluation framework designed to systematically assess MLLMs' visual reasoning in interactive, continuous-space environments. V-MAGE features five distinct video games comprising over 30 carefully constructed evaluation scenarios. These scenarios are set in free-form, visually complex environments that require models to interpret dynamic game states and make decisions based solely on visual input, thereby closely reflecting the conditions encountered by human players. To ensure robust and interpretable comparisons across models, V-MAGE employs a dynamic ELO-based ranking system that accounts for varying difficulty levels and task diversity. Benchmarking state-of-the-art MLLMs against human baselines reveals that while leading models approach human-level performance in simple tasks, their performance drops significantly in complex scenarios requiring advanced reasoning and task orchestration. This persistent performance gap highlights fundamental limitations in current MLLMs' ability to perform real-time, vision-grounded interactions. Through extensive analyses, we demonstrate the utility of V-MAGE in uncovering these limitations and providing actionable insights for improving the visual and reasoning capabilities of MLLMs in dynamic, interactive settings.

1 INTRODUCTION

Building on the success of Large Language Models (LLMs) in text-based tasks(Bai et al. (2023); Cai et al. (2024); OpenAI (2023b)), researchers have extended their capabilities to visual-text multimodal tasks through Multimodal Large Language Models (MLLMs)(OpenAI (2023a); Liu et al. (2023a); Team (2023); Yang et al. (2023); Li et al. (2024); Wang et al. (2024); Bai et al. (2025a); Zhu et al. (2025)). Various multimodal evaluation benchmarks, such as MME(Fu et al. (2023)), MM-Bench(Liu et al. (2023b)), SEED-Bench(Li et al. (2023)) have driven improvements in MLLM performance. With improving model capabilities, researchers are shifting toward open-world, dynamic, multi-round tasks beyond static benchmarks with fixed image-text inputs, as these better reflect real-world interaction and reasoning challenges. Among the promising approaches for evaluating models in such dynamic settings, game-based evaluation has emerged as a promising alternative, offering a more natural and interactive assessment of a model's perception and reasoning abilities.

While progress has been made in game-based MLLM benchmarks, current approaches predominantly rely on text-based (Costarelli et al. (2024); Hu et al. (2024); Duan et al. (2024)) or grid-based(Zhang et al. (2024); Wang et al. (2025); Paglieri et al. (2024)) games. In such settings, limited visual reasoning demands and static, fully textually renderable content restrict evaluation of spatial, temporal, and dynamic complexities crucial for real-world problem-solving. In contrast, the rich visual information inherent in video games presents a valuable opportunity to assess MLLMs' genuine visual reasoning capabilities, potentially addressing the limitations of current methodologies.

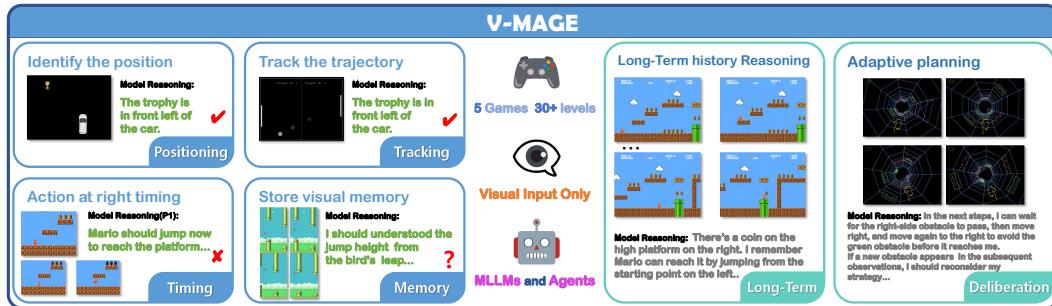


Figure 1: The overview of the V-MAGE benchmark, designed to evaluate vision-centric capabilities and higher-level reasoning of MLLMs across 5 free-form games with 30+ levels. V-MAGE assesses critical abilities in visual reasoning, providing a comprehensive evaluation of model performance in complex, dynamic environments.

To address the lack of vision-centric video game benchmarks, we present **Visual-centric Multiple Abilities Game Evaluation (V-MAGE)**, which allows for a thorough assessment of diverse model and agent abilities within dynamic, interactive game environments and addresses key limitations in current game-based evaluations of MLLM capabilities.

With V-MAGE, we evaluate leading MLLMs across five interactive games across 30+ levels. Results highlight significant challenges posed by the dynamic visual interaction environment for MLLMs. The results reveal that current MLLMs, despite excelling in static benchmarks, lack the perception, multi-step reasoning, and task orchestration required for human-level gameplay in dynamic settings.

Our contributions are summarized as follows:

- We established V-MAGE, an interactive and visually rich evaluation framework focused on dynamic interaction and vision-centric reasoning. It also serves as a sandbox environment conducive to vision agent development.
- We evaluated various publicly available MLLMs with V-MAGE, measuring model performance with ELO scores and highlighting the significant gap between model performance and human-level proficiency on complex tasks.
- Through the evaluation results of V-MAGE, we further analyzed the reasons for the suboptimal performance of current MLLMs on video game tasks, including deficiencies in several fundamental visual capabilities, challenges in reasoning during prolonged interactions, and issues such as anchoring bias, among others.

2 RELATED WORK

MLLMs and Multimodal Agents. As LLMs(Qwen et al. (2025); Cai et al. (2024); OpenAI (2023b)) advance, MLLMs have emerged to handle multimodal tasks by integrating text and visual inputs(Zhu et al. (2025); Bai et al. (2025b); Chen et al. (2024c); Wang et al. (2024); Liu et al. (2023a)). Open-source models like InternVL and QwenVL are narrowing the gap (Chen et al. (2024b)) with closed-source models such as GPT-4o(OpenAI (2024)), and Gemini(Team (2023)).

MLLMs are evolving into interactive multimodal agents, finding applications in areas such as robotics(Driess et al. (2023)), virtual assistants(Brohan et al. (2023; 2022)), GUI automation(Xu et al. (2024); Bonatti et al. (2024); Zhang et al. (2023)), and game agents(Tan et al. (2024); Chen et al. (2024a)). These domains necessitate capabilities like sequential reasoning, memory, and adaptability, which are not adequately captured by static benchmarks.

MLLM Benchmarks. Classic MLLM benchmarks have focused on tasks like Visual Question Answering (VQA)(Antol et al. (2015); Goyal et al. (2017); Li et al. (2018); Marino et al. (2019)) and image captioning(Chen et al. (2015); Agrawal et al. (2019); Sidorov et al. (2020)). More comprehensive benchmarks, such as MME(Fu et al. (2023)), MMBench(Liu et al. (2023b)), SEED-Bench(Li et al. (2023)), MMMU(Yue et al. (2024)), and MM-Vet(Yu et al. (2023; 2024)), introduce broader assessments across multiple domains.

108 Most of these evaluations rely on structured multiple-choice and VQA-style tasks, limiting their
 109 ability to measure real-world problem-solving and interactive reasoning. Recent multimodal agent
 110 benchmarks like OSWorld(Xie et al. (2024)), Windows Agent Arena(Bonatti et al. (2024)), and
 111 COMMA(Ossowski et al. (2024)) assess broader capabilities such as open-ended tasks in real envi-
 112 ronments, OS interaction, and multi-agent collaboration.

113 **Evaluating MLLMs in Games.** Recent work(Tan et al. (2024); Chen et al. (2024a); Ruoss et al.
 114 (2024)) has explored MLLMs in interactive gaming environments. Meanwhile, game-based eval-
 115 uation has evolved from text-only benchmarks(Costarelli et al. (2024); Hu et al. (2024); Duan et al.
 116 (2024)) to vision-integrated tests(Zhang et al. (2024); Wang et al. (2025); Paglieri et al. (2024)).
 117 However, most existing benchmarks rely on grid-based games (e.g., Tic-Tac-Toe, Chess)(Zhang
 118 et al. (2024); Wang et al. (2025); Paglieri et al. (2024)), which can be fully represented in text. These
 119 evaluations primarily test game-state recognition, and in some cases, additional visual input even
 120 confuses models, reducing performance(Paglieri et al. (2024)). Consequently, by primarily focus-
 121 ing on or being reducible to text-based representations, these benchmarks offer limited insights into
 122 MLLMs’ visual perception and reasoning abilities, providing little guidance for improving vision-
 123 centric skills.

124 3 V-MAGE BENCHMARK

125 We present V-MAGE, a benchmark built on video game environments designed to evaluate the
 126 comprehensive performance of MLLMs, with a focus on vision-centric capabilities. Its defining
 127 features are as follows:

- 130 • **Vision Centric Gameplay.** Models receive only visual input, requiring pixel-level scene under-
 131 standing, object tracking, and spatial-temporal reasoning. V-MAGE features continuous-space
 132 environments, allowing models to explore the almost infinite state space. Each game is designed
 133 with different difficulty levels that target various skill dimensions.
- 134 • **Extensible Evaluation Framework.** V-MAGE extends beyond model evaluation to assess
 135 agentic skills that are out-of-scope for current MLLMs. Our game-agent-model three-module
 136 evaluation pipeline allows optimizations in both MLLMs and their agent strategies.
- 137 • **Adaptive ELO-based Ranking.** V-MAGE uses a dynamic ELO system to provide a unified
 138 and interpretable metric across diverse games and difficulty levels. Unlike raw scores, which
 139 vary in scale across tasks, the ELO rating captures relative skill levels by modeling win-loss
 140 dynamics between model performances on shared levels.

141 3.1 EVALUATION PIPELINE

142 V-MAGE separates the game environment from the MLLM, ensuring that all information is con-
 143veyed solely through visual input. The MLLM interacts with games in a human-like manner: it
 144 observes real-time screen states and generates actions based on continuous visual interpretation,
 145 mirroring human gameplay dynamics.

146 As depicted in Figure 2, the system operates through iterative action cycles, comprising three se-
 147 quentially linked components. The Game Module serves as the environment interface, executing
 148 game logic, capturing real-time screenshots of the current game state, and transmitting these visual
 149 frames to subsequent modules. The Agent Module functions as the perceptual-cognitive processor,
 150 integrating three critical data streams: (1) raw visual inputs from the current frame, (2) tempo-
 151 ral context from past observations, and (3) task-specific textual prompts such as game rules. This
 152 synthesized input is structured into a multimodal format compatible with the MLLM’s processing
 153 requirements. The Model Execution Phase completes the cycle, wherein the MLLM generates an
 154 action command that undergoes semantic validation by the Agent Module before being relayed back
 155 to the Game Module for environmental state updates.

156 To prioritize unbiased evaluation of core MLLM capabilities, V-MAGE’s architecture adopts a delib-
 157 erately minimalist design, avoiding auxiliary subsystems that might obscure model performance.
 158 The framework simultaneously retains modular extensibility, allowing researchers to modify agent
 159 strategies without altering core evaluation protocols. This dual emphasis on streamlined standardiza-
 160 tion and controlled customization ensures methodological rigor in benchmarking while maintaining
 161 compatibility with specialized investigative requirements.

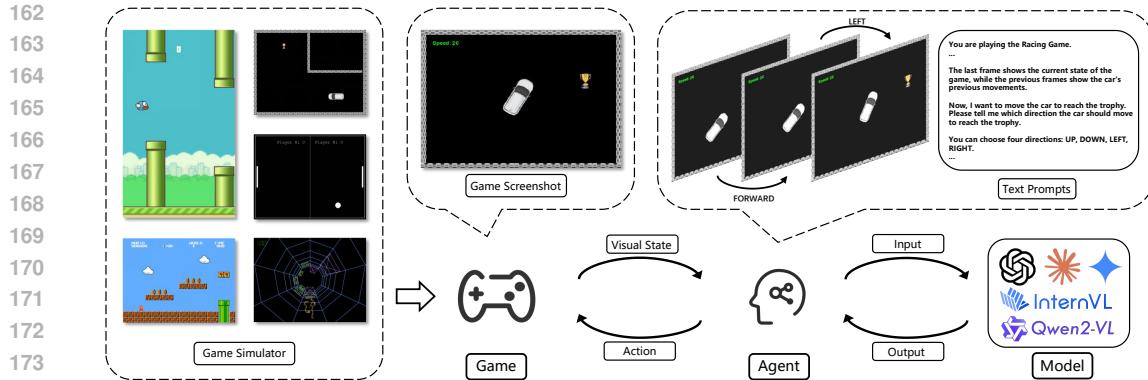


Figure 2: V-MAGE games and evaluation pipeline. V-MAGE employs five distinct games, each with several levels, to facilitate a decomposed evaluation of model performance. These games include **FlappyBird**, **Race**, **SuperMario**, **Pong** and **TempestRun**. During the evaluation process, the **Agent** module receives visual game state information directly from the **Game** module, primarily in the form of screenshots. The **Agent** module then structures these screenshots, combined with prompts containing the game rules, into the appropriate input format for MLLMs. Subsequently, the model’s output is processed by the **Agent** module to generate executable actions, which are then transmitted back to the **Game** module to update the environment state.

3.2 GAMES AND LEVELS

V-MAGE incorporates five human-playable video games (Figure 2), each featuring 3 to 10 levels, culminating in over 30 distinct evaluation environments. In contrast to traditional grid-based evaluation setups, V-MAGE selects games based on specific principles. The games feature free-form or continuous-space visual environments, facilitating more nuanced and flexible model movement and interaction. Crucially, to effectively assess vision-centric capabilities, the game environments are designed to be **visually irreducible**. This characteristic ensures that the system state cannot be fully discretized or textually summarized without significant information loss, thereby necessitating continuous visual grounding throughout the reasoning process. Detailed discussions regarding the game selection criteria and sources are provided in Appendix C.

Existing game-based benchmarks indicate that MLLMs frequently struggle to achieve meaningful scores at standard human-level difficulties in conventional game-based benchmarks (Zhang et al. (2024); Wang et al. (2025)). This limits their discriminative power for fine-grained capability assessment and inter-model comparisons in complex tasks. To address this, V-MAGE introduces a multi-level assessment framework that evaluates models across various skill dimensions and provides granular performance diagnostics through difficulty-stratified tasks. Specifically, levels are designed for each game with gradually increasing complexity, varying control paradigms and perceptual challenges. For instance, Figure 3 illustrates the level design in Race. Detailed information on the level design for all games can be found in Appendix C.2.

3.3 EVALUATION METRICS

V-MAGE employs a robust implementation of the ELO rating system to evaluate MLLMs, building on recent advancements in LLM benchmarking(Duan et al. (2024); Jiang et al. (2024)). This com-

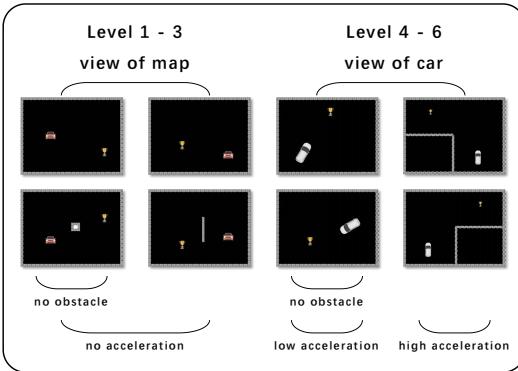


Figure 3: Race level design. Six levels progressively increase in difficulty while sharing the core objective: navigating a car to a trophy. Detailed Race level configurations are provided in Appendix Table19.

petitive evaluation framework ensures reliable model rankings by leveraging competitive evaluation mechanisms, ensuring robustness through dynamically balanced interactions.

Games demonstrate diverse scales and difficulty thresholds. The ELO system mitigates this variability by providing a standardized metric for comparing model performance across heterogeneous environments. Moreover, ELO is inherently sensitive to performance consistency. A model that achieves a high average score through a mix of exceptional successes and frequent failures may still be ranked lower, as its instability would likely lead to more losses in direct, pairwise matchups. This allows the ELO system to reward reliable performance over erratic, high-variance gameplay, which simple score averaging might otherwise obscure.

Furthermore, it skillfully measures incremental advancement in games featuring non-linear scoring plateaus, where minor improvements can differ greatly depending on the performance range. For instance, it can differentiate between progress made from 80 to 85 and significant breakthroughs from 95 to 100.

We introduce an ELO-based ranking system to assess model performance by means of competitive pairwise comparisons. In each game level, models are randomly matched in pairs for up to 100 evaluation rounds. The outcomes are determined based on their gameplay scores and the rates of valid actions taken. Detailed mathematical formulations of the pairing mechanism, rating updates, and stabilization process are provided in Appendix D.

3.4 COMPARISON TO EXISTING WORKS

Humans play dynamic games using visual perception and intuitive reasoning, a process largely uncaptured by most existing MLLM game benchmarks. Many of these rely on grid-based games (Wang et al. (2025); Zhang et al. (2024)) where states are textually representable. While such benchmarks assess text-based reasoning, similar to traditional LLM tasks (Paglieri et al. (2024)), they offer limited insights into MLLMs’ visual intuitive reasoning. Models often bypass genuine visual perception here, acting more like OCR converters, which hinders assessing and improving vision-centric abilities. Park et al. (2025) also employed video games as a testbed, wherein visual information remained auxiliary, and the game’s state and information were accessed chiefly through text-based inputs.

In contrast to this paradigm, V-MAGE shifts the evaluation focus by embedding models in dynamic visual environments that fundamentally necessitate real-time perception and action grounded in visual input. V-MAGE deliberately adopts environments lacking rigid grid structures, where the states of characters and objects cannot be easily simplified into sparse, coordinate-based textual descriptions. This design compels models to continuously leverage the visual modality throughout the reasoning process, rather than discarding it after an initial conversion.

Furthermore, unlike benchmarks where decisions are made based on a single static frame, such as in many chess-like environments, V-MAGE requires sophisticated temporal reasoning across sequences of frames to make informed decisions, more closely mirroring human gameplay dynamics.

By shifting evaluation to more naturalistic and visually complex dynamic game environments, V-MAGE provides a more rigorous and representative test of MLLM capabilities, particularly in assessing their visual intuitive reasoning. A holistic comparison between V-MAGE and existing game benchmarks is presented in Table 1.

Table 1: The comparison of V-MAGE with existing game-based evaluation benchmarks. *Text in V-MAGE only represents the instructions for game rules and output format.

Game Benchmarks	Game Type	Input	Reasoning Type	Level Design
GameBench(Costarelli et al. (2024))	Word	Text-Only	Text Reasoning	✗
GameArena(Hu et al. (2024))	Word	Text-Only	Text Reasoning	✗
GTBench(Duan et al. (2024))	Word	Text-Only	Text Reasoning	✗
ING-VP(Zhang et al. (2024))	Grid Based	Single-Image-Text	Visual Aid	✓
LVLM-Playground(Wang et al. (2025))	Grid Based	Single-Image-Text	Visual Aid	✓
BALROG(Paglieri et al. (2024))	Word / Grid Based	Single-Image-Text	Text / Visual Aid	✗
Orak(Park et al. (2025))	Video	Single-Image-Text	Text / Visual Aid	✗
V-MAGE	Video	Multi-Images-Text*	Vision-Centric Reasoning	✓

270

4 EXPERIMENTS

272 As the baseline settings for the V-MAGE benchmark, we evaluate state-of-the-art MLLMs using
 273 full-precision models under a minimal naive agent strategy (Appendix B.1.2) to ensure a fair com-
 274 parison. The naive agent utilizes the most recent k frames (typically $k=3$) for reasoning, integrating
 275 them with reasoning history, action decisions, and game rules as input for the models. Detailed
 276 experiments settings and prompts can be found in Appendix B and C.4.

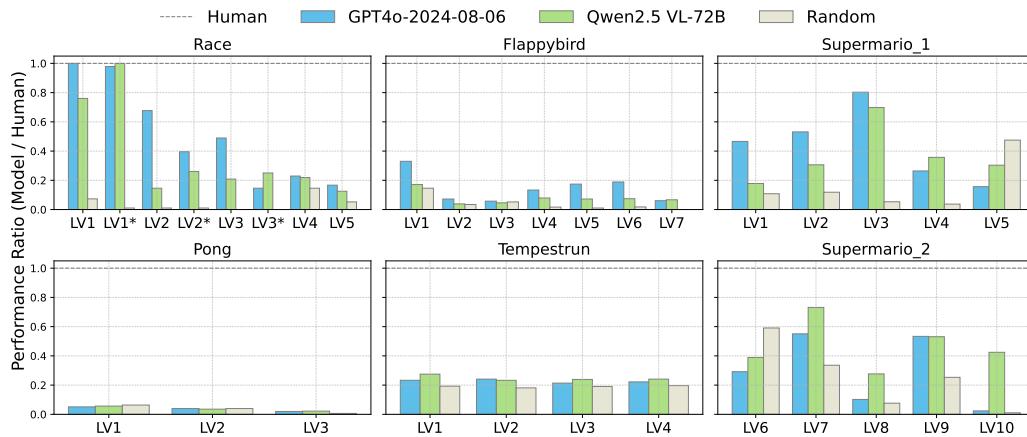
278

4.1 MAIN RESULT

280 Table 2: Performance comparison across different games based on the ELO ranking system. The
 281 Random baseline refers to randomly selecting actions from the predefined action space during
 282 decision-making phases. Average performance ratio, abbreviated as **Avg. Ratio**, refers to the aver-
 283 age percentage of the model’s score compared to the human baseline score.

Model	Flappybird	Pong	Race	Supermario	Tempestrun	Avg. ELO Score	Avg. Ratio (%)
GPT-4o	1618	1531	1716	1582	1548	1599	26.6
Gemini-2.0-Flash-Thinking	1579	1552	1648	1631	1525	1587	22.6
Gemini-2.0-Flash	1559	1541	1582	1561	1541	1557	16.7
Qwen2.5-VL-72B-Instruct	1563	1525	1624	1620	1559	1578	21.5
InternVL2.5-78B	1529	1539	1577	1614	1541	1560	19.2
Qwen2-VL-72B-Instruct	1490	1527	1587	1576	1561	1548	16.5
InternVL2.5-8B	1521	1530	1556	1438	1506	1510	12.9
Qwen2.5-VL-7B-Instruct	1469	1530	1548	1476	1494	1503	12.7
Random	1493	1516	1561	1490	1456	1503	11.0
LLaVA-Onevision-Qwen2-7B	1489	1495	1522	1448	1538	1498	13.0
Keye-VL-8B-Preview	1487	1518	1566	1401	1513	1497	13.1
Qwen2-VL-7B-Instruct	1484	1506	1529	1426	1518	1493	11.4
LLaVA-v1.6-Mistral-7B	1513	1512	1470	1396	1385	1455	9.2
Phi-4-multimodal-instruct	1441	1510	1388	1502	1389	1446	13.7
LLaVA-1.5-7B	1425	1304	1214	1473	1356	1354	14.1

298 **Scores and Rankings.** The evaluation results clearly demonstrate a performance gradient across
 299 models ranging from 7B to 70B+ parameters. This also highlights that the dynamic visual reasoning
 300 tasks we propose represent a universal challenge for current MLLMs. We note that rankings from
 301 ELO scores and the Average Ratio may occasionally differ. This discrepancy arises because the ELO
 302 system rewards performance consistency (penalizing unstable, high-variance results) and provides
 303 a more balanced, holistic assessment across games with varying score scales. In contrast, the Avg
 304 Ratio metric can be skewed when averaging across tasks with imbalanced performance levels. More
 305 detailed analysis are provided in Appendix B.2 and B.3.



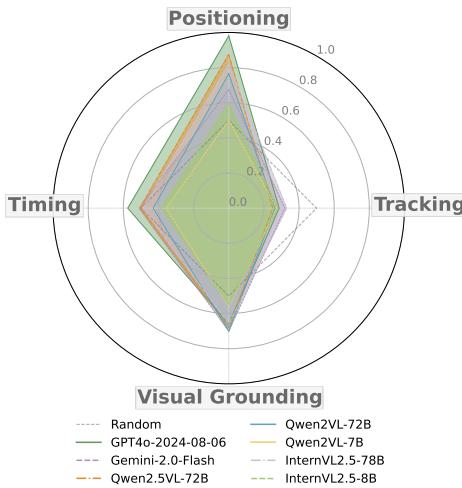
320 Figure 4: **The MLLM trails humans by a large margin in all six games.** The levels with an
 321 asterisk (*) represent ‘no history’. Detailed performance metrics for each model across individual
 322 game levels are provided in Appendix B.2 (Tables 5-9).
 323

324 **Significant Performance Gap Between MLLMs and Humans in Complex Scenes.** We in-
 325 vited 5 human participants to play the game in the same environment as the MLLMs and calculated
 326 their average score, which served as the baseline for human performance. Figure 4 compares the
 327 performance of leading MLLMs and human players across different game levels. The significant
 328 performance gap observed as task complexity increases underscores a critical limitation of current
 329 MLLMs in dynamic environments: they struggle to integrate real-time visual perception with the
 330 sophisticated reasoning and planning necessary for human-level gameplay, particularly in tasks de-
 331 manding temporal understanding and flexible strategic adaptation.

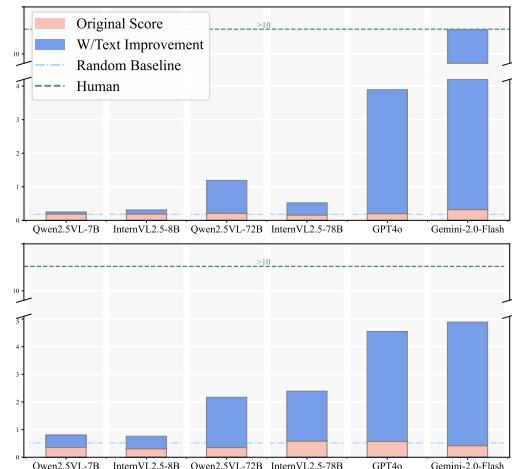
332 4.2 FURTHER ANALYSIS

333 **Unit Tests for Core Visual Abilities.** We devised a unit test for vision-centric abilities by extract-
 334 ing foundational levels from V-MAGE. Figure 5 presents the capability profiles of various models
 335 across four core visual competencies. Scores near or below baseline suggest little effective relevant
 336 reasoning, while higher scores indicate a greater likelihood of correct reasoning. For each capabili-
 337 ty, effective reasoning was evaluated by calculating the percentage of model scores that exceeded a
 338 random baseline score on the corresponding unit test levels (as defined in Appendix F.1).

339 As depicted, most models substantially outperform the random baseline in **Positioning** and **Vi-
 340 sual Grounding**, indicating a degree of proficiency in single-frame image comprehension and basic
 341 visual information perception. However, performance notably declines in **Tracking** and **Timing**,
 342 which require processing continuous frame information and executing precise spatiotemporal judg-
 343 ments. For the **Tracking** task, nearly all models fail to significantly surpass the random baseline.



362 Figure 5: Capability maps of the underlying
 363 visual capabilities of each model.



364 Figure 6: Model performance with vs. with-
 365 out text information on Pong Level 2 (top) and
 366 Flappy Bird Level 3 (bottom).

367 **Limitations Beyond Visual Perception.** While visual perception constitutes a critical assessment
 368 dimension in V-MAGE’s game tasks, our experiments revealed additional limitations and defi-
 369 ciencies in other aspects. To validate this, we conducted supplementary experiments in relatively simple
 370 levels providing textual descriptions of important game state information, thereby bypassing the
 371 perception process.

372 As shown in Figure 6, providing textual descriptions of the game state significantly improved the
 373 performance of most evaluated models, with this gain being particularly prominent in larger models
 374 such as Gemini and in games requiring precise state understanding like Pong. This notable per-
 375 formance increase when perception is bypassed strongly suggests that limitations in processing visual
 376 information are indeed a significant bottleneck for current MLLMs.

377 However, despite this substantial performance gain, the models’ scores still remained considerably
 378 lower than the human baseline in most cases. This persistent gap indicates that while visual per-
 379 ception challenges are critical, the models’ limitations extend beyond merely “seeing” the state

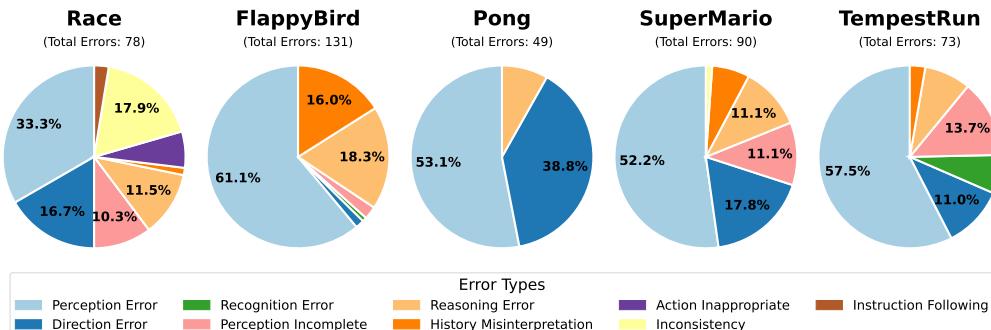
378 accurately. It highlights that significant bottlenecks also exist in the downstream processes responsible
 379 for robust interpretation of information (even when provided textually or perceived imperfectly),
 380 strategic planning, and effective action generation in complex and dynamic environments. Furthermore,
 381 the less pronounced performance improvement observed in smaller models (like Qwen2.5VL
 382 7B) suggests that inherent limitations in their core reasoning capabilities may also act as a performance
 383 bottleneck. Check Appendix F.2 for more experimental details.

384 Table 3: Average number of rounds for each model to generate different responses.
 385

Model	Race	FlappyBird	Pong	TempestRun	Avg.
Qwen2VL 7B	4.3	25.9	13.7	7.3	12.8
Qwen2.5VL 72B	2.3	19.3	2.6	5.3	7.4
InternVL2.5 8B	2.0	6.9	6.7	8.0	5.9
InternVL2.5 78B	6.8	16.0	2.0	3.0	7.0
GPT4o	1.0	1.6	1.0	1.0	1.1
PCC r (Avg. Rounds vs. ELO)	-0.57	-0.71	-0.87	-0.72	-0.72

394 **Anchoring Bias in Model Inference Processes.** When provided with historical information to aid
 395 reasoning in dynamic game progression, MLLMs often exhibit anchoring bias, particularly when
 396 processing similar consecutive frames. This bias manifests as an undue influence of prior inferences
 397 on current reasoning, hindering the accurate identification of subtle visual changes and unique
 398 frame details. Models tend to favor relying on historical textual descriptions over nuanced visual
 399 input, making them less sensitive to fine-grained visual updates, consequently leading to unchanged
 400 reasoning content over extended game sequences.

401 As shown in Table 3, models vary significantly in their responsiveness; for instance, in FlappyBird,
 402 Qwen2.5VL 72B altered its reasoning only once every 19.3 responses on average, significantly
 403 less frequently than GPT-4o (1.6 responses). The Pearson correlation coefficients (**PCC r**) reveal a
 404 consistent negative correlation between the average rounds to change response and ELO score across
 405 games, with an average r of **-0.72**. This highlights a critical challenge in maintaining responsiveness
 406 to dynamic visual input and its direct impact on task success. To investigate the impact of settings
 407 within the pipeline (e.g., frame sampling and decision frequency) on anchoring bias, we conducted
 408 corresponding experiments, with results presented in Appendix F.3.

420 Figure 7: Error type probability distribution for GPT4o across 494 samples.
 421

422 **Analysis of Model Errors in V-MAGE.** For GPT-4o’s complete inputs and responses across all
 423 game levels after one to two rounds of gameplay, we uniformly sampled 494 interaction sets for
 424 manual annotation and categorized the primary error types. The visualization results depicting the
 425 distribution of these errors are presented in Figure 7. The annotation method for error distribution
 426 and the details of statistical data are provided in Appendix F.4.

427 The predominant error type was *perception error*, with *direction error* being particularly prevalent.
 428 In such cases, the model frequently misidentified directional cues in visual content, leading to incor-
 429 rect inferences. Another major category was *reasoning error*, primarily involving logical flaws and
 430 decision-making failures, including misinterpretation of historical information (*history misinterpre-
 431 tation*) and selection of suboptimal actions (*action inappropriate*). Figure 8 presents case examples
 illustrating perception error and reasoning error.

432	FlappyBird	GPT4o	Description: The bird is slightly below the center of the pipe gap . The gap between the upper and lower pipe appears vertically aligned to allow safe passage if the bird is centered. Currently, the bird is a bit too low relative to the middle of the gap.	Reasoning: Since the bird is positioned slightly below the center of the gap, and the goal is to move horizontally through the gap without touching either the top or bottom pipe, the bird needs to ascend slightly to align with the center of the gap. There is no gravity, so unless it is moved manually, the bird will stay at the same height.	Action: UP	✓
433		InternVL2.5-78B	Description: The bird is currently positioned below the upper pipe and above the lower pipe , which means it is aligned well enough with the gap between the pipes. There is sufficient space for the bird to pass through without needing an adjustment.	Reasoning: Since the bird is already correctly positioned within the gap between the pipes, taking an action like UP or DOWN would unnecessarily risk moving out of alignment with the gap. Therefore, the best course of action is to maintain its current position until it successfully passes through the gap.	Action: KEEP	✗
434					Perception Error	✗
435						
436		Gemini-2.0-Flash	Description: The trophy is located to the right and slightly below the car.	Reasoning: There is a checkered finish line obstacle situated vertically between the car and the trophy. Moving directly right would result in a collision with this obstacle and a game over. To reach the trophy, the car needs to move downwards first to avoid the finish line, and then move right.	Action: DOWN	✓
437	Race		Description: The trophy is positioned to the right and slightly below the car. There is a vertical line of blocks between the car and the trophy , which acts as an obstacle.	Reasoning: To reach the trophy, the car needs to move to the right first to bypass the obstacle . Moving directly down or up would not help in reaching the trophy due to its current position relative to the car. Once the car moves to the right past the obstacle, it can then adjust its path if necessary to align with the trophy's position.	Action: RIGHT	✗
438					Reasoning Error	✗
439						
440	Level 2					
441						
442						
443						
444						
445						
446						
447	Level 3					
448						

Figure 8: Case examples illustrating Perception Error and Reasoning Error in FlappyBird and Race. The FlappyBird example shows a *Perception Error* where the model misjudges the bird’s vertical position relative to the pipe gap. The Race example illustrates a *Reasoning Error* where the model fails to plan a path around an obstacle between the car and the trophy, resulting in a suboptimal action.

Additionally, *perception incomplete* errors were commonly observed, where the model failed to fully extract useful information from visual inputs, resulting in partial information acquisition. *Inconsistency* errors mainly occurred in scenarios permitting multiple valid solutions, where the model exhibited unstable decision-making by frequently revising its choices, ultimately leading to timeout failures due to excessive deliberation. Notably, *instruction following* errors were virtually absent, as GPT-4o consistently adhered to the provided prompts. Additional case study analyses are documented in Appendix G.

V-MAGE Poses Significant Challenges to MLLMs. Unlike conventional static VQA or text-reducible grid-based benchmarks, V-MAGE necessitates real-time interaction within dynamic, vision-centric game environments, demanding human-like gameplay capabilities. The framework effectively exposes significant challenges and persistent limitations in current MLLMs. MLLMs demonstrate difficulty in processing and integrating information across sequences of dynamic frames, which impacts critical tasks like tracking, temporal reasoning, and trajectory understanding. This difficulty may contribute to anchoring bias, as models overly rely on prior inferences due to an insensitivity to subtle visual changes in consecutive frames, hindering their ability to adapt reasoning to dynamic game states. Furthermore, MLLMs demonstrate fundamental reasoning deficiencies that affect complex planning, strategic decision-making, and optimal action generation. These limitations persist even when initial visual processing challenges are mitigated, highlighting that deficiencies in the core reasoning process itself extend beyond perception.

5 CONCLUSION

This paper introduces V-MAGE, a pioneering game-based evaluation framework designed to assess the vision-centric capabilities of MLLMs in dynamic, interactive environments. Utilizing over 30 levels across 5 distinct games, our evaluation reveals significant limitations in current MLLMs. Specifically, models exhibit insufficient multi-image perception, leading to issues like anchoring bias, and demonstrate fundamental deficiencies in complex reasoning and strategic planning that persist even when perceptual challenges are mitigated. These findings highlight critical needs for future research, primarily in enhancing multi-frame visual processing and advancing higher-level reasoning capabilities. By systematically diagnosing these core deficiencies, V-MAGE sets a new and more demanding standard, challenging the field to develop MLLMs with robust, human-like visual intelligence for dynamic interactions.

486 ETHICS STATEMENT
487488 Research involving human subjects in this paper was limited to inviting a small number of participants (N=5) to perform tasks within the V-MAGE game environments for the purpose of establishing
489 a human performance baseline. The research has always been conducted under the guidance
490 and supervision of our institution's Institutional Review Board (IRB) and in full compliance with its
491 policies. To formally document this compliance for publication, our research protocol was reviewed
492 by the IRB committee. The committee confirmed the study's classification as 'minimal risk' and has
493 approved our research protocol.
494495
496 REPRODUCIBILITY STATEMENT
497498 The experiments presented in this work are entirely reproducible. The code used to evaluate and
499 reproduce our findings is available in the supplementary materials. Appendices B and C detail
500 the necessary configuration environment, sample game scenes, and all input examples used in the
501 evaluation that could potentially influence the outcomes. We affirm that the provided resources are
502 sufficient to fully reproduce our experimental results.
503504 REFERENCES
505506 Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen, Rishabh Jain, Mark Johnson, Dhruv Batra,
507 Devi Parikh, Stefan Lee, and Peter Anderson. Nocaps: Novel object captioning at scale. In
508 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 8948–8957, 2019.510 Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zit-
511 nick, and Devi Parikh. Vqa: Visual question answering. In *ICCV*, 2015.512 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
513 Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
514 *arXiv preprint arXiv:2308.12966*, 2023.
515516 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
517 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
518 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
519 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv*
520 *preprint arXiv:2502.13923*, 2025a.521 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
522 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
523 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
524 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025b.
525 URL <https://arxiv.org/abs/2502.13923>.
526527 Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinhe Li, Yadong
528 Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows
529 agent arena: Evaluating multi-modal os agents at scale, 2024. URL <https://arxiv.org/abs/2409.08264>.
530531 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
532 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian
533 Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalash-
534 nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
535 sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez,
536 Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi,
537 Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent
538 Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and
539 Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale. In *arXiv preprint*
arXiv:2212.06817, 2022.

540 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
 541 manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
 542 Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alex Her-
 543 zog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
 544 Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Hen-
 545 ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
 546 Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricu-
 547 tran, Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
 548 Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-
 549 2: Vision-language-action models transfer web knowledge to robotic control. In *arXiv preprint*
 550 *arXiv:2307.15818*, 2023.

551 Zheng Cai, Maosong Cao, Haojong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
 552 Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
 553 Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
 554 Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li,
 555 Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
 556 Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
 557 Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan Song,
 558 Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu Wang,
 559 Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong,
 560 Chao Xu, Ruiliang Xu, Hang Yan, Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
 561 Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo
 562 Zhang, Songyang Zhang, Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang, Xinyue Zhang, Hui
 563 Zhao, Qian Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou, Jingming Zhuo, Yicheng Zou,
 564 Xipeng Qiu, Yu Qiao, and Dahu Lin. Internlm2 technical report, 2024.

565 Peng Chen, Pi Bu, Jun Song, Yuan Gao, and Bo Zheng. Can vlms play action role-playing games?
 566 take black myth wukong as a study case, 2024a. URL <https://arxiv.org/abs/2409.12889>.

567 Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
 568 C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. *arXiv*
 569 *preprint arXiv:1504.00325*, 2015.

570 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
 571 Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to
 572 commercial multimodal models with open-source suites. *Science China Information Sciences*, 67
 573 (12):220101, 2024b.

574 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 575 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
 576 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer*
 577 *Vision and Pattern Recognition*, pp. 24185–24198, 2024c.

578 Anthony Costarelli, Mat Allen, Roman Hauksson, Grace Sodunke, Suhas Hariharan, Carlson Cheng,
 579 Wenjie Li, Joshua Clymer, and Arjun Yadav. Gamebench: Evaluating strategic reasoning abilities
 580 of llm agents, 2024. URL <https://arxiv.org/abs/2406.06613>.

581 Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
 582 Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
 583 Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
 584 Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied
 585 multimodal language model. In *arXiv preprint arXiv:2303.03378*, 2023.

586 Jinhao Duan, Renming Zhang, James Diffenderfer, Bhavya Kailkhura, Lichao Sun, Elias Stengel-
 587 Eskin, Mohit Bansal, Tianlong Chen, and Kaidi Xu. Gtbench: Uncovering the strategic reasoning
 588 limitations of llms via game-theoretic evaluations, 2024. URL <https://arxiv.org/abs/2402.12348>.

589 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei
 590 Lin, Jinrui Yang, Xiawu Zheng, et al. Mme: A comprehensive evaluation benchmark for multi-
 591 modal large language models. *arXiv preprint arXiv:2306.13394*, 2023.

594 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
 595 matter: Elevating the role of image understanding in visual question answering. In *Proceedings*
 596 *of the IEEE conference on computer vision and pattern recognition*, pp. 6904–6913, 2017.
 597

598 Lanxiang Hu, Qiyu Li, Anze Xie, Nan Jiang, Ion Stoica, Haojian Jin, and Hao Zhang. Gamearena:
 599 Evaluating llm reasoning through live computer games, 2024. URL <https://arxiv.org/abs/2412.06394>.
 600

601 Dongfu Jiang, Max Ku, Tianle Li, Yuansheng Ni, Shizhuo Sun, Rongqi Fan, and Wenhui Chen. Genai
 602 arena: An open evaluation platform for generative models, 2024. URL <https://arxiv.org/abs/2406.04485>.
 603

604 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
 605 marking multimodal llms with generative comprehension, 2023.
 606

607 Chunyuan Li, Zhe Gan, Zhengyuan Yang, Jianwei Yang, Linjie Li, Lijuan Wang, Jianfeng Gao, et al.
 608 Multimodal foundation models: From specialists to general-purpose assistants. *Foundations and*
 609 *Trends® in Computer Graphics and Vision*, 16(1-2):1–214, 2024.
 610

611 Qing Li, Qingyi Tao, Shafiq Joty, Jianfei Cai, and Jiebo Luo. Vqa-e: Explaining, elaborating, and
 612 enhancing your answers for visual questions. In *Proceedings of the European Conference on*
 613 *Computer Vision (ECCV)*, pp. 552–567, 2018.
 614

615 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *arXiv*
 616 *preprint arXiv:2304.08485*, 2023a.
 617

618 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 619 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 620 player? *arXiv preprint arXiv:2307.06281*, 2023b.
 621

622 Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual
 623 question answering benchmark requiring external knowledge. In *Conference on Computer Vision*
 624 *and Pattern Recognition (CVPR)*, 2019.
 625

626 OpenAI. Gpt-4v(ision) system card. 2023a. URL https://cdn.openai.com/papers/GPTV_System_Card.pdf.
 627

628 OpenAI. Gpt-4 technical report, 2023b.
 629

630 OpenAI. Hello gpt-4o. *OpenAI Blog*, 2024. URL <https://openai.com/index/hello-gpt-4o/>.
 631

632 Timothy Ossowski, Jixuan Chen, Danyal Maqbool, Zefan Cai, Tyler Bradshaw, and Jun-
 633 jie Hu. Comma: A communicative multimodal multi-agent benchmark. *arXiv preprint*
 634 *arXiv:2410.07553*, 2024.
 635

636 Davide Paglieri, Bartłomiej Cupiał, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir
 637 Khan, Eduardo Pignatelli, Łukasz Kuciński, Lerrel Pinto, Rob Fergus, Jakob Nicolaus Foerster,
 638 Jack Parker-Holder, and Tim Rocktäschel. Balrog: Benchmarking agentic llm and vlm reasoning
 639 on games, 2024. URL <https://arxiv.org/abs/2411.13543>.
 640

641 Dongmin Park, Minkyu Kim, Beongjun Choi, Junhyuck Kim, Keon Lee, Jonghyun Lee, Inkyu Park,
 642 Byeong-Uk Lee, Jaeyoung Hwang, Jaewoo Ahn, Ameya S. Mahabaleshwarkar, Bilal Kartal, Pri-
 643 tam Biswas, Yoshi Suhara, Kangwook Lee, and Jaewoong Cho. Orak: A foundational benchmark
 644 for training and evaluating llm agents on diverse video games. 2025. arXiv:2506.03610.
 645

646 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 647 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 648 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 649 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 650 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 651 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 652 URL <https://arxiv.org/abs/2412.15115>.
 653

648 Anian Ruoss, Fabio Pardo, Harris Chan, Bonnie Li, Volodymyr Mnih, and Tim Genewein. Lmact: A
 649 benchmark for in-context imitation learning with long multimodal demonstrations. *arXiv preprint*
 650 *arXiv:2412.01441*, 2024.

651

652 Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. Textcaps: a dataset for
 653 image captioning with reading comprehension. In *ECCV*, pp. 742–758, 2020.

654

655 Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong Xia, Ziluo Ding, Boyu Li, Bohan Zhou, Junpeng
 656 Yue, Jiechuan Jiang, Yewen Li, Ruyi An, Molei Qin, Chuqiao Zong, Longtao Zheng, Yujie Wu,
 657 Xiaoqiang Chai, Yifei Bi, Tianbao Xie, Pengjie Gu, Xiyun Li, Ceyao Zhang, Long Tian, Chaojie
 658 Wang, Xinrun Wang, Börje F. Karlsson, Bo An, Shuicheng Yan, and Zongqing Lu. Cradle: Em-
 659 powering foundation agents towards general computer control. *arXiv preprint arXiv:2403.03186*,
 660 2024.

661

662 Google Gemini Team. Gemini: A family of highly capable multimodal models, 2023.

663

664 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 665 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 666 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen-2-vl: Enhancing vision-language model's
 667 perception of the world at any resolution, 2024. URL <https://arxiv.org/abs/2409.12191>.

668

669 Xinyu Wang, Bohan Zhuang, and Qi Wu. Are large vision language models good game players? In
 670 *International Conference on Learning Representations*, 2025.

671

672 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
 673 Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
 674 Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
 675 for open-ended tasks in real computer environments, 2024.

676

677 Tianqi Xu, Linyao Chen, Dai-Jie Wu, Yanjun Chen, Zecheng Zhang, Xiang Yao, Zhiqiang Xie,
 678 Yongchao Chen, Shilong Liu, Bochen Qian, Philip Torr, Bernard Ghanem, and Guohao Li. Crab:
 679 Cross-environment agent benchmark for multimodal language model agents, 2024. URL <https://arxiv.org/abs/2407.01511>.

680

681 Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Li-
 682 juan Wang. The dawn of lmms: Preliminary explorations with gpt-4v (ision). *arXiv preprint*
 683 *arXiv:2309.17421*, 2023.

684

685 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
 686 and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities, 2023.
 687 URL <https://arxiv.org/abs/2308.02490>.

688

689 Weihao Yu, Zhengyuan Yang, Linfeng Ren, Linjie Li, Jianfeng Wang, Kevin Lin, Chung-Ching Lin,
 690 Zicheng Liu, Lijuan Wang, and Xinchao Wang. Mm-vet v2: A challenging benchmark to evaluate
 691 large multimodal models for integrated capabilities. *arXiv preprint arXiv:2408.00765*, 2024.

692

693 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 694 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 695 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF*
 Conference on Computer Vision and Pattern Recognition, pp. 9556–9567, 2024.

696

697 Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu.
 698 Appagent: Multimodal agents as smartphone users, 2023. URL <https://arxiv.org/abs/2312.13771>.

699

700 Haoran Zhang, Hangyu Guo, Shuyue Guo, Meng Cao, Wenhao Huang, Jiaheng Liu, and Ge Zhang.
 701 Ing-vp: Mllms cannot play easy vision-based games yet, 2024. URL <https://arxiv.org/abs/2410.06555>.

702 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
703 Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu,
704 Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen
705 Deng, Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian Shi,
706 Xingcheng Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Penglong
707 Jiao, Han Lv, Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai Chen, Limin Wang, Min
708 Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. In-
709 ternvl3: Exploring advanced training and test-time recipes for open-source multimodal models,
710 2025. URL <https://arxiv.org/abs/2504.10479>.

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 APPENDIX OVERVIEW
757758 In the appendix, we provide the following contents:
759760 Sec A: Provides additional discussion of current limitations and directions for future work.
761762 Sec B: Introduces experimental settings and provides detailed information on the experiments, mod-
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100880
100881
100882
100883
100884
100885
100886
100887
100888
100889
100890
100891
100892
100893
100894
100895
100896
100897
100898
100899
100900
100901
100902
100903
100904
100905
100906
100907
100908
100909
100910
100911
100912
100913
100914
100915
100916
100917
100918
100919
100920
100921
100922
100923
100924
100925
100926
100927
100928
100929
100930
100931
100932
100933
100934
100935
100936
100937
100938
100939
100940
100941
100942
100943
100944
100945
100946
100947
100948
100949
100950
100951
100952
100953
100954
100955
100956
100957
100958
100959
100960
100961
100962
100963
100964
100965
100966
100967
100968
100969
100970
100971
100972
100973
100974
100975
100976
100977
100978
100979
100980
100981
100982
100983
100984
100985
100986
100987
100988
100989
100990
100991
100992
100993
100994
100995
100996
100997
100998
100999
1001000
1001001
1001002
1001003
1001004
1001005
1001006
1001007
1001008
1001009
1001010
1001011
1001012
1001013
1001014
1001015
1001016
1001017
1001018
1001019
1001020
1001021
1001022
1001023
1001024
1001025
1001026
1001027
1001028
1001029
1001030
1001031
1001032
1001033
1001034
1001035
1001036
1001037
1001038
1001039
1001040
1001041
1001042
1001043
1001044
1001045
1001046
1001047
1001048
1001049
1001050
1001051
1001052
1001053
1001054
1001055
1001056
1001057
1001058
1001059
1001060
1001061
1001062
1001063
1001064
1001065
1001066
1001067
1001068
1001069
1001070
1001071
1001072
1001073
1001074
1001075
1001076
1001077
1001078
1001079
1001080
1001081
1001082
1001083
1001084
1001085
1001086
1001087
1001088
1001089
1001090
1001091
1001092
1001093
1001094
1001095
1001096
1001097
1001098
1001099
1001100
1001101
1001102
1001103
1001104
1001105
1001106
1001107
1001108
1001109
1001110
1001111
1001112
1001113
1001114
1001115
1001116
1001117
1001118
1001119
1001120
1001121
1001122
1001123
1001124
1001125
1001126
1001127
1001128
1001129
1001130
1001131
1001132
1001133
1001134
1001135
1001136
1001137
1001138
1001139
1001140
1001141
1001142
1001143
1001144
1001145
1001146
1001147
1001148
1001149
1001150
1001151
1001152
1001153
1001154
1001155
1001156
1001157
1001158
1001159
1001160
1001161
1001162
1001163
1001164
1001165
1001166
1001167
1001168
1001169
1001170
1001171
1001172
1001173
1001174
1001175
1001176
1001177
1001178
1001179
1001180
1001181
1001182
1001183
1001184
1001185
1001186
1001187
1001188
1001189
1001190
1001191
1001192
1001193
1001194
1001195
1001196
1001197
1001198
1001199
1001200
1001201
1001202
1001203
1001204
1001205
1001206
1001207
1001208
1001209
1001210
1001211
1001212
1001213
1001214
1001215
1001216
1001217
1001218
1001219
1001220
1001221
1001222
1001223
1001224
1001225
1001226
1001227
1001228
1001229
1001230
10

810 model inference. This ensures that the game environment remains static while the model processes
 811 visual inputs and generates actions, effectively decoupling timing evaluation from raw inference
 812 speed.

813 Regarding real-time execution and inference delays, the frame-pausing mechanism ensures fairness
 814 across models. While current models may not consistently achieve real-time inference due to API
 815 or GPU limitations, V-MAGE automatically pauses the game environment during model process-
 816 ing. This approach isolates the model’s temporal reasoning ability (strategic “when to act”) from
 817 infrastructure-related delays, enabling a focused assessment of capabilities such as Timing. In V-
 818 MAGE, Timing is explicitly designed to evaluate the model’s ability to choose the optimal timing of
 819 actions, not the system’s response speed.

820 The frames per second (FPS) for all our games is 30. In our standard benchmark setting, we use
 821 a sample rate of 3. This corresponds to the model making a decision approximately every 100
 822 milliseconds (30 FPS / 3) in the game.

823

824

825 B.1.2 AGENT MODULE

826 Researchers can modify the agent’s operational mode by adjusting the configuration file. This in-
 827 cludes altering historical strategies, such as employing a longer history of steps or sparsely sampling
 828 more distant historical records to provide different contextual information to the models. However,
 829 for fairness in evaluation and due to resource constraints, we present results obtained using only the
 830 naive configuration as a baseline in our main findings. This allows for standardized comparisons
 831 across different MLLMs.

832 In the baseline agent strategy, we utilize historical information comprising three preceding screen-
 833 shots and the model’s reasoning outputs associated with these screenshots, combined with the cur-
 834 rent game screenshot, to form the `<history>` and `<image_current_step>` components (as
 835 shown in Sec. C.4) that are incorporated into the model’s input framework.

836

837 The `<history>` component is structured as follows:

838 This screenshot is `<step>` steps before the current step of the game. After this frame, your rea-
 839 soning message was `<history_reasoning>`. After the action was executed, the game info was
 840 `<history_action_info>`.

841

842 Upon obtaining the model’s output, the system parses the structured response format specified in
 843 the prompt to systematically extract both the cognitive reasoning log and action parameters. These
 844 extracted elements are subsequently stored and fed back to the game module through a standard-
 845 ized data pipeline. This process ensures consistent interpretation of the model’s decision-making
 846 trajectory while maintaining synchronization with the game state.

847

848 Taking an input from the actual evaluation process in the **Tempest Run** as an example:

849

850 Assume you are playing a PC game called ‘Tempest Run’.

851 You need to control a character who moves through a three-dimensional space inside a futuristic
 852 tunnel filled with various obstacles and enemies. Your goal is to navigate through the tunnel, avoid
 853 or overcome obstacles, and run as far as possible. Avoid colliding with red spikes, purple walls, or
 854 failing to deal with green enemies.

855 Use the optimal combination of movements to progress through the tunnel smoothly and efficiently.
 856 Monitor the character’s position relative to obstacles and react appropriately to avoid losing progress.
 857 Now, I will give you some history screenshots in the game for decision making.

858 `<image>`

859 This screenshot is three steps before the current step of the game. After this frame, your reasoning
 860 message was “observation”: ‘The character is running forward in a narrow tunnel with blue lines
 861 forming the walls and ceiling. Red spikes are visible on the ground ahead, and green enemies are
 862 further down the tunnel. The path appears clear with no immediate obstacles or enemies to avoid.’,
 863 ‘reasoning’: ‘Maintaining the current trajectory with no action is optimal to continue moving straight
 864 towards the green enemy and prepare for a potential slide to eliminate it.’, ‘action’: ‘NONE’’. After
 865 the action was excuted, the game info was “Game is running.”

866 ...

864 <image>
 865 This screenshot represents the current step of the game.
 866 The last frame shows the current state of the game, while the previous frames show the character's
 867 previous movements.
 868 Important notes: 1. Use JUMP to jump over red spikes on the ground. 2. Use SLIDE to duck and
 869 kick green enemies to eliminate them.
 870 ...
 871 You should think step by step and respond with the following format, remember to respond with
 872 plain text without any special characters or symbols, DO NOT respond in markdown or Latex or
 873 any other format.
 874 Response:
 875 Observation: ... (Describe the character's current position and nearby obstacles or enemies.)
 876 Reasoning: ... (Think step by step and explain how you choose the action.)
 877 Action: ... (Choose ONE of the six actions to control the character. Do NOT add any other words.)
 878

879 B.1.3 MODEL MODULE

880 The Model module is primarily responsible for model deployment and parameter control. In addition
 881 to closed-source models accessed via APIs, we deployed open-source models on an **8xV100 GPU**
 882 **Azure cluster** for our experiments, utilizing the **vLLM** library for efficient serving. For text output
 883 generation across all models, we standardized the decoding parameters by setting **top-p=0.9** and
 884 **temperature=0.8**.

885 The following models are involved in the V-MAGE evaluation:
 886

887 Table 4: Models involved in V-MAGE.

889 Model	890 Organization	891 Website	892 Open Source
GPT-4o-2024-08-06	OpenAI	https://openai.com/index/hello-gpt-4o/	No
Gemini-2.0-Flash	Google DeepMind	https://deepmind.google/technologies/gemini/flash/	
InternVL2.5-78B	Shanghai AI Lab	https://huggingface.co/OpenGVLab/InternVL2_5-78B	
InternVL2.5-8B		https://huggingface.co/OpenGVLab/InternVL2_5-8B	
Qwen2.5VL-72B-Instruct	Alibaba Cloud	https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct	Yes
Qwen2VL-72B-Instruct		https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct	
Qwen2VL-7B-Instruct		https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct	

900 B.2 DETAILED STATISTICS

901 B.2.1 SCORE-BASED PERFORMANCE

902 Cross-task result analysis reveals the limitations of parameter scaling: In RaceGame Level 1 (with
 903 historical frame input), Qwen2VL showed a 429% improvement in score when scaling from 7B to
 904 72B (from 10.43 to 55.19), reaching about 55% of the human baseline score. However, in more
 905 complex tasks such as Tempestrun Level 4, InternVL2.5-78B (199.78 points) only improved by
 906 14.4% compared to its 8B version (174.58 points), still achieving only 25% of the human score
 907 (800 points). This suggests that parameter scaling cannot compensate for the inherent ability gap in
 908 complex dynamic tasks. The detailed scores are presented below:
 909

910 B.2.2 ADDITIONAL INDICATORS

911 Due to the dynamic game environments inherent in the V-MAGE evaluation process, certain lev-
 912 els may necessitate a considerable number of tokens during assessment. In this section, using the
 913 **Qwen2.5VL-72B** model deployed with **vLLM** as an illustrative example, we provide the statisti-
 914 cally averaged frame counts (equal to the number of frames between two neighboring interactions
 915 multiplied by the number of interactions) and the average input and output token consumption per
 916 game round, serving as a reference.
 917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 5: Performance analysis based on average scores in Race

Level	GPT-4o	Gemini 2.0-flash	Qwen2.5VL 72B	Qwen2VL 7B	Qwen2VL 72B	InternVL2.5 8B	InternVL2.5 78B	Random	Human
Level1	99.99	35.41	76.01	10.43	55.19	28.12	64.56	7.30	100.00
Level1 No History	97.87	98.91	99.95	87.46	97.87	89.54	99.99	1.06	100.00
Level2	67.68	7.30	14.59	0.00	1.06	3.14	15.63	1.06	100.00
Level2 No History	39.57	22.92	26.04	1.06	23.96	5.22	26.04	1.06	100.00
Level3	48.94	5.22	20.84	4.18	7.30	6.26	11.47	0.02	100.00
Level3 No History	14.59	4.18	25.00	4.18	16.67	11.47	22.92	0.00	100.00
Level4	22.92	6.26	21.88	0.02	2.10	0.00	2.10	14.59	100.00
Level5	16.67	8.34	12.51	13.55	4.18	20.84	7.30	5.22	100.00

Table 6: Performance analysis based on average scores in Pong

Level	GPT-4o	Gemini 2.0-flash	Qwen2.5VL 72B	Qwen2VL 7B	Qwen2VL 72B	InternVL2.5 8B	InternVL2.5 78B	Random	Human
Level1	0.51	0.54	0.56	0.59	0.54	0.68	0.77	0.63	10.00
Level2	0.39	0.41	0.35	0.31	0.33	0.31	0.38	0.39	10.00
Level3	0.19	0.32	0.21	0.18	0.20	0.18	0.15	0.06	10.00

Table 7: Performance analysis based on average scores in Supermario

Level	GPT-4o	Gemini 2.0-flash	Qwen2.5VL 72B	Qwen2VL 7B	Qwen2VL 72B	InternVL2.5 8B	InternVL2.5 78B	Random	Human
Level10	18.77	108.30	339.57	12.51	29.16	14.61	80.19	8.36	800.00
Level11	372.85	109.41	142.76	33.41	216.67	69.83	203.12	86.50	800.00
Level2	424.92	127.17	244.78	102.12	338.47	102.12	186.48	94.83	800.00
Level3	802.99	429.10	697.91	188.54	565.46	286.44	610.26	53.19	1000.00
Level4	369.76	251.07	499.89	112.53	346.84	151.09	447.84	52.15	1400.00
Level5	125.08	258.33	242.72	232.29	192.75	209.41	433.23	380.13	800.00
Level6	233.36	325.96	311.36	324.96	296.79	267.70	344.74	472.78	800.00
Level7	440.66	527.96	585.21	161.48	490.48	220.86	491.52	268.74	800.00
Level8	91.75	211.43	248.96	51.13	179.20	76.09	168.74	68.79	900.00
Level9	693.56	594.67	690.46	162.62	508.24	201.12	756.02	329.19	1300.00

Table 8: Performance analysis based on average scores in Flappybird

Level	GPT-4o	Gemini 2.0-flash	Qwen2.5VL 72B	Qwen2VL 7B	Qwen2VL 72B	InternVL2.5 8B	InternVL2.5 78B	Random	Human
Level1	3.30	2.38	1.70	0.76	0.47	1.20	1.54	1.45	10.00
Level2	0.71	0.47	0.38	0.20	0.12	0.36	0.39	0.34	10.00
Level3	0.57	0.41	0.45	0.20	0.35	0.33	0.43	0.52	10.00
Level4	1.33	1.50	0.79	1.52	0.38	1.43	0.64	0.16	10.00
Level5	1.74	1.38	0.71	1.44	0.51	1.20	0.49	0.10	10.00
Level6	1.88	1.05	0.73	1.62	0.56	1.14	0.66	0.17	10.00
Level7	0.60	0.07	0.66	0.03	0.14	0.00	0.13	0.00	10.00

972 Table 9: Performance analysis based on average scores in Tempestrun
973

974 Level	975 GPT-4o	976 Gemini 2.0-flash	977 Qwen2.5VL 72B	978 Qwen2VL 7B	979 Qwen2VL 72B	980 InternVL2.5 8B	981 InternVL2.5 78B	982 Random	983 Human
984 Level1	985 466.25	986 478.35	987 549.98	988 446.92	989 519.22	990 444.71	991 475.22	992 385.72	993 2000.00
994 Level2	995 361.44	996 356.05	997 349.06	998 352.76	999 370.13	1000 327.38	1001 333.37	1002 271.65	1003 1500.00
1004 Level3	1005 213.73	1006 197.91	1007 238.74	1008 208.75	1009 220.21	1010 197.71	1011 216.64	1012 190.71	1013 1000.00
1014 Level4	1015 177.60	1016 201.67	1017 192.79	1018 182.91	1019 195.19	1020 174.58	1021 199.78	1022 157.17	1023 800.00

Depending on the differences in the models and the randomness of the games and reasoning, as well as other further experiments, the full research project may require **more** compute than the experiments reported here. The time of execution of the experiment depends on the network environment and computational power.

984 Table 10: **SuperMario** Average Frames and Tokens Consumed
985

986 Metric	987 Level 1	988 Level 2	989 Level 3	990 Level 4	991 Level 5	992 Level 6	993 Level 7	994 Level 8	995 Level 9	996 Level 10	997 All
998 Average Frames	999 400	1000 655.56	1001 1000	1002 641.2	1003 234.00	1004 300	1005 300	1006 148.06	1007 504.35	1008 950.45	1009 5133.62
1010 Average Prompt Tokens	1011 150004.78	1012 253457.38	1013 379649.92	1014 266125.09	1015 100595.30	1016 112241.57	1017 111288.00	1018 54231.22	1019 192642.31	1020 361208.32	1021 1981443.89
1022 Average Completion Tokens	1023 10054.86	1024 18437.53	1025 25428.29	1026 18242.65	1027 7075.53	1028 7639.30	1029 7314.46	1030 3710.36	1031 13492.79	1032 24197.61	1033 135593.38

998 Table 11: **Race** Average Frames and Tokens Consumed
999

1000 Metric	1001 Level 1	1002 Level 2	1003 Level 3	1004 Level 1	1005 Level 2	1006 Level 3	1007 Level 4	1008 Level 5	1009 Level 6	1010 All
	1011 No History	1012 No History	1013 No History	1014 Level 1	1015 Level 2	1016 Level 3	1017 Level 4	1018 Level 5	1019 Level 6	1020 All
1021 Average Frames	1022 12.66	1023 15.39	1024 16.66	1025 29.20	1026 30.69	1027 32.14	1028 58.07	1029 98.06	1030 32.46	1031 325.33
1032 Average Prompt Tokens	1033 1738.83	1034 2309.85	1035 2562.15	1036 12317.22	1037 14044.87	1038 14934.32	1039 31164.03	1040 54346.81	1041 17399.59	1042 255136.23
1043 Average Completion Tokens	1044 275.35	1045 531.41	1046 595.91	1047 693.11	1048 937.66	1049 1060.77	1050 2243.55	1051 3898.42	1052 1517.55	1053 20798.72

1004 Table 12: **FlappyBird** Average Frames and Tokens Consumed
1005

Metric	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Level 7	All
Average Frames	224.73	133.34	76.49	153.11	153.87	152	143.28	1036.82
Average Prompt Tokens	98273.78	57332.59	32326.91	65853.39	66500.27	65322.27	56528.63	442137.84
Average Completion Tokens	9979.17	5772.39	3319.76	7142.32	7309.31	7082.73	6259.62	46865.30

1014 Table 13: **TempestRun** and **PongGame** Average Frames and Tokens Consumed
1015

Metric	Level 1	Level 2	Level 3	Level 4	All	Level 1	Level 2	Level 3	All
Average Frames	173.58	92.70	38.98	28.72	333.98	221.79	83.98	47.00	352.77
Average Prompt Tokens	108291.56	57096.18	33218.84	22874.80	237820.07	136254.76	50056.53	26981.30	213292.59
Average Completion Tokens	7000.84	3799.28	2316.48	1619.33	15942.53	10998.40	4064.67	2208.39	17271.46

1026
1027

B.2.3 MORE MODELS

1028
1029
1030
1031

In addition to the models mentioned in Table B.1.3, we also evaluated the more recent **Claude-3.7-sonnet**¹. Due to budgetary constraints, we were only able to conduct approximately 5 to 10 rounds of testing. When we included Claude-3.7-sonnet in the ELO calculation, the results are shown in Table 14.

1032
1033
1034

Table 14: Performance comparison across different games based on the elo ranking system.

Model	Pong	Race	Flappybird	Tempestrun	SuperMario	Average
<i>Closed-Source Models</i>						
Claude-3.7-sonnet	1607	1626	1578	1513	1601	1591
GPT-4o	1487	1582	1573	1514	1512	1526
Gemini-2.0-Flash (Thinking)	1518	1550	1533	1498	1588	1553
Gemini-2.0-Flash	1502	1498	1513	1515	1512	1510
<i>Open-Source Models</i>						
Qwen2VL-7B	1464	1417	1438	1488	1361	1412
Qwen2VL-72B	1479	1527	1521	1530	1580	1543
Qwen2.5VL-72B	1485	1489	1440	1531	1509	1494
InternVL2.5-8B	1489	1442	1481	1471	1372	1428
InternVL2.5-78B	1492	1447	1481	1514	1546	1510
<i>Baseline</i>						
Random	1477	1424	1440	1424	1419	1431

1055

It is important to note that these results may be biased because the number of evaluation rounds is incomplete compared to other models, which is why the **Claude-3.7-sonnet** model was not included in the main results discussed.

1056
1057

Nevertheless, based on the current findings, it is one of the best-performing models on V-MAGE to date.

1061

B.3 INCONSISTENCY BETWEEN ELO AND PERFORMANCE RATIO RANKINGS

1063
1064

As shown in Table 2 in the main text, ELO and Performance Ratio sometimes do not align in rankings.

1065
1066
1067

We examine **Keye-VL-8B-Preview** and **Qwen2.5-VL-7B-Instruct**, with **LLaVA-v1.6-Mistral-7B** as a control.

1068
1069

Table 15: Elo Scores and Average Performance Ratios (E/R) Across Games.

	Race(E/R)	SuperMario(E/R)	Pong(E/R)	FlappyBird(E/R)	Tempestrun(E/R)
Qwen2.5-VL-7B-Instruct	1487/0.120	1459/0.239	1503/0.035	1431/0.030	1485/0.210
Keye-VL-8B-Preview	1487/0.118	1430/0.217	1495/0.039	1450/0.044	1513/0.239
LLaVA-v1.6-Mistral-7B	1462/0.051	1374/0.127	1494/0.035	1489/0.077	1379/0.169

1076
1077
1078
1079

In Pong, Qwen shows higher ELO but lower average ratio. We analyzed level-wise scores and variances to explore this. The variance is calculated as: variance = $\frac{\sum_{i=1}^n (\text{score}_i - \text{score})^2}{n}$.

¹Anthropic, <https://www.anthropic.com/clause/sonnet>

1080
1081
1082 Table 16: Pong Scores by Level (Avg: average score, Var: variance).
1083
1084
1085
1086
1087
1088

	L1 Avg	L1 Var	L2 Avg	L2 Var	L3 Avg	L3 Var
Qwen2.5-VL-7B-Instruct	0.48	0.50	0.37	0.25	0.20	0.18
Keye-VL-8B-Preview	0.68	0.67	0.26	0.33	0.23	0.36
LLaVA-v1.6-Mistral-7B	0.48	0.58	0.29	0.26	0.29	0.34

1089
1090
1091
1092
1093
Keye’s higher variance across all Pong levels indicates unstable performance, where high-scoring
1094
1095
1096
1097
1098
1099
outliers mask frequent weak results. In the ELO system, this instability leads to more losses against
a consistent opponent, resulting in a lower rating despite a competitive average score.

1100
1101
1102
1103
Additionally, current models perform poorly on Pong, with ratios tightly clustered in the 0–10%
1104
1105
1106
1107
1108
range. When calculating the performance ratio by averaging across games, minor differences in
1109
1110
1111
1112
1113
1114
1115
Pong (3.5% vs. 3.9%) are overshadowed by larger gaps in other games(21% vs. 24%). The ELO
1116
1117
1118
1119
1120
system, in contrast, is based on the aggregate outcomes of all pairwise matchups. The ELO rating
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
boost from a consistent pattern of wins in Pong is just as significant as from wins in any other game.
This demonstrates that ELO is more robust in **fairly** assessing a model’s holistic capabilities across
tasks with imbalanced performance levels.

1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
We also observed that in terms of Response Format Accuracy, GPT-4o is slightly lower than Gemini
model (by 0.04%), and InternVL2.5-78B is slightly lower than Qwen2-VL-72B (by 0.25%). This
may also be an influencing factor.

1134 **C GAMES IN V-MAGE**
11351136 **C.1 PRINCIPLES AND STANDARDS FOR GAME SELECTION**
11371138 **Simplified and unrealistic considerations.** While the simplified visuals in these games differ
1139 from real-world scenes, empirical evidence demonstrate that MLLMs comprehend core game seman-
1140 tics (objectives, rules, entities) despite stylistic simplifications. Performance limitations primar-
1141 ily emerge from perceptual inaccuracies (e.g., dynamic object tracking) and multi-step reasoning
1142 deficiencies rather than misinterpretation. V-MAGE therefore focuses more on **precise evaluation**
1143 than **visual realism** to drive targeted improvements in visual reasoning.1144 **Selection criteria.** The five games in V-MAGE share critical characteristics (e.g., non-textual
1145 state representation, free-form gameplay, and continuous-space environments) while offering di-
1146 verse challenges.1147 Our current minimal set covers four **2D** game types through this matrix:
11481149 Table 17: 2D Game Taxonomy in V-MAGE
1150

	XY-axis	XZ-axis
Linear Process	PongGame	FlappyBird
Open Planning	RaceGame	SuperMario

1151 The Linear Process implies that the game’s progression is, to some extent, enforced. In PongGame,
1152 the ball’s movement direction is determined by the game environment, requiring the model to move
1153 paddles on both sides to catch the ball, while in FlappyBird, the forward movement of the bird
1154 is compulsory, with the model controlling the height to navigate through pipes. OpenPlanning,
1155 in contrast, is relatively more open-ended. In RaceGame, the model can freely control the car’s
1156 movement and direction on a plane to reach a trophy. In SuperMario, the model can move and jump
1157 in a relatively open environment to collect rewards and earn points.1158 For **3D** environments, we selected **Tempest Run** for its streamlined visual elements.
11591160 V-MAGE’s flexible framework allows seamless integration of new PyGame-based environments.
1161 For instance, Tempest Run (one of our five games) was sourced from PyWeek[3], a community-
1162 driven game jam with thousands of open-source entries. This demonstrates our framework’s capacity
1163 to incorporate externally developed, human-designed games. We provide APIs to wrap new games
1164 into V-MAGE’s evaluation pipeline. This allows researchers to easily integrate additional games.1165 We will continue expanding the benchmark with more diverse titles that meet our selection criteria
1166 (e.g., Player vs Player (PVP) games) and will open-source both the codebase and detailed docu-
1167 mentation to facilitate community contributions.
11681169 **C.2 DESIGN AND IMPLEMENTATION**
11701171 As previously mentioned, V-MAGE enhances the diversity of the evaluation environment by expand-
1172 ing it through level design. Tables in this section detail the settings, rewards, and design objectives
1173 for each game’s levels. For more comprehensive visual comparisons and prompt information, please
1174 refer to Appendix C.4.1175 **Race Game** is a skill-based driving game where the objective is to control a car through a maze-like
1176 track to reach the trophy while avoiding obstacles. The car is represented by a red or white vehicle
1177 with a visible front and back, while the trophy is shown as a golden cup icon. The surrounding
1178 white-lined boundaries represent walls, which the car must avoid. For the overall observation and
1179 action spaces of the game, including the task and reward definitions, please refer to Table 18.
11801181 Each level in Race has a different set of rules and challenges. As presented in Table 19, we manually
1182 designed six levels. Levels 1–3 use a *map-view perspective* (“map” view), where models adjust ab-
1183 solute coordinates. The four types of movement operations directly translate the vehicle on the map
1184

Table 18: Race Environment Details (* means potentially requires observation).

Observation space	Action Space	Task	Reward
Car Position	UP, DOWN,	Move the car	+100 Success
Trophy Position	LEFT, RIGHT	to reach the trophy	+0 Timeout
Obstacle Position*			+0 Destroyed
Speed*			
Acceleration*			
Facing Angle*			

according to the direction of action. Conversely, Levels 4–6 shift to a *first-person perspective* (“car” view), the observation is centered on the vehicle, and movements are performed based on the vehicle’s perspective, Requiring real-time interpretation of velocity vectors and acceleration constraints. Furthermore, acceleration is introduced in the high-difficulty levels, which further expands the observation space. This requires the model to extract more information from the visual input, including current speed and acceleration, in order to perform rational reasoning.

Table 19: Race Level Configurations

Level	View	bstacle	Initial Direction	Acceleration	Max Rounds	Sample Frames
1	Map	No	-	No	100	1
2	Map	Yes	-	No	150	1
3	Map	Yes	-	No	150	1
4	Car	No	Vertical(up)	Low	150	3
5	Car	No	Horizontal(random)	Mid	150	3
6	Car	Yes	Vertical(up)	Mid	150	1

SuperMario is a two-dimensional side-scrolling platformer where the player controls the character Mario navigating through environments populated with various platforms, enemies, and obstacles. The goal is to traverse the level, collect coins, evade or defeat enemies, and reach the flagpole at the stage’s conclusion. Players must avoid falling off platforms, colliding with enemies, or being struck by obstacles. Successful gameplay involves employing optimal movement combinations for smooth and efficient progression, alongside monitoring Mario’s position relative to environmental elements. Task and reward definition is shown in Table 20.

Table 20: SuperMario Environment Details.

Observation space	Action Space	Task	Reward
Mario Position	UP, UP+LEFT,	Collect coins and	+100 for collecting a coin
Platforms Position	UP+RIGHT, LEFT,	evade or defeat	+100 for defeating a Goomba
Enemies Position	RIGHT, NONE	enemies	Penalties for falling or collisions
Obstacles Position			

Table 21: SuperMario Level Configurations

Level	Enemy count	Coin Count	CoinBox Count	Max Rounds	Gameplay
1	0	6	2	400	Common
2	2	6	2	1000	Common
3	0	17	4	1000	Long History (Two ways)
4	2	17	4	1000	Long History (Two ways)
5	3	8	0	300	Left or Right
6	0	13	0	300	Left or Right
7	0	8	0	300	Left or Right
8	0	12	0	1000	Jump Only
9	5	8	0	1000	Jump and Enemy
10	12	0	9	5000	Classic W1-1

To provide a comprehensive evaluation of MLLMs' visual reasoning and planning capabilities, SuperMario features ten levels with configurations detailed in Table 21. These levels vary in enemy count, coin and coinbox quantities, maximum allowed rounds, and specific gameplay mechanics or focuses. Of these, level 10 serves as a standard human-difficulty benchmark, providing a 1:1 replica of the original Super Mario game's World 1-1 stage.

Flappy Bird is a widely recognized side-scrolling mobile game serving as a common benchmark in reinforcement learning. The objective is to control a bird's vertical movement to navigate through a continuous series of horizontal gaps within vertically oriented pipes. Successful traversal of a pipe pair increments the player's score, while collision with any pipe or the ground constitutes a terminal state, ending the game. The game mechanic involves a constant downward gravitational pull, counteracted by discrete upward 'flaps' initiated by the player.

Table 22: Flappy Bird Environment Details (* means only available at certain levels).

Observation space	Action Space	Task	Reward
Bird Position	UP	Maneuver the bird to avoid hitting the pipes	+1 per pipe pair passed
Bird Velocity	NONE		+0 Collision
Next Pipe Distance	DOWN*		
Gap VerticalPosition	KEEP*		

Given the high difficulty of human-standard levels for MLLMs, we designed seven levels with progressive difficulty. Specifically, as presented in Table 23, levels 1-3 constitute a simplified game environment where the gravity factor is removed, and height is controlled via UP and DOWN actions to navigate through the pipes. Levels 4-6 are based on the standard difficulty but incorporate a 'KEEP' option, enabling the model to maintain the bird's altitude through this action. Within the same difficulty tier, levels are differentiated by varying the bird's forward speed and the pipe gap width. Level 7 represents the standard human game difficulty, retaining the original game settings.

Table 23: FlappyBird Level Configurations

Level	Gravity	Availability of "DOWN"	Availability of "KEEP"	Others
1 - 3	No	Yes	Yes	Distinguished by gap clearance and speed
4 - 6	Yes	No	Yes	
7	Yes	No	No	Human Standard

Pong Game is a classic two-player adversarial game. The objective is to control the paddles on the left and right sides of the screen to return the ball, preventing it from passing one's own paddle while simultaneously attempting to make the ball pass the opponent's paddle. One point is awarded to the player for each successful return of the ball. The final score is the sum of both players' scores. Task and reward definition is shown in Table 24.

Table 24: Pong Game Environment Details.

Observation space	Action Space	Task	Reward
Left Paddle Position	LEFTUP	Track the ball's trajectory	+1 per successful hit
Right Paddle Position	LEFTDOWN	and maneuver the left and right paddles to intercept	+0 if ball passes paddle
Ball Position	RIGHTUP		
Ball Trajectory	RIGHTDOWN	and return the ball.	
	NONE		

Table 25: Pong Game Level Configurations

Level	Paddle Width	Ball Speed	Ball Size	Others
1	Big	Slow	Big	Ball initial position randomly changes.
2	Mid	Mid	Mid	
3	Small	Fast	Small	

Considering the challenges MLLMs face in tracking and temporal tasks, we designed levels with varying difficulty. As shown in Table 25, difficulty for Levels 1-3 is differentiated by adjusting the

1296 paddle width and the speed of the ball. Within the same level, the initial position of the ball is
 1297 randomized, but the relative difficulty remains consistent.
 1298

Table 26: Tempest Run Environment Details.

Observation space	Action Space	Task	Reward
Current Character State	JUMP, LEFT, RIGHT,	Perform corresponding	Score increases
Nearby Obstacles Position	SLIDE, RISE, NONE	actions to avoid or	with distance run.
Nearby Obstacles Type		destroy obstacles.	
Visual Information Quantity			

1300
 1301 **Tempest Run** is a third-person perspective 3D runner game where the player controls a character
 1302 moving within a futuristic tunnel filled with various obstacles and enemies. The objective is to
 1303 navigate through the tunnel, avoiding or overcoming impediments, and to run as far as possible.
 1304 Players must specifically avoid colliding with red spikes, purple walls, or failing to manage green
 1305 enemies. Successful gameplay requires employing optimal combinations of movements for smooth
 1306 and efficient tunnel traversal, alongside monitoring the character’s position relative to obstacles and
 1307 reacting appropriately. Task and reward definition is shown in Table 26.
 1308

1309 To evaluate MLLMs’ visual comprehension and reactive capabilities within a dynamic 3D environ-
 1310 ment, Tempest Run includes four levels of varying difficulty. As outlined in Table 27, Levels 1-4 are
 1311 primarily differentiated by parameters including role speed, cell length (denoting the distance be-
 1312 tween environmental segments), and random rate (controlling obstacle spawning frequency). These
 1313 parameters collectively influence the pace of barrier generation and the overall visual complexity of
 1314 the tunnel environment, thereby varying the level of challenge. Within the same level, the position-
 1315 ing of environmental elements is randomized, while maintaining consistent relative difficulty.
 1316

Table 27: Tempest Run Level Configurations

Level	Role Speed	Cell Length	Random Rate	Others
1	Slow	Large	Low	Environmental elements initial positions randomly change.
2	Medium	Medium	Medium-Low	
3	Fast	Small	Medium-High	
4	Very Fast	Small	High	

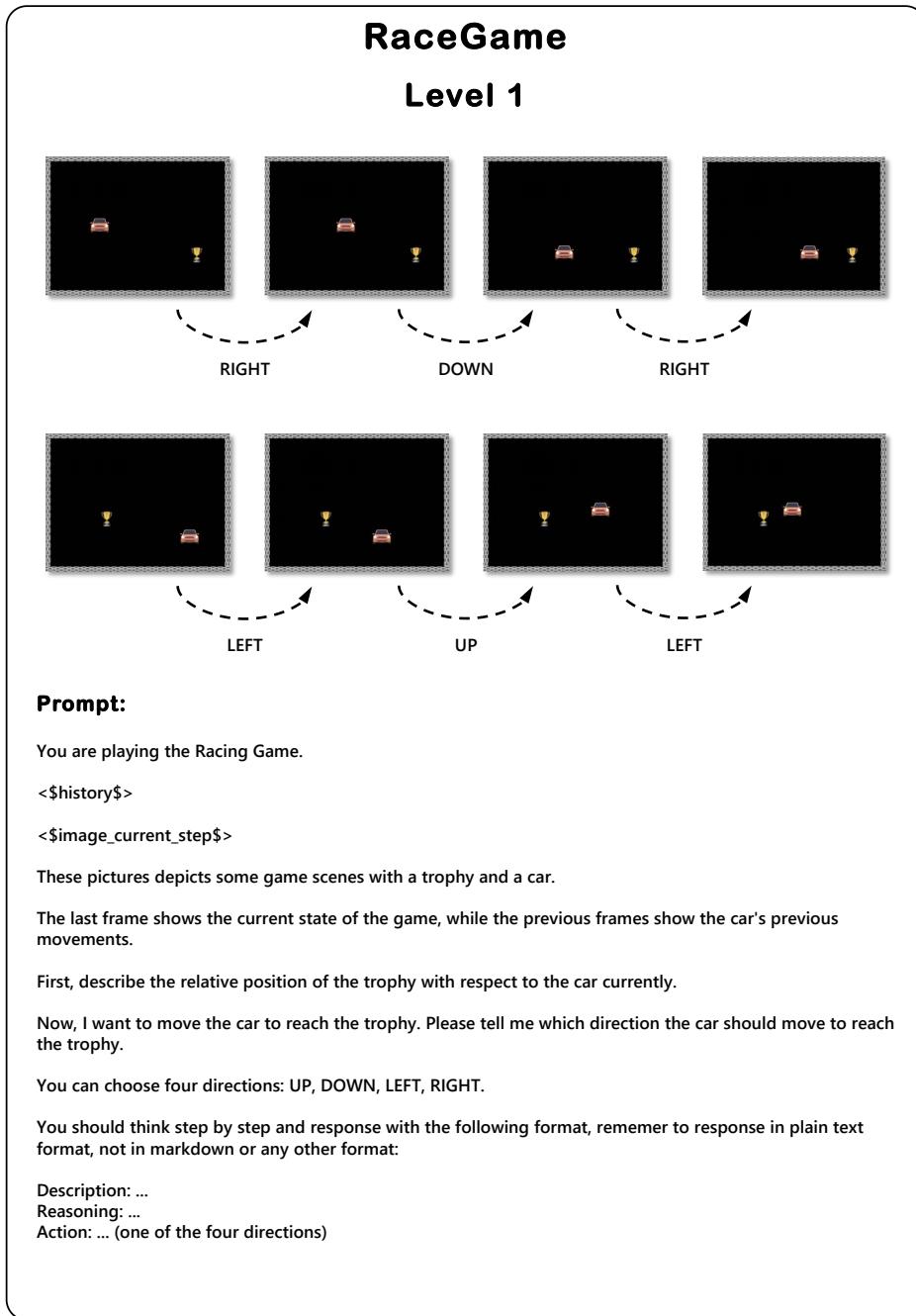
C.3 ORIGINAL SOURCES

1328 Thanks to the open-source community, we are able to leverage existing game codebases to build our
 1329 benchmark. Here are the codebases we used:
 1330

Table 28: Game Codebase Sources

Game	Codebase
Race	https://github.com/tdostilio/Race_Game
FlappyBird	https://github.com/agneay/pygame-projects/tree/master/Flappy%20Bird
Pong	https://github.com/pyGuru123/Python-Games/tree/master/Pong
SuperMario	https://github.com/mx0c/super-mario-python
Tempest Run	https://github.com/davidpendergast/pygame-summer-team-jam

1344 In most cases, the original codebases lacked comprehensive difficulty settings and level designs
 1345 suitable for systematic evaluation. We therefore modified the default human-oriented game config-
 1346 urations to adapt them for benchmarking purposes, while meticulously designing a diverse set of
 1347 challenging levels to ensure rigorous assessment.
 1348

1350 C.4 GAMES AND PROMPTS
13511352 All the games have been modified based on publicly available code. The detailed design is provided
1353 below:
1354
13551399 Figure 9: **RaceGame Level 1: Level Design and Prompt Overview.** The images showcase the
1400 scene from Level 1, illustrating the level design and corresponding prompt. Elements in the same
1401 level will randomly change their initial positions while maintaining consistent relative difficulty.
1402
1403

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

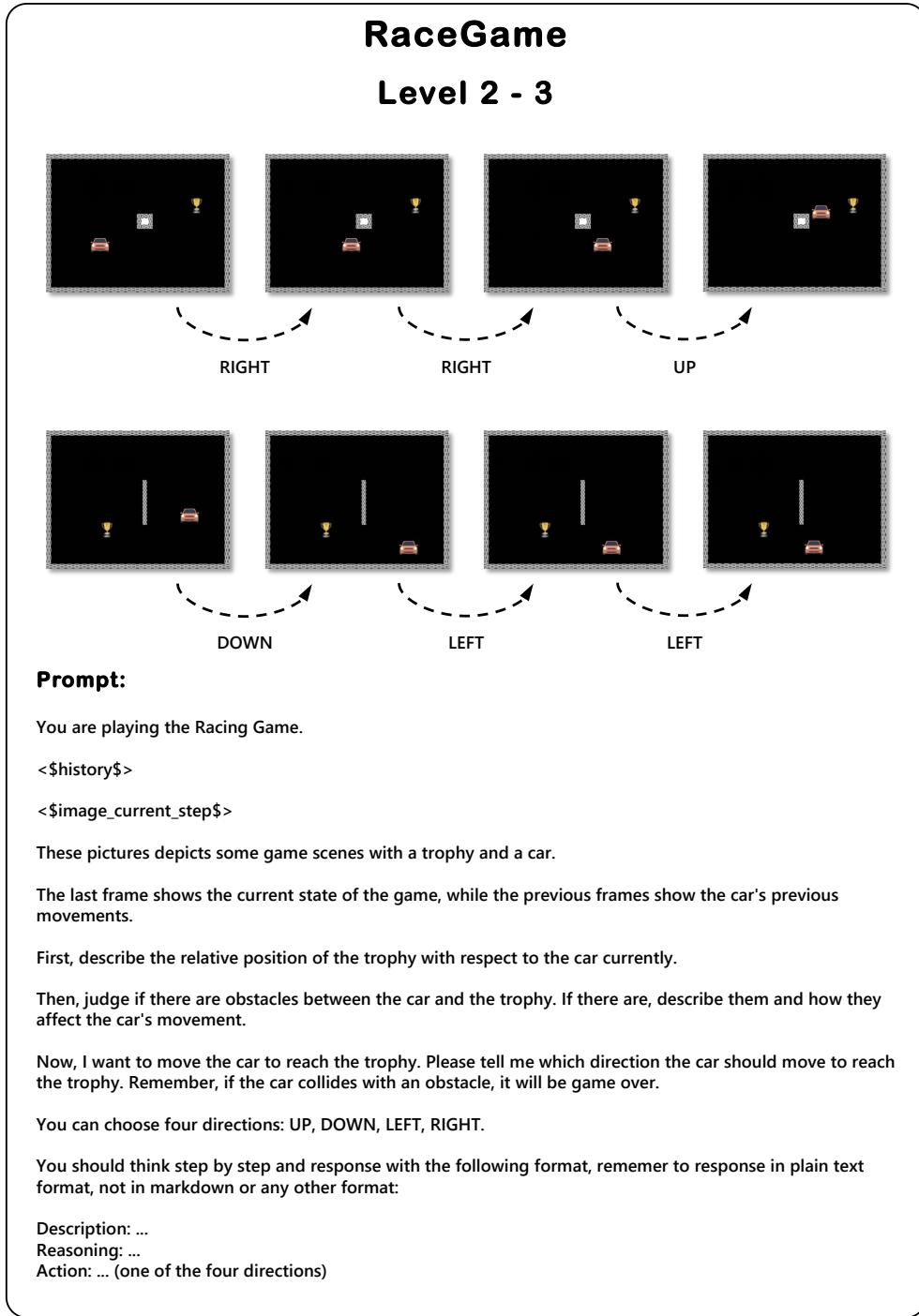


Figure 10: **RaceGame Level 2-3: Level Design and Prompt Overview.** The images showcase the scene from Level 2-3, illustrating the level design and corresponding prompt. Elements in the scene will randomly change their initial positions while maintaining consistent relative difficulty.

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

Prompt:

You are playing the Racing Game.

<\$image_current_step\$>

These pictures depicts some game scenes with a trophy and a car.

The last frame shows the current state of the game, while the previous frames show the car's previous movements.

First, describe the relative position of the trophy with respect to the car currently.

(Only for Level 2/3)

Then, judge if there are obstacles between the car and the trophy. If there are, describe them and how they affect the car's movement.

Now, I want to move the car to reach the trophy. Please tell me which direction the car should move to reach the trophy. Remember, if the car collides with an obstacle, it will be game over.

You can choose four directions: UP, DOWN, LEFT, RIGHT.

You should think step by step and response with the following format, rememer to response in plain text format, not in markdown or any other format:

Description: ...

Reasoning: ...

Action: ... (one of the four directions)

1506

1507

1508

1509

1510

1511

Figure 11: **RaceGame Level 1-3 No History: Level Design and Prompt Overview.** The images showcase the scene from Level 1-3 No History, illustrating the level design and corresponding prompt. Elements in the scene will randomly change their initial positions while maintaining consistent relative difficulty. Same as the original levels except the input sequence has been changed to the single image.

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

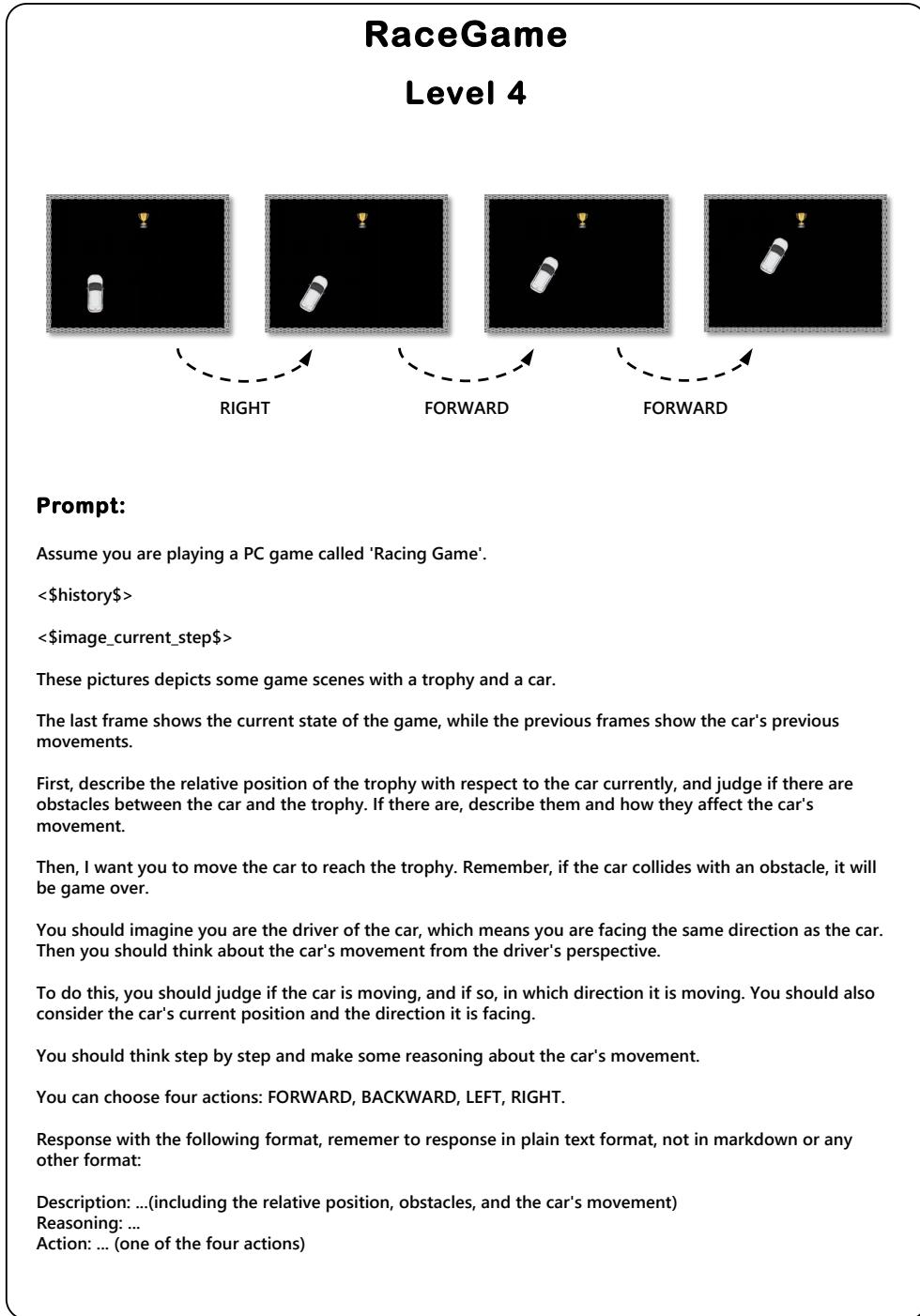
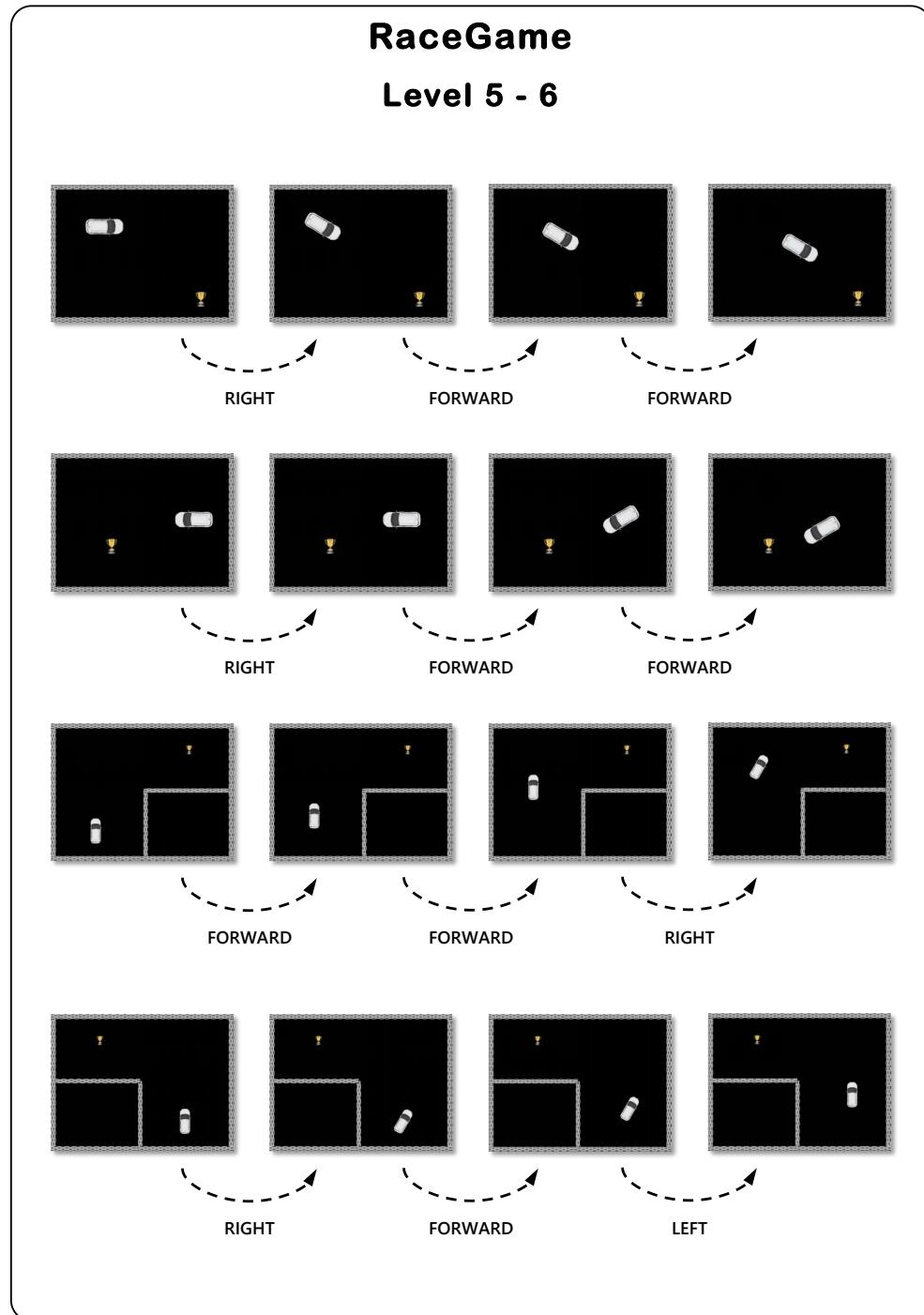


Figure 12: **RaceGame Level 4: Level Design and Prompt Overview.** The images showcase the scene from Level 4, illustrating the level design and corresponding prompt. Elements in the same level will randomly change their initial positions while maintaining consistent relative difficulty.

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614



1615 **Figure 13: RaceGame Level 5-6: Level Design and Prompt Overview.** The images showcase the
 1616 scene from Level 5-6, illustrating the level design and corresponding prompt. Elements in the same
 1617 level will randomly change their initial positions while maintaining consistent relative difficulty.
 1618 **The prompt is the same as in Level 4.**

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

Prompt:

1637 Assume you are playing a PC game called 'Super Mario'.

1638
1639 You need to control Mario, who can move in a two-dimensional space consisting of various platforms, enemies, and obstacles. Your goal is to navigate through the level, collect coins, avoid or defeat enemies, and reach the flagpole at the end of the stage. Avoid falling off the platforms, colliding with enemies, or being hit by obstacles.1640 Use the optimal combination of movements to progress through the level smoothly and efficiently. Monitor
1641 Mario's position relative to obstacles, platforms, and enemies.1642
1643 <\$history\$>1644
1645 <\$image_current_step\$>

1646 This screenshot represents the current step of the game.

1647 The last frame shows the current state of the game, while the previous frames show Mario's previous
1648 movements.1649
1650 **Important notes:**1651 1. Mario can jump (actions involving UP) only if he is on the ground or on a solid surface like a platform or
1652 pipe.
2. If Mario is in mid-air, he can only use LEFT or RIGHT to adjust his position, or NONE to continue falling or
1653 moving with momentum.

1654 You can make six types of actions to control Mario:

1655 1. UP: Makes Mario jump upward (only available when Mario is on the ground or solid platforms).
2. LEFT: Moves Mario left.
3. RIGHT: Moves Mario right.
4. UP+LEFT: Makes Mario jump upward and left simultaneously (only available when on the ground or solid
1656 platforms).
5. UP+RIGHT: Makes Mario jump upward and right simultaneously (only available when on the ground or
1657 solid platforms).
6. NONE: No new action is performed; Mario continues to be affected by gravity (if airborne) or momentum
1658 from previous movements.

1659 Note that DOWN has no effect and cannot be used, so you should never attempt to use it.

1660 You should think step by step and respond with the following format, remember to respond with plain text
1661 without any special characters or symbols, DO NOT respond in markdown or Latex format.1662
1663 Response:1664
1665 Observation: ... (Describe Mario's current position, nearby platforms, enemies, and obstacles.)

1666 Reasoning: ... (Think step by step and explain how you choose the action.)

1667 Action: ... (Choose one of the six actions to control Mario. Do NOT add any other words.)

1668

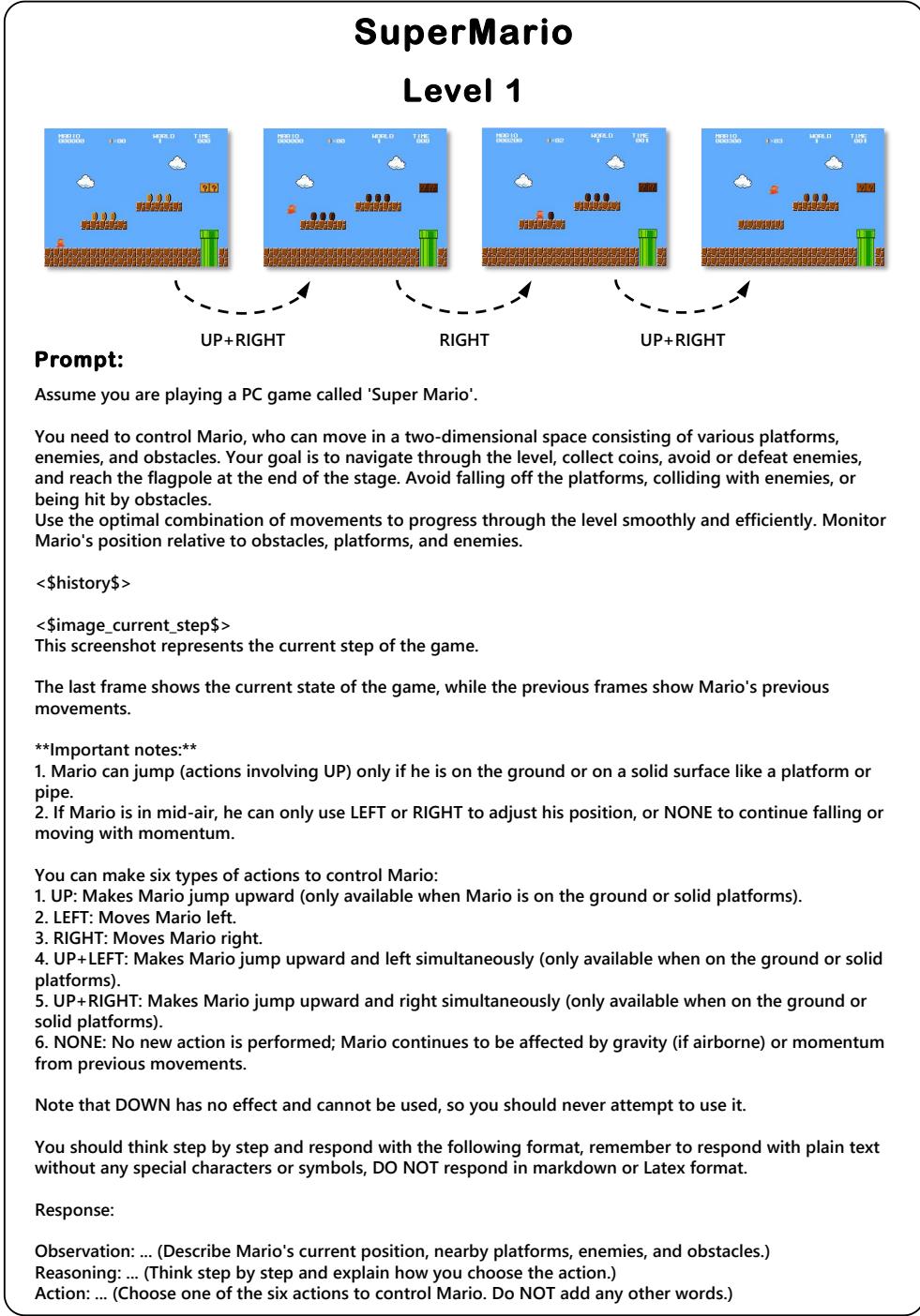
1669

1670

1671

1672

1673



1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

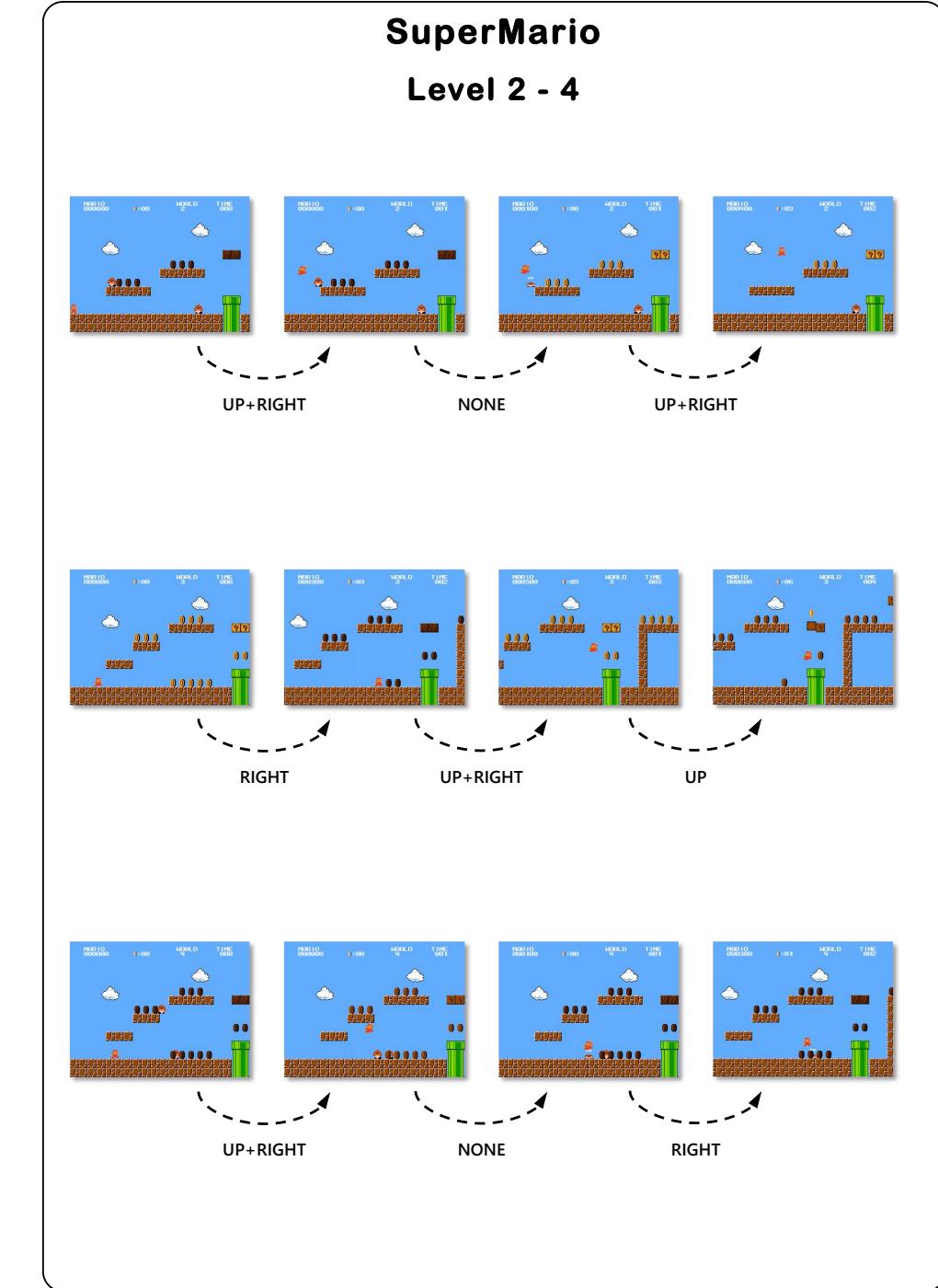


Figure 15: **SuperMario Level 2-4: Level Design and Prompt Overview.** The images showcase the scene from Level 2-4, illustrating the level design and corresponding prompt. **The prompt is the same as in Level 4.**

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

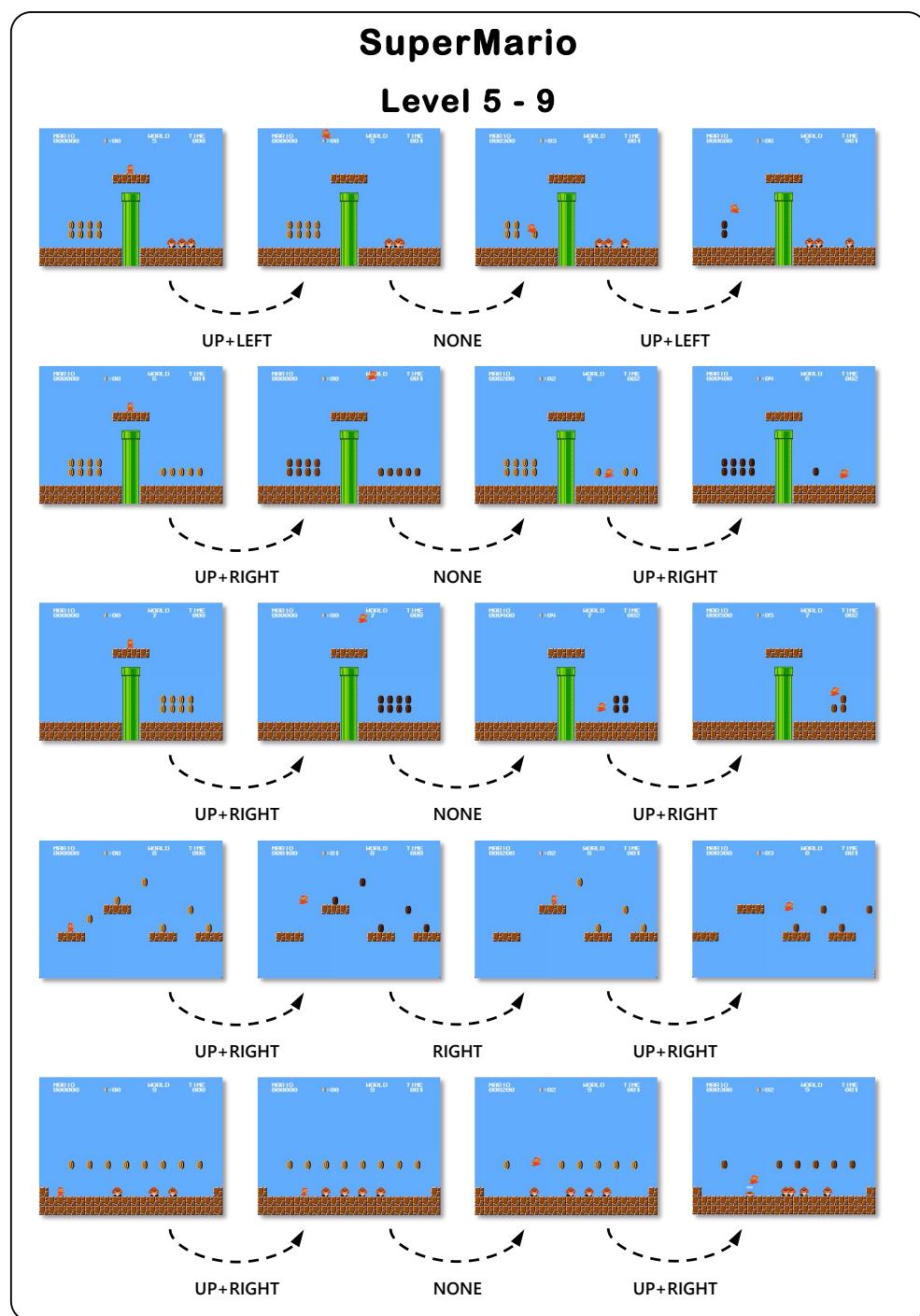


Figure 16: **SuperMario Level 5-9: Level Design and Prompt Overview.** The images showcase the scene from Level 5-9, illustrating the level design and corresponding prompt. **The prompt is the same as in Level 4.**

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

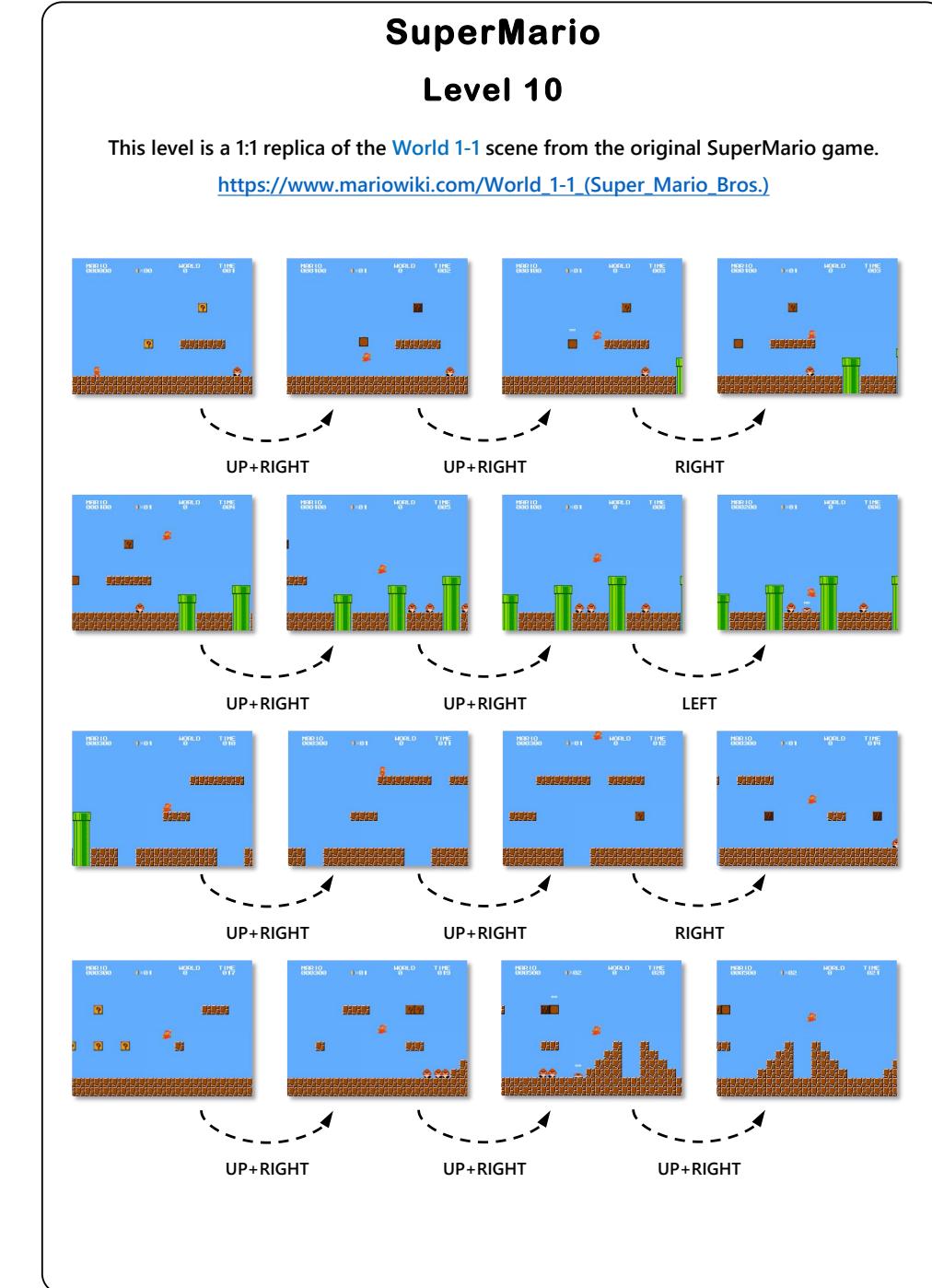


Figure 17: **SuperMario Level 10 (Standard Level): Level Design and Prompt Overview.** The images showcase the scene from Level 10, illustrating the level design and corresponding prompt. This is The standard level that matches the difficulty of the human game. **The prompt is the same as in Level 4.**

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

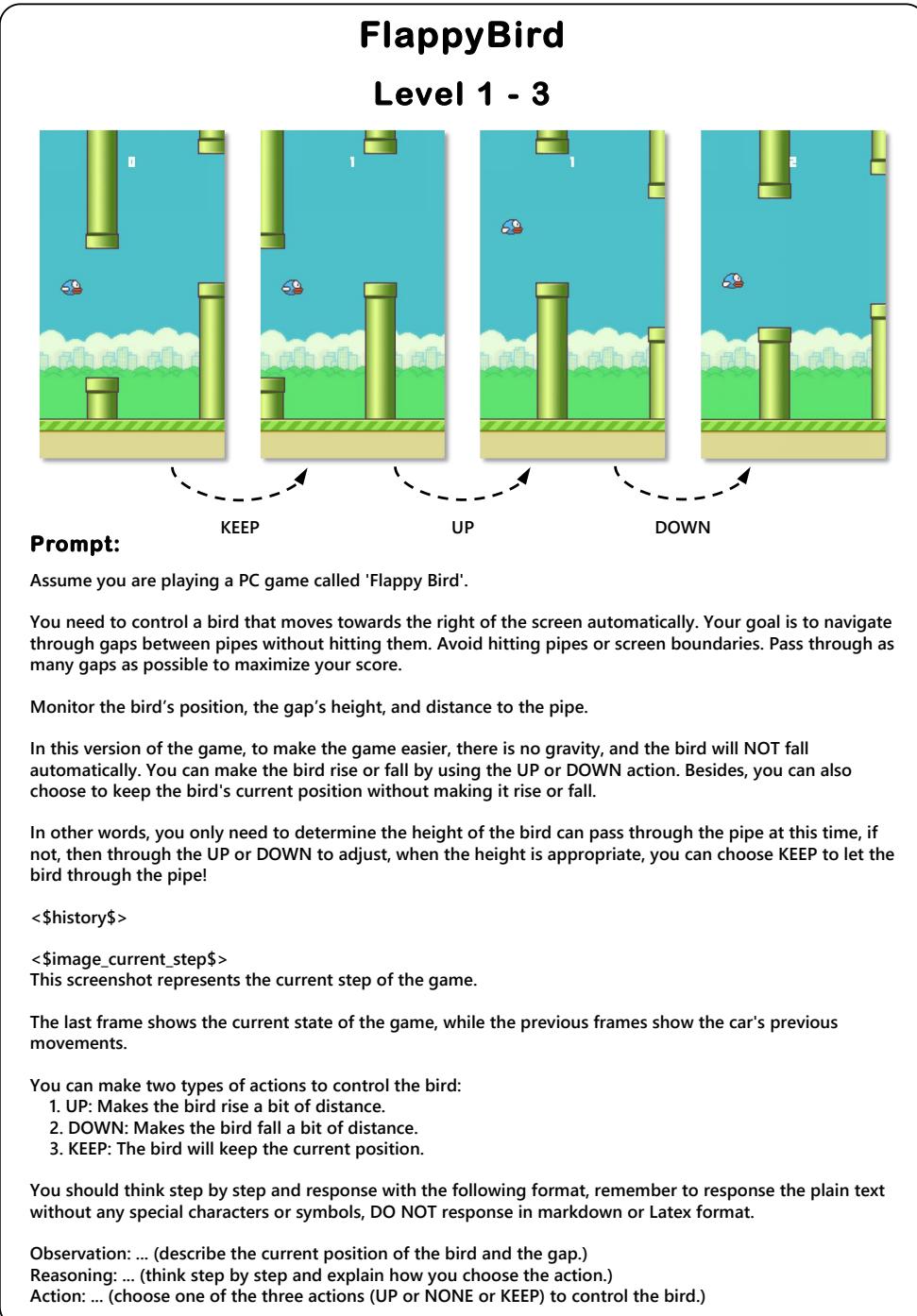


Figure 18: **FlappyBird Level 1-3: Level Design and Prompt Overview.** The images showcase the scene from Level 1, illustrating the level design and corresponding prompt. Levels are differentiated by the pipe gap width and the bird's forward speed. Elements in the same level will randomly change their initial positions while maintaining consistent relative difficulty.

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

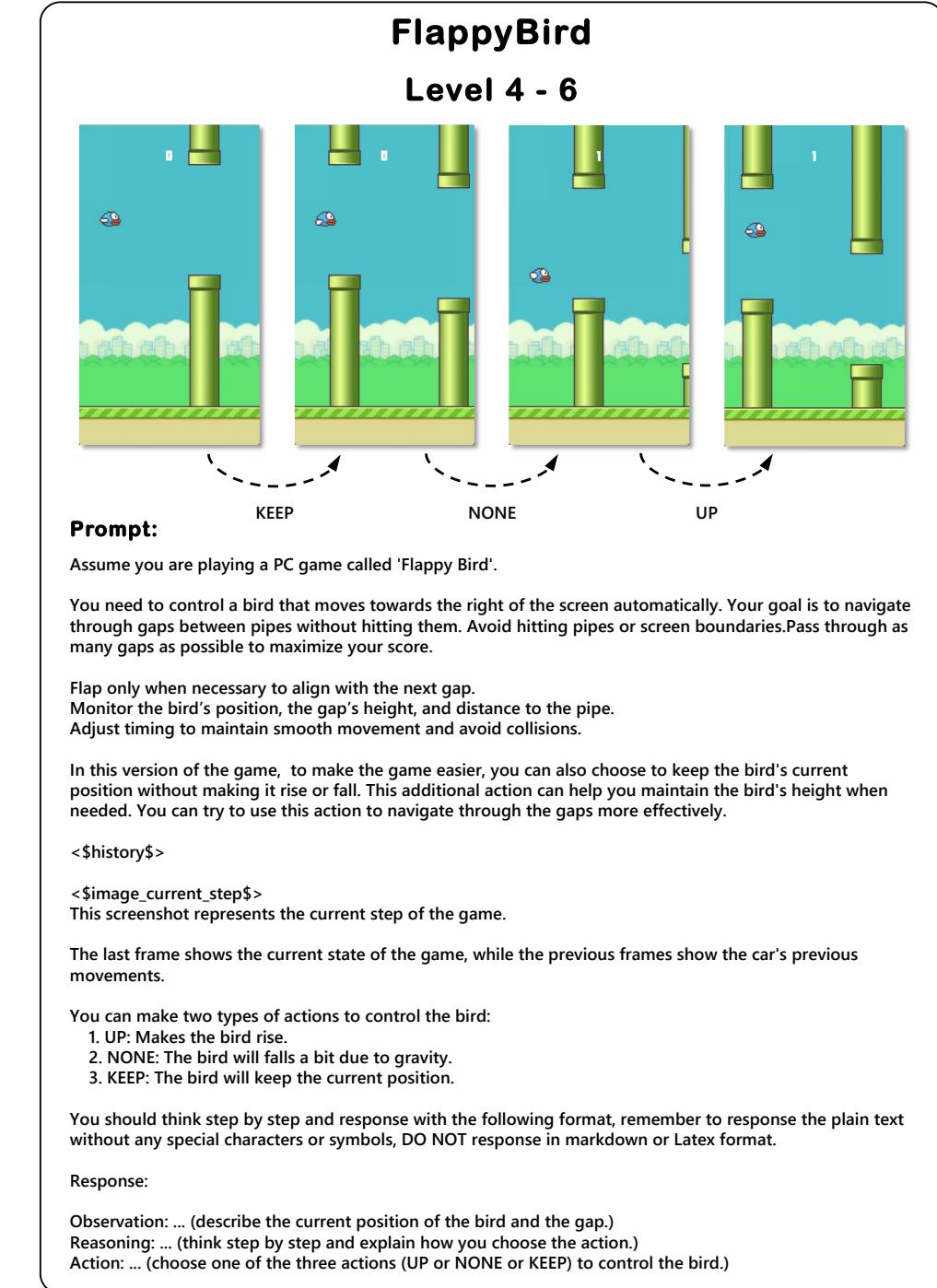


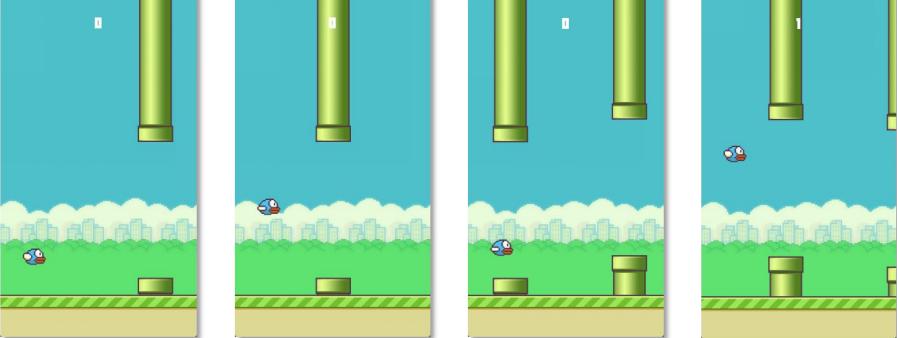
Figure 19: **FlappyBird Level 4-6: Level Design and Prompt Overview.** The images showcase the scene from Level 4, illustrating the level design and corresponding prompt. Levels are differentiated by the pipe gap width and the bird's forward speed. Elements in the same level will randomly change their initial positions while maintaining consistent relative difficulty.

1943

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

FlappyBird

Level 7



Prompt:

Assume you are playing a PC game called 'Flappy Bird'.

You need to control a bird that moves towards the right of the screen automatically. Your goal is to navigate through gaps between pipes without hitting them. Avoid hitting pipes or screen boundaries. Pass through as many gaps as possible to maximize your score.

Flap only when necessary to align with the next gap.
 Monitor the bird's position, the gap's height, and distance to the pipe.
 Adjust timing to maintain smooth movement and avoid collisions.

<\$history\$>

<\$image_current_step\$>
 This screenshot represents the current step of the game.

The last frame shows the current state of the game, while the previous frames show the car's previous movements.

You can make two types of actions to control the bird:

1. UP: Makes the bird rise.
2. NONE: The bird may fall a bit due to gravity.

You should think step by step and response with the following format, remember to response the plain text without any special characters or symbols, DO NOT response in markdown or Latex format.

Response:

Observation: ... (describe the current position of the bird and the gap.)
 Reasoning: ... (think step by step and explain how you choose the action.)
 Action: ... (choose one of the two actions (UP or NONE) to control the bird.)

Figure 20: **FlappyBird Level 7 (Standard Level): Level Design and Prompt Overview.** The images showcase the scene from Level 7, illustrating the level design and corresponding prompt. Elements in the same level will randomly change their initial positions while maintaining consistent relative difficulty. This is The standard level that matches the difficulty of the human game.

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

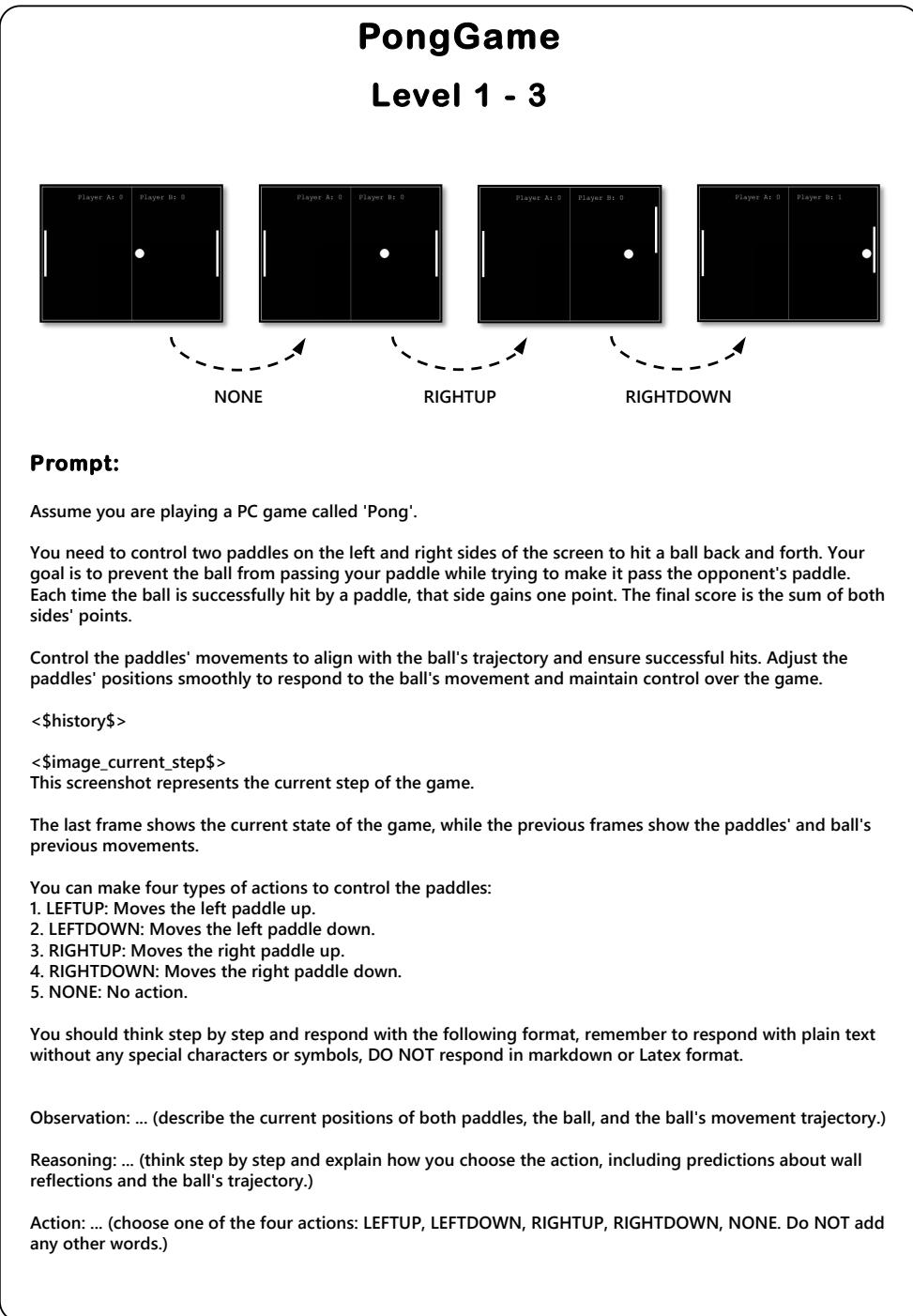


Figure 21: **PongGame Level 1-3: Level Design and Prompt Overview.** The images showcase the scene from Level 1, illustrating the level design and corresponding prompt. Levels are differentiated by the paddle width and the ping pong ball's speed. The ping pong ball in the same level will randomly change its initial position while maintaining consistent relative difficulty.

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

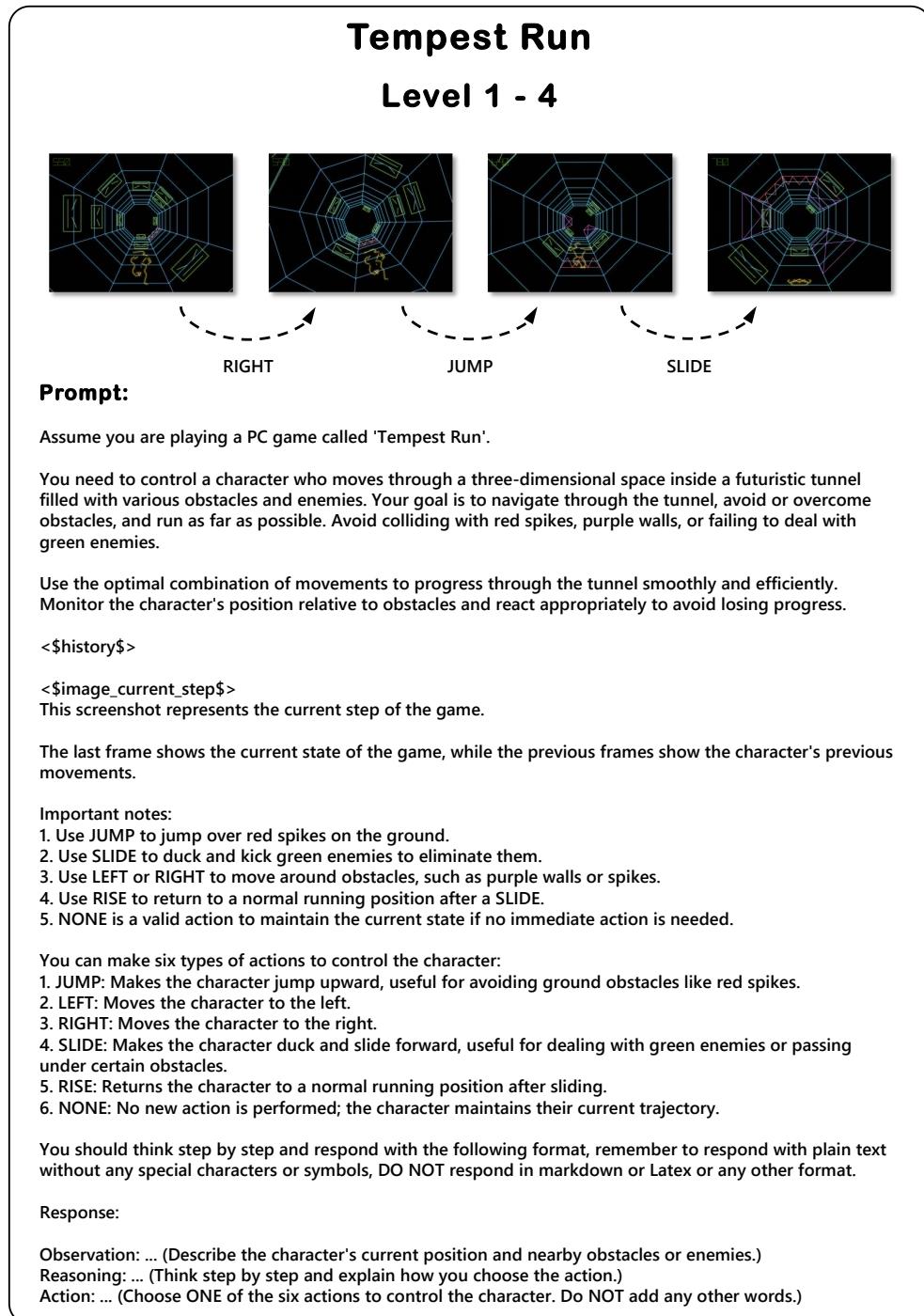


Figure 22: **Tempest Run Level 1-4: Level Design and Prompt Overview.** The images showcase the scene from Level 1, illustrating the level design and corresponding prompt. Levels are differentiated by the speed of barrier generation and the amount of visual information available. Elements in the same level will randomly change their initial positions while maintaining consistent relative difficulty.

2106 D ELO PERFORMANCE COMPARISON PROTOCOL DETAILS

2108 The core methodology for metrics evaluation in V-MAGE comprises two interconnected components: *performance comparison* and *statistical stabilization*.

2111 Performance Comparison Protocol.

2113 Each model begins with an initial Elo rating $R_m^{(0)} = 1500$, where $m \in \mathcal{M}$ represents the set of
 2114 candidate models. We conducted 100 evaluation rounds for each game level ℓ where models were
 2115 randomly paired in each round through a shuffle operation:

$$2117 \quad \mathcal{P}_t = \{(A_t, B_t) \mid A_t, B_t \stackrel{\text{rand}}{\sim} \mathcal{M}^\ell, A_t \neq B_t\} \quad (1)$$

2119 where A_t and B_t denote the paired models in round t .

2121 For paired models (A, B) , their game scores score_A and score_B are compared next. We first construct

$$2123 \quad f(m) = (\text{score}_m, \text{valid_rate}_m) \quad (2)$$

2124 where valid_rate_m represents the proportion of actions output by model m in this game round that
 2125 conform to the formatting requirements. The outcome $(S_A, S_B) \in \{(1, 0), (0, 1), (0.5, 0.5)\}$ is
 2126 determined by:

$$2128 \quad (S_A, S_B) = \begin{cases} (1, 0) & \text{if } f(A) \succ f(B) \\ (0, 1) & \text{if } f(A) \prec f(B) \\ (0.5, 0.5) & \text{otherwise} \end{cases} \quad (3)$$

2132 The rating update mechanism follows the classical Elo formulation with enhanced stability controls.
 2133 For models A and B with pre-match ratings R_A and R_B , their expected performance is calculated
 2134 as:

$$2136 \quad E_A = \frac{1}{1 + 10^{(R_B - R_A)/400}}, \quad E_B = \frac{1}{1 + 10^{(R_A - R_B)/400}} \quad (4)$$

2138 where the denominator base 10 and scaling factor 400 establish a logarithmic relationship between
 2139 rating differences and expected outcomes. The post-match ratings become:

$$2141 \quad R'_A = R_A + K(S_A - E_A) \quad (5)$$

$$2142 \quad R'_B = R_B + K(S_B - E_B)$$

2144 where K is a constant determining the sensitivity of the rating system (typically set to 32),

2146 Stabilization through Randomized Iteration.

2148 To ensure the robustness of rating updates, V-MAGE implements multi-pass stabilization protocol.
 2149 All historical comparisons are aggregated into a win/loss pool:

$$2151 \quad \mathcal{W} = \bigcup_{g \in \mathcal{G}} \bigcup_{\ell \in \mathcal{L}_g} \bigcup_{t=1}^N (A_{g\ell t}, B_{g\ell t}, S_A^{g\ell t}, S_B^{g\ell t}) \quad (6)$$

2154 which undergoes $T = 10^4$ independent shuffles. For each permutation $\pi_i(\mathcal{W})$, complete rating
 2155 recalculation yields $R_m^{(i)}$. The final stabilized rating combines these trials:

$$2158 \quad \bar{R}_m = \frac{1}{T} \sum_{i=1}^T R_m^{(i)} \quad (7)$$

2160 E ABLATION STUDY ON PIPELINE SETTINGS
21612162 E.1 IMPACT OF HISTORY SAMPLING CONFIGURATION
2163

2164 we conducted supplementary experiments on the **Qwen2.5-VL-7B** and **Qwen2.5-VL-72B** models
2165 using various history strategies (including increasing the number of history steps and altering sam-
2166 pling methods). The results are presented in the tables below. These scores were calculated as a
2167 percentage of model scores versus human performance in a manner similar to Figure 4.

2168 In the default setting of our main experiments, the history sampling configuration is one where
2169 decisions are made using information from the most recent **3steps**, and the game screen is sampled
2170 every **3frames**.

2172 Table 29: Performance comparison of different history strategies for Qwen2.5-VL 7B and 72B
2173 models.

Game	Qwen2.5-VL-7B					Qwen2.5-VL-72B				
	3steps_2sample	3steps_5sample	3steps	5steps	8steps	3steps_2sample	3steps_5sample	3steps	5steps	8steps
race	11.20	11.20	12.60	11.20	12.40	30.00	29.00	29.60	32.60	33.60
supermario	20.10	22.10	22.60	22.80	21.20	34.50	33.90	42.10	36.40	39.80
pong	3.30	4.30	3.70	4.00	4.30	4.50	3.90	4.10	4.80	5.00
flappybird	6.70	11.20	3.40	2.10	5.00	17.70	13.10	8.10	13.30	13.60
tempestrun	18.80	17.80	21.10	18.80	17.80	22.00	21.10	24.80	22.70	23.70
average	12.02	13.32	12.68	11.78	12.14	21.74	20.20	21.74	21.96	23.14

2185 Table 30: Performance comparison of different frame sampling strategies for Qwen2.5-VL 7B and
2186 72B models.

Game	Qwen2.5-VL-7B				Qwen2.5-VL-72B			
	8frames	5frames	3frames	1frames	8frames	5frames	3frames	1frames
race	13.80	11.60	12.60	10.40	19.60	27.20	29.60	26.00
pong	4.00	3.90	3.70	4.50	4.80	5.90	4.10	7.60
flappybird	3.40	5.70	3.40	7.60	10.80	14.00	8.10	14.10
tempestrun	19.00	19.30	21.10	16.50	23.40	18.50	24.80	26.60
average	10.05	10.13	10.20	9.75	14.65	16.40	16.65	18.58

2199 The experimental results show that simply increasing the length of the history window (e.g., from 3
2200 to 8 steps) does not yield significant performance gains. This finding supports our core argument:
2201 the bottleneck for current MLLMs lies **not in the quantity** of historical information they receive,
2202 but in their ability to **understand and utilize** this dynamic visual information.

2204 Therefore, we chose a 3-frame history as our baseline configuration. This provides the necessary
2205 temporal context while establishing a fair, simple, and effective standard for exposing the models'
2206 core deficiencies, without confounding the evaluation with complex agent strategies.

2207 As mentioned in the main text, to investigate the impact of settings within the sampling strategies
2208 on anchoring bias, we also conducted relevant experiments, with the results presented in Appendix
2209 F.3.2.

2210 E.2 IMPACT OF INPUT RESOLUTION
2211

2213 To systematically investigate the impact of input resolution on model performance, we conducted a
new set of experiments, testing the **Qwen2.5-VL 7B** and **72B** models on four different resolutions.

The resolutions from 120 to 480 refer to images with heights of 120 to 480 pixels, respectively, with the width scaled according to the original aspect ratio. We selected these four resolutions to cover different levels of visual detail, from low to high. In the `default` setting of our main experiments, the model’s input resolution was **360** pixels height. The scores were calculated as a percentage of model scores versus human performance in a manner similar to Figure 4. The results are presented in Table 31.

Table 31: Performance comparison of Qwen2.5-VL 7B and 72B models across different input resolutions (height in pixels). Scores are percentages relative to human performance.

Game	Qwen2.5-VL 7B				Qwen2.5-VL 72B			
	120 (7B)	240 (7B)	360 (7B)	480 (7B)	120 (72B)	240 (72B)	360 (72B)	480 (72B)
race	9.80	10.60	12.60	11.00	15.80	23.60	29.60	28.20
supermario	17.50	21.70	22.60	17.20	38.90	44.90	42.10	47.90
pong	4.00	3.90	3.70	3.60	3.50	3.50	4.10	3.60
flappybird	4.40	5.40	3.40	9.80	7.70	12.70	8.10	12.00
tempestrun	19.60	19.10	21.10	18.50	19.60	24.30	24.80	22.50
average	<i>11.06</i>	<i>12.14</i>	12.68	<i>12.02</i>	<i>17.10</i>	<i>21.80</i>	<i>21.74</i>	22.84

This data reveals a nuanced relationship: for the more capable 72B model, the overall performance trend improves with higher resolution, peaking at 480px. This suggests it can benefit from the finer details in higher-resolution images. However, for the smaller 7B model, performance peaks at our default setting of 360px and declines at the higher 480px resolution.

This indicates that the relationship between model performance and input resolution is **not simply linear**. For less capable models, excessive resolution might introduce ‘noise’ that they struggle to filter effectively, thereby interfering with their decision-making process.

2268 **F ADDITIONAL EXPERIMENTAL DETAILS**
22692270 **F.1 UNIT TESTS FOR CORE VISUAL ABILITIES EXPERIMENT**
22712272 Table 32: Basic visual capabilities and their corresponding simple game levels.
2273

2274 Visual Abilities	2275 Game	2276 Levels
2276 Tracking	2277 Pong	2278 1, 2, 3
2277 Positioning	2278 Race	2279 1, 1_no_history
2278 Visual Grounding	2279 TempestRun	2280 1
2279 Timing	2280 FlappyBird	2281 1, 2, 3

2281 The unit testing framework conducts a systematic assessment of fundamental visual capabilities by
2282 drawing from the comprehensive V-MAGE benchmark. In each carefully designed level of a game, a
2283 random baseline score is first determined by averaging scores from random actions. Following this,
2284 the performance of each evaluated model on the said level is quantified by calculating the percentage
2285 of rounds where the model’s score outperforms this established random baseline. The specific game
2286 levels used for assessing each ability are listed in Table 32.

2287 As illustrated in Figure 5, model performances across representative levels for four fundamental vi-
2288 sual competencies reveal critical insights: In tracking tasks requiring cross-frame analysis, nearly all
2289 models underperform random baselines. This indicates that while current models achieve reasoning
2290 through caption-based approaches in single-frame tasks, they struggle to extract discriminative fea-
2291 tures in multi-frame scenarios requiring fine-grained spatiotemporal comparisons. The quantitative
2292 results for each model across the four core visual abilities are presented in Table 33.

2293 Table 33: Performance of MLLMs on Core Visual Ability Unit Tests (% Exceeding Random Base-
2294 line)
2295

2297 Model	2298 Positioning	2299 Tracking	2300 Visual Grounding	2301 Timing
2300 Qwen2VL 7B	0.50	0.27	0.56	0.36
2301 Qwen2VL 72B	0.76	0.26	0.70	0.43
2302 Qwen2.5VL 72B	0.88	0.25	0.68	0.51
2303 InternVL2.5 78B	0.82	0.33	0.66	0.49
2304 InternVL2.5 8B	0.60	0.28	0.55	0.39
2305 Gemini-2.0-Flash	0.68	0.32	0.70	0.51
2306 GPT4o	0.98	0.29	0.66	0.58

2309 It is important to interpret the results of these unit tests within their intended scope. Designed to
2310 assess fundamental visual competencies, these tests utilize a random baseline score as the primary
2311 reference point. While a model significantly outperforming this random baseline indicates a degree
2312 of relevant reasoning ability in that specific task dimension, it does not necessarily imply a high level
2313 of overall competence. The random baseline represents minimal performance, and even achieving
2314 scores far exceeding it on these foundational tests serves primarily to diagnose basic capabilities
2315 rather than validate advanced mastery required for complex gameplay.

2317 **F.2 PERCEPTUAL SKIPPING EXPERIMENT**
2318

2319 To further investigate the interplay between visual perception and reasoning, we conducted supple-
2320 mentary experiments where textual descriptions of the game state were provided, effectively bypassing
2321 the visual perception module (see Table 34 for detailed results on Flappy Bird Level 3 and Pong
Level 2).

Table 34: Model performance on simple levels with and without textual state information.

Model	Flappy Bird		Pong	
	w/o Text	w/ Text	w/o Text	w/ Text
Qwen2.5VL 7B	0.8	0.35	0.19	0.25
InternVL2.5 8B	0.31	0.76	0.19	0.31
Qwen2.5VL 72B	0.35	2.17	0.21	1.19
InternVL2.5 78B	0.59	2.39	0.16	0.52
GPT4o	0.57	4.55	0.20	3.89
Gemini-2.0-Flash	0.42	4.89	0.32	>10
random	0.52		0.18	
human	> 10		> 10	

The results indicate that alleviating the perceptual challenge generally improves performance, particularly for larger models like GPT-4o and the 72B/78B parameter models, supporting the hypothesis that visual perception is a significant bottleneck. However, even with this intervention, model scores remained substantially lower than the human baseline (>10), underscoring the presence of critical reasoning and planning deficiencies beyond visual perception, as discussed earlier.

Notably, the performance gains from text input were more pronounced for larger models, suggesting their enhanced capacity to leverage structured textual information for reasoning, whereas smaller models exhibited less consistent benefits or even performance degradation in some cases. This finding further highlights that while perception is a challenge, fundamental reasoning limitations persist across models and are not fully overcome even when provided with simplified, textual state representations.

F.3 ANCHORING BIAS EXPERIMENTS

F.3.1 DETAILS AND EXAMPLES

Table 35: Average number of rounds for each model to generate different responses.

Model	Race	FlappyBird	Pong	TempestRun	Avg.
Qwen2VL 7B	4.3	25.9	13.7	7.3	12.8
Qwen2.5VL 72B	2.3	19.3	2.6	5.3	7.4
InternVL2.5 8B	2.0	6.9	6.7	8.0	5.9
InternVL2.5 78B	6.8	16.0	2.0	3.0	7.0
GPT4o	1.0	1.6	1.0	1.0	1.1
PCC r (Avg. Rounds vs. ELO)	-0.63	-0.86	-0.88	-0.64	-0.75

Due to the possibility of models receiving identical visual inputs over multiple rounds in Super Mario (e.g., being stuck in a corner), we conducted a statistical analysis using lots of rounds of responses from each model across the other four games. This was done by iterating through the recorded interactions for each level and measuring the number of sequential rounds where the model’s output response remained unchanged. The average of these durations across interactions within a game provides the metric presented in Table 35.

The results indicate that GPT-4o updates its responses more actively and frequently when the visuals change, while other models do so less frequently. This may suggest that GPT-4o is more sensitive to subtle visual updates, enabling it to make timely inferences and more accurately track game progress.

In the example of Figure 23, GPT-4o’s response during the final interaction is as follows:

Figure 23: In the prior reasoning processes, GPT-4o accurately identified the car’s orientation relative to the trophy’s position. However, in the final reasoning instance, due to anchoring bias, the model misinterpreted previous historical information and incorrectly assumed that the car’s orientation was already directed toward the trophy. Consequently, despite correctly determining the direction, the model executed an erroneous action.

Description: The car is currently facing diagonally towards the **bottom-right** of the screen. The trophy is positioned near the car, slightly to the **right**. There are no visible obstacles between the car and the trophy, indicating a clear path. The car has been moving consistently forward in the previous steps, maintaining its alignment towards the trophy.

Reasoning: Given the car’s orientation towards the trophy and the absence of obstacles, the car’s current position and direction remain favorable for reaching the trophy. Continuing to move forward is the most efficient strategy to maintain the direct path to the trophy. The car’s current trajectory should allow it to reach the trophy without any adjustments.

Action: FORWARD

F.3.2 IMPACT OF FRAME SAMPLING AND DECISION FREQUENCY

To further quantify the relationship between perceptual sensitivity and anchoring bias, we have conducted a deeper quantitative exploration of the relationship between anchoring bias and model performance. To more objectively measure a model’s reaction to dynamic changes in the game world, we introduced a new metric: **Average Response Game Frames** (abbreviated as ‘avg frames’ in the results). This metric is calculated by:

$$(\text{sampling interval}) \times (\text{average rounds to generate different responses})$$

and represents **how many game frames, on average, have elapsed before a model makes a substantive change in its reasoning**.

We performed a series of experiments with different sampling strategies, first testing the Qwen2.5VL-72B model. The results are as follows:

Table 36: Performance of Qwen2.5VL-72B under different frame sampling strategies. The top section shows response frequency metrics, while the bottom shows game scores.

Game	8frames	5frames	3frames(default)	1frames
<i>Average Response Game Frames</i>				
race	5	1.8	2.3	10.8
pong	1.7	1.7	2.6	19.7
flappybird	1.5	2.3	19.3	64.2
tempestrun	1.8	14.2	5.3	23.2
avg request	2.5	5	7.4	29.5
avg frames	20	25	22.2	29.5
<i>Game Score</i>				
race	19.60	27.20	29.60	26.00
pong	4.80	5.90	4.10	7.60
flappybird	10.80	14.00	8.10	11.90
tempestrun	23.40	18.50	24.80	26.60
avg score	14.65 ↓2.00	16.40 ↓0.25	16.65 ↑0.00	18.03 ↑1.38

Stable ‘visual reaction threshold’ in strong models: From the avg frames metric, the Qwen2.5VL-72B model demonstrates remarkable consistency across different sampling strategies, with its av-

verage response time stabilizing within a narrow range of **20-30** game frames. This suggests that the model possesses a relatively constant intrinsic reaction threshold, where a certain amount of accumulated visual change triggers a shift in its reasoning.

Regarding task score (avg score): The 72B model’s performance clearly improves as the sampling interval decreases, with the highest score achieved at the highest decision frequency (1-frame interval). Under such high-frequency decision-making, the model can capture crucial task timings with the highest precision. As the decision frequency decreases, the opportunities for the model to take appropriate action at the right moment are reduced, thus leading to a drop in performance.

Next, we compared the **Qwen2.5VL-7B** and **72B** models under the same sampling strategies:

Table 37: Comparison of Qwen2.5VL-7B and 72B models across sampling strategies. The 72B model shows a consistently lower reaction threshold (avg frames) and higher scores.

Game	8frames	5frames	3frames	1frames
Qwen2.5VL-7B				
avg request	13.5	12.5	34.7	97.8
avg frames	108.0	62.5	104.1	97.8
avg score	10.1	10.1	10.2	9.8
Qwen2.5VL-72B				
avg request	2.5	5	7.4	29.5
avg frames	20.0 \downarrow 88.0	25.0 \downarrow 37.5	22.2 \downarrow 81.9	29.5 \downarrow 68.3
avg score	14.7 \uparrow 4.6	16.4 \uparrow 6.3	16.7 \uparrow 6.5	18.6 \uparrow 8.8

The correlation between the "visual reaction threshold" and "task score" remains clear when comparing across models. The 72B model exhibits a **lower** Average Response Game Frames (indicating higher perceptual sensitivity) and a **higher** task score, while the 7B model shows the opposite. This is consistent with the conclusions about anchoring bias: a more powerful model possesses greater sensitivity to dynamic visual perception, which forms the basis for more accurate decision-making in interactive tasks.

F.4 ANALYSIS OF GPT4O ERRORS IN V-MAGE

We have collected **2,351** prompt-response pairs generated by GPT-4o while completing all levels for 1 to 5 rounds. From these, **494** examples were randomly and uniformly sampled for manual error annotation. The frequency of occurrence for various error types is presented in Table 38.

Table 38: Error count by error type and game environment

Error Type	FlappyBird	Pong	Race	SuperMario	TempestRun
no error	30	18	54	88	21
perception error	80	26	26	47	42
direction error	2	19	13	16	8
recognition error	1	0	0	0	5
perception incomplete	3	0	8	10	10
reasoning error	24	4	9	10	6
history misinterpretation	21	0	1	6	2
action inappropriate	0	0	5	0	0
inconsistency	0	0	14	1	0
instruction following	0	0	2	0	0

The definitions of each error type are presented as follows:

- **no error:** There is no error in the response.
- **perception error:** Description misinterpreted elements.

2484 • **direction error:** A type of perception error. Confused directions (e.g., LEFT/RIGHT)
2485 • **recognition error:** A type of perception error. Failed to identify key objects/elements.
2486 • **perception incomplete:** Description missed important elements in the scene.
2487 • **reasoning error:** Flawed logic in the reasoning section for the chosen action.
2488 • **history misinterpretation:** A type of reasoning error. Misunderstood the game history.
2489 • **action inappropriate:** A type of reasoning error. The chosen Action is clearly wrong given
2490 the Observation/Reasoning.
2491 • **inconsistency:** Inconsistent action plans in multiple response processes.
2492 • **instruction following:** Failed to follow instructions in the prompt.
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

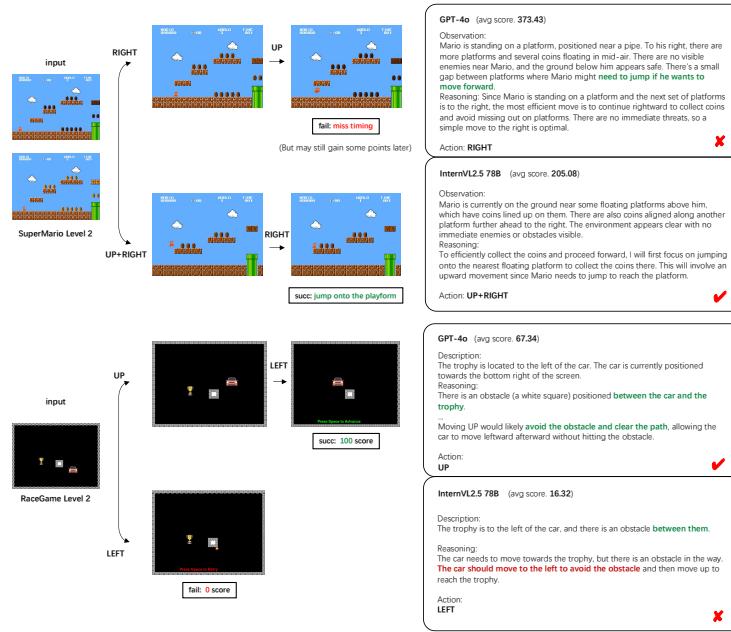
2538 G CASE STUDY
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Figure 24: case studies group 1.

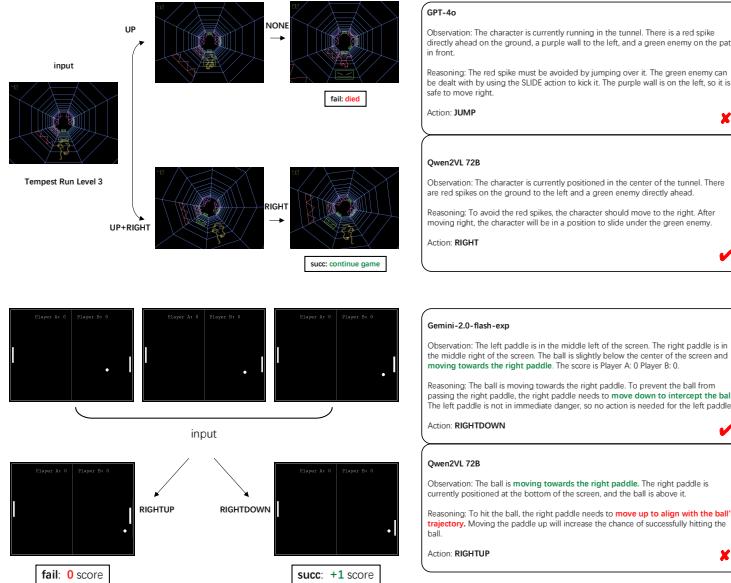


Figure 25: case studies group 2.

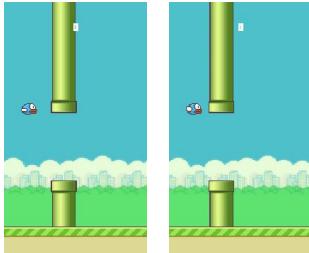
2592
2593
2594
2595

2596 **History Misinterpretation**

2597
2598
2599
2600
2601
2602
2603
2604
2605
2606 Observation: The bird is positioned slightly below the middle of the screen. The gap in the pipes is directly ahead and is approximately at the same vertical level as the bird's current position.
2607
2608
2609 Reasoning: The bird has maintained its position over the past several steps, which indicates it has been consistently aligned with the gap. As there has been no change in the relative positions of the bird and the gap, and since the game continues without any issues, there is no need to make any vertical adjustments. Keeping the current altitude will allow the bird to safely pass through the gap.
2610
2611
2612
2613
2614 Action: KEEP
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Observation: The bird is positioned slightly below the middle of the screen. The gap in the pipes is directly ahead and is approximately at the same vertical level as the bird's current position.
Reasoning: In the previous steps, the bird was well-aligned with the gap, and **the choice to keep the bird's position allowed it to pass safely through the pipes**. Since the bird's position relative to the gap has remained consistent and aligned over these steps, maintaining the current altitude should continue to be a successful strategy. There is no indication of any necessary adjustment as the gap is still aligned with the bird's current trajectory.
Action: KEEP

Perception error



Observation: The bird is currently positioned slightly below the center of the gap in the upcoming pipe. The alignment seems appropriate for passing through the gap without hitting the pipes.
Reasoning: In the previous steps, the bird's position was maintained because it was already at an **optimal height to pass through the gap**. The current frame shows that the bird is still **well-aligned with the center of the gap**. There has been no indication of any change in the gap's position or size that would necessitate an adjustment. Since there is no gravity affecting the bird, it will maintain its current height, ensuring it passes through without any collision risk.
Action: KEEP

Incomplete perception

Description: The trophy is currently located to the left of the car.
Reasoning: The car is positioned to the right of the trophy, and there are no visible obstacles directly between the car and the trophy.
Action: LEFT
(No obstacle locations observed)

Figure 26: Error analysis in GPT4o cases.

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

Inconsistency

Description: The trophy is currently positioned to the right of the car.

Reasoning: There is an obstacle, which appears to be a wall, located between the car and the trophy. The obstacle is directly in the path if the car attempts to move **RIGHT** towards the trophy. Therefore, the car should avoid moving directly towards the obstacle and instead find an alternative path.

Action: **UP**

Description: The trophy is located to the right and slightly below the car.

Reasoning: There is an obstacle (a square block) directly between the car and the trophy. Moving directly to the right would result in a collision with the obstacle. Therefore, the car must first navigate around the obstacle by moving **DOWNWARD**, then move to the right to approach the trophy safely.

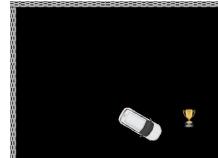
Action: **DOWN**

Action Inappropriate

Description: The trophy is to the right of the car.

Reasoning: The trophy is directly to the right of the car. There is a vertical obstacle (a wall) between the car and the trophy. The car needs to **avoid colliding with the obstacle** to reach the trophy.

Action: **RIGHT**

Perception error

Description: The car is currently facing diagonally towards the bottom-right of the screen. The trophy is positioned in front of the car, slightly to the right. There are no visible obstacles between the car and the trophy, indicating a clear path. The car has been moving consistently forward in the previous steps, maintaining its alignment towards the trophy.

Reasoning: Given the car's orientation towards the trophy and the absence of obstacles, the car's current position and direction remain favorable for reaching the trophy. Continuing to move forward is the most efficient strategy to maintain the direct path to the trophy. The car's current trajectory should allow it to reach the trophy without any adjustments.

Action: **FORWARD**

Figure 27: Error analysis in GPT4o cases.

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

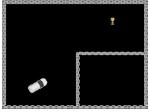
2753

Direction Error

Description: The trophy is located to the top-left of the car. The car is currently facing diagonally upwards to the right side of the screen. There is an obstacle (a wall) directly to the left and slightly above the car, which separates it from the trophy. To reach the trophy, the car must navigate around this wall without colliding with any obstacles. The car is currently not moving but is positioned at an angle facing towards the top-right corner of the screen.

Reasoning: Since the car is facing diagonally upwards to the right, the immediate path to the trophy is obstructed by the wall directly to the left and slightly above. The car needs to move upwards and then turn left to navigate around the wall towards the trophy. From the driver's perspective, the car needs to first orient itself to face upwards more directly. The immediate action should be to adjust the car's direction by turning LEFT, which will help the car face upwards, allowing it to maneuver around the wall and approach the trophy.

Action: LEFT

Action Inappropriate

Description: The trophy is positioned in the upper-right corner of the frame, relative to the car's current position. The car is facing directly towards the right side of the frame. There is a vertical wall directly in front of the car, which extends upwards and prevents the car from moving forward directly towards the trophy. This wall creates a barrier between the car and the trophy, so the car cannot reach the trophy by moving straight ahead.

Reasoning: The car is positioned in such a way that if it moves forward, it will collide with the wall, resulting in game over. Since the car is facing right and the path to the trophy is blocked by the wall, the car needs to navigate around the obstacle to reach the trophy. The car must first turn right to begin moving around the wall. By turning right, the car can begin to reposition itself and align with a path that allows it to bypass the wall and proceed towards the trophy.

Action: RIGHT

Instruction Following

(In the prompt, we ask the model to output only one word in the Action, with no other content attached)

Description: The trophy is located to the right of the car.

Reasoning: There is a vertical obstacle (a white line) directly between the car and the trophy. The car cannot move directly to the right without colliding with this obstacle.

Action: UP (to move the car up and around the obstacle)

Figure 28: Error analysis in GPT4o cases.

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

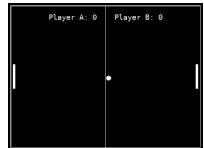
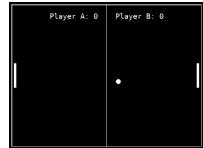
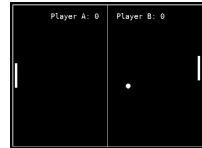
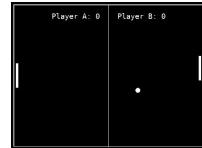
2803

2804

2805

2806

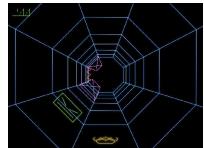
2807

Direction Error

Observation: The left paddle is positioned in the middle of the left side. The right paddle is slightly above the center on the right side. The ball is moving towards the right side of the screen and is slightly above the center line, continuing its trajectory towards the right paddle.

Reasoning: The ball is heading towards the right paddle and is slightly **above** the center line. Given the ball's trajectory, it appears to be on a direct path towards the **upper part of the right paddle**. The right paddle is already positioned slightly above the center, which aligns well with the ball's current path. To ensure the ball is intercepted effectively, the right paddle should be moved up slightly to account for any upward drift in the ball's trajectory. The left paddle does not need any adjustment since the ball is moving away from it.

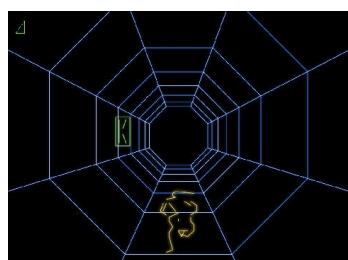
Action: **RIGHTUP**

Direction Error

Observation: The character is currently in a normal running position at the bottom center of the tunnel. There is a purple wall approaching in the center of the tunnel.

Reasoning: The character is in a normal running position, and there is a purple wall **directly ahead**. To avoid the purple wall, the character should move around it by using the **LEFT** action to shift to the left. This will help the character to safely navigate through the tunnel without colliding with the wall.

Action: **LEFT**

Action Inappropriate

Observation: The character is currently running in the center of the tunnel, and there is a green enemy approaching in the **left section** of the tunnel ahead.

Reasoning: The green enemy is approaching on the left side, and to eliminate it, the character **needs to perform a slide**. Sliding will allow the character to duck and kick the green enemy. Since the character is currently running in the center, sliding will position them correctly to deal with the green enemy.

Action: **SLIDE**

Figure 29: Error analysis in GPT4o cases.

2808 H MISCELLANEOUS MATERIAL
2809**2810 H.1 LLM USAGE STATEMENT**
2811

2812 Our research methodology centered on the evaluation of various MLLMs. Models such as GPT-4o
2813 served as the subjects within our V-MAGE pipeline, generating the outputs that form the basis of
2814 our analysis and conclusions on MLLM performance. The role of these MLLMs was strictly limited
2815 to this evaluation phase. The conceptualization and implementation of the V-MAGE framework and
2816 its software were carried out entirely by the authors.

2817 For the manuscript preparation, we employed LLMs for the sole purpose of improving grammar
2818 and polishing the language. All scientific contributions, including the research ideas, experimental
2819 design, and results interpretation, originate exclusively from the authors.

2820 H.2 IMPACTS STATEMENT
2821

2822 This research contributes to the field of multimodal models by providing a novel and challenging
2823 benchmark for evaluating vision-centric capabilities in dynamic environments. The primary positive
2824 impact is facilitating the diagnosis of limitations in current MLLMs and guiding future research
2825 towards developing more capable, robust, and potentially safer AI systems for real-world interaction.
2826 As our work focuses on foundational evaluation in simulated environments and does not involve the
2827 deployment of high-risk models or the collection of sensitive personal data, the potential for negative
2828 societal impacts is considered minimal and indirect at this stage. We believe that developing better
2829 evaluation tools is a crucial step towards building more reliable and trustworthy AI.

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861