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ABSTRACT

Learning from point clouds entails knowledge of local shape geometry. Recent
efforts have succeeded in representing synthetic point clouds as surfels. However,
these methods struggle to deal with LiDAR point clouds captured from real scans,
which are sparse, uneven, and larger-scale. In this paper, we introduce RealSurf,
a general framework that processes point clouds under extreme conditions like
autonomous driving scenarios. We identify several key challenges in applying
surface representations to real scans and propose solutions to these challenges:
Point Sliding Module that jitters point coordinates within the reconstructed sur-
fels for geometric feature computation, and LiDAR-based surfel reconstruction
process that enables models to directly construct surfels from LiDAR point clouds
by attenuating unevenness. We evaluate our approach on a diverse set of bench-
marks, including nuScenes, SemanticKITTI, and Waymo. RealSurf, with a sim-
ple PointNet++ backbone, outperforms its counterparts by a significant margin
while remaining efficient. By achieving state-of-the-art results on three bench-
marks through a fair and unbiased comparison, RealSurf brings renewed attention
to the effectiveness of point-based methods in LIDAR segmentation. Code will be
publicly available upon publication.

1 INTRODUCTION

Learning from point clouds is a key task in machine learning, with potential applications in many
areas including autonomous driving, augmented reality, and robotics. In its most basic incarnation,
point cloud learning involves the extraction of geometric features from noisy and sparse points
with parameterized models. These geometric features are then consumed by deep models to enable
3D perception tasks. However, many modeling and computational challenges hinder the design of
stable and robust deep networks for point cloud processing. First, point clouds are represented by
orderless sets, while existing deep learning models such as convolutional neural networks (CNNs)
assume inputs with fixed structures. Second, point clouds from LiDAR scenes are extremely sparse
and noisy. Therefore, methods developed for synthetic point clouds (Qi et al.,[2017a3bj; [Wang et al.,
2019a) do not generalize well to real-world LiDAR scans. Learning robust geometric features from
point clouds in the wild remains a challenging and open question.

To address these shortcomings in current methods, we introduce a general framework, termed Re-
alSurf, to tackle geometric feature learning from point clouds under extreme conditions. Compared
to recent point-based methods (Ran et al) 2022} Ma et al 2022} [Zhao et al., 2021)), which target
clean and dense points sampled from synthetic shapes, our method is applicable to LiDAR point
clouds in outdoor settings. RealSurf tries to answer a central question in learning from point clouds:
how to consistently estimate and leverage geometric features in point cloud networks? We iden-
tify two key challenges faced by previous methods: First, point clouds are sparse, which makes it
computationally inefficient and impractical to estimate geometric features from local point groups.
Second, estimating consistent normals from point clouds is an ill-defined problem, and learning
from globally inconsistent normals is harmful to model performance.

To address these issues, we propose two general approaches that can be potentially adopted by any
point-based network. First, we jitter the coordinate of each local point within the reconstructed
surfels induced by existing points. Second, some geometric properties can not be consistently es-
timated. Instead of assuming that these features are consistent during training, we design a novel
surfel abstraction to retrieve regular reconstructed triangles by relieving the issue of density variation
(unevenness) in LiDAR point clouds.
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Figure 1: A closer look at our RealSurf and RepSurf (Ran et al.,[2022). Left: Visualization of the reconstructed
surface elements, namely surfels, on LIDAR point clouds. Right: Performance analysis on two popular LIDAR
datasets: SemanticKITTI (Behley et al.} 2019) and nuScenes (Fong et al.|[2022). Here, for fair comparison, we
do not utilize any techniques mentioned in Sec.

We incorporate our proposed modules into a PointNet++ (Qi et al.| 2017b) backbone and conduct
experiments on a diverse range of datasets including nuScenes, SemanticKITTI, and Waymo. Our
results suggest that a simple neural network can achieve state-of-the-art performance on these chal-
lenging datasets if equipped with useful geometric features. We hope this finding can motivate future
work that combines machine learning and geometry processing.

We summarize our key contributions as follows:

* We introduce a streamlined framework to process LiDAR point clouds. With a simple
PointNet++ backbone, it achieves state-of-the-art on several challenging datasets (i.e., Se-
manticKITTI, nuScenes, and Waymo).

* We analyze challenges in learning geometric features from LiDAR point clouds, addressing
a long-standing question in this domain: why do point-based methods, such as PointNet++,
underperform when operating on LiDAR point clouds?

* We propose solutions to these challenges, namely point sliding module and surfel abstrac-
tion. Both designs are general and can be readily adopted by any point-based networks.

* We will open-source our code upon publication to facilitate future development.

2 RELATED WORK

2.1 POINT CLOUD SEGMENTATION

Previous methods for point cloud segmentation have predominantly relied on four representations:
point, 2D projection, voxel, and multi-representation fusion.

Point-based methods are commonly used for indoor-scene point clouds characterized by uniform
density, a small number of points, and a limited range of scenes. The pioneering work, PointNet (Q1
et al.,2017a), utilizes per-point multi-layer perceptrons (MLP) to learn from raw point clouds. Sub-
sequent work has explored various network designs based on graphs (Wang et al. [2019b; [Zhou
et al.| [2021), pseudo grids (Thomas et al., 2019} |Li et al., [2018; Xu et al., 2020b; [Lai et al., |[2023),
relations (Liu et al., 2019b; Zhao et al., 2019; [Liu et al., [2019a; [Zhao et al., 2021} Ran et al., 2021}
Xu et al.| [2021b} Xiang et al., 2021} |Lai et al.| [2022) or simply per-point MLP (Q1 et al., 2017b;
Liu et al.|[2020; Ma et al.| 20225 |Qian et al.,[2022). Recently, efforts have been made to address the
challenges posed by large-scale LiDAR point clouds. Despite advances such as adaptive sampling
and fast random sampling introduced by PointASNL (Yan et al.,|2020) and RandLA-Net (Hu et al.,
2020), expressive local aggregators like KPConv (Thomas et al., 2019) and BAAFNet (Qiu et al.,
2021) remain less competitive than more recent approaches for LIDAR point clouds.

Projection-based methods have demonstrated efficiency for LiDAR point clouds by converting
3D point clouds into 2D grids (i.e., range view (Wu et al., 2018}, [2019; Xu et al.l 2020a; Milioto
et al., 2019), bird’s-eye view (Zhang et al., |2020; Tatarchenko et al., |2018) or both (Liong et al.,
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Figure 2: An overview of RealSurf on PointNet++ (Qi et al.,2017b). N, C and C' " refer to the number of input
points, base channels and segmentation label categories, respectively. By default, we set the number of queried
neighbors for surfel abstraction to 8, denoted by K. M represents the number of vertices of one triangle, and
thus M = 3. The abbreviations “SA” and “FP” stand for set abstraction and feature propagation in|Qi et al.
(2017b), respectively.

2020)), thereby enabling the use of 2D convolution. However, the 3D-to-2D projection unavoidably
introduces changes in 3D topology and hinders the modeling of complete geometric information,
causing inadequate segmentation performance. Voxel-based methods (Cheng et al.| 2021} |Ye et al.,
2022) have gained widespread adoption due to their balanced computation costs and performance
when integrated with sparse convolutions (Graham et al) [2018). Cylinder3D (Zhu et al. [2021)
deforms grid voxels to cylinder-shaped ones and utilizes an asymmetrical network to enhance the
performance. Multi-representation fusion methods (Xu et al [2021a; Hou et al.l [2022) combine
several representations above for segmentation. SPVNAS (Tang et al.} [2020) leverages point-voxel
representation with per-point MLP and Neural Architecture Search for an efficient architecture.

2.2  SURFACE REPRESENTATION FOR POINT CLOUDS

Representing small-scale point clouds as surface elements, or “surfels” (Pfister et al., 2000), has
recently gained attention in the community for its successful use in combination with deep learning
models. Inspired by triangular and umbrella surfels (Foorginejad & Khalili, [2014), RepSurf (Ran
et al.l [2022) pre-computes surface features as local geometric information for coordinate input.
MaskSurf (Zhang et al.,[2022) further incorporates surfels into masked auto-encoding models. While
these methods have demonstrated high efficiency and impressive performance, their application to
larger-scale LiDAR point clouds, remains challenging and unexplored. This paper aims to analyze
the difficulties and propose potential solutions.

3 SURFACE REPRESENTATION IN LIDAR SCENES

In Sec.[3.1] we provide an overview of preliminaries for RealSurf. In Sec.[3.2} we identify three main
challenges that arise in computing surface features from point clouds in real-world scenarios. In
Sec.[3.3] we present two significant contributions of our proposed method: Point Sliding Module that
addresses unevenness and sparsity in LiDAR point clouds, and surfel abstraction that improves the
reconstructed surfel quality while addressing unevenness. Finally, in Sec.[3.4] we propose optimized
training techniques for point-based networks to compete with voxel-based methods.

3.1 PRELIMINARIES

Our method extends RepSurf (Ran et al.| [2022)), a surface representation that is learned from point
clouds. RepSurf (Ran et al.l2022)) investigates the tangent plane equation a (x — x;) +b(y — y;) =
0 and parameterizes the tangent plane as t; = (z;,y;, a, b, ax; + by;), where (a, b) is the normal
vector and (x;,y;) is the coordinate.
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To operate in the 3D space, RepSurf (Ran et al |2022) introduces a triangle-based representation,
Triangular RepSurf, and a multi-surfel representation, Umbrella RepSurf. Triangular RepSurf de-
scribes the local geometry of a point x; = (z;, y;, z;) by constructing a triangle with the point and
its two neighbors (denoted as x;} and x?):

1
pizg(xi+x}+x§), (1)
t; = (a;, b;, ¢iya;x; + biy; + ¢iz;) 2)

where (a;, b;, ¢;) and p; are the normal vector and the centroid cooridnate of the constructed triangle.

However, a single point x; is usually contained by multiple surfels. To capture fine-grained geometry
of x;, Umbrella RepSurf uses an umbrella multi-surfel representation (Foorginejad & Khalili,[2014)).
The geometry around a point x; is defined by the aggregation of K adjacent triangular surfels:

u;, = A{T ([pij. ti5]) . V5 € {1,...,K}}), 3)

where p;; and t;; denote the centroid and Triangular RepSurf features of one of the K adjacent
surfels around x;, respectively; A and 7 are the aggregation module and a learnable transformation
function. We refer readers to RepSurf (Ran et al.l 2022) for more details. In this paper, we focus
on Umbrella RepSurf since it is a more stable and empirically effective representation with a larger
receptive field compared to Triangular RepSurf.

3.2 CHALLENGES IN REAL SCENES

Although RepSurf (Ran et al.,2022)) has demonstrated
considerable success in tasks involving dense and uni- 5
form point clouds, there are several remaining model- 7 2 X
ing and computational challenges to adopt RepSurf to se

real LiDAR scan processing (A typical example of Li-
DAR point clouds is shown in Figure [3). We include

these challenges as follows:

* Sparsity. Objects that are farther away ap-
pear indistinct due to the sparse points, mak-
ing it difficult for models to accurately cap-
ture their surfel geometry. ’ o,

* Density variation. Density variation affects
model expressiveness. For example, a large Figure 3: An example of a LIDAR point cloud
receptive field is suitable for points farther Panorama, along with both its bird’s-eye view
away but not for near points. (top left) anq a magnified region near the ego-

center (top right).

* Larger scale. The considerable number of
LiDAR points creates a computational burden
for neighbor querying during surfel abstraction, which is not present in synthetic point
clouds with fewer points.

As shown in Figure [f] these challenges jointly prevent RepSurf to produce regular and coherent tri-
angles from LiDAR point clouds. The goal of RealSurf is to construct regular triangles by densifying
point clouds as presented later.

3.3 REALSURF

Overview. As shown in Figure [2| RealSurf uses a PointNet++ (Qi et al.,|2017b) backbone. To
perform surfel abstraction, we firstly downsample point clouds by FPS and feed them into RealSurf.
Each point x; is paired with its K = 8 neighbors clockwise to form triangles, which collectively
makes up an umbrella surfel. Then, we compute surface features such as centroid coordinates and
normals, and use the Point Sliding Module to enhance surface representation. After concatenating
centroid coordinates and normals, we use MLPs to map the features into a high-level latent space.
Finally, the features are processed by subsequent stages in the backbone.
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Free lunch of augmentation from surfels
with Point Sliding module. To handle sparse
point clouds, previous methods (Qi et al.
2017b) simply adopt a learning-based strategy
(MLPs followed by max-pooling) to extract
features from sparse point groups. However,
this does not fundamentally solve this problem,
especially for extremely sparse points. To ad-
dress this challenge, we propose a Point Slid-
ing Module (as shown in Figure ) to densify
irregular and sparse points.

Given a point set S with K points, the Point . ) o .
Figure 4: Tllustration of Point Sliding Module. Given

Sliding Module jitters the coordinate of a point
within its corresponding constructed surfel.
The output point through Point Sliding Module
is defined as follows:

3
Py =pij + Z it (vii = pij), 4
m=1
where v}, m = 1,2, 3 are three vertices of the
J-th triangle and p;; is the centroid; ;7 is ran-
domly sampled from a distribution (details pre-
sented in the next paragraph) to control the cor-

a reconstructed triangle in an umbrella surfel with three
vertices v;;, m € {1,2,3}, we can obtain the coor-
dinate of centroid p;; by averaging the three vertices.
Afterwards, we calculate the edge vector v?} — pyj for
each vertex. Then, we sample the scale factor o from a
uniform or Gaussian distribution for each edge vector,
and compute the offset of the centroid by summation of
the randomly scaled edge vectors. This offset allows the
centroid to slide on the triangular surfels. Finally, we
feed the jittered centroid pfj into the learnable transfor-
mation 7, followed by the aggregation function A to
compute the surface representation uy .

responding edge vector v — p;;. Typically,
a7 is in the range of [0, 1]. We define Umbrella
RepSurf through Point Sliding Module as:

u = A{T ([p5.tsy]) Vi€ {1,...,K}}). (5)
We explore two variants for o’} :Uniform Point Sliding Module and Gaussian Point Sliding Module.
That is, ;7 is sampled from a uniform distribution o} ~ (0, ) or a Gaussian distribution o} ~

N(0, %2), where 7 is a hyperparameter to tune for both cases and we also limit o7} to [0, 1].

Downsampling is the key to LiDAR-based
surface representation. LiDAR point clouds
are density-varying and contain more points
compared to synthetic and indoor point clouds.
While previous methods such as [Zhu et al.
(2021)); Tang et al.| (2020) use raw point clouds
as input due to the unique pattern of LiDAR
point clouds, this pattern can severely im-
pact surface representation (as shown in Fig-  kesy
ure by causing reconstructed triangles to '

align along circular lines. Furthermore, the
large number of input points can negatively af-
fect the efficiency of the model, and there is a
trade-off between the number of input points

Figure 5: A sequence of LiDAR point clouds with or
without downsampling. Left: raw point cloud, Middle:
downsampled (factor: 1/4) point cloud, Right: down-
sampled (factor: 1/16) point cloud.

and the efficiency of surface feature computation. For instance, Waymo (Sun et al., 2020) has
around 160,546 input points, while ScanNet (Dai et al., 2017) has around 30,545 input points, and
surface features are computed for each point. To address these issues, we propose a surfel abstrac-
tion process that allows our method to operate on abstracted surface representations. Specifically, we
use farthest point sampling (FPS) to gradually downsample the point clouds and compute RealSurf
features along the downsampling process, which are then aggregated into abstract points.

3.4 BRIDGING THE GAP BETWEEN POINT-BASED METHODS AND VOXEL-BASED METHODS

Recent voxel-based methods and fusion-based methods dominate LiDAR segmentation, outperform-
ing its point-based counterpart. To revive point-based methods, we examine two critical issues in
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PolarNet (Zhang et al.}[2020) NeurIPS°21[69.4 87.4]72.2 16.8 77.0 86.5 51.1 69.7 64.8 54.1 69.7 63.5 96.6 67.1 77.7 72.1 87.1 84.5
Cylinder3D (Zhu et al.[2021) CVPR’21 |77.2 89.9|82.8 29.8 84.3 89.4 63.0 79.3 77.2 73.4 84.6 69.1 97.7 70.2 80.3 75.5 90.4 87.6
AMVNet (Liong et al.|[2020) TJCAIW’21|77.3 90.1|80.6 32.0 81.7 88.9 67.1 84.3 76.1 73.5 84.9 67.3 97.5 67.4 79.4 75.5 91.5 88.7
SPVNAS (Tang et al.[|2020) ECCV’20 |77.4 89.7]80.0 30.0 91.9 90.8 64.7 79.0 75.6 70.9 81.0 74.6 97.4 69.2 80.0 76.1 89.3 87.1

(AF)2-S3Net (Cheng et al.[2021) | CVPR’21 |78.3 88.5|78.9 52.2 89.9 84.2 77.4 74.3 77.3 72.0 83.9 73.8 97.1 66.5 77.5 74.0 87.7 86.8

RealSurf i Ours 80.1 90.9[81.4 36.8 93.2 91.8 77.2 83.4 789 74.8 87.3 76.2 97.7 66.2 799 75.5 92.6 89.3

t: Multi-frame as input, *: Extra information for training (e.g., 3D detection labels) and two-stage refinement instead of end-to-end, o: Both LiDAR and
RGB as input.

Table 1: Comparison on the nuScenes test set with the metric of mIoU (%). We only report methods published
before Sep. 28, 2023 for comparison (refer to the official website for details).

e = ]

=) ERN- S 3 £ i & 4 5§ 5§ 3 E 8 S

Sl 3 £ £ 32 . % 2 ¢ 2B E oz o2 o ogog

Mod. Method Reference | E| € % & 3 2 § E 2 E B ¢ E 8 & 3 £ & & §

PointNet++ {Qi et alJ2017b] __ [NeurlPS'17]20.1|72.0 41.8 18.7 56 623 537 09 19 02 02 465 138 300 09 10 00 169 60 89

TangentCony (Tatarchenko et alJ)2018] | CVPR’I8 |40.983.9 63.9 33.4 154 83.4 90.8 152 27 165 12.1 79.5 49.3 58.1 23.0 28.4 8.1 49.0 358 28.5

Point PointASNL (Yan et al.|[2020] CVPR'20 |46.8(87.4 743 243 1.8 83.1 87.9 39.0 0.0 25.1 292 84.1 522 70.6 342 57.6 0.0 439 57.8 369

RandLA-Net (Hu et al.|[2020} CVPR'20 [55.9(90.5 74.0 61.8 24.5 89.7 942 43.9 29.8 322 39.1 83.8 63.6 68.6 48.4 474 94 604 510 50.7

KPConv (Thomas et al.|[2019) ICCV'19 |58.8(90.3 727 61.3 315 90.5 95.0 334 302 42.5 443 84.8 692 69.1 615 61.6 11.8 64.2 564 47.4

RealSurf Ours _[70.7]91.0 77.2 69.5 34.6 92.7 97.1 56.1 62.1 59.0 59.3 86.2 75.2 71.4 753 78.7 433 69.4 660 714

Voxel MinkowskiNet (Choy et al.[[2019} CVPR’19 [53.2]88.4 71.4 57.1 22.6 90.4 94.0 27.5 264 245 18.4 83.5 65.3 65.8 40.5 46.7 13.5 62.5 54.0 59.1

PolarNet (Zhang et al.}[2020) CVPR’20 |54.3|90.8 744 61.7 21.7 90.0 93.8 22.9 40.3 30.1 28.5 84.0 65.5 67.8 43.2 40.2 5.6 61.3 51.8 57.5

(AF)2-53NellChsng etal.|2021) CVPR’21 [69.7]91.3 72.5 68.8 53.5 87.9 94.5 39.2 654 86.8 41.1 70.2 68.5 53.7 80.7 80.4 74.3 63.2 61.5 71.0

SPVNAS (Tang et al.[[2020] ECCV’20 [67.0]90.2 754 67.6 21.8 91.6 97.2 56.6 50.6 50.4 58.0 86.1 73.4 71.0 67.4 67.1 50.3 66.9 64.3 67.3

V4P Cylinder3D (Zhu et al.|2021 ] CVPR'21 [68.9(92.2 77.0 65.0 323 90.7 97.1 50.8 67.6 63.8 58.5 85.6 725 69.8 73.7 69.2 48.0 66.5 624 66.2
V+R

t: Multi-frame as input, o: Both I;iDAR and RGB as input.

Table 2: Comparison on the SemanticKITTI test set with the metric of mloU (%). We only report methods
published before Sep. 28, 2023 for comparison (refer to the |official website for details). V = Voxel, P = Point,
R =RGB, Mod. = Modality.

current pipelines: class balance and positive/negative balance. Our final method leads to competi-
tive performance in LiDAR segmentation. In addition, these techniques can potentially benefit any
future point-based methods.

Class Balancing Class imbalance is a major issue in LIDAR segmentation, where the foreground
points are far less than the background points. Voxel-based methods tackle this problem by manual
ground-truth augmentation (Yan et al., |2018), which requires an instance database and hyperpa-
rameter tuning. Contrarily, RealSurf handles it with a simple point cloud mixing technique, which
improves the diversity of foreground points. Given two point clouds X and ), we concatenate them
and produce a new point cloud Z. Then, our model takes Z as input and makes per-point predictions.

Positive/Negative Sample Balancing Voxel-based methods widely adopt Lovész-Softmax
loss (Berman et al., 2018)) to improve performance by assigning appropriate weights to small ob-
jects and false negatives. Our empirical results show that it does not effectively improve point-based
methods. To balance positive and negative samples, we instead use online hard example mining
(OHEM) (Shrivastava et al., [2016). In our experiments, we set the threshold to 0.7 and adjust the
minimal ratio of kept samples according to the proportion of foreground points in each dataset.

4 EXPERIMENTS

We evaluate RealSurf on three commonly used datasets for LiDAR-based segmentation:
nuScenes (Fong et al.} 2022), SemanticKITTI (Behley et al., 2019), and Waymo Open Dataset (Sun
et al.l 2020). We additionally perform ablation studies to verify the impact and efficacy of each
design choice of RealSurf.

4.1 IMPLEMENTATION

Training Details We use the AdamW (Loshchilov & Hutter, [2017) optimizer with an initial learning
rate of 3 x 1073, a weight decay of 0.01, and a scheduler that linearly warms up the learning rate
for 1500 iterations and then linearly decreases it. All models are trained on 8 GPUs. The per-GPU
batch size is respectively 2, 1, and 1 for the nuScenes, SemanticKITTI, and Waymo datasets. We
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Figure 6: Visualization of ground-truth labels (top row) and the prediction results with our RealSurf (bottom
row) on larger-scale LIDAR point cloud datasets from left to right. Left: nuScenes (Fong et al.,2022), Middle:

SemanticKITTI (Behley et al.| 2019), Right: Waymo 2020).
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RGBV-RP Net (Xu et alla 62.6/94.8 67.4 749 33.0 0.0 77.3 88.6 68.0 28.6 74.7 37.6 53.8 64.9 96.5 86.4 67.1 70.9 90.9 23.7 24.0 68.8 84.4
CAVPercep ( ( 63.7/93.6 62.8 68.1 22.8 1.8 71.7 87.3 67.0 29.4 742 55.0 55.6 60.8 96.1 86.4 68.0 68.3 91.2 41.2 46.1 70.5 83.1
SPVCNN++3 ( 67.7|95.1 67.7 75.6 35.1 0.0 85.1 91.5 73.2 31.9 78.8 61.4 659 73.6 90.8 86.5 70.5 75.5 91.7 41.3 40.2 71.5 85.8
RealSurf (ours) 67.7/95.1 68.4 80.6 32.2 0.0 78.9 90.6 70.1 28.3 79.0 52.1 67.7 72.7 97.0 87.1 71.1 743 92.7 44.0 48.9 71.8 859

t: Multi-frame as input, *: Extra information for training (e.g., 3D detection labels) and two-stage refinement instead of end-to-end, o: Both LiDAR and RGB as input,
§: Variant of SPVNAS 2020) that consumes more computation and apply a longer training schedule.

Table 3: Comparison on the Waymo test set with the metric of mloU (%). We only report officially qualified
methods published before Sep. 28, 2023 for comparison (refer to the official website for details).

adopt random flipping, rotation, and point cloud mixing (Nekrasov et al. [2021)) to augment data.
We additionally use the OHEM loss (Shrivastava et al.l 2016) and Fade Strategy 2021).

Evaluation Details We use mloU for all experiments (and fwloU-frequency-weighted IoU on
nuScenes). For a fair comparison on validation sets, we do not adopt any techniques (e.g., TTA,
model ensemble) to further boost the performance. For testing on public servers, we average the
predictions of 12 runs for each submission. In contrast to other leading entries on these benchmarks,
we do not use model ensemble, multi-frame inputs, RGB information, or additional annotations
(e.g., detection labels). Our results in the test set are produced through a model trained on singe
frames without any of the aforementioned techniques.

4.2 NUSCENES

Dataset nuScenes contains 40,000 frames from 1000 scenes, which are captured
by a 32-beam LiDAR sensor in a duration of 20 seconds and sampled at 20Hz. We use the official
training/validation splits provided by nuScenes. For LiDAR segmentation, each point is categorized
into one of 16 semantic labels. Each frame has ~34,720 points.

Results In Table[I] we evaluate RealSurf on the nuScenes test set. Among all published methods
that are not trained with extra information (e.g.RGB information in Genova et al (2021)), detection
labels in (2022)) or multi-frame input, RealSurf achieves state-of-the-art performance on
this benchmark. In particular, for the first time a point-based method achieves better performance
than previous state-of-the-art voxel-based methods. Notably, RealSurf outperforms many popular
voxel-based methods by a large margin: +1.7% over (AF)2-S3Net (Cheng et a1.|, 2021)), +2.7% over
SPVNAS 2020), +2.9% over Cylinder3D 2021). Furthermore, our method
even outperforms 2D3DNet (Genova et al.| [2021)) (this method uses RGB inputs), which further
validates the performance of our method.
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Modality Method Sem.KITTI | nuScenes |#Params RealSurf | Class Balance | P/N Balance

KPConv' (Thomas et al.|[2019) 54.1 66.8 14.9M rec. slide [mix mix3d gt|ohem lovasz mloU| A

Point Trans.” (Zhao et al.|[2021)|  53.7 64.7 7.8M baseline 534 | -
PointNet++ 513 63.6 .OM RealSurf (ours) 62.3 [+8.9
RealSurf 62.3 71.4 1.0M 4 579 |+4.5
Point PointNet++ (x2) 535 66.7 3.9M v / 59.5 | +6.1
RealSurf (x2) 68.5 754 3.9M S 7 4 608 |+1.3
PointNet++ (x4) 55.1 67.3 15.3M v / v 60.6 |+1.1
RealSurf (x4) 70.2 717 15.3M o/ v 61.7 |+2.2
Voxel Cylinder3D (Zhu et al.][2021} 65.9 76.1 55.8M v / v v 59.8 |-1.9
LidarMultiNet* (Ye et al.|[2022) 69.1 76.1 29.2M v / v v 62.3 |+0.5

Table 4: Comparison on SemanticKITTI & nuScenes val set Table 5: Ablation study of the design of Re-
with the metric of mIoU (%). We also evaluate our RealSurf in  alSurf and our point-based pipeline on Se-
different scales of model capacity (x 1, x2, x4) with its counter- manticKITTI val set with the evaluation met-
parts vanilla PointNet++. 7: Our implementation if the official ric of mIoU (%). “A” means the improve-
results unavailable. {: Our implementation if the official code is ment compared to the baseline or the best
not available. result in previous stage.

4.3 SEMANTICKITTI

Dataset Unlike nuScenes dataset, each frame of SemanticKITTI (Behley et al.l [2019) is captured
by a Velodyne-HDLEG64 LiDAR in a larger range, and thus has more instances and exhibits more
complex patterns. SemanticKITTI is an extension of the KITTI Visual Odometry dataset (Geiger
et al.| 2012)), which consists of 22 stereo sequences. SemanticKITTI provides per-point labels from
19 categories and splits the 22 sequences into training set (Sequence 00-10 except 08, count: 19,130
frames), validation set (Sequence 08, count: 4,071) and testing set (Sequence 11-21, count: 20,351).
Each frame contains ~121,415 points.

Results In Table [2] we compare RealSurf to all existing segmentation methods on the Se-
manticKITTI benchmark. For a fair comparison, we only consider published methods that do not
leverage multi-frame inputs nor RGB information. Among all existing point-based methods, Re-
alSurf outperforms the previous state-of-the-art method KPConv (Thomas et al., 2019) by 11.9%
mloU. RealSurf even outperforms popular voxel-based architectures, such as (AF)?-S3Net (Cheng
et al.,[2021) by 1.0% mloU and Cylinder3D (Zhu et al.,|2021)) by 1.8% mloU.

4.4 WAYMO

Dataset Waymo Semantic Segmentation dataset (V1.3.2) (Sun et al., [2020) contains 23,691; 5,976;
and 2,982 frames in the training set, validation set, and test set, respectively. Each point is classified
into 23 semantic categories. Different from the datasets we have mentioned before, Waymo pro-
vides larger-scale (~160,546 points) and more diverse (sampled from 1,100 sequences at a higher
frequency) LiDAR scenes.

Results RealSurf achieves 67.7% mloU on the Waymo test set (Table , the same performance
as SPVCNN++ (a variant of SPVNAS (Tang et al, 2020)). In addition, our method outperforms
Cylinder3D’s (Zhu et al.| [2021)) variant CAVPercep by 4.0%, and outperforms RGB V-RPNet, an
RPVNet (Xu et al.,|2021a)) variant (which is based on LiDAR and RGB fusion), by 5.1%.

4.5 RESULTS ON VALIDATION SET

For a closer look at the comparison of RealSurf to other popular methods, we provide empirical
results on SemanticKITTI and nuScenes validation set in Table[d] Here, we train LidarMultiNet (Ye
et al.,|2022) on these validation sets with segmentation labels only for fair comparison with other
methods. The performance of RealSurf significantly improves when we increase the dimension of
the feature space. For example, RealSurf achieved +6.2% / +4% relative improvement when dou-
bling the feature dimension on SemanticKITTI / nuScenes, which are both significantly better than
PointNet++. In addition, RealSurf is able to outperform all voxel-based and point-based methods
with significant margin (+1.1% and +1.6% against the best ones on SemanticKITTI and nuScenes).

4.6 ABLATION STUDY
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In this section, we perform additional ablation studies on the " onform
design choices of RealSurf to verify the efficacy of each com- ~ _¢20 Gaussian
ponent. For fast evaluation, we use smaller PointNet++ back- 3, ¢ — .
bone, termed as RealSurf (x 1), for the following experiments. & / -

6101
Point Sliding Module. As shown in Figure[7] Gaussian Point 6 o2 o405 08 1

Sliding Module with the scale of 0.5 performs the best. In ad-

dition, we find that Gaussian performs better than Uniform in  Fjgyre 7: Ablation study of Point Slid-
most scales. We conjecture that Point Sliding Module bene-  ing Module.

fits from Gaussian distribution that move points in a relatively

small range. Thus, RealSurf can learn from surface represen-

tation with different randomly augmented centroids but still focus on the centroid of real vertices.

LiDAR-based Surfel Abstraction. We explore dif-

ferent stages of SA to perform surfel abstraction in Recons. | none 10 T 5 3
the following without using Point Sliding Module. As mloU | 53.4 | 528 579 564 538
shown in the Table [6] the utilization of RealSurf dur-
ing the surfel abstraction phase of the second stage of
SA yields a noteworthy 4.5% improvement in compar-
ison to the RepSurf default surfel abstraction, which
actually decreases performance by 0.6%. This observation serves to highlight the efficacy of our
LiDAR-based surfel abstraction approach. It is our contention that performing surfel abstraction
after FPS affords RealSurf the opportunity to assimilate a more comprehensive range of geometric
details, while simultaneously effectively addressing the issue of unevenness inherent in raw LiDAR
point clouds. Conversely, the model degeneration from the default surfel abstraction may be at-
tributed to the suboptimal surfel quality. Therefore, determining the appropriate stage for surfel
abstraction remains a hyperparameter that requires careful consideration. Our findings indicate that
the second stage achieves an optimal balance between efficiency and performance.

Table 6: Performing surfel reconstruction (re-
cons.) after ¢ times of downsampling (i.e., FPS).
none: w/o surface representation

Overall Architecture. Shown in Table |5} we ablate the design of our method’s architecture in
terms of RealSurf modules, Class Balancing, and Positive/Negative Sample Balancing. The base-
line is PointNet++ with common augmentation methods (i.e., random rotation, random flipping).
Empirically, the combination of point cloud mixing (mix), OHEM loss (ohem), and a full usage of
RealSurf modules produce the best performance. First of all, the surfel abstraction process and the
Point Sliding Module in RealSurf can progressively boost the performance by 4.5% and 1.6%. No-
tably, as mentioned in Sec. [3.4]that point cloud mixing can alleviate class imbalance, our empirical
results further confirm this argument with the improvement of 2.2%. At the same time, OHEM loss
improves the performance by 0.5%.

5 CONCLUSION & LIMITATION

We present RealSurf, a streamlined approach to point cloud learning in the wild. RealSurf achieves
state-of-the-art performance on a diverse set of challenging benchmarks without using complex
model ensemble or multi-frame testing. For the first time, we show that a simple point-based
method can outperform voxel-based methods on point cloud segmentation. RealSurf only leverages
a PointNet++ backbone, orders of magnitude simpler than prior works. Our results also suggest
several venues for future development. First, point-based methods do not scale up to deal with ex-
tremely large point clouds. Exploring efficient architectures for point clouds will generally benefit
point-based methods. Second, the RealSurf features used in this paper can be further used as self-
supervised pre-training signals, in addition to their usage in supervised training. Finally, combining
RealSurf with voxel-based methods will lead to better hybrid approaches. We hope RealSurf can
become a standard model for point-based point cloud processing and motivate a rethinking of the
point cloud representation.
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REPRODUCIBILITY STATEMENT

We adhere to ICLR reproducibility standards and ensure the reproducibility of our work in some
ways as follows:

* We provide the codes of our main experiments in the supplementary material (code.zip),
which includes the pretrained models and some demo samples.

* Detailed framework and more experiments are presented in the Appendix.
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Method w/0 noise 10% noise

16 32 64 128 256 16 32 64 128 256
PointNet++ | 56.32 5840 64.19 6940 7450 | 5191 5531 5840 66.79 73.59
baseline 6096 6883 7491 7883 7991 | 59.06 66.11 7224 76.06 79.08
w/ Gaussian | 61.35 69.54 75.05 78.04 79.25 | 59.61 66.76 71.89 75.68 78.52
w/ Uniform | 61.83 69.88 75.64 7894 81.58 | 59.30 66.86 73.21 76.79 79.24

Table 7: Robustness of training on extremely sparse point clouds with or without noises from
ScanObjectNN to simulate real-world point clouds. baseline: surface representation without Point
Densification Module, Gaussian: our Gaussian Point Densification Module, Uniform: our Uniform
Point Densification Module.

Algorithm 1 PyTorch-Style Pseudocode of Sectorized FPS

# xyz: coordinates of a point set
r: number of sectors

(xyz[..., 0], xyz[..., 1])
sector_range = linspace(angle.min(), angle.max (), num_sector + 1)
# sectorized fps
new_xyz = []

for idx in range (num_sector) :
selected_idx = where((angle >= sector_range[s]) & (angle < sector_range[s + 1]))
new_sector_xyz = farthest_point_sampling(xyz[selected_idx])
new_xyz.append (new_sector_xyz)

out = cat (new_xyz, 0)
return out

A MODEL DETAILS

A.1 ROBUSTNESS

Sparsity and noises are common in LiDAR point clouds. To evaluate the robustness of surface
representation to sparse and noisy point clouds during training, we conduct several experiments on
ScanObjectNN Uy et al.| (2019)), a real-scene object classification dataset. We use overall accuracy
(%) as the evalution metric. For extreme settings, we use 16, 32, 64, 128, and 256 points instead.
Further, to evaluate model robustness against noises, we add 10% Gaussian noises to each point
cloud. That is, we randomly select 10% the points from each point cloud and replace them with
Gaussian noise.

Robustness to sparsity. As shown in Table [/, we observe that RealSurf can greatly improve the
robustness of its backbone PointNet++ Qi et al.| (2017b) by a large margin (~10%). At the same
time, our Point Densification Module can further enhance its robustness by ~1%. We conjecture
this is because our Point Densification Module can densify point clouds implicitly, and thus lead
to a more robust model. Overall, Uniform Point Densification Module works better than Gaussian
Point Densification Module in this setting.

Robustness to noises. As shown in Table [/} the surface representation can improve model robust-
ness in the 10% noise setting. Compared to baselines, it introduces a performance gain by 7%~14%.
In this challenging case, our Point Densification Module can still improve the robustness of surface
representation by 0.1%~1.5%.

A.2 CLASS BALANCING

Class imbalance can be vital for the training of point-based methods on LiDAR segmentation. To
handle this problem, we adopt point cloud mixing inspired by Nekrasov et al.[(2021). Given two
point clouds S; and S, the output Sy;y,q; of the mixed point cloud is as follows:

Sfinal = [Augment(sl)a Au.gment(SZ)] ) (6)
where [+, -] means the operation of concatenation, and Augment means augmentation, i.e., Random
Rotation (z-axis aligned, range: [—7, 7]) — Random Flip (prob: 0.5). Different from Nekrasov
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Method mloU (%) | #Params (M) Inference (s/sample) Memory (GB)
Cylinder3D (Zhu et al.[2021) 65.9 55.8 0.13 1.62
LiDARMultiNet (Ye et al.[[2022) 69.1 29.2 0.41 6.35
RealSurf (x2) ) 68.5 39 1.16 2.06
RealSurf (x4) 70.2 15.3 1.72 4.14

Table 8: Overhead analysis.

et al|(2021), we do not apply random sub-sampling, random scaling, or random rotation along the
other axes.

A.3 POSITIVE/NEGATIVE SAMPLE BALANCING

As mentioned in the paper, point-based method usually requires positive/negative sample balancing.
To that end, we adopt online hard example mining (OHEM) Shrivastava et al.|(2016)) in our pipeline.
If the probability of the predicted class is lower than a threshold, we think we need to keep this
sample for learning. In addition, this requires a minimum ratio to keep samples for learning. That is,
if the probabilities of the predicted class for most samples are above the threshold, we need to keep
that ratio of samples for learning. We set the threshold to 0.7. In order to obtain the hyperparameter
of minimal kept ratio, we set it as twice the ratio of foreground points in each dataset. That is, 0.01,
0.005, and 0.001 for SemanticKITTI Behley et al.|(2019), nuScenes [Fong et al.|(2022), and Waymo
Sun et al.|(2020), respectively.

A.4 EFFICIENT FPS

The low efficiency of FPS makes point-based methods less competitive compared to voxel-based
methods. To alleviate this problem, we propose Sectorized FPS to speed up FPS. Sectorized FPS
saves 30%~40% training time with almost no performance loss. A PyTorch-style Pseudocode of
the implementation of Sectorized FPS is shown in Algorithm[I] As shown in Figure[8] we provide
an example to show the difference between the results of vanilla FPS and those of Sectorized FPS.
To balance the performance and efficiency, we set the hyperparameter of the number of sectors to
12 in all experiments. Besides, we perform Sectorized FPS only in the first and second stage. For
other stages, we perform vanilla FPS instead. We do not apply Sectorized FPS during inference.

B OVERHEAD ANALYSIS

As shown in Table [§] we provide comparison of overhead among different methods in terms of the
number of parameters, inference speed (s per sample), and memory cost.

C VISUALIZATION

As shown in Figure[9} [T0|and[TT] we provide additional visualizations of the predictions by RealSurf
compared with the ground-truth labels on the dataset of nuScenes|Fong et al.|(2022)), SemanticKITTI
Behley et al.|(2019), and Waymo Sun et al.| (2020)), respectively.
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Figure 8: Comparison between vanilla FPS (top) and Sectorized FPS (bottom) in the first stage.
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Figure 9: Visualization of ground-truth label (left) and our LiDAR segmentation results (right) on

nuScenes (@ .
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Figure 10: Visualization of ground-truth label (left) and our LiDAR segmentation results (right) on

SemanticKITTI Behley et al| (2019).
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Figure 11: Visualization of ground-truth label (left) and our LiDAR segmentation results (right) on

Wayimo Sun et 2020
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