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ABSTRACT

Evaluating the performance of deep reinforcement learning (DRL) agents under
adversarial attacks that aim to induce specific behaviors, i.e., behavior-oriented
adversarial attacks, is crucial for understanding the robustness of DRL agents. Prior
research primarily focuses on directing agents towards pre-determined states or
policies, lacking generality and flexibility. Therefore, it is important to devise
universal attacks that target inducing specific behaviors in a victim. In this work,
we propose BATTLE, a universal behavior-oriented adversarial attack method. In
BATTLE, an intention policy is trained to align with human preferences for flexible
behavior orientation, while the adversary is trained to guide the victim policy to
imitate the intention policy. To improve the attack performance, we introduce a
weighting function that assigns importance weights over each state. Our empirical
results over several manipulation tasks of Meta-world show the superiority of
BATTLE in behavior-oriented adversarial attack settings, outperforming current
adversarial attack algorithms. Furthermore, we also demonstrate that BATTLE can
improve the robustness of agents under strong attacks by training with adversary.
Lastly, we showcase the strong behavior-inducing capability of BATTLE by guiding
Decision Transformer agents to act in line with human preferences across various
MuJoCo tasks. Our videos are available in https://sites.google.com/
view/jj9uxjgmba5lr3g.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 2018) combined with deep neural networks (DNN) (Le-
Cun et al., 2015) shows extraordinary capabilities of allowing agents to master complex behaviors in
various domains. However, recent findings (Huang et al., 2017; Pattanaik et al., 2018; Zhang et al.,
2020) reveal that well-trained RL agents parameterized by DNN suffer from vulnerability against
test-time attacks, raising concerns in high-risk or safety-critical situations. To understand adversarial
attacks on learning algorithms and enhance the robustness of DRL agents, it is crucial to evaluate the
performance of the agents under any potential adversarial attacks with certain constraints. In other
words, identifying a universal and strong adversary is essential.
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Figure 1: An example illustrating the distinc-
tion between our approach and generic attacks.

Two main challenges persist in devising effective uni-
versal and strong attacks. Firstly, existing strategies,
which primarily aim at diminishing cumulative rewards,
fall short in specifying explicit attack targets. Prior
research (Zhang et al., 2020; 2021; Sun et al., 2022)
considers training strong adversary by perturbing state
observations of victim to obtain the worst case expected
return. Nevertheless, it might be more practical to setup
both a reward function and constraints, rather than en-
coding the complex safety requirements directly into
rewards (Achiam et al., 2017; Gu et al., 2022; Vamplew
et al., 2022), for many applications of RL. Therefore,
only quantifying the decrease in cumulative reward can
be too generic and result in limited attack performance
when adversaries target specific safety attacks. Consider the scenario depicted in Figure 1, where a
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robot is tasked with collecting coins. Previous attack methods aim at inducing the robot away from
the coins by minimizing the expected return. In contrast, it might be interested in causing specific
unsafe behaviors, such as inducing the robot to collide with a bomb. Secondly, Predefined targets are
usually rigid and inefficient. Another line of work (Hussenot et al., 2019a; Lin et al., 2017b) primarily
focuses on misleading the agent towards a predetermined goal state or target policy, overlooking
specific behaviors. Additionally, the difficulty and expense of providing a well-designed targeted
policy result in these methods lacking generality and flexibility. In a broader sense, these adversarial
attacks are incapable of controlling the behaviors of agents as a form of universal attack.

To tackle these challenges, we present a novel adversarial attack method, namely BATTLE, which
focuses on Behavior-oriented Adversarial aTTacks against deep rEinforcement learning agents. At its
core, BATTLE employs an adversary to perturb the victim agent’s observations while leveraging an
intention policy for step-by-step guidance for the victim to imitate. Instead of relying on a predefined
target policy, the intention policy is trained to align with human intent as a flexible behavior orientation
during adversary training. Furthermore, we incorporate a weighting function to capture remarkable
moments through state re-weighting, improving overall performance and efficiency. Benefiting from
recent progress in preference-based reinforcement learning (PbRL) (Lee et al., 2021a; Park et al.,
2022; Liang et al., 2022; Liu et al., 2022), our method facilitates the behavior of victim agent to be
aligned with human intentions. Consequently, BATTLE’s adversary effectively leads the victim into
executing human-desired behaviors through iterative refinement.

In summary, our contributions fall into four categories. Firstly, we propose a universal behavior-
oriented adversarial attack method against DRL agents, designed to effectively induce specific
behaviors in a victim agent. Secondly, we theoretically analyze BATTLE and provide a convergence
guarantee under only mild conditions. Thirdly, we test in multiple scenarios and experiments on
Meta-world that demonstrate BATTLE outperforms the baselines by a large margin. Empirical results
demonstrate that both online and offline RL agents are vulnerable to our proposed adversarial attacks,
including the most recent Decision Transformer. Finally, we considerably enhance the robustness of
DRL agents by learning with BATTLE attacker in adversarial training.

2 RELATED WORK

Previous works on adversarial attacks study the vulnerability of a DRL agent. Huang et al. (2017)
computes adversarial perturbations via utilizing the technique of FGSM (Goodfellow et al., 2015)
to mislead the victim policy, not to choose the optimal action. Pattanaik et al. (2018) presents an
approach that leads the victim to select the worst action based on the Q-function of the victim. Gleave
et al. (2020) conducts adversarial attacks under the two-player Markov game instead of perturbing the
agent’s observation. Zhang et al. (2020) proposes the state-adversarial MDP (SA-MDP) and develops
two adversarial attack methods named Robust Sarsa (RS) and Maximal Action Difference (MAD).
SA-RL (Zhang et al., 2021) directly optimizes the adversary to perturb state in the form of end-to-end
RL. PA-AD (Sun et al., 2022) designs an RL-based “director” to find the optimal policy perturbing
direction and construct an optimized-based “actor” to craft perturbed states according to the given
direction. While untargeted adversarial attacks aim to cause the victim policy to fail, our method
emphasizes manipulating the behaviors of the victim. In other words, the perturbed behaviors of the
victim align with the manipulator’s preferences. Another line of works (Pinto et al., 2017; Mandlekar
et al., 2017; Pattanaik et al., 2018) consider using adversarial examples to improve the robustness of
policies, although it is out of the scope of this paper.

There are a few prior works that focus on inducing DRL agents to pre-determined states or policies.
Lin et al. (2017a) first proposes a targeted adversarial attack method against DRL agents, which
attacks the agent to reach a targeted state. Buddareddygari et al. (2022) also present a strategy to
mislead the agent towards to a specific state by placing an object in the environment. The hijacking
attack (Boloor et al., 2020) is proposed to attack agents to perform targeted actions on autonomous
driving systems. Hussenot et al. (2019b) provides a new perspective that attacks the agent to imitate a
target policy. Lee et al. (2021b) investigates targeted adversarial attacks against the action space of the
agent. Our method differs that we train an intention policy to serve as flexible behavior orientation,
rather than relying on a predetermined target state or policy. Consequently, BATTLE can effectively
lead the victim policy to perform human desired behaviors.

Training agents with human feedback has been investigated in several works. PbRL provides an
effective way to utilize human preferences for agent learning. Christiano et al. (2017) proposes a basic
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learning framework for PbRL. To further improve feedback efficiency, Ibarz et al. (2018) additionally
utilizes expert demonstrations to initialize the policy besides learning the reward model from human
preferences. However, previous methods need plenty of human feedback, which is usually impractical.
Many recent works have proposed to tackle this problem. Lee et al. (2021a) presents a feedback-
efficient PbRL algorithm, which benefits from unsupervised exploration and reward relabeling. Park
et al. (2022) further improves feedback efficiency by semi-supervised reward learning and data
augmentation, while Liang et al. (2022) proposes an intrinsic reward to enhance exploration. Liu
et al. (2022) continues to improve the feedback efficiency by aligning the Q-function with human
preferences. To the best of our knowledge, our method is the first to conduct a behavior-oriented
adversarial attack against DRL agents through PbRL.

3 PROBLEM SETUP

The Victim Policy. In RL, agent learning can be modeled as a finite horizon Markov Decision
Process (MDP) defined as a tuple (S,A,R,P, γ). S andA denote state and action space, respectively.
R : S×A×S → R is the reward function and γ ∈ (0, 1) is the discount factor. P : S×A×S → [0, 1]
denotes the transition dynamics, which determines the probability of transferring to s′ given state s
and action a. We denote the stationary policy πν : S → P(A), where ν are parameters of the victim.
We suppose the victim policy is fixed and uses the approximator.

The Adversarial Policy. To study behavior-oriented adversarial attack with human preferences,
we formulate it as rewarded state-adversarial Markov Decision Process (RSA-MDP). Formally, a
RSA-MDP is a tuple (S,A,B, R̂,P, γ). The adversary πα : S → P(S) perturbs the states before
the victim observes them, where α are parameters of the adversary. The adversary perturbs the state s
into s̃ restricted by B(s) (i.e., s̃ ∈ B(s)). B(s) is defined as a small set {s̃ ∈ S :∥ s− s̃ ∥p≤ ϵ}, which
limits the attack power of the adversary and ϵ is attack budget. Since directly generating s̃ ∈ B(s) is
hard, the adversary learns to produce a Gaussian noise ∆ with ℓ∞(∆) less than 1, and we obtain the
perturbed state through s̃ = s+∆ ∗ ϵ. The victim takes action according to the observed s̃, while
true states in the environment are not changed. πν◦α denotes the perturbed policy, which is victim
policy under the adversarial attack. Unlike SA-MDP (Zhang et al., 2020), RSA-MDP introduces R̂,
which learns from human preferences. The target of RSA-MDP is to solve the optimal adversary
π∗
α, which enables the victim to achieve the maximum cumulative reward (i.e., from R̂) over all

states. Lemma C.1 shows that solving the optimal adversary in RSA-MDP is equivalent to finding
the optimal policy in MDP M̂ = (S, Â, R̂, P̂, γ), where Â = S and P̂ is the transition dynamics of
the adversary.

4 METHOD

In this section, we introduce our method BATTLE. The core idea of BATTLE is twofold: firstly, it
learns an intention policy that acts as the learning target for the adversarial policy, effectively guiding
the victim towards behaving human-desired behavior. Secondly, we introduce a weighting function to
enhance the adversary’s performance and formulate BATTLE as a bi-level optimization problem. The
framework of BATTLE is shown in Figure 2 and detailed procedure is summarized in Appendix A.

human�
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reward�
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env

outer�loss

inner�loss

outer�level:�optimize�
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Figure 2: Overview of BATTLE. BATTLE jointly learns an intention policy πθ, an adversary πα and
a weighting function hω under bi-level optimization framework. In the inner-level, the adversary is
optimized such that πν◦α approaches the intention policy which learns via PbRL. In the outer-level,
the weighting function is updated to improve the performance of the adversary evaluated by the outer
loss Jπ . πν◦α denotes the perturbed policy, which is victim policy under the adversarial attack.
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4.1 LEARNING INTENTION POLICY

BATTLE aims to find the optimal adversary that manipulates the victim’s behaviors to be consistent
with human intentions. However, the victim policy is pre-trained for a specific task, directly learning
an adversary suffer from exploration problem caused by the restriction of victim policy, making it
hard to find an optimal adversary efficiently. Therefore, we introduce an intention policy πθ which
has unrestricted exploration space to guide adversarial policy training.

𝜋!(𝑎|𝑠)

�̂�"

learning from human preferences

replay 
buffer

Figure 3: Diagram of preference-based RL.

To conduct targeted attack and avoid reward engineer-
ing, we align the intention policy with human intent
via PbRL, which is shown in Figure 3. In PbRL, the
agent have no access to the ground-truth reward function.
Humans provide preference labels between two agent
trajectories and the reward function r̂ψ learns to align
with the preferences (Christiano et al., 2017).

Formally, a segment σ of length k is de-
noted as a sequence of states and actions
{st+1,at+1, · · · , st+k,at+k}. Given a pair of
segments (σ0, σ1), human indicate which segment
is preferred, where y ∈ {(0, 1), (1, 0), (0.5, 0.5)}.
Following Bradley-Terry model (Bradley & Terry,
1952), a preference predictor is constructed in (1):

Pψ[σ
0 ≻ σ1] =

exp
∑
t r̂ψ(s

0
t ,a

0
t )∑

i∈{0,1} exp
∑
t r̂ψ(s

i
t,a

i
t)
, (1)

where σ0 ≻ σ1 denotes σ0 is preferred to σ1. This predictor indicates the probability that a segment
is preferred is proportional to its exponential return. Then, the reward function is optimized by
aligning the predicted preference labels with human preferences through cross-entropy loss:

L(ψ) = − E
(σ0,σ1,y)∼D

[
y(0) logPψ[σ

0 ≻ σ1] + y(1) logPψ[σ
1 ≻ σ0]

]
, (2)

where D is a dataset of triplets (σ0, σ1, y) consisting of segment pairs and human preference labels.
By minimizing (2), we obtain a reward function estimator r̂ψ, which is used to provide estimated
rewards for agent learning via any RL algorithms. Following PEBBLE (Lee et al., 2021a), we use
an off-policy actor-critic method SAC (Haarnoja et al., 2018) to learn a well-performing policy.
Specifically, the Q-function Qϕ is optimized by minimizing the Bellman residual:

JQ(ϕ) = E
τt∼B

[(
Qϕ(st,at)− r̂t − γV̄ (st+1)

)2]
, (3)

where V̄ (st) = Eat∼πθ

[
Qϕ̄(st,at)−µ log πθ(at|st)

]
, τt = (st,at, r̂t, st+1) is the transition at time

step t, ϕ̄ is the parameter of the target soft Q-function. The policy πθ is updated by minimizing (4):

Jπ(θ) = Est∼B,at∼πθ

[
µ log πθ(at|st)−Qϕ(st,at)

]
, (4)

where µ is the temperature parameter. By learning an intention policy, BATTLE tackles restricted
exploration problem and provides an attack target for the following adversary training.

4.2 LEARNING ADVERSARIAL POLICY AND WEIGHTING FUNCTION

To make the victim policy perform human desired behaviors, BATTLE learns the adversary by
minimizing the KL divergence between the perturbed policy πν◦α and the intention policy πθ.
However, different states may have various importance to induce the victim policy to the target. To
stabilize training process and improve the performance of the adversary, we introduce a weighting
function hω to re-weight states in adversary training.

We formulate BATTLE as a bi-level optimization algorithm, which alternately updates the adversarial
policy πα and the weighting function hω through inner and outer optimization. In the inner level,
BATTLE optimizes parameters α with the importance weights outputted by a weighting function
hω, and optimizes parameters ω in the outer level according to the performance of the adversary.
Intuitively, the adversary is optimized such that πν◦α approaches the intention policy in the inner
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level, while the weighting function learns to improve the adversary performance by evaluating the
performance of the adversary through a meta-level loss Jπ in (7). The whole objective of BATTLE is:

min
ω

Jπ(α(ω)),

s.t. α(ω) = argmin
α
Latt(α;ω, θ).

(5)

Inner-level Optimization: Training adversarial policy πα. In the inner-level optimization, given
the intention policy πθ and the weighting function hω , we hope to find the optimal adversarial policy
by minimizing the re-weighted KL divergence between πν◦α and πθ in (6):

Latt(α;ω, θ) = E
s∼B

[
hω(s)DKL (πν◦α(s) ∥ πθ(s))

]
, (6)

where hω(s) is the importance weights outputted by the weighting function hω. Intuitively, the
adversarial policy is optimized to make the perturbed policy be close to the intention policy, while
hω assigns different weights to states of various importance. With the collaborative assistance of the
intention policy and the weighting function, BATTLE efficiently learns an optimal adversarial policy.

Outer-level Optimization: Training weighting function hω. In the outer-level optimization, we
need to find a precise weighting function to balance the state distribution and assign proper weights
to propel adversary learning. The weighting function is trained to distinguish the importance of states
by evaluating the performance of the perturbed policy. Specifically, the perturbed policy πν◦α is
evaluated using a policy loss in (7), which is adapted from the policy loss in (4):

Jπ(α(ω)) = Est∼B,at∼πν◦α(ω)

[
µ log πν◦α(ω)(at|st)−Qϕ(st,at)

]
, (7)

where α(ω) denotes α implicitly depends on ω. Therefore, BATTLE calculates the implicit derivative
of Jπ(α(ω)) with respect to ω and finds the optimal ω∗ by optimizing (7). To make it feasible, we
make an approximation of argminα with the one-step gradient update. (8) obtains an estimated
argminα with one-step updating and builds a connection between α and ω:

α̂(ω) ≈ αt − ηt ∇αLatt(α;ω, θ)|αt
. (8)

According to the chain rule, the gradient of the outer loss with respect to ω can be expressed as:

∇ωJπ(α(ω))|ωt
= ∇α̂Jπ(α̂(ω))|α̂t

∇ωα̂t(ω)|ωt

=
∑
s

f(s) · ∇ωh(s)|ωt
, (9)

where f(s) = −ηt · (∇α̂Jπ(α(ω)))⊤∇αDKL(πν◦α(s) ∥ πθ(s)) and detailed derivation can be found
in Appendix B. The key to obtain this meta gradient is building and computing the relationship
between α and ω. Obtaining the implicit derivative, BATTLE updates the parameters of the weighting
function by taking gradient descent with outer learning rate.

In addition, we theoretically analyze the convergence of BATTLE in Theorem D.2 and D.4. In
Theorem D.2, we demonstrate the convergence rate of the outer loss, i.e. the gradient of the outer loss
with respect to ω will convergence to zero. Thus BATTLE learns a more powerful adversary using
importance weights outputted by the optimal weighting function. In Theorem D.4, we prove the
convergence of the inner loss. The inner loss of BATTLE algorithm converges to critical points under
some mild conditions, which ensures the parameters of the adversary can converge to the optimal
parameters. Theorems and proofs can be found in Appendix D.

5 EXPERIMENTS

In this section, we evaluate our method on several robotic simulated manipulation tasks from Meta-
world (Yu et al., 2020) and continuous locomotion tasks from MuJoCo (Todorov et al., 2012).
Specifically, our experiment contains two essential phases. In the first phase, we verify the efficacy
of the proposed method through two scenarios: manipulation and opposite behaviors. Furthermore,
we show the capability of our approach by fooling a popular offline RL method, Decision Trans-
former (Chen et al., 2021), into acting specific behaviors in the second phase. The detailed description
of experiments is provided in Appendix F.
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5.1 SETUP

Compared Methods. Random attack and two state-of-the-art evasion attack methods are used for
comparison.

• Random: a baseline that samples random perturbed observations via a uniform distribution.

• SA-RL (Zhang et al., 2021): this method learns an adversarial policy in the form of end-to-end
RL formulation.

• PA-AD (Sun et al., 2022): this method combines RL-based “director” and non-RL “actor” to
find state perturbations, which is the state-of-the-art adversarial attack algorithm against DRL.

• BATTLE: our proposed method, which collaboratively learns adversarial policy and weighting
function with the guidance of intention policy.
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Figure 4: Training curves of different methods on various tasks in the manipulation scenario. The
solid line and shaded area denote the mean and the standard deviation of success rate, respectively,
over ten runs. The blue line (our method) outperforms all the baselines in PbRL setting and even
exceeds most baselines in oracle setting.

Implementation Settings. We compare BATTLE with existing state-of-the-art adversarial attack
methods. To achieve fair comparison, we make simple adjustments for SA-RL and PA-AD to suit our
settings in the experiments. In their original version, both of these two methods use the negative value
of the reward obtained by the victim to train an adversary. We replace it with the same estimated
reward function r̂ψ as our method uses, which means they also learn from human preferences.
Following the settings in PEBBLE (Lee et al., 2021a), we use a scripted teacher that provides ground
truth preference labels. More details of scripted teacher and preference collection can be found in
Appendix E. For the implementation of SA-RL1 and PA-AD2, we use the released official codebase.
For fair comparison, all methods learned via PbRL are given the same number of preference labels.
In the manipulation scenario, we use 9000 labels for all tasks. In the opposite behaviors scenario,
we use 1000 for Window Close, 3000 for Drawer Close, 5000 for Faucet Open, Faucet Close and
Window Open, 7000 for Drawer Open, Door Lock and Door Unlock. Also, to reduce the impact
of PbRL, we additionally add oracle versions of SA-RL and PA-AD, which uses the ground-truth
rewards of the targeted task.

We use the same experimental settings (i.e., hyper-parameters, neural networks) concerning reward
learning for all methods. We quantitatively evaluate all methods by comparing the success rate of
final manipulation, which is well-defined in Meta-world (Yu et al., 2020) for the opposite behaviors
scenario, and we rigorously design for the manipulation scenario. As in most existing research (Zhang

1https://github.com/rll-research/BPref
2https://github.com/umd-huang-lab/paad_adv_rl
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Figure 5: Training curves of all methods on various tasks in the opposite behaviors scenario. The
solid line and shaded area denote the mean and the standard deviation of success rate over ten runs.
In this scenario, the blue line (our method) outperforms all the baselines in both PbRL setting and
oracle setting, which demonstrates the effectiveness of BATTLE.

et al., 2020; 2021; Sun et al., 2022), we consider using state attacks with L∞ norm in our experiments,
and we report the mean and standard deviation across ten runs for all experiments. We also provide
detailed hyper-parameter settings, implementation details and scenario design in Appendix F.

5.2 MANIPULATION ON DRL AGENTS

We study the efficacy of our method compared to adversarial attack algorithms, which are adapted to
our setting with minimal changes. Specifically, we devise two distinct scenarios on various simulated
robotic manipulation tasks. Each victim agent is well-trained for a specific manipulation task.

Scenarios on Manipulation. In this scenario, we expect the robotic arm to reach a target coordinates
instead of completing the original task. Figure 4 shows the training curves of baselines and our
method on eight manipulation tasks. It shows that the performance of BATTLE surpasses that of
the baselines by a large margin based on preference labels. To eliminate the influence of PbRL and
further demonstrate the advantages of BATTLE, we additionally train the baseline methods with the
ground-truth reward function and denote them as “oracle”. We notice that the performance of SA-RL
(oracle) greatly improves on several tasks over the preference-based version. However, BATTLE
still outperforms SA-RL with oracle rewards on most tasks. These results demonstrate that BATTLE
enables the agent to efficiently learn adversarial policy with human preferences. We also observe that
PA-AD is incapable of mastering manipulation, even using the ground-truth rewards.

Scenarios on Opposite Behaviors. In the real world, robotic manipulation has good application
values. Therefore, we design this scenario to quantitatively evaluate the vulnerability of these agents
that masters various manipulation skills. Specifically, we expect each victim to complete the opposite
task under the attack of the manipulator. For example, the victim which masters the skill of opening
windows will close windows under targeted attack. As shown in Figure 5, BATTLE presents excellent
performance and marginally shows obvious advantages over baseline methods on all tasks. The result
again indicates that BATTLE is effective for a wide range of tasks and can efficiently learn adversarial
policy with human preferences.

5.3 MANIPULATION ON THE POPULAR OFFLINE RL AGENTS

In this experiment, we show the vulnerability of offline RL agents and demonstrate BATTLE can
fool them into acting human desired behaviors. As for the implementation, we choose some online
models3 as victims, which are well-trained by official implementation with D4RL. We choose two
tasks, Cheetah and Walker, using expert-level Decision Transformer agents as the victims. As shown

3https://huggingface.co/edbeeching

7

https://huggingface.co/edbeeching


Under review as a conference paper at ICLR 2024

(a) Cheetah-Run Backwards (b) Walker-Stand on One Foot

(c) Cheetah-90 Degree Push-up (d) Walker-Dance

Figure 6: Human desired behaviors behaved by the Decision Transformer under the attack of
BATTLE.

in Figure 6, Decision Transformer shows exploitable weaknesses and is misled to perform human
desired behavior instead of the original task. Under the adversarial manipulation, the Cheetah agent
runs backwards quickly in Figure 6a, and does 90 degree push-up in Figure 6c. The Walker agent
stands on one foot for superior balance in Figure 6b, and dances with one leg lifted in Figure 6d.
The results show that BATTLE can manipulate these victims to act behaviors consistent with human
preferences and embodied agents are extremely vulnerable to these well-trained adversaries. We hope
this experiment can inspire future work on the robustness of offline RL agents and embodied AI.

5.4 ROBUST AGENTS TRAINING AND EVALUATING

An intuitive application of BATTLE lies in evaluating the robustness of a given model or enhancing
an agent’s robustness through adversarial training. ATLA (Zhang et al., 2021) is a general training
framework for robustness improvement, which alternately trains an agent and an adversary. Motivated
by this, we introduce BATTLE-ATLA which trains an agent and a BATTLE attacker alternately.
Table 1 shows that the performance of BATTLE-ATLA for a SAC agent, in comparison with
state-of-the-art robust training methods. The experimental results summarize two aspects: firstly,
BATTLE-ATLA significantly enhances the robustness of agents, and secondly, BATTLE can conduct
stronger attacks on robust agents.

Table 1: Average episode rewards ± standard deviation of robust agents under different attack
methods, and results are averaged across 100 episodes.

Task Model BATTLE PA-AD SA-RL Average Reward

Door Lock
BATTLE-ATLA 874±444 628±486 503±120 668

PAAD-ATLA 491±133 483±15 517±129 497
SARL-ATLA 469±11 629±455 583±173 545

Door Unlock
BATTLE-ATLA 477±203 745±75 623±60 615

PAAD-ATLA 398±12 381±11 398±79 389
SARL-ATLA 393±36 377±8 385±26 385

5.5 ABLATION STUDY

Contribution of Each Component. We conduct additional experiments to investigate the effect
of each component in BATTLE on Drawer Open, Drawer Close for the manipulation scenario and
on Faucet Open, Faucet Close for the opposite behavior scenario. BATTLE contains three critical
components: the weight function hω , the intention policy πθ, and the combined policy. Table 2 shows
that the intention policy plays an essential role in the BATTLE. As shown in Figure 7d, the intention
policy can mitigate exploration difficulty caused by the restriction of victim policy and improve the
exploration ability of BATTLE leading to a better adversary. We also observe that the combined
policy balances the discrepancy between πθ and πν◦α on the state distribution and improves the
adversary’s performance. In addition, we can economically train the weighting function to distinguish
state importance by formulating the adversary learning as a bi-level optimization. It can further
improve the asymptotic performance of BATTLE. These empirical results show that key ingredients
of BATTLE are fruitfully wed and contribute to the BATTLE’s success. To verify the restricted
exploration problem, we visualize the exploration space of BATTLE and BATTLE without intention
policy. Figure 7d shows that the intention policy significantly improve the exploration ability of
BATTLE.
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(b) Weight Visualization (c) Heat Map Visualization (d) Exploration Space

Figure 7: (a) A visualization of the weights of trajectories of different qualities by five different
policies. (b) Trajectory weights generated by the weighting function from different policies are
extracted and visualized with t-SNE. (c) A heat map showing the weight distribution and the trajectory
of the perturbed agent in 2D coordinates. The red point denotes the start position and the yellow
star indicates the targeted position. (d) A visualization of the exploration space of BATTLE (red)
and BATTLE without intention policy (blue). The green point denotes the start and the yellow star
denotes the target position.

Table 2: Effects of each component. The success rate on four simulated robotic manipulation tasks
from Meta-world. The results are the average success rate across five runs.

Task Type Task BATTLE BATTLE w/o hω BATTLE w/o πθ BATTLE w/o combination

Manipulation Drawer Open 99.1% 91.3% 21.7% 68.0%
Drawer Close 80.9% 70.2% 8.0% 26.0%

Opposite Faucet Open 84.4% 89.8% 0.0% 57.0%
Faucet Close 95.1% 94.1% 13.0% 59.1%

Effects of the Weighting Function. To further understand the weighting function proposed in
Section 4, we conduct experimental data analysis and visualization from multiple perspectives. Five
perturbed policies are uniformly sampled with performance increase sequentially before BATTLE
convergence. For each policy, we roll out 100 trajectories and obtain the trajectory weight vectors
via the weighting function. By leveraging the technique of t-SNE (van der Maaten & Hinton, 2008),
the weight vectors of different policies are visualized in Figure 7a. From the figure, we can observe
clear boundaries between the trajectory weights of various policies, suggesting that the weighting
function can distinguish trajectories of different qualities. In Figure 7b, the darker color indicates
trajectories with higher success rates of manipulation. The result shows that the weighting function
gives higher weights to better trajectories for improving the adversarial policy performance. To
further illustrate the effect of the weighting function, we present a heat map of the weight distribution
in 2D coordinates and annotate part of the trajectories of the perturbed policy. As Figure 7c shows,
the weighting function scores the surrounding states in trajectories from the perturbed policy higher,
especially in the early stage before reaching the target point.

Extensive experiments are conducted to analyze and discuss the impact of feedback amount, attack
budgets on the performance of BATTLE and quality of learned reward functions in the Appendix G.

6 CONCLUSION

In this paper, we propose BATTLE, a behavior-oriented adversarial attack approach against DRL
learners, which can manipulate the victim to perform desired behaviors of human. BATTLE involves
an adversary adding imperceptible perturbations on the observations of the victim, an intention
policy learned through PbRL as a flexible behavior orientation, and a weighting function to identify
essential states for the efficient adversarial attack. We analyze the convergence of BATTLE and prove
that BATTLE converges to critical points under some mild conditions. Empirically, we design two
scenarios on several manipulation tasks of Meta-world, and the results demonstrate that BATTLE
outperforms the baselines under the targeted adversarial setting. Additionally, BATTLE can enhance
the robustness of agents by training with adversary. We further show embodied agents’ vulnerability
by attacking Decision Transformer on some MuJoCo tasks.
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ETHICS STATEMENT

Preference-based RL provides an effective way to train agents without a carefully designed reward
function. However, learning from human preferences means humans need to provide labeled data
which inevitably has biases introducing systematic error. While there are possible negative impacts
when malicious people attack other policies using our methods. However, our approach also makes
other researchers aware of the vulnerability of policies for AI safety. Furthermore, our method might
serve as a red teaming tool to evaluate DRL agents for potential unsafe behaviors.

REPRODUCIBILITY STATEMENT

The details of experiment settings are provided in Section 4. We provide detailed proofs of theoretical
analysis in Appendix D. A more detailed description and implementation setting can be found in
Appendix F. Meanwhile, we present the link of our videos in the abstract and we will provide source
code during rebuttal.
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A THE FULL PROCEDURE OF BATTLE

The Combined Policy. In order to address the inefficiency caused by the discrepancy between πθ
and πν◦α in the state distribution, we propose a strategy to construct the behavior policy π for data
collection in our practical implementation. Inspired by Branched rollout (Janner et al., 2019), we
combine the intention policy πθ with the perturbed policy πν◦α. Specifically, we define π1:h = π1:h

ν◦α
and πh+1:H = πh+1:H

θ , where h is sampled from a uniform distribution U(0, H) and H represents
the task horizon. The resulting combined policy π is responsible for data collection, which is then
stored in the replay buffer during the learning process.

We present the detailed procedures of our proposed method in Algorithm 1. Our method, referred to
as BATTLE, is built upon the well-established preference-based RL algorithm PEBBLE (Lee et al.,
2021a).

Algorithm 1 BATTLE

Input: a fixed victim policy πν , frequency of human feedback K, outer loss updating frequency M ,
task horizon H

1: Initialize parameters of Qϕ, πθ, r̂ψ , πα and hω
2: Initialize B and πθ with unsupervised exploration
3: Initialize preference data set D ← ∅
4: for each iteration do
5: // Construct the combined policy π
6: if episode is done then
7: h ∼ U(0, H)

8: π1:h = π1:h
ν◦α and πh+1:H = πh+1:H

θ
9: end if

10: Take action at ∼ π and collect st+1

11: Store transition into dataset B ← B ∪ {(st, at, r̂ψ(st), st+1)}
12: // Query preference and Reward learning
13: if iteration % K == 0 then
14: for each query step do
15: Sample pair of trajectories (σ0, σ1)
16: Query preference y from manipulator
17: Store preference data into dataset D ← D ∪ {(σ0, σ1, y)}
18: end for
19: for each gradient step do
20: Sample batch {(σ0, σ1, y)i}ni=1 from D
21: Optimize (2) to update r̂ψ
22: end for
23: end if
24: // Inner loss optimization
25: for each gradient step do
26: Sample random mini-batch transitions from B
27: Optimize πα: minimize (6) with respect to α
28: end for
29: // Outer loss optimization
30: if iteration % M == 0 then
31: Sample random mini-batch transitions from B
32: Optimize hω: minimize (7) with respect to ω
33: end if
34: // Intention policy learning
35: Update Qϕ and πθ according to (3) and (4), respectively.
36: end for
Output: adversarial policy πα
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B DERIVATION OF THE GRADIENT OF THE OUTER-LEVEL LOSS

In this section, we present detailed derivation of the gradient of the outer loss Jπ with respect to the
parameters of the weighting function ω. According to the chain rule, we can derive that

∇ωJπ(α̂(ω))|ωt

=
∂Jπ(α̂(ω))

∂α̂(ω)

∣∣∣
α̂t

∂α̂t(ω)

∂ω

∣∣∣
ωt

=
∂Jπ(α̂(ω))

∂α̂(ω)

∣∣∣
α̂t

∂α̂t(ω)

∂h(s;ω)

∣∣∣
ωt

∂h(s;ω)

∂ω

∣∣∣
ωt

=− ηt
∂Jπ(α̂(ω))

∂α̂(ω)

∣∣∣
α̂t

∑
s∼B

∂DKL (πν◦α(s) ∥ πθ(s))
∂α

∣∣∣
αt

∂h(s;ω)

∂ω

∣∣∣
ωt

=− ηt
∑
s∼B

(
∂Jπ(α̂(ω))

∂α̂(ω)

∣∣∣⊤
α̂t

∂DKL (πν◦α(s) ∥ πθ(s))
∂α

∣∣∣
αt

)
∂h(s;ω)

∂ω

∣∣∣
ωt

.

(10)

For brevity of expression, we let:

f(s) =
∂Jπ(α̂(ω))

∂α̂(ω)

∣∣∣⊤
α̂t

∂DKL (πν◦α(s) ∥ πθ(s))
∂α̂

∣∣∣
αt

. (11)

The gradient of outer-level optimization loss with respect to parameters ω is:

∇ωJπ(α̂(ω))|ωt
= −ηt

∑
s∼B

f(s) · ∂h(s;ω)
∂ω

∣∣∣
ωt

. (12)

C CONNECTION BETWEEN RSA-MDP AND MDP
Lemma C.1. Given a RSA-MDPM = (S,A,B, R̂,P, γ) and a fixed victim policy πν , there exists a
MDP M̂ = (S, Â, R̂, P̂, γ) such that the optimal policy of M̂ is equivalent to the optimal adversary
πα in RSA-MDP given a fixed victim, where Â = S and

P̂(s′|s,a) =
∑
a∈A

πν(a|â)P(s′|s,a) for s, s′ ∈ S and â ∈ Â.

D THEORETICAL ANALYSIS AND PROOFS

D.1 THEOREM 1: CONVERGENCE RATE OF THE OUTER LOSS

Lemma D.1. (Lemma 1.2.3 in Nesterov (1998)) If function f(x) is Lipschitz smooth on Rn with
constant L, then ∀x, y ∈ Rn, we have∣∣f(y)− f(x)− f ′(x)⊤(y − x)∣∣ ≤ L

2
∥y − x∥2 . (13)

Proof. ∀x, y ∈ Rn, we have

f(y) = f(x) +

∫ 1

0

f ′(x+ τ(y − x))⊤(y − x)dτ

= f(x) + f ′(x)⊤(y − x) +
∫ 1

0

[f ′(x+ τ(y − x))− f ′(x)]⊤(y − x)dτ.
(14)

Then we can derive that∣∣f(y)− f(x)− f ′(x)⊤(y − x)∣∣ = ∣∣∣∣∫ 1

0

[f ′(x+ τ(y − x))− f ′(x)]⊤(y − x)dτ
∣∣∣∣

≤
∫ 1

0

∣∣∣∣[f ′(x+ τ(y − x))− f ′(x)]⊤(y − x)
∣∣∣∣dτ

≤
∫ 1

0

∥f ′(x+ τ(y − x))− f ′(x)∥ · ∥y − x∥ dτ

≤
∫ 1

0

τL ∥y − x∥2 dτ =
L

2
∥y − x∥2 ,

(15)
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where the first inequality holds for
∣∣∣∫ ba f(x)dx∣∣∣ ≤ ∫ b

a
|f(x)| dx, the second inequality holds for

Cauchy-Schwarz inequality, and the last inequality holds for the definition of Lipschitz smoothness.

Theorem D.2. Suppose Jπ is Lipschitz-smooth with constant L, the gradient of Jπ andLatt is bounded
by ρ. Let the training iterations be T , the inner-level optimization learning rate ηt = min{1, c1T } for
some constant c1 > 0 where c1

T < 1. Let the outer-level optimization learning rate βt = min{ 1
L ,

c2√
T
}

for some constant c2 > 0 where c2 ≤
√
T
L , and

∑∞
t=1 βt ≤ ∞,

∑∞
t=1 β

2
t ≤ ∞. The convergence

rate of Jπ achieves

min
1≤t≤T

E
[
∥∇ωJπ(αt+1(ωt))∥2

]
≤ O

(
1√
T

)
. (16)

Proof. First,

Jπ(α̂t+2(ωt+1))− Jπ(α̂t+1(ωt))

= {Jπ(α̂t+2(ωt+1))− Jπ(α̂t+1(ωt+1))}+ {Jπ(α̂t+1(ωt+1))− Jπ(α̂t+1(ωt))} .
(17)

Then we separately derive the two terms of (17). For the first term,

Jπ(α̂t+2(ωt+1))− Jπ(α̂t+1(ωt+1))

≤∇α̂Jπ(α̂t+1(ωt+1))
⊤(α̂t+2(ωt+1)− α̂t+1(ωt+1)) +

L

2
∥α̂t+2(ωt+1)− α̂t+1(ωt+1)∥2

≤∥∇α̂Jπ(α̂t+1(ωt+1))∥ · ∥α̂t+2(ωt+1)− α̂t+1(ωt+1)∥+
L

2
∥α̂t+2(ωt+1)− α̂t+1(ωt+1)∥2

≤ρ · ∥−ηt+1∇α̂Latt(α̂t+1)∥+
L

2
∥−ηt+1∇α̂Latt(α̂t+1)∥2

≤ηt+1ρ
2 +

L

2
η2t+1ρ

2,

(18)

where α̂t+2(ωt+1)− α̂t+1(ωt+1) = −ηt+1∇α̂Latt(α̂t+1), the first inequality holds for Lemma D.1,
the second inequality holds for Cauchy-Schwarz inequality, the third inequality holds for
∥∇α̂Jπ(α̂t+1(ωt+1))∥ ≤ ρ, and the last inequality holds for ∥∇α̂Latt(α̂t+1)∥ ≤ ρ. It can be
proved that the gradient of ω with respect to Jπ is Lipschitz continuous and we assume the Lipschitz
constant is L. Therefore, for the second term,

Jπ(α̂t+1(ωt+1))− Jπ(α̂t+1(ωt))

≤∇ωJπ(α̂t+1(ωt))
⊤(ωt+1 − ωt) +

L

2
∥ωt+1 − ωt∥2

=− βt∇ωJπ(α̂t+1(ωt))
⊤∇ωJπ(α̂t+1(ωt)) +

Lβ2
t

2
∥∇ωJπ(α̂t+1(ωt))∥2

=− (βt −
Lβ2

t

2
) ∥∇ωJπ(α̂t+1(ωt))∥2 ,

(19)

where ωt+1 − ωt = −βt∇ωJπ(α̂t+1(ωt)), and the first inequality holds for Lemma D.1. There-
fore, (17) becomes

Jπ(α̂t+2(ωt+1))− Jπ(α̂t+1(ωt)) ≤ ηt+1ρ
2 +

L

2
η2t+1ρ

2 − (βt −
Lβ2

t

2
) ∥∇ωJπ(α̂t+1(ωt))∥2 .

(20)
Rearranging the terms of (20), we obtain

(βt −
Lβ2

t

2
) ∥∇ωJπ(α̂t+1(ωt))∥2 ≤ Jπ(α̂t+1(ωt))− Jπ(α̂t+2(ωt+1)) + ηt+1ρ

2 +
L

2
η2t+1ρ

2.

(21)
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Then, we sum up both sides of (21),

T∑
t=1

(βt −
Lβ2

t

2
) ∥∇ωJπ(α̂t+1(ωt))∥2

≤Jπ(α̂2(ω1))− Jπ(α̂T+2(ωT+1)) +

T∑
t=1

(ηt+1ρ
2 +

L

2
η2t+1ρ

2)

≤Jπ(α̂2(ω1)) +

T∑
t=1

(ηt+1ρ
2 +

L

2
η2t+1ρ

2).

(22)

Therefore,

min
1≤t≤T

E
[
∥∇ωJπ(α̂t+1(ωt))∥2

]
≤
∑T
t=1(βt −

Lβ2
t

2 ) ∥∇ωJπ(α̂t+1(ωt))∥2∑T
t=1(βt −

Lβ2
t

2 )

≤ 1∑T
t=1(2βt − Lβ2

t )

[
2Jπ(α̂2(ω1)) +

T∑
t=1

(2ηt+1ρ
2 + Lη2t+1ρ

2)

]

≤ 1∑T
t=1 βt

[
2Jπ(α̂2(ω1)) +

T∑
t=1

ηt+1ρ
2(2 + Lηt+1)

]

≤ 1

Tβt

[
2Jπ(α̂2(ω1)) + Tηt+1ρ

2(2 + L)
]

=
2Jπ(α̂2(ω1))

Tβt
+
ηt+1ρ

2(2 + L)

βt

=
2Jπ(α̂2(ω1))

T
max{L,

√
T

c2
}+min{1, c1

T
}max{L,

√
T

c2
}ρ2(2 + L)

≤2Jπ(α̂2(ω1))

c2
√
T

+
c1ρ

2(2 + L)

c2
√
T

=O
(

1√
T

)
,

(23)

where the second inequality holds according to (22), the third inequality holds for∑T
t=1

(
2βt − Lβ2

t

)
≥∑T

t=1 βt.

D.2 THEOREM 2: CONVERGENCE OF THE INNER LOSS

Lemma D.3. (Lemma A.5 in Mairal (2013)) Let (an)n≥1, (bn)n≥1 be two non-negative real se-
quences such that the series

∑∞
n=1 an diverges, the series

∑∞
n=1 anbn converges, and there exists

C > 0 such that |bn+1 − bn| ≤ Can. Then, the sequence (bn)n≥1 converges to 0.

Theorem D.4. Suppose Jπ is Lipschitz-smooth with constant L, the gradient of Jπ andLatt is bounded
by ρ. Let the training iterations be T , the inner-level optimization learning rate ηt = min{1, c1T } for
some constant c1 > 0 where c1

T < 1. Let the outer-level optimization learning rate βt = min{ 1
L ,

c2√
T
}

for some constant c2 > 0 where c2 ≤
√
T
L , and

∑∞
t=1 βt ≤ ∞,

∑∞
t=1 β

2
t ≤ ∞. Latt achieves

lim
t→∞

E
[
∥∇αLatt(αt;ωt)∥2

]
= 0. (24)

Proof. First,

Latt(αt+1;ωt+1)− Latt(αt;ωt)

= {Latt(αt+1;ωt+1)− Latt(αt+1;ωt)}+ {Latt(αt+1;ωt)− Latt(αt;ωt)} .
(25)
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For the first term in (25),

Latt(αt+1;ωt+1)− Latt(αt+1;ωt)

≤∇ωLatt(αt+1;ωt)
⊤(ωt+1 − ωt) +

L

2
∥ωt+1 − ωt∥2

=− βt∇ωLatt(αt+1;ωt)
⊤∇ωJπ(αt+1(ωt)) +

Lβ2
t

2
∥∇ωJπ(αt+1(ωt))∥2 .

(26)

where ωt+1 − ωt = −βt∇ωJπ(αt+1(ωt)), and the first inequality holds according to Lemma D.1.
For the second term in (25),

Latt(αt+1;ωt)− Latt(αt;ωt)

≤∇αLatt(αt;ωt)
⊤(αt+1 − αt) +

L

2
∥αt+1 − αt∥2

=− ηt∇αLatt(αt;ωt)
⊤∇αLatt(αt;ωt) +

Lη2t
2
∥∇αLatt(αt;ωt)∥2

=− (ηt −
Lη2t
2

) ∥∇αLatt(αt;ωt)∥2 .

(27)

where αt+1 − αt = −ηt∇αLatt(αt;ωt), and the first inequality holds according to Lemma (D.1).
Therefore, (25) becomes

Latt(αt+1;ωt+1)− Latt(αt;ωt)

≤− βt∇ωLatt(αt+1;ωt)
⊤∇ωJπ(αt+1(ωt)) +

Lβ2
t

2
∥∇ωJπ(αt+1(ωt))∥2

− (ηt −
Lη2t
2

) ∥∇αLatt(αt;ωt)∥2 .

(28)

Taking expectation of both sides of (28) and rearranging the terms, we obtain

ηtE
[
∥∇αLatt(αt;ωt)∥2

]
+ βtE [∥∇ωLatt(αt+1;ωt)∥ · ∥∇ωJπ(αt+1(ωt))∥]

≤E [Latt(αt;ωt)]− E [Latt(αt+1;ωt+1)] +
Lβ2

t

2
E
[
∥∇ωJπ(αt+1(ωt))∥2

]
+
Lη2t
2

E
[
∥∇αLatt(αt;ωt)∥2

]
.

(29)

Summing up both sides of (29) from t = 1 to∞,
∞∑
t=1

ηtE
[
∥∇αLatt(αt;ωt)∥2

]
+

∞∑
t=1

βtE [∥∇ωLatt(αt+1;ωt)∥ · ∥∇ωJπ(αt+1(ωt))∥]

≤E [Latt(α1;ω1)]− lim
t→∞

E [Latt(αt+1;ωt+1)] +

∞∑
t=1

Lβ2
t

2
E
[
∥∇ωJπ(αt+1(ωt))∥2

]
+

∞∑
t=1

Lη2t
2

E
[
∥∇αLatt(αt;ωt)∥2

]
≤

∞∑
t=1

L(η2t + β2
t )ρ

2

2
+ E [Latt(α1;ω1)] ≤ ∞,

(30)

where the second inequality holds for
∑∞
t=1 η

2
t ≤ ∞,

∑∞
t=1 β

2
t ≤ ∞, ∥∇αLatt(αt;ωt)∥ ≤ ρ,

∥∇ωJπ(αt+1(ωt))∥ ≤ ρ. Since
∞∑
t=1

βtE [∥∇ωLatt(αt+1;ωt)∥ · ∥∇ωJπ(αt+1(ωt))∥] ≤ Lρ
∞∑
t=1

βt ≤ ∞. (31)

Therefore, we have
∞∑
t=1

ηtE
[
∥∇αLatt(αt;ωt)∥2

]
<∞. (32)
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Since |(∥a∥+ ∥b∥)(∥a∥ − ∥b∥)| ≤ ∥a+ b∥∥a− b∥, we can derive that∣∣∣E [
∥∇αLatt(αt+1;ωt+1)∥2

]
− E

[
∥∇αLatt(αt;ωt)∥2

]∣∣∣
=
∣∣∣E[( ∥∇αLatt(αt+1;ωt+1)∥+ ∥∇αLatt(αt;ωt)∥

)
+

(
∥∇αLatt(αt+1;ωt+1)∥ − ∥∇αLatt(αt;ωt)∥

)]∣∣∣
≤E

[∣∣∣ ∥∇αLatt(αt+1;ωt+1)∥+ ∥∇αLatt(αt;ωt)∥
∣∣∣∣∣∣ ∥∇αLatt(αt+1;ωt+1)∥ − ∥∇αLatt(αt;ωt)∥

∣∣∣]
≤E

[
∥∇αLatt(αt+1;ωt+1) +∇αLatt(αt;ωt)∥ · ∥∇αLatt(αt+1;ωt+1)−∇αLatt(αt;ωt)∥

]
≤E

[(
∥∇αLatt(αt+1;ωt+1)∥+ ∥∇αLatt(αt;ωt)∥

)
∥∇αLatt(αt+1;ωt+1)−∇αLatt(αt;ωt)∥

]
≤2LρE

[
∥(αt+1, ωt+1)− (αt, ωt)∥

]
≤2LρηtβtE

[
∥(∇αLatt(αt;ωt),∇ωJπ(αt+1(ωt)))∥

]
≤2Lρηtβt

√
E
[
∥∇αLatt(αt;ωt)∥2

]
+ E

[
∥∇ωJπ(αt+1(ωt))∥2

]
≤2Lρηtβt

√
2ρ2

≤2
√
2Lρ2ηtβt.

(33)
Since

∑∞
t=1 ηt =∞, according to Lemma D.3, we have

lim
t→∞

E
[
∥∇αLatt(αt;ωt)∥2

]
= 0. (34)

E DETAILS OF PBRL
In this section, we present details of the scripted teacher and preference collection. It is a crucial part
of the PbRL, and BATTLE follows these settings as Lee et al. (2021a).

Scripted Teacher. To evaluate the performance systemically, a useful way is to consider a scripted
teacher that provides preferences between a pair of agent’s trajectory segments according to the
oracle reward function. Leveraging the preference labels from the human teacher is ideal, while
it is hard to evaluate algorithms quantitatively and quickly. Specifically, the scripted teacher can
immediately provide ground truth rewards based on the state s and action a. It is a function designed
to approximate the human’s intention.

Preference Collection. During training, we need to query human preference labels at regular
intervals. It samples a batch of segment pairs and calculates the cumulative reward of each segment
with rewards provided by the scripted teacher. For a specific segment pair, human prefers the segment
with a larger cumulative reward. The segment with a larger cumulative reward is labelled with 1, and
the smaller one is labelled with 0. As for the computational cost, we assume that M preference labels
are required, the segment length is N in a run, and the time complexity is O(MN). However, it is
negligible compared with adversary training, which involves complex gradient computation.

F EXPERIMENTAL DETAILS

In this section, we provide a concrete description of our experiments and detailed hyper-parameters
of BATTLE. For each run of experiments, we run on a single Nvidia Tesla V100 GPUs and 16 CPU
cores (Intel Xeon Gold 6230 CPU @ 2.10GHz) for training.

F.1 TASKS

In phase one of our experiments, we evaluate our method on eight robotic manipulation tasks
obtained from Meta-world (Yu et al., 2020). These tasks serve as a representative set for testing
the effectiveness of our approach. In phase two, we further assess our method on two locomotion
tasks sourced from Mujoco (Todorov et al., 2012). By including tasks from both domains, we aim
to demonstrate the versatility and generalizability of our approach across different task types. The
specific tasks we utilize in our experiments are as follows:
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Meta-world

• Door Lock: An agent controls a simulated Sawyer arm to lock the door.

• Door Unlock: An agent controls a simulated Sawyer arm to unlock the door.

• Drawer Open: An agent controls a simulated Sawyer arm to open the drawer to a target position.

• Drawer Close: An agent controls a simulated Sawyer arm to close the drawer to a target position.

• Faucet Open: An agent controls a simulated Sawyer arm to open the faucet to a target position.

• Faucet Close: An agent controls a simulated Sawyer arm to close the faucet to a target position.

• Window Open: An agent controls a simulated Sawyer arm to open the window to a target
position.

• Window Close: An agent controls a simulated Sawyer arm to close the window to a target
position.

Mujoco

• Half Cheetah: A 2-dimensional robot with nine links and eight joints aims to learn to run forward
(right) as fast as possible.

• Walker: A 2-dimensional two-legged robot aims to move in the forward (right).

F.2 HYPER-PARAMETERS SETTING

We adopt the PEBBLE algorithm as our baseline approach for SA-RL (Zhang et al., 2021), and
we keep the same parameter settings and neural network structure as described in their work. The
specific hyperparameters for SA-RL are provided in Table 4. Similarly, for PA-AD (Sun et al., 2022),
we use identical hyperparameter values to those of SA-RL, ensuring a fair comparison between the
two methods.

Table 3: Hyper-parameters of BATTLE for adversary training.

Hyper-parameter Value Hyper-parameter Value
Number of layers 3 Hidden units of each layer 256
Learning rate 0.0003 Batch size 1024
Length of segment 50 Number of reward functions 3
Frequency of feedback 5000 Feedback batch size 128
Adversarial budget 0.1 (β1, β2) (0.9, 0.999)

Table 4: Hyper-parameters of SA-RL for adversary training.

Hyper-parameter Value Hyper-parameter Value
Number of layers 3 Hidden units of each layer 256
Learning rate 0.00005 Mini-Batch size 32
Length of segment 50 Number of reward functions 3
Frequency of feedback 5000 Feedback batch size 128
Adversarial budget 0.1 Entropy coefficient 0.0
Clipping parameter 0.2 Discount γ 0.99
GAE lambda 0.95 KL divergence target 0.01

F.3 VICTIM SETTING

Our experiment is divided into two phases. In the first phase, we conduct experiments using a variety
of simulated robotic manipulation tasks from the Meta-world environment. In the second phase, we
shift our focus to two continuous control environments from the OpenAI Gym MuJoCo suite.

Meta-world. We train the victim models on the Meta-world tasks using the SAC (Soft Actor-Critic)
algorithm proposed by Haarnoja et al. (2018). We employ a fully connected neural network as the
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policy network for the SAC algorithm. The detailed hyperparameters used in our experiments are
provided in Table 5.

Table 5: Hyper-parameters of SAC for victim training.

Hyper-parameter Value Hyper-parameter Value
Number of layers 3 Initial temperature 0.1
Hidden units of each layer 256 Optimizer Adam
Learning rate 0.0001 Critic target update freq 2
Discount γ 0.99 Critic EMA τ 0.005
Batch size 1024 (β1, β2) (0.9, 0.999)
Steps of unsupervised pre-training 9000 Discount γ 0.99

Mujoco. We directly utilize the well-trained model for demonstrating the vulnerability of the Decision
Transformer. Specifically, we use the Cheetah agent4 and the Walker agent5 with expert-level.

F.4 SCENARIO DESIGNING

To validate the effectiveness of our approach, we carefully designed two experimental scenarios:
the Manipulation Scenario and the Opposite Behavior Scenario. In the Manipulation Scenario, the
victim policy is a well-trained policy on robotic tasks. The objective of the adversary is to manipulate
the agent’s behavior through targeted adversarial attacks, causing the agent to grasp objects that are
far from the original target location. The successful execution of such grasping actions indicates
the success of the adversarial attack. In the Opposite Behavior Scenario, the victim policy is a
well-trained policy on simulated robotic manipulation tasks. The goal of the attacker is to redirect the
agent’s behavior towards tasks that are opposite in nature to the original objective. For instance, if the
victim policy is designed to open windows, the attacker aims to modify the agent’s behavior to close
the windows instead.

Table 6: Success rate of different methods with varying numbers of preference labels on the Drawer
Open task in the manipulation scenario and the Faucet Close task in the opposite behavior scenario.
The success rate is reported as the mean and standard deviation over 30 episodes.

Environment Feedback BATTLE (ours) PA-AD SA-RL

Drawer Open
(manipulation)

3000 65.7%± 37.1% 0.0%± 0.0% 8.3%± 13.2%

5000 86.7%± 18.1% 0.0%± 0.0% 21.3%± 18.9%

7000 95.7%± 13.6% 0.0%± 0.0% 28.0%± 28.1%

9000 97.0%± 6.9% 0.0%± 0.0% 13.0%± 18.5%

Faucet Close
(opposite behavior)

1000 69.7%± 35.2% 16.7%± 9.4% 2.0%± 6.0%

3000 79.0%± 16.2% 29.0%± 14.0% 6.0%± 11.7%

5000 95.3%± 9.2% 21.3%± 12.8% 3.3%± 12.7%

7000 95.3%± 7.6% 22.7%± 12.4% 4.0%± 7.1%

G EXTENSIVE EXPERIMENTS

Impact of Feedback Amount. We evaluate the performance of BATTLE using different num-
bers of preference labels. Table 6 presents the results of all methods with varying numbers
of labels: 3000, 5000, 7000, 9000 for the Drawer Open task in the manipulation scenario and
1000, 3000, 5000, 7000 for the Faucet Close task in the opposite behavior scenario. Based on the
experimental results shown in Table 6, we conclude that providing an adequate amount of human
feedback improves the performance of our method, leading to a stronger adversary and a more stable
attack success rate. We observe that the performance of BATTLE consistently improves as the number
of preference labels increases, highlighting the crucial impact of the number of preference labels on

4https://huggingface.co/edbeeching/decision-transformer-gym-halfcheetah-expert
5https://huggingface.co/edbeeching/decision-transformer-gym-walker2d-expert
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adversary learning. In contrast, SA-RL and PA-AD exhibit poor performance even with a sufficient
amount of human feedback, with PA-AD failing entirely in the manipulation scenario. This can
be attributed to the limited exploration space of these methods, which is constrained by the fixed
victim policy. In contrast, BATTLE achieves better exploration by incorporating an intention policy,
resulting in improved performance.
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Figure 8: Training curves of success rate with different adversarial budgets on Drawer Open for the
manipulation scenario and Faucet Close for the opposite behavior scenario. The solid line and shaded
area denote the mean and the standard deviation of the success rate across five runs.

(a) Faucet Open (b) Faucet Close

(c) Drawer Open (d) Drawer Close

Figure 9: Time series of the normalized learned reward (blue) and the ground truth reward (orange).
These rewards are obtained from rollouts generated by a policy optimized using BATTLE.
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Impact of Different Attack Budgets. We also investigate the impact of the attack budget on the
performance. To gain further insights, we conduct additional experiments with different attack
budgets: 0.05, 0.075, 0.1, 0.15 for the Drawer Open task and 0.02, 0.05, 0.075, 0.1 for the Faucet
Close task in the respective scenarios. In Figure 8, we present the performance of the baseline
method and BATTLE with different attack budgets. The experimental results demonstrate that the
performance of all methods improves with an increase in the attack budget.

Quality of learned reward functions. We further analyze the quality of the reward functions learned
by BATTLE compared to the true reward function. In Figure 9, we present four time series plots
that depict the normalized learned reward (blue) and the ground truth reward (orange). These plots
represent two scenarios: opposite behaviors and manipulation tasks. The results indicate that the
learned reward function aligns well with the true reward function derived from human feedback. This
alignment is achieved by capturing various human intentions through the preference data.

Robust Agents Training and Evaluating. An intuitive application of BATTLE is in evaluating the
robustness of a given model or enhancing the robustness of an agent through adversarial training.
ATLA (Zhang et al., 2021) is a general training framework for improving robustness, which involves
alternating training between an agent and an adversary. Building upon this concept, we introduce
BATTLE-ATLA, which combines BATTLE with the ATLA framework by training an agent and a
BATTLE attacker alternately. The robustness performance of BATTLE-ATLA for a SAC agent is
presented in Table 7 and compared with state-of-the-art robust training methods. The experimental
results provide two key insights: firstly, BATTLE-ATLA significantly enhances the robustness of
agents, demonstrating its effectiveness in improving agent resilience to adversarial attacks. Sec-
ondly, BATTLE exhibits the capability to launch stronger attacks on robust agents, highlighting its
effectiveness as an adversary in the adversarial training process.

Table 7: Average episode rewards ± standard deviation of robust agents under different attack
methods, and results are averaged across 100 episodes.

Task Model BATTLE PA-AD SA-RL Average Reward

Door Lock
BATTLE-ATLA 874±444 628±486 503±120 668

PAAD-ATLA 491±133 483±15 517±129 497
SARL-ATLA 469±11 629±455 583±173 545

Door Unlock
BATTLE-ATLA 477±203 745±75 623±60 615

PAAD-ATLA 398±12 381±11 398±79 389
SARL-ATLA 393±36 377±8 385±26 385

Faucet Open
BATTLE-ATLA 442±167 451±96 504±55 465

PAAD-ATLA 438±53 588±222 373±32 466
SARL-ATLA 610±293 523±137 495±305 522

Faucet Close
BATTLE-ATLA 1048±343 1223±348 570±453 947

PAAD-ATLA 661±279 371±65 704±239 538
SARL-ATLA 1362±149 688±196 426±120 825
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