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Abstract

Chronic mental stress poses severe threats to both physical and psychological well
being, highlighting the importance of continuous monitoring through wearable
technologies. Blood Volume Pulse (BVP) and Electrodermal Activity (EDA)
signals provide reliable, noninvasive, and cost-effective means for stress assessment.
In this work, we present a lightweight deep learning framework that integrates
dual-branch convolutional neural networks (CNN) with gated recurrent units (GRU)
for real-time stress detection from multimodal BVP and EDA signals. The model
is evaluated on the publicly available WESAD dataset using subject-independent
leave-one-subject-out validation and achieves state of the art performance: 99.27%
accuracy, 99.97% F1-score, 99.68% AUC, and 98.40% Cohen’s k. To address
class imbalance, a sliding window augmentation strategy is employed, significantly
boosting the minority class performance. With only 0.43M parameters and minimal
computational cost, the proposed architecture is optimized for deployment on
resource-constrained wearable devices, offering a robust solution for real-world
stress monitoring.

1 Introduction

Mental stress negatively impacts both physical and mental health, contributing to cardiovascular
disease, hypertension, depression, cognitive decline, and immune dysfunction [} 2l]. These risks
highlight the need for reliable, continuous stress monitoring for clinical and everyday well being.
Commonly used physiological signals for stress detection include electrocardiography (ECG), elec-
troencephalography (EEG), electrodermal activity (EDA) and blood volume pulse (BVP) [315]]. BVP
reflects peripheral blood flow and heart rate variability modulated by both sympathetic and parasym-
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pathetic activity [3}16}[7]], while EDA captures skin conductance changes driven solely by sympathetic
activation, serving as a direct indicator of emotional and physiological arousal [4, 5, |8]. Together,
these signals offer complementary insights into autonomic dynamics for reliable and computationally
efficient stress estimation.

Although signals such as ECG, EMG, EEG, and ACC offer valuable insights into stress-related
physiological responses, their application in continuous wearable monitoring is limited by multi-
electrode setups, motion artifacts, and high power demands [9-12]]. In contrast, BVP and EDA can
be unobtrusively captured from wrist-worn devices such as Empatica E4 or Fitbit sensors, offering
an optimal balance between signal quality and wearability. In recent years, numerous studies have
employed machine learning (ML) and deep learning (DL) techniques on various wearable signals
for real-time stress monitoring [[13H15]. Several studies have explored ML-based methods for stress
monitoring [16H19] for stress monitoring. These methods typically rely on handcrafted features such
as time, frequency, and nonlinear domains of physiological signals. While these approaches have
shown promising performance, their dependence on manually designed, dataset specific features
limits adaptability and generalization across subjects and real world scenarios, as handcrafted
features often fail to capture complex, nonlinear, and individual-specific patterns in the data. Deep
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Figure 1: Proposed lightweight CNN-GRU architecture for stress detection using multimodal physio-
logical signals. The model processes simulated normal signals through parallel convolutional and
recurrent pathways, incorporating Conv1D, MaxPooling1D, BatchNormalization, GRU, and Dense
layers. Feature representations are integrated via concatenation and global average pooling for final
classification.

learning (DL) has recently emerged as a powerful approach for stress monitoring due to its ability to
automatically extract meaningful representations directly from raw physiological signals such as BVP
and EDA [4,[7, 10, 20]. This capability enables DL models to capture complex patterns essential
for accurately characterizing stress responses. In contrast, previous studies have largely relied on
hand crafted features or computationally intensive transformations of time-series signals into image
representations, both of which pose limitations for real-time applications on resource-constrained
wearable devices. These challenges underscore the promise of DL based methods for efficient
stress detection, unlike ML based approaches. In this work, we present a novel lightweight deep
learning architecture combining dual branch convolutional neural network with gated recurrent units
(CNN-GRU), specifically designed for enhanced stress monitoring using wearable-derived BVP and
EDA signals on resource-constrained devices. To address class imbalance, a sliding-window-based
augmentation strategy is employed, significantly improving the recognition of minority classes.

2 Materials and Methods

2.1 Dataset Description

This study utilizes the publicly available Wearable Stress and Affect Detection (WESAD) dataset [21]]
to evaluate the proposed model. The dataset comprises physiological signals including BVP, ECG,
EDA, EMG, and TEMP collected from 17 participants. Due to sensor malfunctions, two participants



were excluded, resulting in a final cohort of 15 subjects (12 males and 3 females; mean age 27.5 + 2.4
years). For the present analysis, only BVP and EDA signals are utilized, sampled at 64 Hz and 4 Hz,
respectively, providing key insights into cardiovascular and autonomic responses relevant to stress
detection.

2.2 Signal Preprocessing and Augmentation

The raw BVP and EDA signals were segmented into non-overlapping 30-second windows. Z-score
normalization was applied to minimize intersubject amplitude variations. To address class imbalance,
sliding window data augmentation was introduced, generating additional samples from minority
classes to improve training stability and generalization.

2.3 Proposed Deep Learning Model

The proposed architecture, illustrated in Figure [I] a dual-branch multimodal framework that inte-
grates BVP and EDA signals for stress classification. Each branch begins with stacked Conv1D
and MaxPooling1D layers, combined with batch normalization and dropout, to extract stable and
noise-resilient features. The resulting feature maps are then passed through GRUs, enabling the
model to capture temporal dependencies in both forward and backward directions. The modality-
specific outputs are concatenated into a unified representation, further refined through an additional
convolutional block with pooling and normalization. Finally, global average pooling compresses
the high-level features, and a dense layer with softmax activation performs the classification. By
combining convolutional feature extraction with sequential modeling, the framework provides an
efficient and robust solution for multimodal stress detection.

The proposed model was evaluated using leave-one-subject-out (LOSO) cross-validation to ensure
subject-independent performance, with metrics including accuracy, F1-score, specificity, sensitivity,
AUC, and Cohen’s kappa (k).

3 Results and Discussion

The proposed model achieved an accuracy of 97. 53%, a specificity of 98. 87%, a sensitivity of 95.
08%, an F1 score of 96. 14%, an AUC of 98. 4%, and Cohen’s x of 94. 34% without data augmenta-
tion. However, due to class imbalance—where normal samples significantly outnumbered stressed
samples—the model’s sensitivity to the minority (stressed) class was limited. With augmentation,
the model’s performance improved significantly. Accuracy increased by 1.74% and reached 99.27%,
while specificity improved by 0.38% to 99.25%. Sensitivity showed the most notable gain, rising by
4.21% t0 99.29%. The F1-score increased by 3.83%, achieving 99.97%, and the AUC rose by 1.21%
t0 99.68%. Similarly, Cohen’s « improved by 4.06%, reaching 98.40%. These improvements high-
light the effectiveness of augmentation in balancing class-wise performance, particularly enhancing
detection of the stressed class while maintaining high specificity for the normal class. Furthermore,
the AUC improves from 0.98 to 0.99, confirming the robustness of the proposed approach. Detailed
performance metrics are provided in Table|T]

Table 1: The performance scores using the leave-one-subject-out strategy, both with and without
augmentation, are presented. The accuracy, F1 score, specificity, sensitivity, AUC, and x are expressed
in percentages (%).

Aug Acc Spe Sen F1 AUC K
No 97.53 98.87 95.08 96.14 9847 94.34
Yes 99.27 99.25 99.29 9997 99.68 98.40

3.1 Ablation Study

Moreover, incorporating sliding-window-based augmentation ensured class balance, which con-
tributed to the consistent performance gains observed across all modalities. The ablation results in
Table [2| show that EDA alone achieves good performance, with an accuracy of 93.55%. BVP proves
even more informative, achieving 97.37% accuracy and an AUC of 98.93%. Moreover, incorporat-
ing sliding-window-based augmentation ensured class balance, which contributed to the consistent



performance gains observed across all modalities. When both signals are combined, performance
improves further, reaching 99.27% accuracy and a x of 98.40%. These findings indicate that while
BVP captures strong temporal information and EDA reflects sympathetic activity, their combination
provides the most robust stress classification.

Table 2: Ablation study results showing the performance of individual signals (EDA and BVP) in
stress classification. Accuracy (Acc), specificity (Spe), sensitivity (Sen), F1-score (F1), AUC, and
Cohen’s k are reported in percentages (%).

Signal Acc Spe Sen F1 AUC K
EDA 9355 9434 9205 9047 9592 85.61
BVP 97.37 98.11 9621 96.01 98.93 94.05

BVP+EDA 99.27 99.25 99.29 99.97 99.68 98.40

3.2 Comparison with Existing Works

A comparative analysis with existing studies was conducted to benchmark the performance of the
proposed approach. The closest reported performance achieved 97.90% accuracy [7]], which relied
solely on unimodal BVP signals, thereby limiting generalizability and practical applicability. In
contrast, our proposed method consistently outperforms prior works across, as illustrated in Table [3]
The superiority of our approach stems from its ability to effectively handle class imbalance and
maintain a lightweight architecture suitable for deployment on resource-constrained devices, thereby
demonstrating both higher predictive performance and real-world applicability.

Table 3: Summary of the research study with the existing literature.

Study Dataset Signals Accuracy

[22] WESAD BVP 85.00%

[23] WESAD BVP 84.17%

[24] WESAD BVP 88.56%

[21] WESAD BVP, EDA, | 87.12%
ACC, TEMP

[25] WESAD EDA, EEG, | 87.40%
PPG

[71 WESAD BVP 97.90%

[26] WESAD BVP 98.23%

Proposed WESAD BVP, EDA 99.27%

3.3 Compatibility with Wearable Devices

Continuous stress monitoring is essential for maintaining physical and mental well-being. BVP and
EDA sensors are particularly suitable due to their cost-effectiveness, non-invasiveness, and wide
adoption in consumer devices [26]. However, wearable platforms are constrained by limited memory
and computational resources. The proposed dual-branch CNN-GRU architecture addresses these
limitations with only 0.43M parameters (1.64 MB), and 0.068405 GFLOPs, enabling real-time stress
monitoring on resource-constrained devices.

4 Conclusions

This study presents a lightweight dual-branch CNN-GRU architecture for multimodal stress de-
tection using BVP and EDA signals from wearable sensors. The model demonstrated exceptional
performance on the WESAD dataset, achieving 99.27% accuracy and a  of 98.40%, outperforming
existing methods. A critical factor contributing to this success was the sliding-window augmentation
strategy, which effectively mitigated class imbalance and significantly enhanced sensitivity for the
minority class. With only 0.43M parameters and low computational overhead, the architecture is
highly suitable for real-time deployment on resource-constrained devices. These findings underscore
the framework’s potential for continuous, non-invasive stress monitoring in everyday settings. Fu-
ture work will explore multiclass stress detection, cross-dataset validation, and implementation on
embedded hardware platforms.
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