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ABSTRACT

Auction-based Federated Learning (AFL) has emerged as an important research
field in recent years. The prevailing strategies for FL data consumers (DCs) assume
that the entire team of the required data owners (DOs) for an FL task must be assem-
bled before training can commence. In practice, a DC can trigger the FL training
process multiple times. DOs can thus be gradually recruited over multiple FL
model training sessions. Existing bidding strategies for AFL DCs are not designed
to handle such scenarios. Therefore, the problem of multi-session AFL remains
open. To address this problem, we propose the Multi-session Budget Optimization
Strategy for forward Auction-based Federated Learning (MultiBOS-AFL). Based
on hierarchical reinforcement learning, MultiBOS-AFL jointly optimizes inter-
session budget pacing and intra-session bidding for AFL DCs, with the objective
of maximizing the total utility. Extensive experiments on six benchmark datasets
show that it significantly outperforms seven state-of-the-art approaches. On aver-
age, MultiBOS-AFL achieves 12.28% higher utility, 14.52% more data acquired
through auctions for a given budget, and 1.23% higher test accuracy achieved by
the resulting FL model compared to the best baseline. To the best of our knowledge,
it is the first budget optimization decision support method with budget pacing
capability designed for DCs in multi-session forward auction-based FL.

1 INTRODUCTION

Federated Learning (FL) Yang et al. (2019; 2020); Goebel et al. (2023) has emerged as a useful
collaborative machine learning (ML) paradigm. In contrast to the traditional ML paradigm, FL
enables collaborative model training without the need to expose local data, thereby enhancing data
privacy and user confidentiality. Prevailing FL methods often assume that data owners (DOs, a.k.a, FL
clients) are ready to join FL tasks by helping data consumers (DCs, a.k.a, FL servers) train models. In
practice, this assumption might not always hold due to DOs’ self-interest and trade-off considerations.
To deal with this issue, the domain of auction-based federated learning (AFL) has emerged Jiao et al.
(2019); Deng et al. (2021); Zhang et al. (2021).

As shown in Fig. 1, the main actors in AFL include the auctioneer, DOs and DCs. The auctioneer
functions as an intermediary, facilitating the flow of asking prices from DOs and DCs. DCs then
determine their bid prices to be submitted to the auctioneer. The auctioneer then consolidates the
auction outcomes and informs the DOs and DCs about the match-making results. The auctioneer
undertakes a pivotal role in orchestrating the entire auction process, managing information dissemina-
tion, and ultimately determining the auction winners. Once FL teams have been established through
auctions, they can carry out collaborative model training following standard FL protocols.

AFL methods can be divided into three categories Tang et al. (2024b;a): 1) data owner-oriented
(DO-oriented), 2) auctioneer-oriented, and 3) data consumer-oriented (DC-oriented). DO-oriented
AFL methods focus on helping DOs determine the amount of resources to commit to FL tasks, and set
their respective reserve prices for profit maximization. Auctioneer-oriented AFL methods investigate
how to optimally match DOs with DCs as well as provide the necessary governance oversight to
ensure desirable operational objectives can be achieved (e.g., fairness, social cost minimization). DC-
oriented AFL methods examine how to help DCs select which DOs to bid and for how much, in order
to optimize key performance indicators (KPIs) within budget constraints, possibly in competition
with other DCs.
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Figure 1: An overview of auction-based federated learning (AFL).

This paper
focuses on DC-
oriented AFL,
helping DCs
bid for DOs.
The prevailing
methods in this
domain require
that the budget
of a DC shall be
maximally spent
to recruit the
entire team of necessary DOs before FL model training can commence Tang & Yu (2023b); Tang
et al. (2024c); Tang & Yu (2023a). In practice, throughout the FL model training process, a DC
can recruit DOs over multiple training sessions. This is especially useful in continual FL Yoon
et al. (2021) settings where DOs’ local data are continuously updated over time. Existing AFL
approaches designed to optimize KPIs within a single auctioning session cannot be directly applied
in multi-session AFL scenarios, especially in scenarios with multiple DCs competing to bid for DOs
from a common pool of candidates. This is primarily due to the limitation that they are unable to
perform budget pacing, which pertains to the strategic dispersion of a limited overall budget across
multiple AFL sessions to achieve optimal KPIs over a given time frame.

To bridge this important gap, we propose a first-of-its-kind Multi-session Budget Optimization
Strategy for forward Auction-based Federated Learning (MultiBOS-AFL). It is designed to em-
power a DC with the ability to dynamically allocate its limited budget over multiple AFL DO recruit-
ment sessions, and then optimize the distribution of budget for each session among DOs through
effective bidding. The ultimate goal is to maximize the DC’s winning utility. MultiBOS-AFL is
grounded in Hierarchical Reinforcement Learning (HRL) Pateria et al. (2021) to effectively deal with
the intricate decision landscape and the absence of readily available analytical remedies. Specifically,
MultiBOS-AFL consists of two agents for each DC: 1) the Inter-Session Budget Pacing Agent
(InterBPA), and 2) the Intra-Session Bidding Agent (IntraBMA). For each auctioning session,
each DC’s InterBPA opportunistically determines how much of the total budget shall be spent in
this session based on jointly considering the quantity and quality of the currently available candidate
DOs, as well as bidding outcomes from previous sessions. Then, the DC’s IntraBMA determines
the bid price for each data resource offered by DOs in the AFL market within the session budget.

To the best of our knowledge, MultiBOS-AFL is the first budget optimization decision support
method with budget pacing capability designed for DCs in multi-session forward auction-based
federated learning. Extensive experiments on six benchmark datasets show that it significantly
outperforms seven state-of-the-art approaches. On average, MultiBOS-AFL achieves 12.28%
higher utility, 14.52% more data acquired through auctions for a given budget, and 1.23% higher test
accuracy achieved by the resulting FL model compared to the best baseline.

2 RELATED WORK

Existing methods for DC-oriented issues can be further divided into two subcategories: i) reverse
auction-based methods, and ii) forward auction-based methods.

Reverse Auction-based Methods: Developed primarily for monopoly AFL markets where there is
only one DC facing multiple DOs, reverse auction-based methods Deng et al. (2021); Zhang et al.
(2021); Jiao et al. (2020); Zeng et al. (2020); Ying et al. (2020); Le et al. (2020; 2021); Roy et al.
(2021); Zhang et al. (2022); Zhang, Jingwen and Wu, Yuezhou and Pan, Rong (2022); Tan & Yu
(2023) address the challenge of DO selection through reverse auctions. The key idea of these methods
is to optimally resolve the DO selection problem, targeting the maximization of KPIs specific to the
target DC. Particularly relevant in scenarios where disparate DOs vie for the attention of a sole DC,
these methods have progressed by integrating diverse mechanisms such as graph neural networks,
blockchains, and reputation assessment.

Forward Auction-based Methods: These methods are designed for situations where multiple DCs
compete for the same pool of DOs Tang & Yu (2023b). The key idea of these methods lies in
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determining the optimal bidding strategy for DCs. The goal is to maximize model-specific key
performance indicators. A notable example is Fed-Bidder Tang & Yu (2023b) which assists DCs
to determine their bids for DOs. It leverages a wealth of auction-related insights, encompassing
aspects like DOs’ data distributions and suitability to the task, DCs’ success probabilities in ongoing
auctions and budget constraints. However, this method ignores the complex relationships among
DCs, which are both competitive and cooperative. To deal with this issue, Tang & Yu (2023a) models
the AFL ecosystem as a multi-agent system to steer DCs to bid strategically toward an equilibrium
with desirable overall system characteristics.

MultiBOS-AFL falls into the forward auction-based methods category. Distinct from existing
methods which focus on optimizing the objectives within a single auctioning session, it is designed to
solve the problem of multi-session AFL budget optimization.

3 PRELIMINARIES

AFL Market: Generally, an AFL market consists of three types of participants Tang et al. (2024b):
1) Data Owners (DOs): entities possessing potentially sensitive yet valuable data, who are willing
to share or sell access to their data resources for FL task training in exchange for appropriate
compensation. 2) Data Consumers (DCs): organizations or individuals requiring data to train their
machine learning models via FL. 3)Auctioneer: a trusted third-party entity orchestrating the auction
process between DOs and DCs. It facilitates the exchange of data resources for FL training tasks
through an auction mechanism, such as the Second-Price Sealed-Bid (SPSB) auction.

When a DO is ready to offer its services for FL task training, it notifies the auctioneer, specifying its
bid request and the reserve price.1 The auctioneer then announces the auction to all DCs currently
participating in the AFL market. Any DC whose required the corresponding data resources aligns
with the DO’s offering submits a bid for the auction.

Multi-Session Budget Constrained AFL Bidding: During the course of FL model training, a DC
can initiate the FL training procedure (i.e., a training session) on multiple occasions, with the aim of
recruiting DOs to improve model performance. Consider the scenario of multiple banks engaging in
FL. The dynamic nature of user data within these banks sets in motion a perpetual cycle of updates,
with continually refreshed data stored locally by each bank. As a result, these banks systematically
engage in repeated sessions of federated model training periodically, during which the standard FL
training protocol is followed. Let S denote the number of training sessions for the target DC, who has
a budget B for all training sessions [S]. In each FL training session s (s ∈ [S]), there are Cs available
qualified DOs, which can help train the FL model of the target DC. Each DO i ∈ [Cs] possesses a
private dataset Di = {(xj , yj)}|Di|

j=1 .

Following Tang & Yu (2023b), we assume that each DO i become gradually available over time.
Each DO i can trigger the following auction process: 1) Bid Request Initiation: DO i ∈ [Cs]
generates a bid request about itself (e.g., identity, data quantity, etc.) and sends it along with the
the reserve price (i.e., the lowest price it is willing to accept for selling the corresponding resources
Vincent (1995)) to the auctioneer. 2) Bid Request Dissemination: The auctioneer disseminates the
received bid request to the relevant DCs whose FL tasks are relevant to the data resources of the DO
being auctioned. 3) Bidding Response: Each relevant DC evaluates the potential value and cost of
the received bid request, and decides on a bid price based on its bidding strategy. The DCs submit
their bids to the auctioneer. When a DC has exhausted its budget, it will forfeit future auctions. 4)
Outcome Determination: Upon receiving bids from relevant DCs, the auctioneer determines the
winning price based on an auction mechanism. It then compares the winning price with the reserve
price set by each DO. If the winning price is lower than the reserve price, the auctioneer terminates
the auction and informs the DO to initiate another auction for the same resources. Otherwise, the
auctioneer informs the winning DC about the cost (i.e., the winning price) it needs to pay, informs
the losing DCs, and informs the DO about the winning DC it shall join.

When the auctioning process for session s has been completed or the DC has exhausted its budget, it
initiates FL model training with the recruited DOs. Each DC pays the corresponding market prices to
the DOs it has recruited.

1Following Tang & Yu (2023b), we assume that DOs arrive and make their bid requests sequentially, one
after the other.
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FL with Recruited DOs: After the auction-based DO recruitment process, the DC triggers the FL
training process with the recruited DOs in session s, which is detailed in Appendix A.1.

Let vis denote the reputation of DO i ∈ [Cs] Shi & Yu (2023) and xi
s ∈ {0, 1} denote whether the

target DC wins i. Then, the goal of the target DC across S sessions is to maximize the total utility of
winning DOs2 under the budget B, which can be formulated as:

max
∑
s∈[S]

∑
i∈[Cs]

xi
s × vis, s.t.

∑
s∈[S]

∑
i∈[Cs]

xi
s × pis ≤ B, (1)

DOs’ Reputation Calculation: Following Shi & Yu (2023), we calculate the reputation of each DO
based on the Shapley Value (SV) Shapley et al. (1953) technique and Beta Reputation System (BRS)
Josang & Ismail (2002).

We start by adopting the SV approach to calculate the contribution ϕi of each DO i during each
training round towards the performance of the resulting FL model as

ϕi = α
∑

S⊆N\{i}

f(wS∪{i})− f(wS)(|N |−1
|S|

) . (2)

α is a constant. S represents the subset of DOs drawn from N . f(wS) denotes the performance of the
FL model w when trained on data owned by S. The contributions made by the DOs can be divided
into two types: 1) positive contribution (i.e., ϕi ≥ 0); and 2) negative contribution (i.e., ϕi < 0).
We use the variables pci and nci to record the number of positive contributions and the number of
negative contributions made by each DO i, respectively. Following BRS, the reputation value vi of i
can be computed as follows:

vi = E[Beta(pci + 1, nci + 1)] =
pci + 1

pci + nci + 2
. (3)

It is important to highlight that, as depicted in Eq. equation 3, the reputation of each DO i undergoes
dynamic updates as the FL model training process unfolds. Furthermore, in cases where there is no
prior information available, the default initialization for the reputation value of i is set to the uniform
distribution, denoted as vi = N(0, 1) = Beta(1, 1).

The basics of Reinforcement Learning (RL) could be found in Appendix A.2.

4 THE PROPOSED MultiBOS-AFL APPROACH

Our primary objective is to help DCs recruit DOs across multiple sessions while adhering to budget
constraints, with the overarching goal of maximizing the total utility. To accomplish this, we must
tackle two fundamental challenges: 1) Budget Allocation: Determining the allocation of the total
budget B to a given session s, Bs; 2) Bidding Strategy: Determining the bid price bis for any given
DO i in session s under the session budget Bs. Since the AFL market is highly dynamic, it is difficult
for DCs to obtain a closed-form analytical solution for the above two problems. Therefore, we design
MultiBOS-AFL based on RL Sutton & Barto (2018) to solve these problems without requiring
prior knowledge.

To determine the optimal budget allocation strategy and bidding strategy for a DC to realize the
objective outlined in Eq. equation 1, we design MultiBOS-AFL based on HRL Pateria et al.
(2021). It consists of two HRL-based budget allocation agents: 1) Inter-session Budget Pacing Agent
(InterBPA), and 2) Intra-session Bidding Agent (IntraBMA). An overview of MultiBOS-AFL
is shown in Figure 2.

During each FL training session s, the InterBPA observes the current state within the model
training environment. Subsequently, this observed state is channeled into the policy network of
the InterBPA, generating the recommended inter-session action (i.e., setting the budget Bs for

2Following Zhang et al. (2021); Tang & Yu (2023b); Zhang et al. (2022); Zhang, Jingwen and Wu, Yuezhou
and Pan, Rong (2022); Tang & Yu (2023a); Zhan et al. (2020), maximizing the total utility is equivalent to
optimizing the performance of the global FL model obtained by the target DC.

4
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Figure 2: An overview of the proposed MultiBOS-AFL approach.

session s). This action aims to enhance the current FL model performance, ultimately influencing the
outcome across all training sessions. Moreover, this inter-session action serves as an initial state for
the IntraBMA. It is worth noting that the InterBPA will stay static throughout a given session s.
It is only updated when the session s is concluded. Funneling the inter-session action Bs into the
policy network of the IntraBMA helps determine the intra-session actions, especially the initial
intra-session action.

The primary function of the IntraBMA is to help a DC bid for each DO i ∈ [Cs] in session s
in an efficient way, thus contributing to the crafting of the optimal budget allocation strategies
under MultiBOS-AFL. The IntraBMA takes the dynamic DC state as the input, and produces the
optimal action ais as the bid price for data owner i to be submitted to the auctioneer. As a result, the
IntraBMA will be updated upon every DO auction in session s. The synthesis of inter-session and
intra-session actions culminates in the formulation of the DC’s budget allocation strategy. In the
following sections, we provide detailed descriptions of these two agents.

4.1 INTER-SESSION BUDGET PACING AGENT (InterBPA)

State: The state of the InterBPA in session c ∈ [S], denoted as sinters , comprises two main
segments. The first segment contains historical data derived from the preceding S′ sessions. These
include the budgets allocated for each of the historical sessions, and the bidding outcomes of
IntraBMA in these sessions (including the bid prices for DOs, payment for DOs, and reputation of
the recruited DOs). The second segment contains current session information (including the number
of available DOs and the remaining budget). Thus, the formulation of sinters is as follows:

sinter
s = {bs−S′ , · · · , bs−1,ps−S′ , · · · ,ps−1,vs−S′ , · · · ,vs−1, Cs, B, s}. (4)

bs−1 = {bis−1}t∈[Cs−1], ps−1 = {pis−1}i∈[Cs−1], and vs−1 = {vis−1}i∈[Cs−1]. The integration of
historical context into the state design is pivotal, as it empowers the agent to understand the impact of
its strategies on FL training over time.

Action: In session s, the action to be taken by the InterBPA is to determine the budget allocated to
the current session, ainters , which is expressed as:

ainter
s = Bs. (5)

In this context, Bs denotes the budget designated for session s for bidding for the data owners
involved. This inter-session action plays a pivotal role in regulating the amount of budget to be
disbursed by the DC during session s, thereby helping preserve the total budget B for potential future
FL training sessions.

Reward: The inter-session reward for session s, rinters , is determined by the average reputation of
DOs recruited in session s:

rinter
s =

1∑
i∈[Cs]

xi
s

∑
i∈[Cs]

xi
sv

i
s. (6)
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Algorithm 1 The training procedure of MultiBOS-AFL
Initialize Qintra, Qinter with parameters θintra, θinter; target networks of Qintra and Qinter with
parameters θ̂intra and θ̂inter; replay memories Dintra and Dinter; target networks’ update frequency
Γ.
1: for s ∈ [S] do
2: Observe state sinter

s ;
3: Compute Bs according to ϵ-greedy policy w.r.t Qinter;
4: for i ∈ [Cs] do
5: Observe state sintra

s,i ;
6: Compute bis according to ϵ-greedy policy w.r.t Qintra;
7: Submit bis to the auctioneer;
8: Obtain rewards vis and the payment pis;
9: Bs ← Bs − pis;

10: Store transition tuples in Dintra;
11: Sample a random minibatch of m samples from D;
12: yintra = ris + γmaxaintra′

s
Qintra(sintra

s,i+1, a
intra′
s ; θ̂intra);

13: Update θintra by minimizing
∑

m[(yintra −Qintra(sintra
s,i , aintra

s,i ; θintra)2];
14: θ̂intra ← θintra every Γ steps;
15: end for
16: Obtain rewards rinter

s and the total payment pis during session s;
17: B ← B −

∑
i∈[Cs]

pis;
18: Store transition tuples in Dinter;
19: Sample a random minibatch of m samples from D;
20: yinter = rs + γmaxainter′

s
Qinter(sinter

s+1 , ainter′
s ; θ̂inter);

21: Update θinter by minimizing
∑

m[(yinter −Qinter(sinter
s , ainter

s ; θinter)2];
22: θ̂inter ← θinter every Γ steps;
23: end for

xi
s ∈ {0, 1} denotes if the DC wins the auction for DO i.

Discount factor: As the goal of a DC is to maximize the total utility derived from the recruited DOs
for a given total budget B regardless of time, the reward discount factor of InterBPA is set to 1.

4.2 INTRA-SESSION BUDGET MANAGEMENT AGENT (IntraBMA)

State: The state of the IntraBMA in session s during an auction for DO i, denoted as sintras,i , consists
of: 1) Cs − i: the remaining DOs in session s, 2) Bs: the remaining budget of session s, and 3) vis:
the reputation of DO i:

sintra
s,i = {Cs − i, Bs, v

i
s}. (7)

Action: The action, denoted as aintra
s,i , to be taken by the IntraBMA in session s for DO i ∈ [Cs] is

to determine the bid price for i, i.e., bis.

Reward: The intra-session reward for session s following the bid for DO i is defined as the utility
obtained from i, which is formulated as:

rintra
s,i = xi

sv
i
s. (8)

Discount factor: Similar to InterBPA, the discount factor for the IntraBMA is also set to 1.

4.3 TRAINING PROCEDURE FOR InterBPA AND IntraBMA

InterBPA and IntraBMA are built on top of the Deep Q-Network (DQN) technique Mnih et al.
(2015). A deep neural network (DNN) is adopted to model the action-value function Q(s, a) of both
agents, parameterized by θinter and θintra, respectively. To improve stability during training, we
pair these networks with a similar DNN architecture parameterized by θ̂inter and θ̂intra, respectively
(referred to as the target networks), which also approximates Q(s, a). To update θinter and θintra,
the training is conducted by minimizing the following loss function: L(θ) = 1

2E(s,a,r,s′)∼D[(y −

6
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Q(s, a; θ))2]. The replay buffer, D, is a storage mechanism for transition tuples {(s, a, r, s′)}ni=1,
where s′ is the new observation following action a based on the state s, resulting in reward r.
This buffer allows the agent to learn from its past experiences by randomly sampling batches
of transitions during training. y represents the temporal difference target, and is computed as
y = r + γmaxa′ Q(s, a′; θ̂). γ is the discount factor, θ̂ represents the parameters of the target
network associated with the corresponding agent. Q(s, a′; θ̂) is the predicted action-value function
of the corresponding agent for its next state s′ and all possible actions a′. This target network is
used to stabilize the learning process by providing a fixed target during training, which is updated
periodically (every Γ steps) to match the current action-value network. Algorithm 1 illustrates the
training procedure for MultiBOS-AFL.

5 EXPERIMENTAL EVALUATION

5.1 EXPERIMENT SETTINGS

Dataset: The performance assessment of MultiBOS-AFL is conducted on the following six widely-
adopted datasets in federated learning studies: 1) MNIST3, 2) CIFAR-104, 3) Fashion-MNIST (i.e.,
FMNIST) Xiao et al. (2017), 4) EMNIST-digits (i.e., EMNISTD), 5) EMNIST-letters (i.e., EMNISTL)
Cohen et al. (2017) and 6) Kuzushiji-MNIST (i.e., KMNIST) Clanuwat et al. (2018). The FL models
used are the same as those employed in Tang & Yu (2023b).

Comparison Approaches: We evaluate the performance of MultiBOS-AFL against the following
seven AFL bidding approaches in our experiments: Constant Bid (Const) Zhang et al. (2014),
Randomly Generated Bid (Rand) Zhang et al. (2021); Zhang, Jingwen and Wu, Yuezhou and Pan,
Rong (2022), Below Max Utility Bid (Bmub), Linear-Form Bid (Lin) Perlich et al. (2012), Bidding
Machine (BM) Ren et al. (2017), , Reinforcement Learning-based Bid (RLB) Tang, Xiaoli and Yu,
Han (2023), FedBidder-sim (FBs), and Fed-Bidder-com (FBc) Tang & Yu (2023b). Details can be
found in Appendix A.3.

Experiment Scenarios: We compare MultiBOS-AFL with baselines under two main experiment
scenarios with each containing 10,000 DOs: 1) IID data, varying dataset sizes, without noise: In
this scenario, the sizes of datasets owned by various DOs are randomly generated, ranging from 500
to 5,000 samples. Additionally, all the data are independent and identically distributed (IID), with no
noise. 2) Non-IID data, with noise: In this experimental scenario, we deliberately introduce data
heterogeneity by adjusting the class distribution among individual DOs. Following the methodology
outlined in Shi & Yu (2023), we implement the following Non-IID setup. We designate 1 class (on
datasets other than EMNISTL) or 6 classes (on EMNISTL) as the minority class and assign this
minority class to 100 DOs. As a result, these 100 DOs possess images for all classes, while all other
DOs exclusively have images for the remaining nine classes, excluding the minority class. In this
experiment scenario, each DO holds 3,000 images. Additionally, we simulate scenarios in which the
minority DOs contain 10% or 25% noisy data.

To evaluate the effectiveness of MultiBOS-AFL, we create nine DCs, each utilizing one of the
aforementioned bidding approaches to join the auction for each bid request (i.e., each DO) in
each session s. Following Tang & Yu (2023b), bid requests are delivered in chronological order.
Upon receiving a bid request, each DC derives its bid price based on its adopted bidding strategy.
Subsequently, the auctioneer gathers the bid prices, identifies the winner, and determines the market
price using the SPSB auction mechanism. The winning DC pays the market price to the DO. The
process concludes when there are no more bid requests or when the budget is depleted.

MultiBOS-AFL utilizes fully connected neural networks with three hidden layers each containing
64 nodes to generate bid prices for a target DO on behalf of their respective DCs. The replay buffer
D of both the InterBPA and the IntraBMA are set to 5,000. During training, both agents explore
the environment using an ϵ-greedy policy with an annealing rate from 1.0 to 0.05. In updating both
Qintra and Qinter, 64 tuples uniformly sampled from D are used for each training step, and the
corresponding target networks are updated once every 20 steps. In our experiments, we use RMSprop
with a learning rate of 0.0005 to train all neural networks, and set the discount factor γ to 1. In

3http://yann.lecun.com/exdb/mnist/
4https://www.cs.toronto.edu/kriz/cifar.html
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addition, we have set the number of candidate DOs within each session to 200 (i.e., Cs = 200). The
communication round in each session is set at 100, while the local training epoch is set at 30. All
experiments were conducted five times, and the averaged results are reported.

The implementations details could be found in Appendix A.4.

Table 1: Comparison results under the scenario of IID data, different sizes of DOs datasets without
noisy samples. The best results are highlighted in Bold. Ours represents MultiBOS-AFL.

Budget Method MNIST CIFAR FMNIST EMNIST EMNISTL KMNIST
#data utility #data utility #data utility #data utility #data utility #data utility

100

Const 8,832 7.36 9,897 7.87 10,722 6.46 7,638 6.52 7,359 7.02 7,810 6.75
Rand 9,125 8.41 8,721 8.43 9,743 8.09 8,853 8.10 6,822 7.97 8,940 7.96
Bmub 9,246 9.03 11,302 9.19 12,274 8.76 10,382 8.91 6,485 9.15 10,551 8.62

Lin 9,461 10.28 11,426 10.17 13,523 9.84 10,673 10.33 8,220 10.51 10,694 9.97
BM 12,324 11.95 13,367 11.85 15,321 12.65 14,399 12.19 15,157 12.27 14,501 12.46
FBs 13,985 14.51 14,259 13.51 16,373 13.53 15,321 13.46 14,408 13.44 15,509 13.54
FBc 13,869 13.84 13,984 13.70 15,843 13.42 16,772 14.23 14,168 13.67 16,927 13.64
RLB 13,892 14.42 14,263 14.26 17,783 13.95 15,989 13.51 15,544 14.40 16,027 14.33
Ours 14,944 16.59 17,397 17.47 19,064 18.19 18,674 17.46 16,317 18.59 18,687 16.55

200

Const 11,037 8.49 12,043 9.31 16,374 8.52 13,826 9.46 10,876 10.33 13,950 9.31
Rand 10,895 10.06 11,894 10.00 14,898 9.90 12,452 10.34 12,808 10.42 12,601 10.05
Bmub 16,582 9.58 17,021 10.60 25,327 10.60 17,817 10.40 20,966 11.43 17,878 10.97

Lin 17,803 13.14 17,849 12.88 26,880 12.88 19,435 12.64 27,860 12.70 19,553 12.97
BM 23,584 14.97 20,836 15.11 31,945 15.92 21,656 15.03 35,016 15.29 21,722 15.70
FBs 27,813 17.70 28,456 17.61 34,936 17.09 26,994 17.01 31,743 17.40 27,087 17.49
FBc 28,005 17.51 29,835 17.24 36,873 17.58 27,863 16.60 34,686 16.99 27,892 17.89
RLB 29,468 17.77 30,138 17.82 35,548 17.04 26,748 17.45 37,122 17.82 26,819 17.23
Ours 33,045 21.99 35,163 21.08 39,982 23.72 35,656 19.59 37,645 22.43 35,737 18.08

400

Const 14,395 8.72 15,362 8.11 18,475 8.34 17,877 7.82 10,177 8.04 17,940 8.41
Rand 13,195 9.86 16,372 9.71 17,844 6.87 17,003 7.13 6,431 9.02 17,051 9.20
Bmub 23,378 10.90 25,631 11.16 31,487 10.86 24,756 10.05 23,639 10.63 24,869 11.33

Lin 24,523 14.58 26,830 14.41 32,677 14.24 25,669 14.28 36,261 14.31 25,802 14.46
BM 38,516 16.46 30,173 16.54 38,552 16.90 30,878 17.26 41,050 17.66 31,077 17.61
FBs 50,983 19.32 38,452 19.24 39,236 18.54 38,452 18.69 40,605 19.04 38,566 19.09
FBc 50,146 19.23 39,817 19.10 41,582 18.37 40,663 18.40 39,555 18.85 40,768 18.88
RLB 51,643 19.54 42,731 19.63 45,667 18.84 37,748 19.18 43,077 19.71 37,843 19.55
Ours 56,872 23.65 53,672 22.71 52,386 23.00 47,135 19.32 46,341 23.83 47,262 19.73

600

Const 17,895 9.71 19,378 9.60 21,394 9.33 19,832 10.08 10,596 9.55 19,982 8.92
Rand 19,803 8.68 20,184 9.07 20,853 11.69 18,838 10.37 24,581 9.15 18,966 9.83
Bmub 30,164 12.07 29,174 11.93 37,421 11.85 29,669 12.06 33,768 11.94 29,845 11.97

Lin 32,973 15.62 30,375 15.59 40,128 15.08 34,452 15.16 47,484 15.61 34,629 15.62
BM 49,807 17.09 49,272 17.43 47,533 18.06 38,743 17.85 51,454 18.23 38,943 18.54
FBs 62,396 20.49 50,384 20.58 46,731 19.54 45,232 19.64 50,482 20.29 45,288 20.29
FBc 61,478 20.31 52,836 20.24 52,843 19.92 48,767 19.38 49,468 20.04 48,958 20.06
RLB 63,672 20.64 58,273 20.64 50,472 19.26 42,534 19.69 59,455 20.53 42,692 20.44
Ours 66,654 21.72 60,737 22.82 63,824 24.17 58,462 23.01 63,441 23.54 58,522 21.72

800

Const 23,047 11.04 24,753 11.35 26,311 11.13 22,644 10.79 17,875 11.40 22,705 11.30
Rand 24,853 14.09 22,845 13.34 22,734 13.68 20,474 13.60 26,563 13.57 20,642 13.26
Bmub 36,703 12.99 35,777 12.70 40,275 13.47 36,648 12.91 38,570 13.08 36,732 13.17

Lin 39,651 16.79 38,561 16.88 47,823 16.55 40,537 16.67 59,390 16.86 40,727 16.76
BM 57,442 18.57 52,735 18.68 51,272 19.16 46,772 19.34 65,086 19.41 46,933 19.59
FBs 70,496 22.09 62,842 22.07 54,453 21.07 51,863 21.02 67,470 21.54 51,942 21.69
FBc 72,845 22.04 63,112 22.06 55,388 21.18 56,991 21.09 61,598 21.57 57,152 21.53
RLB 70,381 22.31 66,843 22.37 52,621 20.92 53,823 20.95 68,943 21.78 57,900 21.92
Ours 77,821 22.40 71,244 23.46 64,739 23.12 62,579 22.57 70,393 23.04 59,711 22.18

Evaluation Metrics: To evaluate the effectiveness of all the comparison methods, we adopt the
following three metrics: 1) the number of data samples won by the DC (#data), 2) the utility obtained
by the DC (utility), and 3) the test accuracy (Acc). More details could be found in Appendix A.5.

5.2 RESULTS AND DISCUSSION

To conduct a comparative analysis of bidding strategies based on these metrics, we carry out ex-
periments across six datasets, each with varying budget settings.These settings span the range of
{100, 200, 400, 600, 800}. The results are shown in Tables 1, 2, and Figure 3.

Table 1 shows the results of various comparison methods under the IID data, different sizes of DOs
datasets without noisy samples scenario. It can be observed that under all six datasets and five budget
settings, MultiBOS-AFL consistently outperforms all baseline methods in terms of both evaluation
metrics. Specifically, compared to the best-performing baseline, MultiBOS-AFL achieves 12.28%
and 14.52% improvement in terms of total utility and the number of data samples won, respectively.
Figure 3 shows the corresponding test accuracy. The results align with the auction performance
shown in Table 1 with MultiBOS-AFL improving the test accuracy by 1.23% on average.
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Figure 3: Comparison of accuracy under the scenario of IID data, different sizes of DOs datasets
without noisy samples.

In addition, the comparative results under the Non-IID data with noise scenario can be found in Table
2. It can be observed that under these two different settings, the proposed method MultiBOS-AFL
consistently outperforms existing methods in terms of achieving higher FL model accuracy. In
particular, on average, MultiBOS-AFL achieves 1.49% and 1.72% higher FL model accuracy
compared to the best performance achieved by baselines under the 10% noisy data and 25% noisy
data settings, respectively. All these results demonstrate the effectiveness of our approach in helping
DCs optimize their budget pacing and bidding strategies for DOs under the emerging multi-session
AFL scenarios.

Lin and Bmub typically outperform Const and Rand due to the use of utility in the bidding process.
However, Bmub is less effective than Lin due to the reliance on randomness. Meanwhile, the more
advanced methods BM, FBs, FBc, RLB and MultiBOS-AFL perform significantly better than the
simpler approaches. This is largely due to the inclusion of auction records (including auction history
and bidding records) and the use of advanced learning methods.

RLB and MultiBOS-AFL both outperform BM, FBs, and FBc, due to their ability of adaptive
adjustment to the highly dynamic auction environment. While BM does consider market price
distribution, it derives this distribution by learning the prediction of each bid request’s market price
density, which may lead to overfitting. In contrast, FBs and FBc obtain the market price distribution
via a predefined winning function, which helps predict the expected bid costs more accurately.
However, BM, FBs and FB are still static bidding strategies. They are essentially represented
by linear or non-linear functions whose parameters are derived from historical auction data using
heuristic techniques. Subsequently, these parameters are applied to new auctions, even if the dynamics
of these new auctions may vary significantly from those in the historical data. The inherent dynamism
of the AFL market poses a considerable challenge for these static bidding methods, making it hard
for them to consistently achieve desired outcomes in subsequent auctions.

While RLB employs dynamic programming to optimize its bidding process, it is susceptible to the
drawback of immediate reward setting, which might result in indiscriminate bidding for data samples
without considering their associated costs. This issue is effectively addressed by MultiBOS-AFL.
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Moreover, it is worth highlighting that RLB is not designed for optimizing budget allocation across
multiple sessions. This is a distinction where MultiBOS-AFL offers significant advantages.

The test accuracy achieved by the FL models trained under all bidding strategies on CIFAR-10 is
consistently lower than that on other datasets. This can be attributed to the base model adopted for
FL training. As mentioned in Section 5.1, the accuracy reported in these two figures is with regard to
the VGG11 network. Nevertheless, even with such a less effective base model, MultiBOS-AFL
still significantly outperforms other baselines.

To further evaluate the effectiveness of MultiBOS-AFL, additional experiments were conducted
under more scenarios. Detailed information and results are in Appendix A.6.

Table 2: Comparison of accuracy under the Non-IID data with noise scenario. 10% and 25%
represents 10% and 25% noisy data, respectively. Bud. represent budget and Ours represents
MultiBOS-AFL.

Bud. Method MNIST CIFAR FMNIST EMNIST EMNISTL KMNIST
10% 25% 10% 25% 10% 25% 10% 25% 10% 25% 10% 25%

100

Const 70.11 70.03 12.88 13.97 61.48 57.87 77.02 76.46 64.92 63.30 58.21 59.63
Rand 69.61 65.42 10.57 10.83 62.70 59.48 78.69 77.97 63.97 62.83 57.01 59.12
Bmub 71.22 70.61 15.37 12.94 63.32 60.45 78.42 77.37 66.88 65.19 61.83 61.76

Lin 72.36 70.32 18.65 17.41 64.04 64.13 78.62 77.44 66.47 64.07 62.72 62.97
BM 72.31 71.65 19.50 19.62 67.35 66.25 79.50 78.42 67.17 64.62 64.55 63.77
FBs 73.23 72.32 23.59 22.03 70.97 70.26 79.51 78.35 68.35 65.94 65.82 64.33
FBc 73.11 74.80 23.42 22.26 71.29 70.68 79.92 78.93 67.69 64.78 65.47 63.88
RLB 73.07 73.11 22.94 22.98 71.03 69.55 79.83 78.66 68.20 65.57 65.38 63.93
Ours 73.79 75.22 23.88 23.24 72.31 71.42 80.66 79.29 69.26 66.76 66.15 65.08

200

Const 70.73 66.38 10.68 11.08 63.74 60.16 77.98 77.52 67.84 66.16 58.44 58.29
Rand 69.48 68.96 10.32 10.26 63.86 59.63 78.63 78.19 68.24 66.88 59.25 58.09
Bmub 71.81 70.52 13.39 13.03 63.83 62.18 79.37 78.37 69.09 67.42 63.04 63.34

Lin 72.98 70.55 19.07 17.96 64.43 64.16 79.43 78.43 69.96 68.44 67.07 66.09
BM 73.43 72.48 20.36 20.14 64.53 70.01 80.52 79.40 70.19 67.35 69.01 67.63
FBs 74.69 72.17 23.82 22.79 71.49 71.99 80.28 79.27 69.65 67.57 69.77 68.69
FBc 74.29 72.99 23.61 22.58 71.86 71.61 80.37 79.52 70.70 68.45 68.75 67.04
RLB 74.33 73.26 23.77 23.14 71.52 70.74 80.48 79.52 70.13 68.11 70.52 70.48
Ours 75.60 75.72 24.94 24.52 72.98 73.13 81.31 80.10 71.39 69.05 71.13 71.27

400

Const 71.06 68.34 17.09 16.96 64.01 58.93 78.49 77.98 68.19 66.69 68.66 68.33
Rand 70.05 67.74 20.90 20.45 64.25 60.58 78.62 78.43 68.88 67.64 70.36 69.75
Bmub 72.27 70.26 22.21 20.49 64.37 63.15 79.97 78.90 69.71 68.11 69.93 68.56

Lin 72.99 71.02 24.18 22.94 65.52 65.44 80.01 78.99 70.53 69.12 70.37 69.10
BM 74.96 73.01 25.59 23.74 65.87 68.38 80.90 79.91 71.62 70.35 71.58 70.44
FBs 75.85 73.53 26.47 24.50 71.72 70.06 81.36 80.22 71.75 70.17 71.93 70.85
FBc 75.66 73.77 26.21 24.27 72.03 71.95 81.29 80.18 71.88 70.38 71.01 69.56
RLB 75.25 74.96 26.78 24.83 72.31 72.24 81.55 80.47 71.99 70.59 72.45 70.72
Ours 76.59 76.33 27.65 25.86 73.85 73.63 81.86 80.69 72.54 71.84 73.38 71.66

600

Const 71.05 69.36 23.10 21.66 64.61 61.77 79.28 78.49 68.39 67.01 69.21 68.69
Rand 68.79 69.05 22.72 20.32 64.39 62.49 79.25 78.83 69.31 67.95 70.19 69.74
Bmub 71.95 71.07 18.90 22.02 64.41 63.78 80.68 79.38 70.49 68.71 70.78 69.60

Lin 73.54 72.57 24.43 24.79 66.92 66.18 80.86 79.58 71.44 69.92 71.21 69.94
BM 75.25 73.58 28.30 26.62 67.21 67.80 81.42 80.26 72.47 71.07 71.97 70.82
FBs 76.18 74.16 28.85 27.25 73.55 71.81 81.47 80.34 72.51 71.06 72.26 72.23
FBc 76.25 73.98 29.07 28.95 74.14 73.31 81.49 80.31 72.51 70.99 72.18 72.84
RLB 76.06 73.15 28.52 29.60 73.85 73.05 81.68 80.60 73.07 71.64 73.41 72.81
Ours 76.93 76.71 29.91 30.55 74.46 74.05 82.16 80.93 73.21 71.86 74.63 73.79

800

Const 67.21 66.43 23.63 21.95 68.17 64.97 79.64 78.81 68.85 67.49 69.49 69.01
Rand 68.95 71.02 24.54 20.66 68.15 65.32 79.78 79.23 70.13 68.75 70.91 70.11
Bmub 71.90 72.16 25.97 19.45 69.24 66.51 81.08 79.77 70.80 69.05 71.52 70.60

Lin 75.11 72.66 25.46 28.06 71.87 69.03 81.37 80.12 71.61 70.16 71.76 70.46
BM 75.28 73.89 28.76 29.00 72.83 70.31 81.64 80.58 72.89 71.63 73.09 71.74
FBs 76.09 75.04 29.54 30.18 75.92 73.86 81.87 80.83 72.99 71.72 73.42 72.20
RLB 76.31 76.34 30.05 30.81 76.39 74.72 82.06 81.07 73.62 72.37 74.90 73.18
Ours 77.29 76.78 32.82 32.46 77.10 75.57 82.47 82.69 73.77 73.55 75.39 73.82

6 CONCLUSIONS

In this paper, we propose the Multi-session Budget Optimization Strategy for forward Auction-based
FL (MultiBOS-AFL). It is designed to empower FL DCs with the ability to strategically allocate
budgets over multiple FL training sessions and judiciously distribute the budget among DOs within
each session by bidding with different bid prices, in order to maximize total utility. Based on the
hierarchical reinforcement learning, MultiBOS-AFL jointly optimizes inter-session budget pacing
and intra-session bidding for DCs in the AFL ecosystem. To the best of our knowledge, it is the first
budget optimization decision support method with budget pacing capability designed for DCs in
multi-session forward auction-based FL.
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A APPENDIX

A.1 FEDERATED LEARNING WITH RECRUITED DATA OWNERS

After the auction-based DO recruitment process, the DC triggers the FL training process with the
recruited DOs in session s, which is detailed in Appendix A.1. Specifically, the FL process operates
through communication between the recruited DOs and the target DC in a round-by-round manner.
In each training round t in session s, the target DC broadcasts the current global model parameters
wt−1

s to the recruited DOs. Upon receiving wt−1
s , each DO i performs a local update to obtain wt

s,i
based on its private data Di, guided by the objective function

argmin
wt

s,i

E(x,y)∼Di
[L(wt

s,i; (x, y)]. (9)

L(·) represents the loss function, which depends on the FL model aggregation algorithm and the
current global model parameters wt−1

s . For instance, FedAvg McMahan et al. (2017) calculates wt
s,i

by employing SGD Robbins & Monro (1951) for a certain number of epochs using the cross-entropy
loss. At the end of round t, DO i sends its optimized parameters wt

s,i to the target DC. The global
model is then updated by aggregating these parameter updates from the DOs as

wt
s =

∑
i

|Di|∑
i |Di|

wt
s,i. (10)

∑
i |Di| denotes the total number of data samples of all the recruited DOs in session s.

A.2 REINFORCEMENT LEARNING BASICS

A Markov Decision Process (MDP) is a mathematical framework for modeling decision-making
in which an agent interacts with an environment through discrete time steps. MDP is formally
defined by the tuple ⟨S,A, P,R, γ⟩: 1) S represents the possible states in the environment, denoted
as s ∈ S. 2) A encompasses the feasible actions the agent can take. 3) P : S ×A× S → [0, 1] is the
transition probability function for the likelihood of transitioning between states when an action is
taken, capturing environmental dynamics. 4) R : S ×A× S → R is the reward function, specifying
immediate rewards upon state transitions due to specific actions, with the agent’s aim to maximize
cumulative rewards. 5) γ ∈ [0, 1] serves as the discount factor, reflecting the agent’s preference for
immediate rewards versus future rewards.

During the MDP process, the agent interacts with the environment across discrete time steps. At each
time step, it selects an action a ∈ A based on policy π : S → A, subsequently receiving a reward r,
and the environment undergoes state transitions according to P .

The goal of MDP is to identify an optimal policy π : S → A that maximizes the expected sum
of discounted rewards over time, given by maxπ E

[∑T
t=1 γ

t−1rt
]
. This entails finding the policy

maximizing expected cumulative rewards. The value function V π : S → R is associated with each
policy, quantifying expected cumulative rewards. The optimal value function V ∗ : S → R represents
the maximum achievable expected cumulative reward achievable with the best policy from each state.

A.3 COMPARISON APPROACHES

1. Constant Bid (Const) Zhang et al. (2014): An DC presents the same bid for all DOs,
whereas the bids offered by different DCs can vary.

2. Randomly Generated Bid (Rand) Zhang et al. (2021); Zhang, Jingwen and Wu, Yuezhou
and Pan, Rong (2022): This approach, commonly found in AFL, involves DCs randomly
generating bids from a predefined range for each bid request.

3. Below Max Utility Bid (Bmub): This approach is derived from the concept of bidding
below max eCPC Lee et al. (2012) in online advertisement auctioning. It defines the utility
of each bid request from a DO as the upper limit of the bid values offered by DCs. Therefore,
for each bid request, the bid price is randomly generated within the range between 0 and
this upper bound.
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4. Linear-Form Bid (Lin) Perlich et al. (2012): This strategy generates bid values which
are directly proportional to the estimated utility of the bid requests, typically expressed as
bLin(vi) = λLinv

i.

5. Bidding Machine (BM) Ren et al. (2017): Commonly used in online advertisement auction-
ing, especially in real-time bidding, this method focuses on maximizing a specific buyer’s
profit by optimizing outcome prediction, cost estimation, and the bidding strategy.

6. Fed-Bidder Tang & Yu (2023b): This bidding method is specifically designed for DCs in
AFL settings. It guides them to competitively bid for DOs to maximize their utility. It has
two variants, one with a simple winning function, referred to as Fed-Bidder-sim (FBs); and
the other with a complex winning function, referred to as Fed-Bidder-com (FBc).

7. Reinforcement Learning-based Bid (RLB) Tang, Xiaoli and Yu, Han (2023): It regards
the bidding process as a reinforcement learning problem, utilizing an MDP framework to
learn the most effective bidding policy for an individual buyer to enhance the auctioning
outcomes.

A.4 IMPLEMENTATION DETAILS

In our experiments, we faced the challenge of not having a publicly available AFL bidding behaviour
dataset. To address this issue, we track the behaviors of DCs over time during simulations to gradually
accumulate data in four different settings. Each setting contains 160 DCs who adopted one of the
eight bidding strategies listed in the Compared Approaches section.

In the first setting, each of the eight baseline bidding methods is adopted by one eighth of the DCs.
In the second setting, as BM, Fed-Bidder variants (FBs and FBc) and RLB have AI techniques
similar to MultiBOS-AFL, these four bidding strategies are adopted by three sixteenths of the total
population, while the remaining four baselines are adopted by one sixteenth of the total population.
In the third and fourth settings, as both Fed-Bidder variants and MultiBOS-AFL are designed
specifically for AFL, we set the percentage of DCs adopting FBs and FBc to be higher than those
adopting the other six baselines. Specifically, under the third setting, 50 DCs adopt FBs and FBc,
while 10 DCs adopt each of the other six baselines. Under the fourth setting, 65 DCs adopted FBs
and FBc, while 5 DCs adopted each of the other six baselines. We adopt the second-price sealed-bid
(SPSB) auction mechanism in our experiments. By tracking the behaviors of DCs over time, we
can gradually accumulate data in the absence of a publicly available dataset related to AFL bidding
behaviours.

A.5 EVALUATION METRICS

To evaluate the effectiveness of all the comparison methods, we adopt the following three metrics:
1) The number of data samples won by the DC (#data) is defined as the cumulative number of data
samples owned by all DOs recruited by the corresponding DC until the budget or session limits are
reached. 2) The utility obtained by the DC (utility) is defined as the cumulative reputation of DOs
recruited by the corresponding DC until the budget or session limits are reached. 3) The test accuracy
(Acc) is determined as the accuracy of the final FL model for the respective DC, up to the point where
either the budget or session limits are reached.

A.6 MORE EXPERIMENTS

We have also compared the proposed MultiBOS-AFL with existing methods under the scenario of
IID data, same dataset size, with noise: Each DO shares the same number of data samples (i.e.,
3,000 images) including noisy ones. In particular, we categorize the 10,000 DOs into 5 sets, each
comprising 2,000 DOs. Then, we introduce varying amounts of noisy data for each set of DOs, as
follows: The first set of DOs contains 0% noisy data. The second set of DOs includes 10% noisy
data. The third set of DOs involves 25% noisy data. The fourth set of DOs consists of 40% noisy
data. The last set of DOs comprises 60% noisy data.

Table 3 and Figure 4 show the utility obtained by the corresponding DCs adopting these nine
comparison methods and the accuracy of the FL models, respectively, under the IID data, same sizes
of DOs datasets with noisy samples. It can be observed that in this experiment scenario, the results
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Table 3: Utility comparison across different budget settings and datasets under the scenario of IID
data, same sizes of DOs datasets with noisy samples. The best results are highlighted in Bold.

Budget Method MNIST CIFAR FMNIST EMNIST EMNISTL KMNIST

100

Const 6.94 6.04 6.95 7.51 6.82 6.70
Rand 8.01 7.69 7.96 8.44 8.09 8.05
Bmub 8.66 8.38 9.00 9.17 9.03 8.71

Lin 10.26 9.82 10.02 10.25 10.13 10.05
BM 12.14 12.85 12.73 11.91 12.58 12.40
FBs 13.72 13.34 13.51 13.65 13.65 13.63
FBc 13.77 13.47 13.68 13.71 13.69 13.65
RLB 14.65 14.18 14.12 14.24 14.13 14.30

MultiBOS-AFL 15.14 14.86 14.32 14.95 14.33 14.81

200

Const 9.53 9.56 9.39 8.88 8.94 9.02
Rand 10.25 10.10 9.98 10.05 10.04 10.08
Bmub 10.51 11.53 11.64 10.07 10.84 10.56

Lin 13.07 12.80 12.94 12.91 12.95 12.97
BM 15.15 16.10 16.19 15.01 15.82 15.54
FBs 17.75 17.14 17.47 17.47 17.37 17.42
FBc 17.36 16.89 17.42 17.19 17.32 17.20
RLB 17.91 17.48 17.96 17.66 17.52 17.78

MultiBOS-AFL 18.18 18.51 18.14 17.99 17.93 18.25

400

Const 8.55 8.17 8.55 8.23 8.57 8.45
Rand 10.63 7.64 8.76 8.91 8.20 8.75
Bmub 11.19 11.15 11.44 10.75 10.96 11.03

Lin 14.65 14.31 14.27 14.40 14.30 14.45
BM 17.75 18.18 17.30 16.38 16.95 17.32
FBs 19.48 18.70 18.89 19.09 18.82 19.01
FBc 19.27 18.41 18.82 18.95 18.74 18.82
RLB 19.97 19.26 19.37 19.39 19.20 19.40

MultiBOS-AFL 20.24 19.49 19.51 20.48 19.33 19.57

600

Const 9.13 8.75 8.80 9.89 9.29 9.23
Rand 8.18 11.20 10.47 9.42 10.47 9.94
Bmub 12.14 11.92 11.72 11.98 11.83 12.00

Lin 15.92 15.37 15.52 15.42 15.37 15.50
BM 18.28 19.25 18.44 17.16 17.91 18.17
FBs 20.71 19.76 20.19 20.39 19.97 20.13
FBc 20.57 19.52 19.91 19.98 19.73 19.92
RLB 20.69 19.98 20.47 20.26 20.26 20.31

MultiBOS-AFL 21.33 20.78 20.71 20.75 20.46 20.55

800

Const 11.15 11.24 11.74 11.10 11.40 11.14
Rand 13.43 13.02 13.64 13.76 13.98 13.55
Bmub 12.90 13.39 13.63 12.85 13.55 13.19

Lin 16.87 16.64 16.75 16.78 16.68 16.71
BM 19.52 20.11 19.41 18.54 19.08 19.34
FBs 22.10 21.08 21.55 21.82 21.43 21.59
FBc 21.97 21.24 21.54 21.80 21.41 21.44
RLB 22.37 20.84 21.78 22.04 21.60 21.77

MultiBOS-AFL 24.60 21.62 22.04 22.57 21.82 22.21

are in consistent with the three observations shown in Table 1 and Figure 4. The proposed method
MultiBOS-AFL improves the utility and accuracy of the model obtained by the corresponding data
owner by 2.41% and 1.27% on average, respectively.
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Figure 4: Comparison of accuracy under the scenario of IID data, same sizes of DOs datasets with
noisy samples.
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