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Abstract

Curriculum Learning (CL) is a technique of001
training models via ranking examples in a typi-002
cally increasing difficulty trend with the aim of003
accelerating convergence and improving gen-004
eralisability. Current approaches for Natural005
Language Understanding (NLU) tasks use CL006
to improve in-distribution data performance of-007
ten via heuristic-oriented difficulties or task-008
agnostic ones. In this work, instead, we employ009
CL for NLU by taking advantage of training dy-010
namics as difficulty metrics, i.e. statistics that011
measure the behavior of the model at hand on012
specific task-data instances during training and013
propose modifications of existing CL sched-014
ulers based on these statistics. Differently from015
existing works, we focus on evaluating models016
on in-distribution, out-of-distribution as well017
as zero-shot cross-lingual transfer datasets. We018
show across several NLU tasks that CL with019
training dynamics can result in better perfor-020
mance mostly on zero-shot cross-lingual trans-021
fer and OOD settings with improvements up022
by 8.5%. Overall, experiments indicate that023
training dynamics can lead to better perform-024
ing models with smoother training compared to025
other difficulty metrics while at the same time026
being up to 51% faster. In addition, through027
analysis we shed light on the correlations of028
task-specific versus task-agnostic metrics1.029

1 Introduction030

Transformer-based language models (Vaswani031

et al., 2017; Devlin et al., 2019, LMs) have re-032

cently achieved great success in a variety of NLP033

tasks (Wang et al., 2018, 2019a). However, gen-034

eralisation to out-of-distribution (OOD) data and035

zero-shot cross-lingual transfer still remain a chal-036

lenge (Linzen, 2020; Hu et al., 2020). Among ex-037

isting techniques, improving OOD performance038

has been addressed by training with adversar-039

ial data (Yi et al., 2021), while better transfer040

1Code will be made available upon acceptance.

across languages has mostly focused on select- 041

ing appropriate languages to transfer from (Lin 042

et al., 2019; Turc et al., 2021), has employed meta- 043

learning (Nooralahzadeh et al., 2020) or data align- 044

ment (Fang et al., 2020). 045

Contrastive to such approaches that take advan- 046

tage of additional training data is Curriculum Learn- 047

ing (Bengio et al., 2009, CL), a technique that aims 048

to train models using a specific ordering of the 049

original training examples. This ordering typically 050

follows an increasing difficulty trend where easy 051

examples are fed to the model first, moving to- 052

wards harder instances. The intuition behind CL 053

stems from human learning, as humans focus on 054

simpler concepts before learning more complex 055

ones, a procedure that is called shaping (Krueger 056

and Dayan, 2009). Although curricula have been 057

primarily used for Computer Vision (Hacohen and 058

Weinshall, 2019; Wu et al., 2021) and Machine 059

Translation (Zhang et al., 2019a; Platanios et al., 060

2019), there are only a handful of approaches that 061

incorporate CL into Natural Language Understand- 062

ing tasks (Sachan and Xing, 2016; Tay et al., 2019; 063

Lalor and Yu, 2020; Xu et al., 2020a). 064

Typically, CL requires a measure of difficulty 065

for each example in the training set. Existing 066

methods using CL in NLU tasks rely on heuris- 067

tics such as sentence length, word rarity, depth of 068

the dependency tree (Platanios et al., 2019; Tay 069

et al., 2019), metrics based on item-response the- 070

ory (Lalor and Yu, 2020) or task-agnostic model 071

metrics such as perplexity (Zhou et al., 2020). Such 072

metrics have been employed to either improve 073

in-distribution performance on NLU or Machine 074

Translation. However, their effect is still under- 075

explored on other settings. 076

In this study instead, we propose to adopt Train- 077

ing dynamics (Swayamdipta et al., 2020, TD) as 078

difficulty measures for CL and fine-tune models 079

with curricula on downstream tasks. TD were re- 080

cently proposed as a set of statistics collected dur- 081
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ing the course of a model’s training to automatically082

evaluate dataset quality, by identifying annotation083

artifacts. These statistics, offer a 3-dimensional084

view of a model’s uncertainty towards each training085

example classifying them into distinct areas–easy,086

ambiguous and hard examples for a model to learn.087

We test a series of easy-to-hard curricula us-088

ing TD with existing schedulers as well as novel089

modifications of those and experiment with other090

task-specific and task-agnostic metrics. We show091

performances and training times on three settings:092

in-distribution (ID), out-of-distribution (OOD) and093

zero-shot (ZS) transfer to languages different than094

English. To the best of our knowledge, no prior095

work on NLU considers the impact of CL on all096

these settings. To consolidate our findings, we097

evaluate models on different classification tasks,098

including Natural Language Inference, Paraphrase099

Identification, Commonsense Causal Reasoning100

and Document Classification.101

Our findings suggest that TD-CL provides better102

zero-shot cross-lingual transfer up to 1.2% over103

prior work and can gain speedups up to 51%. In104

ID settings CL has minimal impact, while in OOD105

settings models trained with TD-CL can boost per-106

formance up to 8.5%. over prior work. Finally, TD107

provide more stable training compared to another108

task-specific metric. On the other hand, heuris-109

tics can also offer improvements particularly when110

testing on a completely different domain.111

2 Related Work112

Curriculum Learning was initially mentioned in the113

work of Elman (1993) who demonstrated the impor-114

tance of feeding neural networks with small/easy115

inputs at the early stages of training. The con-116

cept was later formalised by Bengio et al. (2009)117

where training in an easy-to-hard ordering was118

shown to result in faster convergence and improved119

performance. In general, Curriculum Learning re-120

quires a difficulty metric (also known as the scoring121

function) used to rank training instances, and a122

scheduler (known as the pacing function) that de-123

cides when and how new examples–of different124

difficulty–should be introduced to the model.125

Example Difficulty was initially expressed via126

model loss, in self-paced learning (Kumar et al.,127

2010; Jiang et al., 2015), increasing the contribu-128

tion of harder training instances over time. This129

setting posed a challenge due to the fast-changing130

pace of the loss during training, thus later ap-131

proaches used human-intuitive difficulty metrics, 132

such as sentence length or the existence of rare 133

words (Platanios et al., 2019) to pre-compute diffi- 134

culties of training instances. However, as such met- 135

rics do not express difficulty of the model, model- 136

based metrics have been proposed over the years, 137

such as measuring the loss difference between two 138

checkpoints (Xu et al., 2020b) or model translation 139

variability (Wang et al., 2019b; Wan et al., 2020). 140

In our curricula we use training dynamics to mea- 141

sure example difficulty, i.e. metrics that consider 142

difficulty from the perspective of a model towards 143

a certain task. Example difficulty can be also esti- 144

mated either in a static (offline) or dynamic (online) 145

manner, where in the latter training instances are 146

evaluated and re-ordered at certain times during 147

training, while in the former the difficulty of each 148

example remains the same throughout. In our ex- 149

periments we adopt the first setting and consider 150

static example difficulties. 151

Transfer Teacher CL is a particular family of such 152

approaches that use an external model (namely the 153

teacher) to measure the difficulty of training exam- 154

ples. Notable works incorporate a simpler model 155

as the teacher (Zhang et al., 2018) or a larger-sized 156

model (Hacohen and Weinshall, 2019), as well as 157

using similar-sized learners trained on different 158

subsets of the training data. These methods have 159

considered as example difficulty, either the teacher 160

model perplexity (Zhou et al., 2020), the norm of a 161

teacher model word embeddings (Liu et al., 2020), 162

the teacher’s performance on a certain task (Xu 163

et al., 2020a) or simply regard difficulty as a la- 164

tent variable in a teacher model (Lalor and Yu, 165

2020). In the same vein, we also incorporate Trans- 166

fer Teacher CL via teacher and student models of 167

the same size and type. However, differently, we 168

take into account the behavior of the teacher during 169

the course of its training to measure example diffi- 170

culty instead of considering its performance at the 171

end of training or analysing internal embeddings. 172

Moving on to Schedulers, these can be divided 173

into discrete and continuous. Discrete schedulers, 174

often referred to as bucketing, group training in- 175

stances that share similar difficulties into distinct 176

sets. Different configurations include accumulat- 177

ing buckets over time (Cirik et al., 2016), sam- 178

pling a subset of data from each bucket (Xu et al., 179

2020a; Kocmi and Bojar, 2017) or more sophisti- 180

cated sampling strategies (Zhang et al., 2018). In 181

cases where the number of buckets is not obtained 182
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in a straightforward manner, methods either heuris-183

tically split examples (Zhang et al., 2018), adopt184

uniform splits (Xu et al., 2020a) or employ sched-185

ulers that are based on a continuous function. A186

characteristic approach is that of Platanios et al.187

(2019) where at each training step a monotonically188

increasing function chooses the amount of training189

data the model has access to, sorted by increasing190

difficulty. As we will describe later on, we experi-191

ment with two established schedulers and propose192

modifications of those based on training dynamics.193

Other tasks where CL has been employed in-194

clude Question Answering (Sachan and Xing,195

2016), Reading comprehension (Tay et al., 2019)196

and other general NLU classification tasks (Lalor197

and Yu, 2020; Xu et al., 2020a). Others have devel-198

oped modified curricula in order to train models for199

code-switching (Choudhury et al., 2017), anaphora200

resolution (Stojanovski and Fraser, 2019), relation201

extraction (Huang and Du, 2019), dialogue (Saito,202

2018; Shen and Feng, 2020) and self-supervised203

NMT (Ruiter et al., 2020), while more advanced ap-204

proaches combine it with Reinforcement Learning205

in a collaborative teacher-student transfer curricu-206

lum (Kumar et al., 2019).207

3 Methodology208

Let D = {(xi, yi)}Ni=1 be a set of training data in-209

stances. A curriculum is comprised of two main210

elements: the difficulty metric, responsible for asso-211

ciating a training example to a score that represents212

a notion of difficulty and the scheduler that deter-213

mines the type and number of available instances214

at each training step t. We experiment with three215

difficulty metrics derived from training dynamics216

and four schedulers: two are new contributions and217

the remaining are referenced from previous work.218

3.1 Difficulty Metrics219

As aforementioned, we use training dynam-220

ics (Swayamdipta et al., 2020), i.e. statistics origi-221

nally introduced to analyse dataset quality, as dif-222

ficulty metrics. The suitability of such statistics223

to serve as difficulty measures for CL is encapsu-224

lated in three core aspects. Firstly, TD are straight-225

forward. They can be easily obtained by training226

a single model on the target dataset and keeping227

statistics about its predictions on the training set.228

Secondly, TD correlate well with model uncertainty229

and follow a similar trend to human (dis)agreement230

in terms of data annotation, essentially combining231

the view of both worlds. Finally, TD manifest a 232

clear pattern of separating instances into distinct 233

areas–easy, ambiguous and hard examples for a 234

model to learn–something that aligns well with the 235

ideas behind Curriculum Learning. 236

The difficulty of an example (xi, yi) can be 237

determined by a function f , where an example 238

i is considered more difficult than example j if 239

f(xi, yi) > f(xj , yj). We list three difficulty met- 240

rics that use statistics during the course of a model’s 241

training, as follows: 242

CONFIDENCE (CONF) of an example xi is the av- 243

erage probability assigned to the gold label yi by a 244

model with parameters θ across a number of epochs 245

E. This is a continuous metric with higher values 246

corresponding to easier examples. 247

fCONF(xi, yi) = µi =
1

E

E∑
e=1

pθ(e)(yi|xi) (1) 248

CORRECTNESS (CORR) is the number of times 249

a model classifies example xi correctly across its 250

training. It takes values between 0 and E. Higher 251

correctness indicates easier examples for a model 252

to learn. 253
254

fCORR(xi, yi) =
E∑

e=1

o
(e)
i , 255

o
(e)
i =

{
1 if argmax pθ(e)(xi) = yi

0, otherwise
(2) 256

VARIABILITY (VAR) of an example xi is the stan- 257

dard deviation of the probabilities assigned to the 258

gold label yi across E epochs. It is a continuous 259

metric with higher values indicating greater uncer- 260

tainty for a training example. 261

fVAR(xi, yi) =

√∑E
e=1 (pθ(e) (yi|xi)− µi)

2

E
(3) 262

Confidence and correctness are the primary met- 263

rics that we use in our curricula since low and high 264

values correspond to hard and easy examples re- 265

spectively. On the other hand, variability is used as 266

an auxiliary metric since only high scores clearly 267

represent uncertain examples while low scores of- 268

fer no important information on their own. 269

3.2 Schedulers 270

We consider both discrete and continuous sched- 271

ulers. Each scheduler is paired with the metric 272

that is most suited, i.e. the discrete correctness 273

with annealing and the continuous confidence with 274

competence. 275
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The ANNEALING (CORRANNEAL) scheduler pro-276

posed by Xu et al. (2020a), assumes that training277

data are split into buckets {d1 ⊂ D, . . . , dK ⊂ D}278

with possibly different sizes |di|. In particular, we279

group examples into the same bucket if they have280

the same correctness score (see Equation (2)). In281

total, this results in E+1 buckets, which are sorted282

in order of increasing difficulty. Training starts283

with the easiest bucket. We then move on to the284

next bucket by also randomly selecting 1/(E + 1)285

examples from each previous bucket. Following286

prior work, we train on each bucket for one epoch.287

The COMPETENCE (CONFCOMP) scheduler was288

originally proposed by Platanios et al. (2019). Here,289

we sort examples based on the confidence metric290

(see Equation (1)), and use a monotonically increas-291

ing function to obtain the percentage of available292

training data at each step. The model can use only293

the top K most confident examples as instructed294

by this function. A mini-batch is then sampled295

uniformly from the available examples.296

In addition to those schedulers, we introduce297

the following modifications that take advantage298

of the variability metric. CORRECTNESS +299

VARIABILITY ANNEALING (CORR+VARANNEAL)300

is a modification of the Annealing scheduler and301

CONFIDENCE + VARIABILITY COMPETENCE302

(CONF+VARCOMP) is a modification of the Com-303

petence scheduler. In both variations, instead of304

sampling uniformly across available examples, we305

give higher probability to instances with high vari-306

ability scores (Equation (3)), essentially using two307

metrics instead of one. We assume that since the308

model is more uncertain about such examples fur-309

ther training on them can be beneficial. For all310

curricula, after the model has finished the curricu-311

lum stage, we resume training as normal, i.e. by312

random sampling of training instances.313

3.3 Transfer Teacher Curriculum Learning314

In a transfer teacher CL setting a teacher model315

is used to obtain the difficulty of training exam-316

ples (Matiisen et al., 2019). As such, the previously317

presented difficulty metrics are suitable to be used318

in a transfer teacher CL scenario, since in order to319

obtain them a teacher model should be fine-tuned320

on a target dataset.321

The two-step procedure that we follow in this322

study is depicted in Figure 1. Initially a model323

(the teacher) is fine-tuned on a target dataset and324

training dynamics are collected during the course325

 Training 
Data

Student
Model

Teacher
Model

Stage 1: Collecting Training Dynamics

Training
Dynamics

Stage 2: Transfer Teacher Curriculum fine-tuning

confidence  
correctness 
variabilityScheduler Difficulty

Metrics

ft

Figure 1: Transfer Teacher Curriculum Learning used
in our study. A teacher model determines the difficulty
of training examples by collecting training dynamics
during fine-tuning (Stage 1). The collected dynamics
are converted into difficulty metrics and into a student
model via a scheduler (Stage 2).

of training. The collected dynamics are then con- 326

verted into difficulty metrics, following Equations 327

(1)-(3). In the second stage, the difficulty metrics 328

and the original training data are fed into a sched- 329

uler that re-orders the examples according to their 330

difficulty (in our case from easy-to-hard) and feeds 331

them into another model (the student) that is the 332

same in size as the teacher. 333

4 Experimental Setup 334

4.1 Datasets 335

In this work we focus on four NLU classifications 336

tasks: Natural Language Inference, Paraphrase 337

Identification, Commonsense Causal Reasoning 338

and Document Classification. The datasets that we 339

use include datasets from the GLUE benchmark: 340

RTE, QNLI and MNLI (Wang et al., 2018) and 341

four cross-lingual datasets: XNLI (Conneau et al., 342

2018), PAWS-X (Yang et al., 2019), XCOPA (Ponti 343

et al., 2020) and MLDoc (Schwenk and Li, 2018) 344

that combined cover 25 languages. We also use 345

OOD test sets, including NLI Diagnostics (Wang 346

et al., 2018), TwitterPPBD (Lan et al., 2017), Com- 347

monSenseQA (Talmor et al., 2019) and HANS (Mc- 348

Coy et al., 2019). The corresponding statistics are 349

shown in Table 1 and more details can be found in 350

Appendix A. 351

4.2 Evaluation Settings 352

For models, we use the pre-trained versions of base 353

RoBERTa (Liu et al., 2019) and XLM-R (Conneau 354

et al., 2020) from the HuggingFace library2 (Wolf 355

et al., 2020). For all datasets, we report accuracy 356

as the main evaluation metric across three random 357

2https://huggingface.co/roberta-base,
https://huggingface.co/xlm-roberta-base
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TRAIN SET ZS ID OOD LANGUAGES # TRAIN # VAL. # ZS TEST # ID TEST # OOD TEST

PAWS PAWS-X PAWS TwitterPPDB 7 49,401 2,000 2,000 2,000 9,324
MNLI XNLI MNLI-m NLI Diagnostics 15 392,702 2,490 5,010 9,815 1,105
SIQA XCOPA SIQA CSQA 12 33,410 100 500 2,224 1,221
MLDoc MLDoc - - 8 10,000 1,000 4,000 - -
QNLI - QNLI - 1 99,505 5,238 - 5,463 -
RTE - RTE HANS 1 2,365 125 - 277 30,000

Table 1: Datasets statistics. ZS, ID and OOD correspond to zero-shot Cross-lingual transfer, in-distribution and
out-of-distribution settings, respectively. ZS Validation and Test statistics are per language.

TRAIN PAWS SIQA

TEST PAWS (ID) TWITTER (OOD) Time ↓ SIQA (ID) CSQA (OOD) Time ↓

RANDOM 94.77 ±0.14 72.80 ±5.45 68.36 ±0.39 44.61 ±0.96

CRANNEAL 94.47 ±0.26 72.83 ±6.65 1.00 68.45 ±0.69 44.85 ±0.72 1.00
CORRANNEAL 94.72 ±0.09 71.97 ±2.69 0.56 (0.35) 69.20 ±0.48 45.81 ±1.40 1.28 (1.11)
CONFCOMP 94.82 ±0.09 75.18 ±6.71 1.28 (0.72) 67.25 ±1.80 43.93 ±1.59 1.13 (0.57)
CORR+VARANNEAL 94.68 ±0.20 72.62 ±1.17 0.77 (0.29) 67.54 ±0.43 44.31 ±0.88 0.71 (0.26)
CONF+VARCOMP 94.88 ±0.14 81.33 ±2.10 1.20 (0.69) 68.54 ±0.04 45.84 ±0.67 1.48 (0.71)

TRAIN MNLI RTE QNLI

TEST MNLI-M (ID) DIAG. (OOD) Time ↓ RTE (ID) HANS (OOD) Time ↓ QNLI (ID) Time ↓

RANDOM 87.31 ±0.22 61.87 ±1.36 75.57 ±1.19 59.98 ±2.66 - 92.60 ±0.18 -
CRANNEAL 87.71 ±0.16 61.78 ±0.27 1.00 74.01 ±2.9 57.26 ±3.18 1.00 92.45 ±0.27 1.00
CORRANNEAL 87.53 ±0.23 62.15 ±0.94 0.76 (0.47) 76.17 ±1.06 55.15 ±2.9 0.76 (0.57) 92.57 ±0.14 1.30 (1.11)
CONFCOMP 87.36 ±0.42 61.31 ±1.00 1.33 (0.50) 75.69 ±1.62 55.05 ±1.25 1.11 (0.78) 92.68 ±0.21 1.30 (1.00)
CORR+VARANNEAL 87.64 ±0.03 62.57 ±1.32 1.50 (0.81) 75.45 ±2.23 58.12 ±5.76 1.00 (0.66) 92.84 ±0.27 1.08 (0.89)
CONF+VARCOMP 87.74 ±0.27 61.82 ±0.98 1.49 (0.60) 76.05 ±1.23 60.69 ±2.15 1.01 (0.78) 92.63 ±0.13 1.27 (1.07)

Table 2: Accuracy results of RoBERTa on in-distribution (ID) and out-of-distribution (OOD) data. Time corresponds
to the ratio S*TD/SCRanneal , where the numerator is the number steps a curriculum with TD needs to reach the reported
performance and the denominator is the number of steps the CRANNEAL baseline requires to reach its performance.
Results are reported over 3 random seeds and in parenthesis we include the minimum time required across seeds.

seeds, on the following settings.358

ID/OOD: Monolingual models (RoBERTa) are359

trained and evaluated on English in-distribution360

and out-of-distribution datasets.361

ZERO-SHOT: Constitutes the zero-shot cross-362

lingual transfer setting, where a multilingual model363

(XLM-R) is trained on English data only and tested364

on languages other than English (Hu et al., 2020).365

In all experiments, we select the best check-366

point based on the English validation set per-367

formance. When reporting significance tests we368

use the Approximate Randomization test with all369

seeds (Noreen, 1989). More details about experi-370

mental settings can be found in Appendix B.1.371

4.3 Model Comparisons372

We primarily compare all curricula that use train-373

ing dynamics against each other and against a base-374

line (Random) that does not employ any curricu-375

lum and is using standard random order training.376

We also consider as another baseline the teacher-377

transfer curriculum proposed by Xu et al. (2020a),378

namely Cross-Review (indicated as CRANNEAL in379

the next sections). This curriculum uses the an-380

nealing scheduler, but does not employ training 381

dynamics as difficulty scores. Instead, the method 382

splits the training set into subsets and a model is 383

trained on each subset containing 1/N of the train- 384

ing set. The resulting models are then used to eval- 385

uate all examples belonging in different subsets. 386

The difficulty score of an example is considered the 387

number of its correct classifications across teachers. 388

The difference between the CR metric and the cor- 389

rectness metric is that Cross-Review uses N fully 390

trained teacher models on subsets of data, while 391

the latter uses E epochs of a single model trained 392

on the entire training set. We split each training 393

set into 10 subsets for all datasets except MLDoc 394

where we split into 5 and RTE where we split into 395

3, following prior work. 396

Finally, when comparing CRANNEAL with our TD 397

curricula, with discrete and continuous schedulers, 398

we ensure that all of them are trained for equal 399

amount of time, resulting in a one-to-one compari- 400

son. To enforce this, after the end of the curriculum 401

phase, training continues as normal for the remain- 402

ing steps by randomly sampling examples. 403
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TRAIN PAWS MNLI SIQA MLDOC

TEST PAWS-X (ZS) Time ↓ XNLI (ZS) Time ↓ XCOPA (ZS) Time ↓ MLDOC (ZS) Time ↓

PRIOR WORK 84.90∗ - 75.00∗ - 60.72 - 77.66 -
RANDOM 84.49 ±0.08 73.93 ±0.18 60.62 ±0.54 86.74 ±0.46

CRANNEAL 84.35 ±0.46 1.00 74.57 ±0.40 1.00 60.44 ±0.39 1.00 86.59 ±0.29 1.00
CORRANNEAL 84.70 ±0.15 1.04 (0.85) 73.92 ±0.11 1.11 (1.09) 60.95 ±0.40 2.13 (0.77) 86.47 ±0.64 1.09 (1.02)
CONFCOMP 84.51 ±0.45 1.44 (1.11) 74.32 ±0.41 1.10 (0.53) 61.09 ±0.28 1.33 (0.8) 86.30 ±0.70 1.37 (1.18)
CORR+VARANNEAL 84.52 ±0.27 0.75 (0.61) 74.66 ±0.06 0.79 (0.49) 61.68 ±0.51 2.73 (1.75) 86.14 ±0.23 0.99 (0.56)
CONF+VARCOMP 84.03 ±0.65 1.50 (1.10) 74.43 ±0.18 1.17 (0.93) 61.04 ±0.31 1.32 (0.58) 85.78 ±0.74 1.20 (0.94)

Table 3: Zero-shot performance between curricula as the average accuracy across languages (mean and standard
deviation over 3 random seeds) with XLM-R. We also report prior work results for reference as follows: PAWS-X
(Chi et al., 2021), XNLI (Chi et al., 2021), XCOPA (Ponti et al., 2020), MLDoc (Keung et al., 2020) (mBERT).
∗Note that Chi et al. (2021) tune on the target languages validation sets.

5 Experiments404

5.1 Performance & Training Time405

Results on Tables 2 and 3 show performance and406

training time for various datasets. In particular,407

the reported numbers (Time) are calculated as the408

ratio S*TD/SCRanneal , i.e. the number of steps the409

TD curriculum needs to reach best performance410

(S*TD) divided by the number of steps the Cross-411

Review method needs to reach its best performance412

(SCRanneal). We focus comparison between curricula413

to show the tradeback between performance and414

time. A lower score indicates a larger speedup. In415

addition, we report in parentheses the minimum416

time obtained across 3 random seeds.417

Table 2 shows accuracies for RoBERTa mod-418

els when tested on ID or OOD data. We observe419

that CL has minimal improvements in ID and in420

particular, through statistical testing we find that421

the increases over the Random baseline or Cross-422

Review are not significant for any of the datasets,423

except for MNLI-M versus Random. Neverthe-424

less, when tested on OOD performance improve-425

ment is larger. CONF+VARCOMP achieves the best426

performance on TwitterPPDB (+8.5 points, sig-427

nificance p < 0.01), CommonSenseQA (+1.23428

points) and HANS (+0.71 points, p < 0.01 with429

CR) while CORR+VARANNEAL performs best for430

NLI Diagnostics (+0.7 points). We speculate431

that CONF+VARCOMP achieves higher OOD per-432

formance thanks to its slow pacing and the more433

accurate difficulties of confidence. However, this434

comes at the cost of speedup by requiring either435

the same or a few more steps than CRANNEAL.436

Investigating the cross-lingual transfer results437

on Table 3, initially we observe that CL with438

XLM-R seems to have a larger impact in terms439

of performance. On XNLI there is a +0.73 points440

increase over Random (p < 0.01). The differ- 441

ence with CR is not significant but TD achieved 442

a 20% speedup on average. On XCOPA we ob- 443

serve +1.06 points increase, requiring however 444

more training time with the CORR+VARANNEAL cur- 445

riculum, over the random baseline. It is worth 446

noting that for XCOPA, the competence-based cur- 447

ricula are able to also offer better performance with 448

less additional training time. As for the remain- 449

ing datasets, CL is unable to achieve any perfor- 450

mance improvement on MLDoc while on PAWS-X 451

CORRANNEAL has an improvement of +0.2 points 452

from Random and +0.35 from CRANNEAL, both sta- 453

tistically significant, with the cost of no speedup. 454

As another drawback, CR is generally more re- 455

source demanding since it needs N fully-trained 456

teacher models instead of 1. 457

5.2 Comparing Difficulties 458

We now present a comparison between task- 459

agnostic (TA) and task-specific (TS) difficulty met- 460

rics. We re-implement 3 additional difficulty met- 461

rics proposed in prior work for Neural Machine 462

Translation. The first two, introduced in Platan- 463

ios et al. (2019), correspond to sentence length 464

(LENGTH) computed as the number of words in 465

each sentence and word rarity (RARITY) computed 466

as the negated logarithmic sum of the frequency 467

of each word in a sentence. Frequencies are com- 468

puted over the training set. Finally, we experiment 469

with Perplexity (PPL) as the difficulty of a sen- 470

tence (Zhou et al., 2020). We calculate sentence 471

perplexity as the average perplexities of its sub- 472

words by masking one subword at a time and using 473

the remaining context to predict it. Since we test 474

on a task with two-sentence input, we sum PPL of 475

the two sentences and consider the entire input for 476

LENGTH and RARITY. 477
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TRAIN PAWS MNLI

TEST PAWS (ID) PAWS-X (ZS) TWITTER (OOD) MNLI-M (ID) XNLI (ZS) NLI DIAG. (ODD)

CRANNEAL 94.47 ±0.26 84.35 ±0.46 72.83 ±6.65 87.71 ±0.16 74.57 ±0.40 61.78 ±0.27

CORRANNEAL 94.72 ±0.09 84.70 ±0.15 71.97 ±2.69 87.53 ±0.23 73.92 ±0.11 62.15 ±0.94

CONFCOMP 94.82 ±0.09 84.51 ±0.27 75.18 ±6.71 87.36 ±0.42 74.32 ±0.41 61.31 ±1.00

CORR+VARANNEAL 94.68 ±0.20 84.52 ±0.27 72.62 ±1.17 87.64 ±0.03 74.66 ±0.06 62.57 ±1.32

CONF+VARCOMP 94.88 ±0.14 84.03 ±0.65 81.33 ±2.10 87.74 ±0.27 74.43 ±0.18 61.82 ±0.98

LENGTH 94.87 ±0.10 84.56 ±0.09 74.93 ±5.66 87.22 ±0.15 73.47 ±0.29 61.25 ±0.17

RARITY 94.48 ±0.06 84.16 ±0.24 79.90 ±2.70 87.38 ±0.10 73.42 ±0.25 62.25 ±1.08

PPL 94.55 ±0.43 84.09 ±0.30 83.02 ±1.23 87.27 ±0.10 73.42 ±0.18 61.83 ±0.81

Table 4: Task-specific (above the line) vs Task-agnostic metrics (below the line) on ID, ZS and OOD data.

Figure 2: PAWS Spearman rank correlation between
difficulty metrics.

Table 4 shows the results of the comparison be-478

tween metrics on the PAWS and MNLI datasets.479

Interestingly, we observe that TA metrics perform480

on par with TS on ID data, worse on ZS data and481

can perform quite well for OOD data. In particular,482

RARITY is the third best on Twitter and the second483

best on NLI Diagnostics. This can be explained484

by the very different language used on Twitter vs485

Wikipedia in the training corpus and the human-486

created data on NLI, which is not that strong in the487

latter. PPL is the best performing system in Twit-488

ter and we find statistically significant improve-489

ment (p < 0.01) compared with CONF+VARCOMP.490

Masked word prediction of unknown words could491

be an informative signal for a very new domain.492

Further, we analyse the relation of different dif-493

ficulty metrics by calculating the Spearman rank494

correlation between all possible combinations. As495

shown in Figure 2, we observe very high correla-496

tion between confidence and correctness, as ex-497

pected, but also a good correlation with Cross-498

Review, explaining their close performance. On the499

contrary, variability is negatively correlated with500

those metrics as higher values indicate more un-501

certainty from the model towards an example. As502

such, a combination of these opposing metrics can 503

offer benefits than combining two already corre- 504

lated metrics. Compared with task-agnostic met- 505

rics, interestingly, we see almost no correlation 506

with either LENGTH, RARITY or PPL, indicating 507

that examples that the model deems difficult when 508

fine-tuned on a task are very different than those 509

before fine-tuning. RARIRY and LENGTH highly 510

correlate as longer sentences are more likely to con- 511

tain rare words. Finally, PPL is reverse analogous 512

to them, probably because longer sentences have 513

more context and it is thus easier for the model 514

to predict the masked token. Overall, PPL has a 515

slight positive relation with variability since both 516

measure model uncertainty and high PPL of words 517

might make the model to further fluctuate between 518

its predictions. 519

5.3 Learning Curves 520

In order to examine the behavior of the curricula 521

during the course of training, we further plot the 522

average language performance on the validation set 523

as a function of the number of training steps when 524

using XLM-R models for the improved datasets 525

(XNLI and XCOPA). In Figure 3 we draw the 526

best performing curriculum (CONF+VARCOMP), the 527

CRANNEAL curriculum and the Random baseline. 528

A first finding is that for CRANNEAL we observe a 529

performance drop around 20K steps in XNLI. Fur- 530

ther investigation revealed that the drop happens 531

when the curriculum starts accessing the examples 532

of the last bucket–which is the hardest one. This 533

drop possibly indicates that buckets created by CR 534

do not contain incrementally challenging examples 535

that can help the model prepare for the hardest 536

instances adequately, in contrast with training dy- 537

namics that result in smooth training. In addition, 538

we observe that after a point in training ( 60K) ran- 539

dom training stabilises while CONF+VARCOMP con- 540
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Figure 3: Average validation set accuracy across lan-
guages as a function of learning steps (in thousands)
with XLM-R models. Results are reported over 3 ran-
dom seeds.

tinues to improve (70K-120K), despite having an541

initially lower performance than other schedulers.542

Regarding XCOPA, the CONF+VARCOMP curricu-543

lum is superior than random training and CRANNEAL544

by consistently improving performance from quite545

early in training (from step 8K and after).546

5.4 Training with limited budget547

Since training a teacher model can add overhead548

to the general training process (training a teacher549

model plus a similar-sized student), we further con-550

duct a minimal experiment on PAWS, where we551

collect training dynamics for a teacher XLM-R552

model for different number of epochs (stopping553

training early) and then train a student XLM-R554

model for 10 epochs. Results are reported in Table555

5 for our best overall curriculum for this dataset556

CORR+VARANNEAL as the average of the validation557

set languages performance.558

We observe that it is not necessary to collect559

training dynamics for a long period of training (e.g.560

10 epochs) as even with much less training, for in-561

stance 3 epochs, we can still get close performance562

to prior work much faster. Compared to Cross-563

Review, that essentially requires full training of N564

teacher models plus the student model, TD offer a565

much more efficient solution. Comparing training566

time with the PPL baseline, TD is even faster as col-567

lecting sentence perplexities for the entire PAWS568

training set requires 1 hour and 30 minutes vs 36569

minutes that are needed for 3 epochs of fine-tuning570

Teacher
Epochs

CRANNEAL CORRANNEAL Time ↓

3

85.28 ± 0.18

85.20 ± 0.17 0.3
4 85.46 ± 0.25 0.4
5 84.94 ± 0.30 0.5
10 85.34 ± 0.19 1.0

Table 5: Validation set performance (average across lan-
guages) on PAWS-X with XLM-R models. Student is
trained for 10 epochs, while training dynamics are col-
lected from the teacher for different number of epochs.

XLM-R. Ultimately, even having less accurate dy- 571

namics (by training the teacher for less epochs) we 572

can achieve overall less training time for the cur- 573

riculum while still maintaining good performance. 574

Longer teacher training might be proven beneficial 575

for future training of different student versions. 576

6 Conclusion 577

We presented a set of experiments using training 578

dynamics (Swayamdipta et al., 2020) as difficulty 579

metrics for CL on several NLU tasks. Differently 580

from existing works, we focus our evaluation on in- 581

distribution, out-of-distribution and zero-shot cross- 582

lingual transfer data by testing existing discrete and 583

continuous schedulers as well as modifications of 584

those in a transfer-teacher curriculum setting. 585

Our findings offer evidence that simply reorder- 586

ing the training examples in a meaningful way has 587

mostly an impact on zero-shot cross-lingual trans- 588

fer and OOD data, with no improvement on ID. 589

Our proposed Continuous scheduler with confi- 590

dence and variability sampling provided a boost 591

up to 8.5% on a challenging OOD dataset over 592

prior work. Comparing our proposed application 593

of training dynamics to other transfer-teacher cur- 594

riculum methods that are using more than 1 teacher 595

model, we observed greater speedups, improved 596

performance and more stable training. In particular, 597

we found that task-agnostic metrics do not perform 598

better than task-specific ones on ID and ZS data 599

but can offer good performance on OOD settings. 600

Overall, our experiments suggest there is no cur- 601

riculum outperforming others by a large margin 602

which is consistent with findings in Zhang et al. 603

(2018) and that task-agnostic metrics should not 604

be rejected when transferring to challenging new 605

domains. However we show that training dynamics 606

are potentially better difficulty metrics for CL in 607

both monolingual and multilingual models even 608

with a limited budget. 609
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A Datasets1003

In this study, we use the following datasets:1004

GLUE () is a benchmark for Natural language Un- 1005

derstanding tasks. We use a subset of the included 1006

datasets: MNLI, RTE and QNLI that are identify 1007

textual entailment (3 categories in the first one and 1008

2 for the othet two). Since the test set is hidden can 1009

results can be obtained only via submission to the 1010

benchmark, we sub-sample a 5% portion from each 1011

training set and use it as our validation set. Then, 1012

final results are reported on the officially provided 1013

validation set. 1014

PAWS-X (Yang et al., 2019) is the cross-lingual 1015

version of the English Paraphrase Adversaries from 1016

Word Scrambling dataset (Zhang et al., 2019b) 1017

containing paraphrase identification pairs from 1018

Wikipedia. It consists of human translated pairs 1019

in six topologically distinct languages. The train- 1020

ing set contains only English examples taken from 1021

the original PAWS dataset. As OOD we use the 1022

TwitterPPDB dataset (Lan et al., 2017). 1023

XNLI is the cross-lingual NLI dataset (Conneau 1024

et al., 2018), an evaluation set created by extend- 1025

ing the development and test sets of the MultiNLI 1026

dataset (Williams et al., 2018) and translating it 1027

into 14 languages. Training data constitutes the 1028

original MultiNLI English training set. A OOD 1029

we use NLI Diagnostics (Wang et al., 2018), a set 1030

of human-annotated examples that reveal model 1031

behavior on particular semantic phenomena. 1032

XCOPA is the Cross-lingual Choice of Plausible 1033

Alternatives (Ponti et al., 2020), a typologically 1034

diverse multilingual dataset for causal common 1035

sense reasoning in 11 languages. The dataset con- 1036

sists of development and test examples for each 1037

language, which are translations from the English 1038

COPA (Roemmele et al., 2011) validation and test 1039

sets. Following Ponti et al. (2020) we use the So- 1040

cial IQA dataset (Sap et al., 2019) as training data 1041

(containing 3 possible choices), and the English 1042

COPA development set as validation data (contain- 1043

ing 2 possible choices). For OOD, we consider the 1044

CommonSenseQA (CSQA) dataset (Talmor et al., 1045

2019) that contains 5 possible choices. 1046

MLDoc is a document classification dataset with 4 1047

target categories: corporate/industrial, economics, 1048

government/social, and markets (Schwenk and Li, 1049

2018). The dataset is an improved version of the 1050

Reuters benchmark (Klementiev et al., 2012) con- 1051

sisting of 7 languages and comes with 4 different 1052

sets of English training data (1k, 2k, 5k, 10k). Here, 1053

we use the 10k following prior work (Keung et al., 1054
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RoBERTabase XLM-Rbase

MNLI 7.5 h 11.5 h
PAWS 1.0 h 1.8 h
SIQA 1.0 h 1.3 h
MLDoc - 1.0 h
QNLI -
RTE

Table 6: Training time required for a full model training.

2020).1055

Additional datasetss1056

B Training Details1057

Hyper-parameter Settings: For all the reported ex-1058

periments we used the HuggingFace Transformers1059

library with PyTorch3. We use base models, XLM-1060

R and RoBERTa with 470M and 340M parameters1061

respectively. We fix sentence length to 128 for all1062

datasets except MLDoc where we use 256. We did1063

minimal learning rate tuning on each dataset’s En-1064

glish validation set, searching among [7e-6, 1e-5,1065

2e-5, 3e-5] and choosing the best performing one1066

(1e-5 for PAWS, 7e-6 for SIQA and MNLI, 3e-5 for1067

MLDoc, 2e-5 for RTE and 2e-5 for QNLI). We clip1068

gradients to 1.0 after each update, use AdamW op-1069

timizer (Loshchilov and Hutter, 2017) without any1070

warmup and a batch size of 32 for PAWS, MNLI,1071

QNLI and MLDoc, 8 for SIQA and 16 for RTE. All1072

reported experiments use the same 3 random seeds1073

and all models were trained on a single Nvidia1074

V100 16GB GPU. In terms of training time, Table1075

6 shows the training time required for each dataset1076

with the above parameters.1077

Multiple Choice QA: We treat SIQA-XCOPA as a1078

sentence-pair classification task and feed the model1079

a (premise-question, choice) tuple converting each1080

cause into “What was the cause?" and each ef-1081

fect into “What was the effect?" question which1082

is concatenated to the premise. Similar to prior1083

work (Ponti et al., 2020) we use a feed forward1084

linear layer on top of the input’s first special token1085

(<s> in the case of RoBERTa and XLM-R) to pro-1086

duce a score for each of the possible choices. In1087

the case of CSQA that does not have a premise, we1088

simply feed the network the question-choice pair.1089

B.1 Curriculum Parameters1090

In order to collect TD we first fine-tune either a1091

RoBERTa or an XLM-R model on the English1092

3https://pytorch.org/

training set of each dataset. TD for each exam- 1093

ple are collected over 10 epochs on MNLI, PAWS 1094

and SIQA, while for RTE, QNLI and MLDoc we 1095

train for 5 epochs. The COMPETENCE and COMPE- 1096

TENCE VARIABILITY schedulers require to set in 1097

advance the number of steps, i.e. total duration of 1098

the curriculum phase. We employ the same param- 1099

eters as in Platanios et al. (2019) and set this value 1100

to 90% of steps that the baseline model requires to 1101

achieve its best performance on the development 1102

set. The initial competence is set to 0.01 for all 1103

datasets. We evaluate each model at the end of 1104

each epoch and at regular intervals (Dodge et al., 1105

2020), every 500 updates for MNLI (corresponding 1106

to 24 times per epoch) and 10 times per epoch for 1107

the rest of the datasets. Performance is reported 1108

over three random seeds. 1109

C Analysing Data Maps 1110

Finally, to better understand the reason for the re- 1111

ported CL benefits we plot data maps that result 1112

from training an XLM-R model on each dataset in 1113

Figure 4, with confidence in the y-axis, variability 1114

in the x-axis and correctness in the legend. As ob- 1115

served, the easiest overall datasets, i.e. PAWS-X 1116

(4b) and MLDoc (4g) result in quite crisp maps 1117

with very few hard-to-learn examples, while in 1118

XNLI (4d) and SIQA (4f) the data maps are very 1119

dense and the number of difficult examples is high. 1120

This can potentially explain why CL with XLM-R 1121

models was more beneficial on those datasets in 1122

terms of performance, confirming that CL can be 1123

used to better prepare a model for harder instances. 1124
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(a) PAWS XLM-R (b) PAWS RoBERTa

(c) MNLI XLM-R (d) MNLI RoBERTa

(e) SIQA XLM-R (f) SIQA RoBERTa

(g) MLDoc XLM-R (h) QNLI RoBERTa

(i) RTE RoBERTa

Figure 4: Data map for the training set of each dataset.
We plot maximum 25K examples for clarity.
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