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ABSTRACT

Recently, diffusion models have achieved remarkable success in generating tasks,
including image and audio generation. However, like other generative models,
diffusion models are prone to privacy issues. In this paper, we propose an efficient
query-based membership inference attack (MIA), namely Proximal Initialization
Attack (PIA), which utilizes groundtruth trajectory obtained by ϵ initialized in t = 0
and predicted point to infer memberships. Experimental results indicate that the
proposed method can achieve competitive performance with only two queries that
achieve at least 6× efficiency than the previous SOTA baseline on both discrete-time
and continuous-time diffusion models. Moreover, previous works on the privacy
of diffusion models have focused on vision tasks without considering audio tasks.
Therefore, we also explore the robustness of diffusion models to MIA in the text-to-
speech (TTS) task, which is an audio generation task. To the best of our knowledge,
this work is the first to study the robustness of diffusion models to MIA in the TTS
task. Experimental results indicate that models with mel-spectrogram (image-like)
output are vulnerable to MIA, while models with audio output are relatively robust
to MIA. Code is available at https://github.com/kong13661/PIA.

1 INTRODUCTION

Recently, the diffusion model Ho et al. (2020); Song et al. (2021b); Song & Ermon (2019) has
emerged as a powerful approach in the field of generative tasks, achieving notable success in image
generation Rombach et al. (2022); Saharia et al. (2022), audio generation Popov et al. (2021); Kong
et al. (2021), video generation Yang et al. (2022); Ho et al. (2022), and other domains. However,
like other generative models such as GANs Goodfellow et al. (2020) and VAEs Kingma & Welling
(2013); Xu et al. (2021), the diffusion model may also be exposed to privacy risks Bommasani et al.
(2021) and copyright disputes Hristov (2016). Dangers such as privacy leaks Pham & Le (2020) and
data reconstruction Zhang et al. (2020) may compromise the model. Recently, some researchers have
explored this topic Duan et al. (2023); Matsumoto et al. (2023); Hu & Pang (2023); Carlini et al.
(2023), demonstrating that diffusion models are also vulnerable to privacy issues.

Membership Inference Attacks (MIAs) are the most common privacy risks Shokri et al. (2017). MIAs
can cause privacy concerns directly and can also contribute to privacy issues indirectly as part of data
reconstruction. Given a pre-trained model, MIA aims to determine whether a sample is in the training
set or not.

Generally speaking, MIA relies on the assumption that a model fits the training data better Yeom et al.
(2018); Shokri et al. (2017), resulting in a smaller training loss. Recently, several MIA techniques
have been proposed for diffusion models Duan et al. (2023); Matsumoto et al. (2023); Hu & Pang
(2023). We refer to the query-based methods proposed in Matsumoto et al. (2023); Hu & Pang (2023)
as Naive Attacks because they directly employ the training loss for the attack. However, unlike GANs
or VAEs, the training loss for diffusion models is not deterministic because it requires the generation
of Gaussian noise. The random Gaussian noise may not be the one in which diffusion models fit best.
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Figure 1: A overview of PIA. First, a sample is an input into the target model to generate ϵ at time 0.
Next, we combine the original sample with ϵ0 and input them into the target model to generate ϵ at
time t. After that, we input all three variables into a metric and use a threshold to determine if the
sample belongs to the training set.

This can negatively impact the performance of the MIA attack. To address this issue, the concurrent
work SecMI Duan et al. (2023) adopts an iterative approach to obtain the deterministic x at a specific
time t, but this requires more queries, resulting in longer attack times. As models grow larger, the
time required for the attack also increases, making time an important metric to consider.

To reduce the time consumption, inspired by DDIM and SecMI, we proposed a Proximal Initialization
Attack (PIA) method, which derives its name from the fact that we utilize the diffusion model’s output
at time t = 0 as the noise ϵ. PIA is a query-based MIA that relies solely on the inference results and
can be applied not only to discrete time diffusion models Ho et al. (2020); Rombach et al. (2022) but
also to continuous time diffusion models Song et al. (2021b). We evaluate the effectiveness of our
method on three image datasets, CIFAR10 Krizhevsky et al. (2009), CIFAR100 and TinyImageNet
for DDPM and on two images dataset, COCO2017 Lin et al. (2014) and Laion5B Schuhmann et al.
(2022) for Stable DIffuion, as well as three audio datasets, LJSpeech Ito & Johnson (2017), VCTK
Junichi et al. (2019), and LibriTTS Zen et al. (2019).

To our knowledge, recent research on MIA of diffusion models has only focused on image data, and
there has been no exploration of diffusion models in the audio domain. However, audio, such as
music, encounters similar copyright and privacy concerns as those in the image domain CNN (2022);
WashingtonPost (2022). Therefore, it is essential to conduct privacy research in the audio domain to
determine whether audio data is also vulnerable to attacks and to identify which types of diffusion
models are more robust against privacy attacks. To investigate the robustness of MIA on audio data,
we conduct experiments using Naive Attack, SecMI Duan et al. (2023), and our proposed method on
three audio models: Grad-TTS Popov et al. (2021), DiffWave Kong et al. (2021), and FastDiff Huang
et al. (2022). The results suggest that the robustness of MIA on audio depends on the output type of
the model.

Our contributions can be summarized as follows:

• We propose a query-based MIA method called PIA. Our method employs the output at t = 0
as the initial noise and the errors between the forward and backward processes as the attack
metric. We generalize the PIA on both discrete-time and continuous-time diffusion models.

• Our study is the first to evaluate the robustness of MIA on audio data. We evaluate the
robustness of MIA on three TTS models (Grad-TTS, DiffWave, FastDiff) and three TTS
datasets (LJSpeech, VCTK, Libritts) using Naive Attack, SecMI, and our proposed method.

• Our evaluations show that PIA matches SecMI’s AUC performance and outperforms it in
TPR @ 1% FPR, while being 5-10 times faster. Moreover, our data imply that in text-to-
speech tasks, models producing audio are more resistant to MIA attacks than those generating
image-like mel-spectrograms. We therefore suggest using audio-output generation models
to minimize privacy risks in audio creation tasks.
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2 RELATED WORKS AND BACKGROUND

Generative Diffusion Models Generative diffusion models have recently achieved significant
success in both image Ramesh et al. (2022); Rombach et al. (2022); Yuan et al. (2023a) and audio
generation tasks Huang et al. (2022); Chen et al. (2021); Popov et al. (2021). Unlike GANs Good-
fellow et al. (2020); Yuan & Moghaddam (2020); Yuan et al. (2023b), which consist of a generator
and a discriminator, diffusion models generate samples by fitting the inverse process of a diffusion
process from Gaussian noise. Compared to GANs, diffusion models typically produce higher quality
samples and avoid issues such as checkerboard artifacts Salimans et al. (2016); Donahue et al. (2017);
Dumoulin et al. (2017). A diffusion process is defined as xt =

√
αtxt−1 +

√
βtϵt, ϵt ∼ N (0, I),

where αt + βt = 1 and βt increases gradually as t increases, so that eventually, xt approximates
a random Gaussian noise. In the reverse diffusion process, x′

t still follows a Gaussian distribution,
assuming the variance remains the same as in the forward diffusion process, and the mean is defined
as µ̃t =

1√
at

(
xt − βt√

1−āt
ϵ̄θ(xt, t)

)
, where ᾱt =

∏t
k=0 αk and ᾱt + β̄t = 1. The reverse diffusion

process becomes xt−1 = µ̃t +
√
βtϵ, ϵ ∼ N (0, I). One can obtain a loss function Eq. (1) by

minimizing the distance between the predicted and groundtruth distributions. Song et al. (2021b)
transforms the discrete-time diffusion process into a continuous-time process and uses SDE ( Stochas-
tic Differential Equation) to express the diffusion process. To accelerate the generation process,
several methods have been proposed, such as Salimans & Ho (2022); Dockhorn et al. (2022); Xiao
et al. (2022). DDIM Song et al. (2021a) is another popular method that proposes a forward process
different from diffusion process with the same loss function as DDPM, allowing it to reuse the model
trained by DDPM while achieving higher generation speed.

L = Ex0,ϵ̄t

[∥∥ϵ̄t − ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ̄t, t

)∥∥2] . (1)

Membership Inference Privacy Different from conventional adversarial attacks Xu et al. (2018;
2020); Zhang et al. (2022), Membership inference attack (MIA) Shokri et al. (2017) aims to determine
whether a sample is part of the training data. It can be formally described as follows: given two sets,
the training set Dt and the hold-out set Dh, a target model m, and a sample x that either belongs
to Dt or Dh, the goal of MIA is to find a classifier or function f(x,m) that determines which set
x belongs to, with f(x,m) ∈ {0, 1} and f(x,m) = 1 indicating that x ∈ Dt and f(x,m) = 0
indicating that x ∈ Dh. If a membership inference attack method utilizes a model’s output obtained
through queries to attack the model, it is called query-based attackDuan et al. (2023); Matsumoto
et al. (2023); Hu & Pang (2023). Typically, MIA is based on the assumption that training data has a
smaller loss compared to hold-out data. MIA for generation tasks, such as GANs Pham & Le (2020)
and VAEs Hilprecht et al. (2019); Chen et al. (2020), has also been extensively researched.

Recently, several MIA methods designed for diffusion models have been proposed. Matsumoto et al.
(2023) proposed a method that directly employs the training loss Eq. (1) and find a specific t with
maximum distinguishability. Because they directly use the training loss, we refer to this method as
Naive Attack. SecMI Duan et al. (2023) improves the attack effectiveness by iteratively computing
the t-error, which is the error between the DDIM sampling process and the inverse sampling process
at a certain moment t.

Threat model We follow the same threat model as Duan et al. (2023), which needs to access
intermediate outputs of diffusion models. This is a query-based attack without the knowledge of
model parameters but not fully end-to-end black-box. In scenarios such as inpainting Lugmayr et al.
(2022), and classification Li et al. (2023), they also employ the intermediate output of the diffusion
model. These works utilize a pre-trained model on a huge dataset to do other tasks, such as inpainting,
and classification without fine-tuning. To meet these requirements, future service providers might
consider opening up APIs for intermediate outputs. Our work is applicable to such scenarios.

3 METHODOLOGY

In this section, we introduce DDIM, a variant of DDPM, and provide a proof that if we know any two
points in the DDIM framework, xk and x0, we can determine any other point xt. We then propose a
new MIA method that utilizes this property to efficiently obtain xt−t′ and its corresponding predicted
sample x′

t−t′ . We compute the difference between these two points and use it to determine if a sample
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is in the training set. Specifically, samples with small differences are more likely to belong to the
training set. An overview of this proposed method is shown in Fig. 1.

3.1 PRELIMINARY

Denoising Diffusion Implicit Models To accelerate the inference process of diffusion models, DDIM
defines a new process that shares the same loss function as DDPM. Unlike the DDPM process, which
adds noise from x0 to xT , DDIM defines a diffusion process from xT to x1 by using x0. The process
is described in Eq. (2) and Eq. (3). The distribution qσ (xT | x0) is the same as in DDPM.

qσ (x1:T | x0) := qσ (xT | x0)

T∏
t=2

qσ (xt−1 | xt,x0) , (2)

qσ (xt−1 | xt,x0) = N
(
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t ·
xt −

√
ᾱtx0√

1− ᾱt
, σ2

t I

)
. (3)

The denoising process defined by DDIM is described below:

p(xt′ | xt) = p (xt′ | xt,x0 = µ (xt))

= N
(
xt′ ;

√
ᾱt′√
ᾱt

(
xt −

(√
1− ᾱt −

√
ᾱt√
ᾱt′

√
1− ᾱt′ − σ2

t

)
ϵθ (xt, t)

)
, σ2

t I

)
(4)

3.2 FINDING GROUNDTRUTH TRAJECTORY

In this section, we will first demonstrate that if we know xk and x0, we can determine any other xt.
Then, we will provide the method for obtaining xk.
Theorem 1 The trajectory of {xt} is determined if we know x0 and any other point xk when σt = 0
under DDIM framework.

Proof In DDIM definition, if standard deviation σt = 0, the process adding noise becomes deter-
mined. So Eq. (3) can be rewritten to Eq. (5).

xt−1 =
√
ᾱt−1x0 +

√
1− ᾱt−1 ·

xt −
√
ᾱtx0√

1− ᾱt
. (5)

Assuming that we know any point xk. Eq. (5) can be rewritten as xt−1−
√
ᾱt−1x0√

1−ᾱt−1

= xt−
√
ᾱtx0√

1−ᾱt
. By

applying this equation recurrently, we can obtain Eq. (6). In other words, we can obtain any point xt

except xk.

xt =
√
ᾱtx0 +

√
1− ᾱt ·

xk −
√
ᾱkx0√

1− ᾱk
. (6)

We call the trajectory obtained from xk groundtruth trajectory.

Assuming that the point is xk =
√
ākx0 +

√
1− ākϵk, to find a better groundtruth trajectory, we

choose k = 0 since the choice of k is arbitrary, and approximate ϵ̄0 using Eq. (7).

ϵθ
(√

ā0x0 +
√
1− ā0ϵ0, 0

)
≈ ϵθ (x0, 0) . (7)

This choice is intuitive. First, ᾱ0 is very close to 1, making the approximation in Eq. (7) valid.
Second, the time t = 0 is the closest timing to the original sample, so the model is likely to fit it
better.

3.3 EXPOSING MEMBERSHIP VIA GROUNDTRUTH TRAJECTORY AND PREDICTED POINT

Our approach assumes that the training set’s samples have a smaller loss, similar to many other MIAs,
meaning that the training samples align more closely with the groundtruth trajectory. We measure
the distance between any groundtruth point xt−t′ and the predicted point x′

t−t′ using the ℓp-norm,
which can be expressed by Eq. (8). Here, x′

t−t′ denotes the point predicted by the model from xt. To
apply this attack, we need to select a specific time t− t′, and we choose the time t′ = t− 1 since it is
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the closest. However, we will demonstrate later that the choice of t′ is not significant in discrete-time
diffusion.

dt−t′ =
∥∥xt−t′ − x′

t−t′

∥∥
p
. (8)

To predict x′
t−t′ from the groundtruth point xt, we apply the deterministic version (σt = 0) of the

DDIM denoising process Eq. (4).

We use method described in Section 3.2 to obtain the groundtruth point xt and xt−t′ . We then insert
these points into Eq. (8), giving us a simpler formula:

√
1− ᾱt−t′

√
ᾱt −

√
1− ᾱt

√
ᾱt−t′√

ᾱt

∥∥ϵ̄0 − ϵθ
(√

ātx0 +
√
1− ātϵ0, t

)∥∥
p
.

If we ignore the coefficient, t′ disappears. Finally, the metric ignoring the coefficient reduces to
Eq. (9), where samples with smaller Rt,p are more likely to be training samples.

Rt,p =
∥∥ϵθ (x0, 0)− ϵθ

(√
ātx0 +

√
1− ātϵθ (x0, 0) , t

)∥∥
p
. (9)

Since ϵ is initialized in time t = 0, we call our method Proximal Initialization Attack (PIA).

Normalization The values of ϵθ (x0, 0) may not conform to a standard normal distribution, so we
use Eq. (10) to normalize them. N represents the number of elements in the sample, such as h× w
for an image. We refer to this method as PIAN (PIA Normalized). Although this normalization
cannot guarantee that ϵ̂θ (x0, 0) ∼ N (0, I), we deem it reasonable since each element of ϵ̄t in the
training loss Eq. (1) is identically and independently distributed.

ϵ̂θ (x0, 0) =
ϵθ(x0, 0)

Ex∼N (0,1)(|x|)∥ϵθ(x0,0)∥1

N

= N

√
π

2

ϵθ(x0, 0)

∥ϵθ(x0, 0)∥1
. (10)

To apply our attack, we first evaluate the value of Rt,p on a sample, and use an indicator function:

f(x,m) = 1[Rt,p < τ ]. (11)

This indicator means we consider whether a sample is in the training set if Rt,p is smaller than a
threshold τ . Rt,p is obtained from ϵθ (x0, 0) (PIA) or ϵ̂θ (x0, 0) (PIAN).

3.4 FOR CONTINUOUS-TIME DIFFUSION MODEL

Recently, some diffusion models are trained with continuous time. As demonstrated in Song et al.
(2021b), the diffusion process with continuous time can be defined by a stochastic differential equation
(SDE) as dxt = ft(xt)dt+ gtdwt, where wt is a Brownian process. One of the reverse processes
is dxt =

(
ft(xt)− 1

2

(
g2t + σ2

t

)
∇xt log pt(xt)

)
dt+ σtdw. When σt = 0, this formula becomes

an ordinary differential equation (ODE): dxt =
(
ft(xt)− 1

2g
2
t∇xt

log pt(xt)
)
dt. Continuous-time

diffusion model train an sθ to approximate ∇xt
log pt(xt), so the loss function will be:

L = Ex0,xt∼p(xt|x0)p̄(x0)

[
∥sθ (xt, t)−∇xt

log p (xt | x0)∥2
]
.

Replacing ∇xt
log pt(xt) with sθ (xt, t), the inference procedure become the following equation:

dxt =

(
ft(xt)−

1

2
g2t sθ(xt, t)

)
dt. (12)

The distribution p(xt|x0) is typically set to be the same as in DDPM for continuous-time diffusion
models. Therefore, the loss of the continuous-time diffusion model and the loss of the concrete-
diffusion model Eq. (1) are similar. Since DDPM and the diffusion model described by SDE share a
similar loss, our method can be applied to continuous-time diffusion models. However, due to the
different diffusion process, Rt,p differs from Eq. (9). From Eq. (12), we obtain the following equation:
xt−t′ − xt ≈ dxt =

(
ft(xt)− 1

2g
2
t sθ (xt, t)

)
dt. By substituting this equation into Eq. (8), we

obtain the following equation:

∥xt−t′ − x′
t−t′∥p ≈

∥∥∥∥(ft(xt)−
1

2
g2t sθ (xt, t)

)
dt+ xt − x′

t−t′

∥∥∥∥
p

. (13)
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Table 1: Performance of different methods on Grad-TTS. TPR@x% is the abbreviation for TPR@x%
FPR.

LJspeech VCTK LibriTTS

Method AUC TPR@1% FPR AUC TPR@1% FPR AUC TPR@1% FPR Query

NA Matsumoto et al. (2023) 99.4 93.6 83.4 6.1 90.2 9.1 1
SecMI Duan et al. (2023) 99.5 94.0 87.0 14.8 93.9 19.7 60+2

PIA 99.6 94.2 87.8 20.6 95.4 30.0 1+1
PIAN 99.3 95.7 88.1 19.6 93.4 44.7 1+1

Table 2: Performance of the different methods on DDPM.

CIFAR10 TN-IN CIFAR100

Method AUC TPR@1% FPR AUC TPR@1% FPR AUC TPR@1% FPR Query

NA 84.7 6.85 84.9 10.0 82.3 9.6 1
SecMI 88.1 9.11 89.4 12.7 87.6 11.1 10+2

PIA 88.5 13.7 89.6 17.1 89.4 19.6 1+1
PIAN 87.8 31.2 88.2 32.8 86.5 22.2 1+1

Solving this ODE incurs a truncation error that is positively correlated with ∆t. Therefore, we take
the limit as t′ → 0. In this case, higher-order infinitesimals can be neglected in Eq. (13). so, we can
obtain ∥xt−t′ − x′

t−t′∥p ≈
∥∥(ft(xt)− 1

2g
2
t sθ (xt, t)

)∥∥
p
dt. Since the t′ is same when comparing

two sampling, we can neglect dt and use the following attack metric:

Rt,p =

∥∥∥∥ft(xt)−
1

2
g2t sθ (xt, t)

∥∥∥∥
p

, (14)

where xt is obtained from the output of sθ(x0, 0), similar to the discrete-time diffusion case.

4 EXPERIMENT

In this section, we evaluate the performance of PIA and PIAN and robustness of TTS models across
various datasets and settings. The detailed experimental settings, including datasets, models, and
hyper-parameter settings can be found in Appendix B.

4.1 EVALUATION METRICS

We follow the most convincing metrics used in MIAs Carlini et al. (2023), including AUC, the True
Positive Rate (TPR) when the False Positive Rate (FPR) is 1%, i.e., TPR @ 1% FPR, and TPR @
0.1% FPR.

4.2 PROXIMAL INITIALIZATION ATTACK PERFORMANCE

We train TTS models on the LJSpeech, VCTK, and LibriTTS datasets. We summarize the AUC and
TPR @ 1% FPR results on GradTTS, a continuous-time diffusion model, in Table 1. We employ NA
to denote Naive Attack. Compared to SecMI, PIA and PIAN achieve slightly better AUC performance,
and significantly higher TPR @ 1% FPR performance, i.e., 5.4% higher for PIA and 10.5% higher for
PIAN on average. However, our proposed method only requires 1 + 1 queries, just one more query

Table 3: Performance of different methods on stable diffusion.

Laion5 Laion5 w/o text Laion5 Blip text

Method AUC TPR@1% FPR AUC TPR@1% FPR AUC TPR@1% FPR Query

NA 66.3 14.8 65.2 13.3 68.2 16.2 1
SecMI 69.1 16.1 71.6 14.5 71.6 17.8 10+2

PIA 70.5 18.1 73.9 19.8 73.3 20.2 1+1
PIAN 56.7 4.8 58.8 3.2 55.3 3.2 1+1
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(a) The results of PIA and PIAN on DDPM for
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Figure 2: The performance of PIA and PIAN as t varies. The top row shows the results for AUC, and
the bottom row shows the results for TPR @ 1% FPR.

than Naive Attack, and has a computational consumption of only 3.2% of SecMI. Both methods
outperform SecMI and Naive Attack.

For DDPM, a discrete-time diffusion model, we present the results in Table 2. For this model, PIA
performs slightly better than SecMI in terms of AUC but has a distinctly higher TPR @ 1% FPR
than SecMI, i.e. 5.8% higher on average than SecMI. For PIAN, the AUC performance is slightly
lower than PIA, but higher than SecMI, and the TPR @ 1% FPR performance is significantly better
than SecMI, i.e. 17.8% higher on average than SecMI. Similar to the previous case, our attack only
requires two queries on DDPM and the computational consumption is 17% of SecMI. Both methods
outperform SecMI and Naive Attack.

For stable diffusion, we present the results in Table 3. We evaluated stable diffusion on Laion5
(training dataset) and COCO (evaluation dataset). Details are put into A.2. We tested three scenarios:
knowing the ground truth text (Laion5), not knowing the ground truth text (Laion5 w/o text), and
generating text through blip (Laion5 Blip text). PIA achieved the best results. PIA performs slightly
better than SecMI in terms of AUC, i.e. 1.8% higher on average, but has a distinctly higher TPR @
1% FPR than SecMI, i.e. 3.2% higher on average. Besides, our attack only requires two queries on
DDPM and the computational consumption is 17% of SecMI.

However, PIAN does not work well in stable diffusion. PIAN based on the fact that we added noise
that follows a normal distribution during training, and we use Eq. (10) to rescale the ϵ to normal
distribution. However, rescaling is a rough operation and may not always transform into a normal
distribution. Thus, some other transforms might have better performance. Additionally, the model’s
output might be more accurate before the rescaling.

We highly recommend using PIA as the preferred method for conducting attacks, because it is directly
derived. It will always yield the desired results. But PIAN can be another choice, since it has better
performance at TPR @ 1% FPR metric than PIA on some models.

4.3 ABLATION STUDY

Our proposed method has three hyper-parameters: t and the ℓp-norm used in the attack metrics Rt,p

presented in Eqs. (9) and (14). The threshold τ presented in Eq. (11).

Impact of t To evaluate the impact of t, we attack the target model at intervals of 0.01× T from 0
to T and report the results across different models and datasets.

We demonstrate the performance of our proposed method on two different models: GradTTS,
a continuous-time diffusion model used for audio; and DDPM, a discrete-time diffusion model
employed for images. The results indicate that our method produces a consistent pattern in the same
model across different datasets, whether PIA or PIAN. Specifically, for DDPM, both AUC and TPR
@ 1% FPR exhibit a rapid increase at the beginning as t increases followed by a decline around
t = 200 from Fig. 2a. In Fig. 2b, we randomly partition the CIFAR10 dataset four times and compare
the performance of each partition. Consistent with the previous results, our method exhibits a similar
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(a) The results of PIA and PIAN on Grad-TTS
for different values of ℓp-norm.
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Figure 3: The performance of our method as ℓp-norm varies. The top row shows the results for AUC,
and the bottom row displays the results for TPR @ 1% FPR.

Table 4: The variation of Attack Success Rate (ASR) and TPR/FPR on the victim model with the
threshold determined by the surrogate model.

PIA PIAN

LibriTTS CIFAR10 LibriTTS CIFAR10

ASR TPR/FPR ASR TPR/FPR ASR TPR/FPR ASR TPR/FPR

Surrogate model 89.5 32.2/1 78.5 16.5/1 88.3 26.2/1 76.9 19.0/1
Victim model 89.1 32.6/1.1 78.3 16.8/1.1 88.2 24.5/0.9 76.8 19.0/1

trend across the different splits. For GradTTS, a similar phenomenon can be observed in Appendix
Fig. 6.

Impact of ℓp-norm In Fig. 3, we compare the results obtained on ℓp-norm using the p = 1 to 7,
with the choice of t being the same as in Section 4.2. The results indicate an increase in performance
at ℓ1-norm, followed by a decline after the p = 5. It reveals that the combined effect of both large
and small differences exhibits a synergistic influence when present in an appropriate ratio.

Determining the value of τ In Table 4, we present the variation of Attack Success Rate (ASR)
and TPR/FPR on the victim model with the τ determined by the surrogate model. Specifically, we
will randomly split the corresponding dataset into two halves four times, resulting in four different
train-test splits. We will train four models using these splits. One of the models will be selected as the
surrogate model, from which we will obtain the threshold. We will then use this τ to attack the other
three victim models and record the average values. The results indicate that our method achieves
promising results when using the τ selected from the surrogate model.

4.4 WHICH TYPE OF MODEL OUTPUT IS MORE ROBUST?

According to Zhang et al. (2023), the TTS pipeline consists of three stages: text to mel-spectrogram,
text to audio, and mel-spectrogram to audio. Our experiments tested models for each stage: Grad-TTS
for text to mel-spectrogram, DiffWave for mel-spectrogram to audio, and FastDiff for text to audio.
There are generally two forms of output: mel-spectrograms and audio. In Table 5, we summarize
the model details and best results of our proposed method on three TTS models using the LJSpeech

Table 5: Comparison of different models. AUC is the result on the LJSpeech/TinyImageNet dataset.

Model Size T Output Segmentation Length Best AUC

DDPM 35.9M 1000 Image N/A 92.6
GradTTS 56.7M [0, 1] Mel-spectrogram 2s 99.6
DiffWave 30.3M 50 Audio 0.25s 52.4
FastDiff 175.4M 1000 Audio 1.2s 54.4
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Figure 4: An example of mel-spectrogram.
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Figure 5: The performance of our method for different training and evaluation sample numbers. The
top row shows the results for AUC, and the bottom row displays the results for TPR @ 1% FPR.

dataset and the DDPM model on the TinyImageNet dataset. We only report the results of our method
since it achieves better performance most of the time.

As shown in Table 5, with the same training and hold-out data, GradTTS achieves an AUC close to
100, while DiffWave and FastDiff only achieve the performance slightly above 50, which is close to
random guessing. However, DiffWave has a similar size to DDPM and GradTTS, and FastDiff has
similar T with DDPM. Additionally, FastDiff has similar segmentation length to GradTTS. Thus,
we believe that these hyperparameters are not the decisive parameters for the model’s robustness.
It is obvious that the output of GradTTS and DDPM is image-like. Fig. 4 provides an example of
mel-spectrogram. The deep reasons why these models exhibit robustness can be further explored. We
report these results hoping that they may inspire the design of models with MIA robustness.

We also explore the attack performance with various training and evaluation sample numbers. We
select 10%, 30%, 50%, and 100% of the samples from the complete dataset. In each split, half of
all samples are used for training, and the other half are utilized as a hold-out set. The results are
presented in Fig. 5. As we can see, when only 10% of the data is used, relatively high AUC and TPR
@ 1% FPR can be achieved. Additionally, we find that the AUC and TPR @ 1% FPR decrease as the
proportion of selected samples in the total dataset increases. However, for GradTTS and DDPM, the
decrease is relatively gentle, while for DiffWave and FastDiff, the decrease is rapid. In other words,
the robustness increases rapidly with the increase of training samples.

5 CONCLUSION

In this paper, we propose an efficient membership inference attack method for diffusion models,
namely Proximal Initialization Attack (PIA) and its normalized version, PIAN. We demonstrate
its effectiveness on a continuous-time diffusion model, GradTTS, and two discrete-time diffusion
models, DDPM and Stable Diffusion. Experimental results indicate that our proposed method can
achieve similar AUC performance to SecMI and significantly higher TPR @ 1% FPR with the cost
of only 2 queries, which is much faster than the 12~62 queries required for SecMI in this paper.
Additionally, we analyze the vulnerability of models in TTS, an audio generation task. The results
suggest that diffusion models with the image-like output (mel-spectrogram) are more vulnerable than
those with the audio output. Therefore, for privacy concerns, we recommend employing models with
audio outputs in text-to-speech tasks.
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APPENDIX

A LIMITATION AND BROADER IMPACTS

The purpose of our method is to identify whether a given sample is part of the training set. This
capability can be leveraged to safeguard privacy rights by detecting instances of personal information
being unlawfully used for training purposes. However, it is important to note that our method could
also potentially result in privacy leaking. For instance, this could occur when anonymous data is
labeled by determining whether a sample is part of the training set or as a part of data reconstruction
attack. It is worth mentioning that our method solely relies on the diffusion model’s output as we
discussed in the threat model, but it does require the intermediate output. This dependency on the
intermediate output may pose a limitation to our method.

B DATASETS AND DIFFUSION MODELS

For TTS, we evaluate three commonly used datasets: LJSpeech, VCTK, and a subset of LibriTTS
called libritts-lean-100. We test three models: GradTTS 1, FastDiff 2, and DiffWave 3. For image
generation, we evaluate the CIFAR10, CIFAR100 and TinyImageNet datasets using the same DDPM
model as Duan et al. (2023), and Laion5, COCO for stable diffusion Rombach et al. (2022). Unless
otherwise specified, we randomly select half of the samples as a training set and the other half as the
hold-out set.

B.1 IMPLEMENTATIONS DETAILS

For the audio generation models, we use their codes from the official repositories and apply the
default hyperparameters for all models except for the hyperparameters we mentioned. The training
iterations were set to 1,000,000, due to the default value for the three audio generative models are
all around this. For DDPM, all settings are the same as those in Duan et al. (2023). For various
experiments, due to the absence of corresponding trials by the baseline, we employ a grid-search
approach to identify the optimal parameters attainable by the method.

Table 6 demonstrate the setting for different attacks. On GradTTS, because SecMI is not designed
for continuous-time diffusion, we discretize [0, 1] into 1000 steps and then apply SecMI. We chose
ℓ4-norm to compute Rt,p.

To conduct the experiment on stable diffusion, we download the stable-diffusion-v1-5 from 4, without
any further fine-tuning or any other modification. We select 2500 sample from 600M laion-aesthetics-
v2-5plus as the member set, since stable-diffusion-v1-5 is trained on this dataset as mentioned by
HuggingFace. We randomly select 2500 images from the COCO2017-val as the hold-out set, since
COCO2017-val is one of the official validation set to examine the performance of stable diffusion.
The prompt to generate Laion5 Blip text in BLIP is "A picture of ".

C PIA AND PIAN ON GRAD-TTS ACROSS VARIOUS t

Fig. 6 demonstrates the results of PIA and PIAN on Grad-TTS for different values of t and different
datasets. For GradTTS, consistent with the DDPM, both AUC and TPR @ 1% FPR exhibit a rapid
increase at the beginning as t increases followed by a decline around t = 0.5.

1https://github.com/huawei-noah/Speech-Backbones/tree/main/Grad-TTS
2https://github.com/Rongjiehuang/FastDiff
3https://github.com/lmnt-com/diffwave
4https://huggingface.co/runwayml/stable-diffusion-v1-5
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Model Attack Methol Attack Time (t)

DDPM
Naive Attack 200

SecMI 100
PIA/PIAN 200

GradTTS
Naive Attack 0.8

SecMI 0.6
PIA/PIAN 0.3

Stable Diffusion
Naive Attack 500

SecMI 100
PIA/PIAN 500

Table 6: Summary of attack settings
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Figure 6: The results of PIA and PIAN on Grad-TTS for different values of t and different datasets.

D MORE EXPERIMENTAL RESULTS

D.1 ROBUSTNESS ON FASTDIFF AND DIFFWAVE

Table 7 shows the AUC of different methods at FastDiff and DiffWave model on three datasets. The
performance of all three MIA methods is very poor.

Table 7: Performance of AUC on FastDiff and DiffWave across three datasets.

FastDiff DiffWave

Method LJSpeech VCTK LibriTTS LJSpeech VCTK LibriTTS

NA Matsumoto et al. (2023) 52.6 55.1 53.7 52.7 53.8 51.2
SecMI Duan et al. (2023) 51.6 56.3 53.7 53.2 54.3 52.4

PIA 51.6 57.1 54.1 54.4 54.2 50.8
PIAN 52.4 57.0 54.6 50.0 50.5 50.7

D.2 DISTRIBUTION FOR SAMPLES FROM TRAINING SET AND HOLD-OUT SET.

Fig. 7 shows the Rt=0.3,p=4 distribution for samples from training set and hold-out set at GradTTS
on different datasets of PIAN.

D.3 LOG-SCALED ROC CURVE

As suggested by Carlini et al. (2022), Fig. 8 and Fig. 9 display the log-scaled ROC curves. These
curves demonstrate that the proposed method outperforms NA and SecMI at most of times.
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Figure 7: Rt=0.3,p=4 distribution for samples from training set and hold-out set at GradTTS on
different datasets of PIAN.
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Figure 8: The log-scaled ROC at DDPM of different methods on CIFAR10 and TinyImageNet.

D.4 VISUALIZATION OF RECONSTRUCTION

Note Eq. (9) is equal to the distance between ϵθ (x0, 0) and the predicted one ϵ′ = ϵθ (xt, t)
, where xt =

√
ātx0 +

√
1− ātϵθ (x0, 0). Fig. 10 and Fig. 11 show the reconstructed sample

x′
0 = xt−

√
1−ātϵ

′
√
āt

from xt using the predicted ϵ′ at DDPM on CIFAR10 of PIAN. The reconstructed
samples from t = 100 are clear for both the training set and the hold-out set. The reconstructed
samples from t = 400 are blurry for both sets. However, for t = 200, the reconstructed samples are
clear for the training set but blurry for the hold-out set.

For GradTTS, we use Eq. (12) to reconstruct samples from xt. This reconstruction is not rigorous,
but we just use it to give a visualization. Fig. 12 and Fig. 13 show the reconstructed samples on
LJSpeech from PIA. The observed pattern is consistent with DDPM.
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(b) Log-scaled ROC on VCTK.
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Figure 9: The log-scaled ROC at GradTTS of different methods on LJSpeech, VCTK and LibriTTS.
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(a) Samples in training set.

(b) Samples reconstructed from t = 100.

(c) Samples reconstructed from t = 200.

(d) Samples reconstructed from t = 400.

Figure 10: Samples in training set and the reconstructed samples at DDPM on CIFAR10 from PIAN.
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(a) Samples in hold-out set.

(b) Samples reconstructed from t = 100.

(c) Samples reconstructed from t = 200.

(d) Samples reconstructed from t = 400.

Figure 11: Samples in hold-out set and the reconstructed samples at DDPM on CIFAR10 from PIAN.
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(a) Samples in training set.

(b) Samples reconstructed from t = 0.1.

(c) Samples reconstructed from t = 0.6.

(d) Samples reconstructed from t = 0.95.

Figure 12: Samples in training set and the reconstructed samples at GradTTS on LJSpeech from PIA.
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(a) Samples in hold-out set.

(b) Samples reconstructed from t = 0.1.

(c) Samples reconstructed from t = 0.6.

(d) Samples reconstructed from t = 0.95.

Figure 13: Samples in hold-out set and the reconstructed samples at GradTTS on LJSpeech from
PIA.
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