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Generalization across Diverse Dynamic Properties

Figure 1. Illustration of the high-level idea and generalization ability of DyWA. Given a target object’s 6D pose and single-view object
point cloud, our non-prehensile manipulation policy aims to rearrange the object without grasping. Left: Our key insight is to enhance
action learning by jointly predicting future states while adapting to dynamics from historical trajectories. Right: After being trained in
simulation, our policy achieves zero-shot sim-to-real transfer and generalizes across diverse dynamic properties, including variations in
object geometry, object physical property (e.g., slipperiness and non-uniform mass distribution), and surface friction.

1. abstract

Non-prehensile manipulation—such as pushing, sliding,
and toppling—extends robotic capabilities beyond tradi-
tional grasping, enabling task execution under geometric,
clutter, or workspace constraints. While planning-based
methods [2-5] have shown success, they rely on precise ob-
ject properties (e.g., mass, friction, CAD models), which
are rarely available in the real world.

Recent learning-based approaches [6] shift toward end-
to-end policy learning from visual input, demonstrating
stronger generalization. For instance, HACMan [7] and
CORN [1] exploit vision-based RL or distillation to ac-
quire contact-rich skills. However, these methods remain
geometry-centric and shows poor robustness under dynamic
variations such as friction or mass changes.

To achieve generalization across dynamic variations, we
argue that contact-rich manipulation fundamentally requires
world modeling: policies must not only output actions but
also internalize how interactions shape future states. Under
this lens, existing teacher-student distillation frameworks

fall short—while the privileged RL teacher can exploit full
dynamics, the student policy trained from partial observa-
tions suffers due to (1) single-view partial point cloud ob-
servation, (2) Markovian policies collapsing over multiple
dynamics, and (3) weak supervision limited to action imita-
tion.

To address this, we introduce Dynamics-adaptive World
Action Model (DyWA). DyWA explicitly integrates world
modeling into action learning:(i) a dynamics adaptation
module infers latent physical properties from observation-
action history, (ii) action prediction is reformulated as joint
prediction of actions and future states, providing richer su-
pervision, and (iii) Feature-wise Linear Modulation (FiLM)
bridges inferred dynamics with policy learning.

We benchmark DyWA against strong baselines on
CORN, varying camera and tracking settings. DyWA im-
proves success by 31.5% in simulation, and in real-world
tests achieves 68% success across diverse geometries, fric-
tional conditions, and mass distributions (e.g., half-filled
bottles). We further demonstrate DyWA’s compatibility
with VLMs for challenging thin/wide-object scenarios.
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