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ABSTRACT

We propose a new method for fine-grained few-shot recognition via deep object
parsing. In our framework, an object is made up of K distinct parts and for each
part, we learn a dictionary of templates, which is shared across all instances and
categories. An object is parsed by estimating the locations of these K parts and
a set of active templates that can reconstruct the part features. We recognize test
instances by comparing its active templates and the relative geometry of its part
locations against those of the presented few-shot instances. Our method is end-
to-end trainable to learn part templates on-top of a convolutional backbone. To
combat visual distortions such as orientation, pose and size, we learn templates
at multiple scales, and at test-time parse and match instances across these scales.
We show that our method is competitive with the state-of-the-art, and by virtue of
parsing enjoys interpretability as well.

1 INTRODUCTION

Deep neural networks (DNN) can be trained to solve visual recognition tasks with large annotated
datasets. In contrast, training DNNs for few-shot recognition (Snell et al., 2017; Vinyals et al., 2016),
and its fine-grained variant (Sun et al., 2020), where only a few examples are provided for each class
by way of supervision at test-time, is challenging. Fundamentally, the issue is that few-shots of data
is often inadequate to learn an object model among all of its myriad of variations, which do not
impact an object’s category. For our solution, we propose to draw upon two key observations from
the literature.

(A) There are specific locations bearing distinctive patterns/signatures in the feature space of a
convolution neural network (CNN), which correspond to salient visual characteristics of an
image instance (Zhou et al., 2014; Bau et al., 2017).

(B) Attention on only a few specific locations in the feature space, leads to good recognition
accuracy (Zhu et al., 2020; Lifchitz et al., 2021; Tang et al., 2020).

How can we leverage these observations?
Duplication of Traits. In fine-grained classification tasks, we posit that the visual characteristics
found in one instance of an object are widely duplicated among other instances, and even among
those belonging to other classes. It follows from our proposition that it is the particular collection
of visual characteristics arranged in a specific geometric pattern that uniquely determines an object
belonging to a particular class.

Parsing. These assumptions, along with (A) and (B), imply that these shared visual traits can be
found in the feature maps of CNNs and only a few locations on the feature map suffice for object
recognition. We call these finitely many latent locations on the feature maps which correspond to
salient traits, parts. These parts manifest as patterns, where each pattern belongs to a finite (but
potentially large) dictionary of templates. This dictionary embodies both the shared vocabulary
and the diversity of patterns found across object instances. Our goal is to learn the dictionary of
templates for different parts using training data, and at test-time, we seek to parse1 new instances by
identifying part locations and the sub-collection of templates that are expressed for the few-shot task.
While CNN features distill essential information from images, parsing helps further suppress noisy

1we view our dictionary as a collection of words, parts as phrases that are a collection of words from the
dictionary, and the geometric relationship between different parts as relationship between phrases.
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Figure 1: Motivation: a) In fine-grained few-shot learning, the most discriminating information
is embedded in the salient parts (e.g. head and breast of a bird) and the geometry of the parts
(relative part locations). Our method parses the object into a structured combination of a finite set
of dictionaries, such that both finer details and the shape of the object are captured and used in
recognition. b) In few shot learning, the same part may be distorted or absent in the support samples
due to the perspective and pose changes. We propose to extract features and compare across multiple
scales for each part to overcome this.

information, in situations of high-intra class variance such as in few-shot learning. For classification,
few-shot instances are parsed and then compared against the parsed query. The best matching class
is then predicted as the output.

As an example see Fig 1 (a), where the recognized part locations using the learned dictionary corre-
spond to the head, breast and the knee of the birds in their images with corresponding locations in
the convolutional feature maps. In matching the images, both the constituent templates and the geo-
metric structure of the parts are utilized. Inferring part locations based on part-specific dictionaries
is a low complexity task, and is analogous to the problem of detection of signals in noise in radar
applications (Van Trees, 2004), a problem solved by matching the received signal against a known
dictionary of transmitted signals.

Challenges. Nevertheless, our situation is somewhat more challenging. Unlike the radar situation,
we do not a-priori have a dictionary, and to learn one, we are only provided class-level annotations
by way of supervision. In addition, we require that these learnt dictionaries are compact (because
we must be able to reliably parse any input), and yet sufficiently expressive to account for diversity
of visual traits found in different objects and classes.

Multi-Scale Dictionaries. Variations in position and orientation relative to the camera lead to dif-
ferent appearances of the same object by perspective projections, which means there is variation in
the sizes of visual characteristics of parts. To overcome this, we train dictionaries at multiple scales,
which leads us to a parsing scheme that parses input instances at multiple scales (see Fig. 1 (b)).

Goodness of fit. Besides part sizes, few-shot instances even within the same class may exhibit
significant variations in poses, which can in-turn induce variations in parsed outputs. To mitigate
their effects we propose a novel instance-dependent re-weighting method, for comparison, based on
goodness-of-fit to the dictionary.

Contributions. (i) We propose a deep object parsing (DOP) method that parses objects into its
constituent parts, and each part as a collection of activated templates from a dictionary, while using
the representational power of deep CNNs. Via suitable objectives, we derive a simple end-to-end
trainable formulation for this method. (ii) We evaluate DOP on the challenging task of fine-grained
few shot recognition, where DOP outperforms prior art on multiple benchmarks. Notably, it is better
by about 2.5% on Stanford-Car and 10% on the Aircraft dataset. (iii) We provide an analysis of how
different components of our method help final performance. We also visualize the part locations
recognized by our method, lending interpretability to its decisions.

2 RELATED WORK

Few-Shot Classification (FSC). Modern FSC methods can be classified into three categories:
metric-learning based, optimization-based, or data-augmentation methods. Methods in the first cat-
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egory focus on learning effective metrics to match query examples to support. Prototypical Network
(Snell et al., 2017) utilizes euclidean distance on feature space for this purpose. Subsequent ap-
proaches built on this by improving the image embedding space (Ye et al., 2020; Das et al., 2021;
Afrasiyabi et al., 2021; Zhou et al., 2021; Rizve et al., 2021) or focusing on the metric (Sung et al.,
2018; Wang et al., 2019; Bateni et al., 2020; Simon et al., 2020; Li et al., 2020a; Wertheimer et al.,
2021; Fei et al., 2021; Zhang et al., 2020; 2021). Some recent methods have also found use of graph
based methods, especially in transductive few shot classification (Chen et al., 2021; Yang et al.,
2020). Optimization based methods train for fast adaptation using a few parameter updates with the
support examples (Finn et al., 2017; Baik et al., 2021; Li et al., 2017; Lee et al., 2019; Rajeswaran
et al., 2019; Liu et al., 2018). Data-augmentation methods learn a generative model to synthesize ad-
ditional training data for the novel classes to alleviate the issue of insufficient data (Li et al., 2020b;
Schwartz et al., 2018; Wang et al., 2018; Xu et al., 2021).

Fine-grained FSC. In fine-grained few-shot classification, different classes differ only in finer vi-
sual details. An example of this is to tease apart different species of birds in images. The approaches
mentioned above have been applied in this context as well (Li et al., 2019; Sun et al., 2020; Li et al.,
2020c; Xu et al., 2021). (Li et al., 2019) proposes to learn a local descriptor and an image-to-class
measure to capture the similarity between objects. (Wang et al., 2021) uses a foreground object ex-
tractor to exclude the noise from background and synthesize foreground features to remedy the data
insufficiency. BSNet (Li et al., 2020c) leverages a bi-similarity module to learn feature maps of di-
verse characteristics to improve the model’s generalization ability. Variational feature disentangling
(VFD) (Xu et al., 2021), a data-augmentation method, is complementary to ours. It disentangles
the feature representation into intra-class variance and class-discriminating information, and gener-
ates additional features for novel classes at test-time. TDM (Lee et al., 2022) applies channel-wise
attention to represent different classes with sparse vectors.

Recognition using Object Parts. Our method is closely related to recognition based on identifying
object components, an approach motivated by how humans learn to recognize object (Biederman,
1987). It draws inspiration from (Ullman et al., 2002), who showed that information maximization
with respect to classes of images resulted in visual features eyes, mouth, etc. in facial images and
tyres, bumper, windows, etc. in images of cars. Along these lines, Deformable Part Models (DPM)
(Felzenszwalb et al., 2009; 2010) proposed to learn object models by composing part features and
geometries, and utilize it for object detection. Neural Network models for DPMs were proposed in
(Savalle et al., 2014; Girshick et al., 2015). Multi-attention based models, which can be viewed as
implicitly incorporating parts, have been proposed (Zheng et al., 2017) in the context of fine-grained
recognition problems. Although related, a principle difference is our few-shot setting, where new
classes emerge, and we need to generate new object models on-the-fly.

Prior works on FSC have also focused on combining parts, albeit with different notions of the con-
cept. As such, the term part is overloaded, and is unrelated to our notion. DeepEMD (Zhang et al.,
2020) focuses in the image-distance metric based on an earth mover’s distance between different
parts. Here, parts are simply different physical locations in the image and not a compact collection
of salient parts for recognition. (Tang et al., 2020) uses salient object parts for recognition, while
(Tokmakov et al., 2019) attempts to encode parts into image features. However, both these methods
require additional attribute annotations for training, which may be expensive to gather and not al-
ways available. (Hao et al., 2019) and (Wu et al., 2021) discover salient object parts and use them
for recognition via attention maps similar to our method. They additionally re-weigh their similarity
task-adaptively, which is also a feature of our method. We differ in our use of a finite dictionary of
templates for learning a compact representation of parts. Also, we use reconstruction as supervi-
sion for accurately localizing salient object parts, and impose a meaningful prior on the geometry of
parts, which keeps us from degenerate solutions for part locations. For a more detailed comparison
with prior related work in fine grained FSC, please refer to the supplementary (Appendix B).

3 DEEP OBJECT PARSING

Parsing Instances. Each input instance to our method is first parsed using learned templates into a
higher level syntax, in the form of parts. While this term, “parts”, is overloaded in prior works, our
notion of a part is a tuple, consisting of part-location and part-expression at that location.
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Figure 2: Deep Object Parsing. An image x is parsed as a collection of salient parts (K in number).
Each part is represented by a 2D location µ and part expression vector z. We notate this operation
PARSE and describe it in detail in Alg. 1. In our method, we estimate locations and expressions
at multiple scales for each part (hence there are more than one µ and z per part) and using these,
determine image similarity for few-shot recognition. (Best viewed with zoom)

Introducing notation, let x ∈ X be an input instance (in our case, an image), f : X → RG×G×C

a convolutional neural network (CNN) backbone and ϕ = f(x) features of x, with C channels
supported on a 2D G × G grid. We parse x into K distinct part-locations µp ∈ [G] × [G] and
part expressions zp ∈ RC for p ∈ [K]. In our method, we also learn a dictionary of feature-
space templates Dp,c ∈ Rs×s, p ∈ [K], c ∈ [C] that are used to represent part features of different
instances across different categories.

Given an s × s mask M(µp) centered at µp (with s < G), the learned templates reconstruct part
features ϕ with the zp acting as codes : ϕc,Mµp

≈ zp,cDp,c, where the subscript Mµp denotes a
projection onto the support of M(µ) (or simply an s× s window cut-out of ϕc centered at µp). Note
that instead of using multiple, we used one dictionary atom per part per channel. While more atoms
can reconstruct features better, we found experimentally that they did not benefit few-shot learning
performance.

Part Expression as LASSO Regression. Given an instance x, its feature output, ϕ, and a candidate
part-location, µ, we can estimate sparse part-expression coefficients zp(µ) ∈ RC by optimizing the
ℓ1 regularized reconstruction error, at the location µ = µp (λ being the regularization constant).

zp(µ) = argmin
β

∑
c∈C

∥ϕc,M(µ) −Dp,cβc∥2 + λ∥β∥1. (1)

Non-negativity. Part expressions zp,c signify presence or absence of part templates in the observed
feature vectors, and as such can be expected to take on non-negative values. This fact turns out to be
useful later for DNN implementation.

Part Location Estimation. Note that part expression zp is a function of location µ, while the part
location µp can be estimated by plugging in the optimal part-expressions for each candidate location
value, namely,

µp = argmin
µ∈[G]×[G]

∑
c∈C

∥ϕc,M(µ) −Dp,czp,c(µ)∥2 + λ∥zp(µ)∥1 (2)

This couples the two estimation problems, and is difficult to implement with DNNs, motivating our
approach below.

Feedforward DNNs for Parsing. To make the proposed approach amenable to DNN implemen-
tation, we approximate the solution to Eq. 1 by optimizing the reconstruction error followed by
thresholding, namely, we compute z′p(µ) = argminβ

∑
c∈C ∥ϕc,M(µ) −Dp,cβc∥2, and we thresh-

old the resulting output by deleting entries smaller than ζ: Sζ(u) = u1|u|≥ζ . This is closely related
to thresholding methods employed in LASSO (Hastie et al., 2001).

The quadratic component of the loss allows for an explicit solution, and the solution reduces to tem-
plate matching per channel, which can further be expressed as a convolution (Gonzalez & Woods,
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2008). Using this insight, we derive our estimate of µp as

µp = argmax
µ∈[G]×[G]

∑
c∈C

((θp,c ∗ ϕc)(µ)− λc)
2 (3)

where ∗ is convolution, θp,c = Dp,c/∥Dp,c∥, and λc = λ/2∥Dp,c∥ becomes a channel dependent
constant. With the above estimate of µp, we get the estimate of zp as (recall Sζ(u) = u1|u|≥ζ):

z′p,c =
(Dp,c ∗ ϕc)(µp)

∥Dp,c∥2
; zp,c(µ) = Sζ(z

′
p,c) (4)

For a full derivation of the above estimates, please refer to the supplementary materials (App. A).

Estimates differentiable in parameters. Since argmax is a non-differentiable function, using Eq. (3)
for estimating part-locations does not allow us to use gradient based learning for the parameters of
the DNN. We can circumvent this by approximating the argmax as the expectation of a softmax
distribution νp over [G]× [G] with a low temperature T .

νp(µ) ≜ softmax

(
1

T

∑
c∈C

((θp,c ∗ ϕc)(µ)− λc)
2

)
; µp = Eµ∼νp

µ (5)

z′p,c =

[
(Dp,c ∗ δ̂µp

) : ϕc

∥Dp,c∥2

]
; zp,c = Sζ(z

′
p,c) (6)

where δ̂µp
is a differentiable approximation of a dirac delta centered at µp using a narrow normal dis-

tribution and ‘:’ is the double-dot product or the sum of all elements of an element-wise/Hadamard
product. Our derivation(App. A) hence leads to very simple expressions, where part-locations µp

come from template matching (or convolving the templates) with the CNN features and pooling the
product of location indices and νp. Part-expressions are then found via a simple convolution and dot
product (Eq. (6)).

Multi-Scale Extension. We extend our approach to incorporate parsing parts at multiple scales. This
is often required because of significant difference in orientation and pose between query and support
examples. To do so we simply consider masks M(µ) and templates D at varying mask sizes s ∈ S,
each leading to independent part location and expression estimates (µs,p, zs,p) for part p. Alg. 1
specifies the parse of an input instance and Fig. 2 shows an overview of object parsing.

Algorithm 1: PARSE (Object Parsing using DNNs)
1 Given: Convolutional backbone f , templates {Ds,p,c}s∈S,p∈[K],c∈[C], threshold ζ, ℓ1

regularization constant λ, temperature T
2 Input: Image x
3 Compute convolutional features ϕ = f(x)
4 for p ∈ [K], s ∈ S do
5 Estimate µs,p (through νs,p) using Eq. (5)
6 Estimate zs,p = [zs,p,c]c∈[C] using Eq. (6)
7 end for
8 Output: Part locations and expressions ({µs,p}p∈[K],s∈S , {zs,p}p∈[K],s∈S)

3.1 FEW-SHOT RECOGNITION

At test-time we are given a query instance, q, and by way of supervision, M support examples each
for N classes, and the goal is to predict the query class label y(q) ∈ [N ]. We first run PARSE

(Alg. 1) on each of these. PARSE(q) = ({µ(q)
s,p}, {z(q)s,p)} and for the ith support example of class y,

PARSE(x(i,y)) = ({µ(i,y)
s,p }, {z(i,y)s,p }). For comparing query and support examples we need a notion

of distance/similarity, which we define next.

Goodness-of-fit reweighting. The entropy of the distribution νs,p is an important indicator of
goodness-of-fit of the dictionary templates (lower entropy meaning a more precise and confident
part-location prediction as a result of a better fit). Let h(q)s,p and h(i,y)s,p be the entropies of ν(q)s,p and
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ν
(i,y)
s,p respectively. To use these as weights for computing distance (as below), we learn a simple

parametric function α : RM+1 → R.

Additionally, with z(y)s,p = 1
M

∑
i∈[M ] z

(i,y)
s,p , s ∈ S, p ∈ [K] we represent the mean part expression

over all support examples in class y. With these, we define the following distance measure between
the query example q and the support examples of class y.

d(q, y) =
∑
p∈[K]

∑
s1∈S

∑
s2∈S

α(h(q)s2,p, [h
(i,y)
s1,p ]i∈[M ])

∥∥∥z(y)s1,p − z(q)s2,p

∥∥∥2 [expression distance]

+ γ
∑
i∈[M ]

∑
s1∈S

∑
s2∈S

∥∥∥ψ([µ(i,y)
s1,p ]p∈[K])− ψ([µ(q)

s2,p]p∈[K])
∥∥∥2 [geometric distance] (7)

where ψ([µs,p]p∈[K]) is a vector of pairwise distances between all part locations at scale s, nor-
malized to unit sum. The distance function consists of an expression term, and a geometric term
with γ acting as a tunable weight to control the proportion of the two. Each term is a sum over all
combinations of part scales over query and support. Note that the geometric term simply attempts
to find if two polygons with vertices at part locations are similar (i.e. have proportional sides), with
the distance being 0 if they are. Finally, the class prediction is made as ŷ(q) = argminy∈[N ] d(q, y).

Training. We train in episodes following convention. For each episode, we sample N classes
at random, and additionally sample support and query examples belonging to these classes from
training data (details in Sec. 4). Using a softmax over the negative distance function above as the
class distribution of query q, we define the cross-entropy loss as

ℓCE(q) = − log
exp(−d(q, y(q)))∑
y∈[N ] exp(−d(q, y))

(8)

Additionally, while training, we impose a geometric prior to get diverse instance parts in PARSE
by maximizing the Hellinger distance (Everitt, 1998) H(·, ·) between part distributions. The corre-
sponding criterion for minimization is

ℓdiv(x) = −
∑
s∈S

∑
p,p′∈[K]
p ̸=p′

H(νs,p, νs,p′) (9)

Alg. 2 outlines the loss computation for a single query q. In Line 6, η is a tunable parameter con-
trolling the weight of the prior. In each episode, we use an average of the loss output over multiple
query examples, which results in an end-to-end differentiable criterion in all trainable parameters,
allowing us to optimize using gradient descent.

Algorithm 2: Training loss for Few-shot recognition with DOP (single episode, single query)
1 Given: requirements for Alg. 1 PARSE, weighting function α, tunable parameter γ
2 Input: Query example with ground truth label q, y(q) ∈ X × [N ]. Support examples
I =

⋃
y∈[N ]

[
Iy = {x(i,y)}i∈[M ]

]
3 Trainable parameters: Convolutional backbone f , part templates {Ds,p,c}s∈S,p∈[K],c∈[C],

weighting function α
4 Compute parses PARSE(q) = ({µ(q)

s,p}, {z(q)s,p)},
PARSE(x(i,y)) = ({µ(i,y)

s,p }, {z(i,y)s,p }); s ∈ S, p ∈ [K]
5 Compute distances d(q, y) for y ∈ [N ] using Eq. (7)
6 Output: loss ℓ(q) = ℓCE(q) + η 1

|I|+1

∑
x∈I∪{q} ℓdiv(x) using Eqs. (8) and (9)

3.2 IMPLEMENTATION DETAILS

We use two Resnet (He et al., 2016) backbones (Resnet-12 and Resnet-18) as feature extractors. We
use the Resnet-12 model used in prior works (Lee et al., 2019), which has more output channels
and more parameters (12.4M) compared to Resnet-18 (11.2M). The input image is resized to 84 ×
84 for Resnet-12 and 224 × 224 for Resnet-18. In the output features, for Resnet-12, C = 640
and G = 5, and for Resnet-18, C = 512 and G = 7. The number of parts K is set to 4 for most
experiments (see Sec. 4.2 for a experiments with different number of parts). There are three scales
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S = {1, 3, 5} considered for each part. The temperature T in Eq. (5) is set to 0.01 and the threshold
ζ in Eq. (6) is set to 0.05. γ is set to 0.01. For α we used a linear layer, and subsequently normalized
[α(h

(q)
s1,p, [h

(i,y)
s2,p ]i∈[M ])]p∈[K] (a K-dimensional vector; see Eq. (7)) with a softmax.

4 EXPERIMENTS

4.1 FINE-GRAINED FEW-SHOT CLASSIFICATION

We compare DOP on four fine-grained datasets: Caltech-UCSD-Birds (CUB) (Wah et al., 2011),
Stanford-Dog (Dog) (Khosla et al., 2011) Stanford-Car (Car) (Krause et al., 2013) and Aircraft
(Maji et al., 2013) against state-of-the-art methods.

Caltech-UCSD-Birds (CUB) (Wah et al., 2011) is a fine-grained classification dataset with 11,788
images of 200 bird species. Following convention(Hilliard et al., 2018), the 200 classes are randomly
split into 100 base, 50 validation and 50 test classes.

Aircraft contains 100 classes of aircrafts and 10,000 images in total. Following recent benchmark
(Lee et al., 2022; Wertheimer et al., 2021), we processes all images based on bounding box. And
the 100 classes are split into 50, 25 and 25 classes for training, validation and test.

Stanford-Dog/Car (Khosla et al., 2011; Krause et al., 2013) are two datasets for fine-grained clas-
sification. Dog contains 120 dog breeds with a total number of 20,580 images, while Car consists
of 16,185 images from 196 different car models. For few-shot learning evaluation, we follow the
benchmark protocol proposed in (Li et al., 2019). Specifically, 120 classes of Dog are split into 70,
20, and 30 classes, for training, validation, and test, respectively. Similarly, Car is split into 130
train, 17 validation and 49 test classes.

Experiments Setup. We conducted 5-way (5 classes episode) 1-shot and 5-way 5-shot classifica-
tion tasks on all datasets. Following the episodic evaluation protocol in (Vinyals et al., 2016), at test
time, we sample 600 episodes and report the averaged Top-1 accuracy. In each episode, 5 classes
from the test set are randomly selected. 1 or 5 samples for each class are sampled as support data,
and another 15 examples are sampled for each class as the query data. The model is trained on
train split and the validation split is used to select the hyper-parameters. We compare our DOP to
state-of-the-art FSC and fine-grained FSC methods. More details in the supplementary (App. B).

Table 1: Few-shot classification accuracy in % on
Aircraft dataset. Unless specified, methods use
ResNet-12 backbone.

Methods 1-shot 5-shot

ProtoNet(Snell et al., 2017) 67.28 83.21
DSN(Simon et al., 2020) 70.23 83.03
CTX(Doersch et al., 2020) 71.57 79.31
FRN(Wertheimer et al., 2021) 69.58 83.98
HelixFormer(Zhang et al., 2022) 74.01 83.11
TDM(Lee et al., 2022) 71.57 84.77

DOP (ResNet18) 84.26 93.41
DOP (ResNet12) 85.50 94.35

Training Details. Our model is trained with
10,000 episodes on CUB and 30,000 episodes
on Stanford-Dog/Car for experiments with both
ResNet12 and ResNet18. In each episode, we
randomly select 10 classes and sample 5 and
10 samples as support and query data. The
weight on the geometric prior η is set to 1.0
on CUB and 0.1 on Stanford-Dog/Car, respec-
tively. We train from scratch with Adam op-
timizer (Kingma & Ba, 2014). The learning
rate starts from 5e-4 on CUB and 1e-3 on
Stanford-Car/Dog, and decays to 0.1x every
3,000 episodes on CUB and 9,000 episodes on
Dog/Car. On CUB, objects are cropped using the annotated bounding box before resizing to the
input size. On Stanford-Car/Dog, we use the resized raw image as the input. We employed standard
data augmentations, including horizontal flip and perspective distortion, to the input images.

Results. Our results along with comparisons against state-of-the-art on CUB, Aircraft and Stanford-
Dog/Car are reported in Tabs. 1, 2 and 3, respectively.

DOP is competitive with or outperforms recent works on fine-grained FSC. On CUB (Tab. 2),
DOP outperforms all compared approaches with 83.39% 1-shot accuracy and 93.01% for 5-shot with
Resnet-12 backbone. Same is the case for Aircraft (Tab. 1), where DOP outperforms a recent method
in TDM (Lee et al., 2022) by a large margin using ResNet-12 backbone, performing at 85.50%
1-shot and 94.35% 5-shot accuracy. While on Stanford-Car (Tab. 3), we outperform compared
approaches by 3.06% and 1.85% on 1-shot and 5-shot, respectively, on Stanford-Dog, we outperform

7



Under review as a conference paper at ICLR 2023

Table 2: Few-shot accuracy in % on CUB compared to most recent state-of-the-art methods (along
with 95% confidence intervals). If not specified, the results are those reported in the original paper.
†: results are obtained by running the public implementation released by authors using ResNet18
backbone. A more comprehensive comparison to all related methods can be found in App. C.

Methods Backbone 1-shot 5-shot

ProtoNet(Snell et al., 2017) ResNet18 71.88±0.91 87.42±0.48
DeepEMD(Zhang et al., 2020) ResNet12 75.65±0.83 88.69±0.50
FOT(Wang et al., 2021) ResNet18 72.56±0.77 87.22±0.46
VFD (Xu et al., 2021) ResNet12 79.12±0.83 91.48±0.39
FRN(Wertheimer et al., 2021) ResNet12 83.16 92.59
RENet(Kang et al., 2021) ResNet12 79.49±0.44 91.11±0.24
TOAN(Huang et al., 2021) ResNet12 67.17± 0.81 82.09±0.56
RAP(Hong et al., 2021) ResNet18 83.59±0.18 90.77±0.10
TDM(Lee et al., 2022) ResNet12 83.36 92.80
HelixFormer(Zhang et al., 2022) ResNet12 81.66±0.30 91.83±0.17

DOP ResNet18 82.62±0.65 92.61±0.38
DOP ResNet12 83.39±0.82 93.01±0.43

all methods but VFD. We note here that VFD generates additional features at test-time for novel
classes, and is as such, complementary to DOP .

Table 3: Few-shot classification accuracy in % on Stanford-Car/Dog benchmarks (along with 95%
confidence intervals). †: results are obtained by running the codes released by authors using
ResNet18 backbone.

Methods Backbones Car Dog
1-shot 5-shot 1-shot 5-shot

ProtoNet†(Snell et al., 2017) ResNet18 60.67±0.87 75.56±0.45 61.06±0.67 74.31±0.51
MetaOptNet†(Lee et al., 2019) ResNet18 60.56±0.78 76.35±0.52 65.48±0.56 79.39±0.43
BSNet(Li et al., 2020c) ResNet12 60.36±0.98 85.28±0.64 69.09±0.90 82.45±0.58
VFD(Xu et al., 2021) ResNet12 - - 76.24±0.87 88.00±0.47
TOAN(Huang et al., 2021) ResNet12 76.62±0.70 89.57±0.40 51.83±0.80 69.83±0.66
HelixFormer(Zhang et al., 2022) ResNet12 79.40±0.43 92.26±0.15 65.92±0.49 80.65±0.36

DOP ResNet18 81.41±0.71 93.48±0.38 70.56±0.75 84.75±0.41
DOP ResNet12 81.83±0.78 93.84±0.45 70.10±0.79 85.12±0.55

4.2 ANALYSES

From Prototypical Networks to Deep Object Parsing. As an overview, DOP combines object
parsing, dictionaries at multiple template sizes, use of part geometry for distance computation and
instance-dependent distance reweighting based on goodness-of-fit. These can be seen as method-
ological developments over ProtoNet (Snell et al., 2017), a simple CNN feature-space distance based
few shot classification approach.

ProtoNet to single part DOP. Let us consider a simplified DOP method with a single part (K = 1)
and parsing done at a single scale (template size 5) S = {5}. There is thus one template
D ∈ R5×5×C consisting of learned parameters. In estimating the part location (Eq. (5)), we con-
volve the template over the CNN features, and perform some additional operations (Eq. (6)) with
no additional learnable parameters to find part expressions. A ProtoNet with the same number of
learnable parameters can use D as a final convolutional layer and perform global pooling over its
outputs. On 5-way 5-shot classification on CUB this ProtoNet has accuracy 88.38%, while the
simplified DOP has accuracy 90.56%. Thus, this improvement in performance can be attributed to
learning a template shareable across parts that can be used for reconstructing features (using the part
expressions z). This reconstruction objective allows the part expressions z to have less noise and
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thus lower intra-class variance. Next, we analyze what happens when we parse objects into multiple
parts and at multiple scales.

Using multiple parts. Tab. 4 shows the effect of adding more parts on 5-way 5-shot accuracy on
CUB. We see more parts up to a certain point (K = 4) allows DOP to learn better representations
consequently improving performance, but with even more parts performance drops as the model can
start learning irrelevant or background signatures.

Using templates at multiple scales. In Tab. 5 using the Stanford-Dog dataset, we studied the effect
of parsing parts at multiple scales. Learning dictionaries at multiple scales improves performance,
since this allows DOP to parse the object parts even when their scale may vary (due to different
positions and orientations relative to the camera).

Table 4: Effect of using different number of
parts on 5-way 5-shot accuracy on CUB.

Num parts 1 3 4 5 6

Accuracy 90.56 92.10 92.61 92.21 92.06

Table 5: Effect of using templates at different
scales on 5-way 5-shot accuracy on Dog.

Scales [3] [5] [3,5] [1,3,5]

Accuracy 81.56 81.38 83.04 84.75

In the supplementary, we perform additional analysis ablating the use of part geometries for distance
computation and the use instance dependent reweighting α.

What parts does DOP detect? We visualize the locations µp learned by DOP in Fig. 3. DOP is able
to detect consistent parts for the same task and often finds semantically meaningful parts like head
and torso/breast in birds and dogs and wheels and doors/windows on cars. Fig. 3 also shows some
failure cases of DOP , where it might fail to locate parts on the object if similar visual signatures
appear in the background. A visualization of part templates learned and part expressions can be
found in the supplementary (App. D).

Aircraft Dog CUB Car Failure

Figure 3: Exemplar part locations learned by DOP when K = 3. From left to right: Aircraft,
CUB, Dog, Car, and failure cases. DOP can fail and locate parts on the background if it has visual
signatures similar to an object.

5 CONCLUSIONS

We presented DOP , a deep object-parsing method for fine-grained few-shot recognition. Our fun-
damental concept is that, while different object classes exhibit novel visual appearance, at a suf-
ficiently small scale, visual patterns are duplicated. Hence, by leveraging training data to learn a
dictionary of templates distributed across different relative locations, an object can be recognized
simply by identifying which of the templates in the dictionary are expressed, and how these patterns
are geometrically distributed. We build a statistical model for parsing that takes the output of a
convolutional backbone as input to produce a parsed output. We then post-hoc learn to re-weight
query and support instances to identify the best matching class, and as such this procedure allows for
mitigating visual distortions. Our proposed method is an end-to-end deep neural network training
method, and we show that our performance is not only competitive but also the outputs generated
are interpretable.
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