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ABSTRACT

Learning often involves interaction between multiple agents. Human teacher-
student settings best illustrate how interactions result in efficient knowledge pass-
ing where the teacher constructs a curriculum based on their students’ abilities.
Prior work in machine teaching studies how the teacher should construct optimal
teaching datasets assuming the teacher knows everything about the student. How-
ever, in the real world, the teacher doesn’t have complete information about the
student. The teacher must interact and diagnose the student, before teaching. Our
work proposes a simple diagnosis algorithm which uses Gaussian processes for
inferring student-related information, before constructing a teaching dataset. We
apply this to two settings. One is where the student learns from scratch and the
teacher must figure out the student’s learning algorithm parameters, eg. the regu-
larization parameters in ridge regression or support vector machines. Two is where
the student has partially explored the environment and the teacher must figure out
the important areas the student has not explored; we study this in the offline rein-
forcement learning setting where the teacher must provide demonstrations to the
student and avoid sending redundant trajectories. Our experiments highlight the
importance of diagosing before teaching and demonstrate how students can learn
more efficiently with the help of an interactive teacher. We conclude by outlining
where diagnosing combined with teaching would be more desirable than passive
learning.

1 INTRODUCTION

In natural systems, learning often involves interaction between multiple agents. Teacher-student
interactions best illustrate how interactions result in efficient knowledge passing. One way teachers
interact with students is through concept tests—short, targeted tests administered at the start of a
class to help teachers gauge which concepts students have understood (Caceffo et al., 2016; Treagust,
1988; Adams & Wieman, 2011). By first understanding what their students struggle on, teachers can
adapt the curriculum to best address the needs of their class and avoid repeating topics their students
have already mastered. In other words, teachers construct diagnostic tests to inform them how they
should later construct “training sets” for their students.

We take inspiration from this form of teacher-student interactions in reframing how we’d like to ef-
ficiently train and test machine learning models. As ML practitioners and researchers, we implicitly
interact with our model learners in this way to diagnose the learner. For example, we evaluate our
models by analyzing their performance on a test set. The model’s test performance can inform us
about the model’s training dataset, for example data-centric properties like class imbalance (Horn
et al., 2018; Rahman & Davis, 2013). This feedback can then suggest remedies for how to retrain
our model, for example adding more examples of minority classes to balance the dataset (Hernandez
et al., 2013). The collective learning that takes place between a teacher and a student inspires our
work to design principled methods for constructing first diagnostic datasets, then training datasets.

We focus on the problem setup where the teacher must first diagnose the student, then construct
a teaching dataset. The performance of the teacher is based on how well the student performs
on a held-out test dataset. We build on prior work in machine teaching (Zhu et al., 2018; Liu
et al., 2016; Cakmak & Lopes, 2012) for constructing optimal teaching datasets. We use Gaussian
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Figure 1: Teacher needs to figure out what the student knows vs. doesn’t know. (a) depicts an
example of a navigation environment where the student (blue, upper left) has to navigate to a goal
location (green, lower right). (b) illustrates that in some cases, the student has partial knowledge of
the environment; from any of the yellow-highlighted cells, the student knows how to navigate to the
green cell. (c) highlights the cells from which the student does not know how to navigate to the goal.
The ideal teacher is one that can identify these states and construct examples from these states.

Processes (Williams & Rasmussen, 2006) as a tractable means for inferring student parameters when
diagnosing. We combine machine teaching with diagnosing, and apply this framework to linear
models for ridge regression, support vector machines (SVMs) and offline reinforcement learning
settings.

We apply this to two settings. One is where the student learns from scratch and the teacher must
figure out the student’s learning algorithm parameters, eg. the regularization parameters in ridge
regression or support vector machines. Two is where the student has partially explored the envi-
ronment and the teacher must figure out the important states the student has not learn the optimal
value for; we study this in the offline reinforcement learning setting where the teacher provides
demonstrations to the student and should avoid sending redundant trajectories.

In summary, our work’s contributions are the following:

• We show that the teacher must diagnose the student, otherwise the student can have arbi-
trarily bad performance.

• We show that if the teacher does first diagnose, the learner can learn from much fewer
training examples than the teacher. In the offline RL setting, this results in 2-16, 000×
fewer training steps.

• We show that in certain cases, diagnosing with machine teaching leads to recovering opti-
mal model parameters, where passive learning or naive machine teaching fail to do so.

2 RELATED WORKS

Machine teaching The machine teaching problem is to determine an optimal training set, given
knowledge about the student algorithm (eg. ridge regression) and the optimal model parameters θ∗
(Zhu et al., 2018; Zhu, 2015; Simard et al., 2017). An optimal dataset is defined by the cardinality
of the dataset, also known as the teaching dimension (Goldman et al.). Machine teaching has been
broadly applied to settings like inverse reinforcement learning (Cakmak & Lopes, 2012; Brown &
Niekum, 2019; Hadfield-Menell et al., 2016) where the goal is to construct a small demonstration
dataset for the learner to most confidently learn the underlying reward function. Our work builds
on results from Liu et al. (2016) which derive the teaching dimension of linear learners in settings
including ridge regression and SVMs.

Imitation learning The imitation learning problem looks at how a student should learn a policy
from an expert demonstration dataset, either by inferring the underlying reward that produced the
behavior (inverse reinforcement learning, IRL) (Abbeel & Ng, 2004) or directly learning the policy
(behavioral cloning, BC) (Torabi et al., 2018). Our work is close to the interactive imitation learning
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Algorithm 1 Diagnosing student model

1: Initialize priors p(z|H = ∅).
2: for t = 1...T probing iterations do
3: Sample a student latent zt ∼ p(z|Ht)
4: Optional: Construct a train dataset Dtrain = g(zt) and pass to learner, θ = A(Dtrain).
5: Construct a test probe xtest and get feedback from learner, f(θ, xtest).
6: Use feedback to update beliefs p(z|H)

7: Output p(z|H)

setting Ross et al. (2011) where we rely on a teacher to provide action labels to states. The key
difference is that we rely on a teacher to first probe and determine which states it should provide
labels to; these might be states the student has never visited before.

Active learning The active learning problem looks at how a student should query a teacher for
labels on unlabelled examples (Settles, 2009). Active learning is different from machine teaching
in that the learners choose the datapoints they want to be trained on, rather than being guided by a
teacher. However, the active learning framework might not be the right framework in settings where
the learner doesn’t have access to examples its never seen before. For example, DAgger (Ross et al.,
2011) limits interaction between the learner and the teacher to the states the learner visits. This
doesn’t fully leverage what the learner could learn from the teacher, such as the teacher’s privileged
access to states that are important for a task of interest.

3 INTERACTIVE LEARNING WITH GAUSSIAN PROCESSES

We study the problem of the teacher needing to infer properties of the student which will impact how
the teacher teaches. In our setting, the teacher first diagnoses, then teaches the student. Extensions
of this work could explore interweaving both diagnosis and teaching.

We use a Gaussian Process with a radial-basis function kernel for inference; alternative inference
methods can be used as well. In our settings, the teacher must either infer something about the
student’s learning algorithm (eg. a hyperparameter) or the student’s knowledge base (eg. its original
training dataset).

Notation We denote X as the input space and Y as the output space. fθ : X → Y is the stu-
dent model parameterized by model weights θ ∈ Θ. We refer to D as a dataset, and D as the
space of datasets. A student runs an algorithm on a dataset to recover parameters that minimize the
algorithm’s learning objective, A : D → Θ.

Our method for inference is simple:

1. Sample hypothesis: We sample a hypothesis z from our posterior distribution p(z|H)
according to expected improvement (EI) (Frazier, 2018). H is the history set of inputs and
values given to the process.

2. Train the learner: We construct a train dataset based on the sampled hypothesis,
Dtrain(z) = {(xtrain, ytrain)}. We pass the dataset to the learner for it to run its learning
algorithm A and learn initial model parameters, θ = A(Dtrain). This is only applicable in
the setting where the learner trains from scratch.

3. Probe for feedback: We construct a test probe g(z) = xtest and send it to the learner. We
receive feedback from the learner on that probe, feedback(fθ(xtest)).

4. Update beliefs: We use the feedback to update our beliefs, p(z|H,xtest,feedback).

This is summarized in Algorithm 1. After a few iterations, the teacher uses p(z|H) to then construct
a training dataset for the student. We apply this framework to the ridge regression, SVMs, and
offline RL domains. What the teacher needs to infer in each domain varies, however the underlying
mechanism is the same as outlined above.
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After probing the student, the teacher constructs the optimal teaching dataset with the maximum a
posteriori (MAP) estimate of p(z|H). The optimal teaching dataset and teaching dimension lower
bound have been studied in Liu et al. (2016) for ridge regression and SVM with linear models. This
means that if the teacher did have complete information about its student (ie. knowing the student’s
regularization parameter λ), the teacher can construct the optimal teaching dataset D∗

teach. In later
sections, we discuss how to exactly construct the optimal dataset in both settings. These domains
illustrate how teaching and probing co-occur in a realistic setting where agents only have partial
information about each other. Below we discuss each of the domains in more detail and what the
teacher needs to infer in each domain.

3.1 RIDGE REGRESSION

A linear model student running ridge regression (without a bias) minimizes the following objective:

l(w) =

N∑
i=1

(yi − xiw)2 + λ
∥w∥2
2

, (1)

where w are the linear model weights, x is the input, y is the target, and λ is the regularizer. We
denote the optimal model weights to be w∗. From Liu et al. (2016), the optimal machine teaching
dataset consists of a single datapoint and is a function of the learner’s regularizer λ,

D(λ) = {(xteach, yteach)} = {(aw∗,
λ+ ∥xt∥2

a
)}, (2)

where a is any nonzero real number. The inhomogeneous ridge regression case (with a bias) is
also discussed in Liu et al. (2016). We omit that setting as we use ridge regression as an illustra-
tive example for optimal teaching with probing. However, our analysis is easily extendable to that
setting.

We denote the learner’s true regularization parameter as λ∗, and the teacher’s MAP estimate of the
regularization parameter as λ̂∗. To simulate a teacher not having complete information about the
student, we assume that the teacher does not know the learner’s true λ∗; the teacher does not have
complete information about how a student learns from data.

Concretely, the inference steps outlined in Section 3 are:

1. We sample a hypothesis for λ ∼ p(λ|H).
2. We construct a training dataset D(λ) = (xtrain, ytrain) based on the optimal teaching dataset

outlined in Equation 2.
3. We construct a test probe g(λ) = xtest for the learner and the real learner sends back its

prediction, fA(D(λ∗))(xtest). 1 We simulate how a learner with λ would have responded,
fA(D(λ))(xtest). We calculate the response difference, (fA(D(λ))(xtest)−fA(D(λ∗))(xtest))

2.
4. We use the difference as the target function for the Gaussian Process. It is the feedback

used to update our beliefs over λ.

Our setting uses ordinary least squares linear regression for determining w.

3.2 SUPPORT VECTOR MACHINES (SVM)

A linear SVM student minimizes the following objective:

l(w) =

N∑
i=1

max(1− yixiw, 0) + λ
∥w∥2
2

(3)

1Empirically, we found that both randomly sampled probes or a training point from Step 2 allow for fast
inference.

4



From Cells to Societies: Collective Learning Across Scales - ICLR 2022 Workshop

From Liu et al. (2016), the optimal teaching dataset consists of N identical training items where
N = ⌈λ∥w∗∥2⌉. The teaching dataset is

D(λ) = {(xi, yi)}Ni=1 = {( λw∗

⌈λ∥w∗∥2⌉ , 1)}
N
i=1 (4)

Similar to ridge regression, the teacher does not know the learner’s regularization parameter λ∗ and
must infer this through interaction. Concretely, the inference steps are:

1. We sample λ ∼ p(λ|H).
2. We construct a training dataset D(λ) = (xtrain, ytrain) based on the optimal teaching dataset

outlined in Equation 4 for SVMs.
3. We construct a random test probe and pass it to the learner. The SVM learner sends back

the distance of that point from its separating hyperplane. 2 We simulate what a learner
with λ = λ̂ would have responded and calculate the differences in their responses, ie.
(fA(D(λ))(xtest)− fA(D(λ∗))(xtest))

2.
4. We use the difference as feedback to update our beliefs over λ.

Our setting uses linear support vector classification for determining w.

3.3 OFFLINE REINFORCEMENT LEARNING

An offline RL student updates its Q-values given a dataset of trajectories D = {τi}Ni=1 where
τ = [s0, a0, r0, ..., sT−1, aT−1, rT−1, sT ] is a trajectory of states and actions: Q(st, at) = rt +
γ ∗ V (st+1), ∀t = 0...T − 1 3

In this domain, we assume the student can be tabula rasa or partially trained. An example is given
in Figure 1. To the best of our knowledge, there isn’t prior work in studying the teaching dimension
problem in the offline RL setting. Nonetheless, intuitively we would like the teacher to propose
trajectories that maximize coverage over the environment and minimizes overlaps with states the
learner has already seen. The teacher is tasked to infer which states the learner has seen in order to
provide demonstrations that are novel to the learner.

The inference steps follow as,

1. We sample a state s ∼ p(s|H).
2. We do not construct a training dataset in the behavioral cloning setting.
3. The sampled state is the test probe. We pass the sampled state s to the learner and the

learner sends back the action they would take, alearner = argmaxa Qlearner(s, a). The feed-
back is a binary function of whether the learner takes the same action as the teacher would,
1[alearner = ateacher].

4. We use the difference as feedback to update our beliefs over S.

Our method uses ϵ-greedy Q-learning. Note that in the RL setting, states are used for diagnosing the
student but the teacher ultimately teaches in the form of demonstrated trajectories. An open question
that we hope to later pursue is the form of probe and teaching, and how this impacts the choice of
target function (Step 3).

4 EXPERIMENTS

We now evaluate the utility of understanding the learner before teaching and compare different
teaching methods against passive learning (learning without a teacher and just from the original
training dataset). In particular, we try to answer the following research questions (RQs):

2We also tried receiving class predictions from the learner but found this to be an extremely sparse feedback
signal. There might be smart ways to go about this, such as considering approaching for optimal probing.
Related works in this direction include optimal experiment design (Pronzato, 2008; Foster et al., 2019).

3If function approximators are used, then this turns into fitting a parametric model πθ where we represent
the policy π in terms of a soft Q function Qθ similar to Reddy et al. (2019).
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(a) EmptyRoom 7x7 (b) EmptyRoom 9x9 (c) 4 Rooms 9x9 (d) 4 Rooms 11x11

Figure 2: Environments used for the RL setting. The learner can be initialized anywhere in the
environment. Its goal is to navigate to the green grid cell.

RQ1: How important is it to understand the learner when teaching?

RQ2: When would you prefer teaching with diagnosing over passive learning?

We examine this in three settings: Ridge regression, classification with support vector machines and
offline RL in sequential decision making settings. The ridge regression and classification settings are
meant to be simple, illustrative examples of how probing would be combined with optimal teaching,
when the optimal teaching dataset can be determined with full knowledge of the student Liu et al.
(2016). The regression and two-way separable classification data are generated from Pedregosa et al.
(2011) without added noise. We use the MiniGrid environments (Chevalier-Boisvert et al., 2018)
for the RL setting; examples of the environments are shown in Figure 2.

Methods Our main method first diagnoses the student with expected improvement (EI) as the
acquisition function, then teaches the student. We denote our method as D(EI)+T. We compare three
alternatives to our method. One is to diagnose with random sampling as the acquisition function,
then teach the student; this is denoted as D(R)+T. Two is to teach randomly by sampling from the
prior p(z) and immediately teach the student; we denote this as RT. For instance, this would mean
that in ridge regression, the teacher samples a random λ and constructs a teaching dataset according
to Equation 2 without interacting with the student. Three is to passive learn without a teacher, PL.
In ridge regression and SVMs, this means to passively learn over a fixed training dataset, and in the
offline RL setting, this means the student collects and learns from its own data. For both methods
D(EI)+T and D(R)+T where diagnosis is run, we allow the teacher to probe the student 5 times, ie.
T = 5 in Algorithm 1.

4.1 RIDGE REGRESSION

We compare the accuracy and sample efficiency (number of training examples) across the methods.
Figure 3 compares RT and D(EI)+T to answer RQ1: How important is it for the teacher to learn
about the student before teaching? We compare a teacher that randomly samples across an increas-
ing hypothesis space for λ compared to a teacher that probes the student. We see that randomly
guessing information about the student can lead to arbitrarily bad performance for the learner; these
observations hold also across increasing feature dimension. With only 5 probes, D(EI)+T allows
the student to predict with minimal error. Thus, to answer RQ1: It’s important for the teacher to
learn about the student, otherwise the student can perform poorly under larger belief spaces and
feature spaces.

Figure 4 compares PL and D(EI)+T to answer RQ2: When would you prefer teaching with
diagnosing over passive learning? With a fixed training dataset size N = 100, we vary the learner’s
regularization parameter from λ = 1.0 to λ = 50.0. We see that with particular learners (ie. low
regularization), both methods do comparably in Figure 4c. However, with other learners (ie. high
regularization), PL is not able to recover the best model. A teacher who diagnoses and then teaches,
on the other hand, does enable the student to recover the best model. To answer RQ2: These results
suggest teaching is preferable in low-data settings where sampling from the training distribution is
expensive; the setting doesn’t easily allow for more data to remedy the effects of high regularization
or peculiarities in the student’s algorithm.
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Figure 3: Mean squared error on held-out regression dataset over 10 runs. Proper diagnosis of the
student matters as the hypothesis space (x-axis) over possible student models grows and when the
number of feature dimensions grows (a-c).
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(d) λ = 50

Figure 4: (a-b) illustrate a 2D regression task where the x- and y-axes correspond to the two coordinates. The
first image is where the learners have a low regularization parameter (λ = 1), and the second image is where
the learners have a high regularization parameter (λ = 50). The weights from two learners are plotted as lines.
One is a learner trained on a teaching dataset (dashed, green line) by D(EI)+T. Another is the PL learner
(full, blue line) trained on a fixed training regression dataset. The plotted points in blue are points from the test
dataset. The D(EI)+T learner always finds the best fit model (ie. recovers θ∗) whereas the PL learner does
not in the high regularization region. (c-d) however show that this is not the case for the SVM learners: both
learners learn to separate the classes accurately.

4.2 SUPPORT VECTOR MACHINE

We conducted the same experiments as in ridge regression for the two-way separable classification
with SVMs. However, we found separable classification settings with SVMs unable to yield dif-
ferences among PL, RT, D(EI)+T: all three methods learn to separate the data within a reasonable
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Figure 5: Comparing the number of training samples needed for a learner with vs. without a teacher.
(a) shows the number of samples needed a learner without a teacher across environments. (b) com-
pares the number of samples needed by a learner without a teacher (red curve) and with a (black
horizontal line x ≈ 50) on the EmptyRoom 7x7 environment: with the help of a teacher sending
demonstrations, the learner can learn much more quickly. All graphs were generated on 10 runs.

range over λ. Figure 4d provides intuition into why the three methods perform similarly on the
classification domain. The separating hyperplane is not sensitive to increasing λ values. Therefore,
when the classes are easy to separate, learners from each method will classify the points the same
way. We extended these experiments to non-separable classes, however results were inconclusive as
they required hand-designing the degree of overlap between classes.

4.3 OFFLINE REINFORCEMENT LEARNING

There are four environments we use for the RL setting; examples of the environments are shown
in Figure 2. The learner can be initialized anywhere in the environment. The learner’s goal is to
navigate to the green cell. The reward for this setting is sparse: The learner receives −1 with every
step except for when it reaches the goal where it receives 0 as its reward. The learner is evaluated
based on how well it’s able to navigate to the goal from any initial state. The teacher is trained until
convergence by running ϵ-greedy Q-learning with ϵ = 0.3. for 5000 episodes, each episode with
100 steps. The teacher learns the optimal policy at convergence. The learning curves of the teacher
are shown in Figure 5a.

We assume different levels of student knowledge: Either the student has no experience (it has never
interacted with the environment), it knows one optimal path, it knows a few optimal paths, or it
knows all optimal paths to the goal. An example is illustrated in Table 1 on the left-hand column.
The goal of the teacher is to then infer which states the student can perform well in, and ideally
construct a teaching dataset of trajectories where the student would perform poorly.

We compare four different methods. One is PL where the passive learner runs standard ϵ-greedy
Q-learning without the teacher. Two is RT where the teacher randomly samples a state from
the environment and executes its policy until it reaches the goal; this is the trajectory that is sent
over per sample. Three is D(R)+T where the teacher randomly samples a state for probing when
approximating the target function for the Gaussian process. It then picks states that maximizes
the target function as the initial states for running its policy and collecting trajectories. Four is
D(EI)+T where the teacher samples a state with the highest expected improvement. Similarly to
D(R)+T, D(EI)+T picks the states that maximize the target function as the initial states for collect-
ing trajectories.

To answer RQ1, we compare against RT in Table 1 for EmptyRoom 7x7; results for the other envi-
ronments can be found in the appendix. The first takeaway is that probing methods like D(R)+T and
D(EI)+T both teach better than RT (middle column). Additionally, teachers that probe students
avoid sending repeated states which the learner has already seen before (right-hand column). In-
terestingly, D(R)+T tends to perform better or comparably to D(EI)+T. This suggests that that the
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target function we use (action matching) might not be ideal for determining states to probe a student
with.

To answer RQ2, we compare PL with D(EI)+T in Figure 5. Noticeably, the student can benefit a
lot from having a teacher provide demonstrations as it’s able to learn from much fewer samples and
still achieve high performance. Thus, a benefit to having a teacher is avoiding inefficient exploration.

5 CONCLUSION AND FUTURE WORK

Our work showcases three simple settings which highlight the utility of having a teacher first learn
about its student before teaching. We believe this form of collective learning—algorithmically con-
structing diagnostics for the learner in order to construct model-tailored training—can pave princi-
pled ways for diagnosing models and proposing remedies.

There are several interesting questions which we hope to later explore. These include,

• What is an optimal target function (form of feedback) to use for the Gaussian Process?
The offline RL experiments suggest that we should revisit this choice. They also suggest
that if a reasonably generic target function can be found in the RL setting, training RL
policies can be made in a more sample-efficient and targeted way. A sensible, alternative
target function could be the difference in value function between the student and teacher.
However, one key limitation is that the teacher can access the (near-)optimal value function
which is challenging to obtain in the first place.

• Under what conditions would you prefer machine teaching over passive learning? We’d
like to formalize this as a function of the training set and problem difficulty. Under which
domains (or types of domains) would machine teaching be useful for?

• How should we sample from a desirable data distribution given what we know about the
student?
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Table 1: Student experience with how different teachers teach the student, EmptyRoom 7x7. The
dashed lines in the middle column denote the optimal policy’s performance.
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Table 2: Student experience with how different teachers teach the student, EmptyRoom 9x9. The
dashed lines in the middle column denote the optimal policy’s performance.
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Table 3: Student experience with how different teachers teach the student, EmptyRoom 11x11. The
dashed lines in the middle column denote the optimal policy’s performance.
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Table 4: Student experience with how different teachers teach the student, 4 rooms 9. The dashed
lines in the middle column denote the optimal policy’s performance.
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Table 5: Student experience with how different teachers teach the student, 4 rooms 11. The dashed
lines in the middle column denote the optimal policy’s performance.
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