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Abstract

Distantly-supervised relation extraction (RE)
is an effective method to scale RE to large
corpora but suffers from noisy labels. Exist-
ing approaches try to alleviate noise through
multi-instance learning and by providing addi-
tional information, but they treat labels as inde-
pendent and seldom consider the relationship
between labels and entities. Consequently,
potentially valuable information goes unused.
We propose REDSandT (Relation Extraction
with Distant Supervision and Transformers), a
novel distantly-supervised transformer-based
RE method that manages to capture highly in-
formative instance and label embeddings for
RE by exploiting BERT’s pre-trained model.
We guide REDSandT to focus solely on rela-
tional tokens by fine-tuning BERT on a struc-
tured input, including the sub-tree connecting
an entity pair and the entities’ types. Using the
extracted informative vectors, we shape label
embeddings, which we also use as attention
mechanism over instances to further reduce
noise. Finally, we represent sentences by con-
catenating relation and instance embeddings.
Experiments in the NYT-10 dataset show that
REDSandT captures a broader set of relations
with higher confidence, achieving state-of-the-
art AUC (0.424).

1 Introduction

Relation Extraction (RE) aims to detect semantic re-
lationships between entity pairs in natural texts and
has proven to be crucial in various natural language
processing (NLP) applications, including question
answering, and knowledge-base (KB) population.

Most RE methods follow a supervised approach,
with the required number of labeled training
data rendering the whole process time and labor-
intensive. To automatically construct datasets for
RE, (Mintz et al., 2009) proposed to use distant
supervision (DS) from a KB, assuming that if two

entities exhibit a relationship in a KB, then all sen-
tences mentioning these entities express this rela-
tion. Inevitably, this assumption generates false-
positives and leads distantly-created datasets to
contain erroneous labels. To alleviate the wrong
labeling problem, (Riedel et al., 2010) relaxed this
assumption so that it does not hold for all instances
and along with (Hoffmann et al., 2011; Surdeanu
et al., 2012) proposed multi-instance based learn-
ing. Under this setting, classification shifts from
instance-level to bag-level, with a bag consisting
of all instances that contain a specific entity pair.

Current state-of-the-art RE methods try to re-
duce the effect of noisy instances by: i) identifying
valid instances through multi-instance learning and
selective attention (Lin et al., 2016), ii) reducing
inner-sentence noise by capturing long-range de-
pendencies using syntactic information from depen-
dency parses (Mintz et al., 2009; He et al., 2018;
Liu et al., 2018), specialized models like piecewise
CNN (PCNN) and graph CNN (GCNN), or word-
level attention (He et al., 2018), and iii) enhanc-
ing model effectiveness using external knowledge
(i.e. KB entity types (Vashishth et al., 2018), entity
descriptions (Ji, 2017; Hu et al., 2019), relation
phrases (Vashishth et al., 2018)) or transfer knowl-
edge from pre-trained models (Alt et al., 2019).

The study of the above approaches leads us to
two observations. First, only (Alt et al., 2019),
using a pre-trained transformer-based language
model (LM), manages to recognize a broader set
of relations. Second, the use of relation embed-
dings (He et al., 2018; Hu et al., 2019) is helpful
for RE. However, these models miss information,
as the former achieves lower precision in top pre-
dictions compared to standard methods (Lin et al.,
2016; Vashishth et al., 2018), and the latter use
label embeddings only as an attention mechanism
over sentences. Consequently, we believe that there
is an opportunity to: a) exploit pre-trained LMs’



ability to capture deep language representations
(Vaswani et al., 2017) towards better representa-
tion of both instances and labels, and b) utilize the
highly informative label embeddings to boost RE.

We propose REDSandT (Relation Extraction
with Distant Supervision and Transformers), a
novel transformer-based RE model for distant su-
pervision. To handle the problem of noisy in-
stances, we guide REDSandT to focus solely on
relational tokens by fine-tuning BERT on a struc-
tured input, including the sub-tree connecting an
entity pair and the entities’ types. The input’s RE-
specific formation, along with BERT’s knowledge
from unsupervised pre-training, results in RED-
SandT generating informative vectors. Using these
vectors, we shape relation embeddings represent-
ing the entities’ distance in vector space (Bordes
et al., 2013). Relation embeddings are then used
as relation-wise attention over instance representa-
tion to reduce the effect of less-informative tokens.
Finally, REDSandT encodes sentences by concate-
nating relation and weighted-instance embeddings,
with relation classification to occur at bag-level as
a weighted sum over its sentences’ predictions.

We chose BERT over other transformer-based
models because it considers bidirectionality while
training. We assume that this characteristic is im-
portant to efficiently capture entities’ interactions
without requiring an additional task (i.e., LM fine-
tuning in GPT (Alt et al., 2019)).

The main contributions of this paper can be sum-
marized as follows:

• We extend BERT to handle multi-instance
learning to directly fine-tune the model in a
DS setting and reduce error accumulation.
• Relation embeddings captured through BERT

fine-tuned on our RE-specific input manage to
recognize a wider set of relations, including
relations in the long-tail.
• STP encoding effectively compresses sen-

tences to their relational tokens and allows
REDSandT to outperform (Alt et al., 2019)
while preserving low complexity and trained
on modest hardware.
• Experiments on the NYT-10 dataset show

REDSandT to surpass state-of-the-art mod-
els (Vashishth et al., 2018; Alt et al., 2019) in
AUC (1.0 & 0.2 units respectively) and perfor-
mance at higher recall values, while achieving
a 7-10% improvement in P@{100,200,300}
over (Alt et al., 2019).

• We provide1 an enhanced version of NYT-
10, including STP, SDP, and entity types to
facilitate experimentation.
• We provide1 our source code to encourage

reproducible research.

2 Related Work

Our work is related to distant supervision, neural
relation extraction (mainly pre-trained LMs), sub-
tree parse of input, label embedding, and entity
type side information.
Distant Supervision: DS plays a key role in RE,
as it satisfies its need for extensive training data,
easily and inexpensively. The use of DS (Craven
and Kumlien, 1999; Snow et al., 2005) to generate
large training data for RE was proposed by (Mintz
et al., 2009), who assumed that all sentences that
include an entity pair, which exhibits a relation-
ship in a KB, express the same relation. However,
this assumption comes with noisy labels, especially
when the KB is not directly related to the domain
at hand. Multi-instance learning methods were pro-
posed to alleviate the issue, by conducting relation
classification at the bag level, with a bag including
instances that mention the same entity pair (Riedel
et al., 2010; Hoffmann et al., 2011).
Neural Relation Extraction: While the perfor-
mance of the above approaches heavily relies on
handcrafted features (POS tags, named entity tags,
morphological features, etc.), the advent of neural
networks in RE set the focus on model architecture.
Zeng et al. (2014) propose a CNN-based method to
automatically capture the semantics of sentences,
while PCNN (Zeng et al., 2015) that incorporates
piecewise max-pooling and multi-instance learning
became the common architecture to embed sen-
tences. PCNN is used in several approaches that
handle DS noisy patterns, such as intra-bag atten-
tion (Lin et al., 2016), inter-bag attention (Ye and
Ling, 2019), soft labeling (Liu et al., 2017; Wang
et al., 2018) and adversarial training (Wu et al.,
2018; Qin et al., 2018). Moreover, Graph CNNs
(GCNNs) proved an effective way to encode syntac-
tic information from text (Vashishth et al., 2018).

The latest development of pre-trained LMs re-
lying on transformer architecture (Vaswani et al.,
2017) has shown to capture semantic and syntac-
tic features better (Radford and Salimans, 2018).
Howard and Ruder (2018) found that they signifi-

1Uploaded as .zip in submission. Freely available upon
acceptance.



cantly improve text classification performance, pre-
vent overfitting, and increase sample efficiency. Shi
and Lin (2019) fine-tuned BERT (Devlin et al.,
2018) on the TACRED dataset showing that simple
NNs built on top of BERT improve performance.
Meanwhile, Alt et al. (2019) extended GPT (Rad-
ford and Salimans, 2018) to the DS setting by incor-
porating a multi-instance training mechanism, prov-
ing that pre-trained LMs provide a stronger signal
for DS than specific linguistic and side-information
features (Vashishth et al., 2018). To this extent, we
take advantage of the knowledge that these models
carry to capture label embeddings and boost RE.
Side information: Apart from model architecture,
several methods propose additional information to
further reduce noise. Vashishth et al. (2018) use re-
lation phrases and incorporate Freebase entity types
achieving state-of-the-art precision at higher recall
values, while (Ji, 2017; Hu et al., 2019) use entity
descriptors to enhance entity and label embeddings,
respectively. We incorporate more generic entities’
types from spaCy’s model.
Sub-Parses of Input: Xu et al. (2015) showed the
importance of the shortest-dependency path (SDP)
in reducing irrelevant to RE words. Liu et al. (2018)
further reduce the noise within sentences by pre-
serving the sub-path of the sentence that connects
the two entities with their least common ancestor’s
parent (STP). In contrast with (Liu et al., 2018),
who shape the final STP sequence by re-assigning
the participating tokens into their original sequence
order, we preserve the tokens’ order within the STP
to maintain the emerged grammar information.
Label Embedding: Label embeddings aim to em-
bed labels in the same space with word vectors.
The idea comes from computer vision, with (Wang
et al., 2018) to introduce them in text classifica-
tion and (Hu et al., 2019) to use them as attention-
mechanism over relational tokens in distantly-
supervised RE. We make use of the TransE (Bordes
et al., 2013) model to shape label embeddings as
the entities’ distance in BERT’s vector space, and
we show that their use both as a feature and as
attention over sentences significantly improves RE.

3 REDSandT

Given a bag of sentences {s1, s2, ..., sn} that con-
cern a specific entity pair, REDSandT generates
a probability distribution on the set of possible
relations. REDSandT utilizes BERT pre-trained
LM to capture the semantic and syntactic features

of sentences by transferring pre-trained common-
sense knowledge. We extend BERT to handle multi-
instance learning, and we fine-tune the model to
classify the relation linking the entity pair given
the associated sentences.

During fine-tuning, we employ a structured, RE-
specific input to minimize architectural changes
to the model (Radford and Salimans, 2018). Each
sentence is adapted to a structured text, including
the sentences’ tokens connecting the entity pair
(STP) along with the entities types. We transform
the input into a (sub-)word-level distributed rep-
resentation using BPE and positional embeddings
from BERT fine-tuned on our corpora. Then, we
form final sentence representation by concatenat-
ing relation embedding and sentence representation
weighted with the relation embedding. Lastly, we
use attention over the bag’s sentences to shape bag
representation, which is then fed to a softmax layer
to get the bag ’s relation distribution.

REDSandT can be summarized in three compo-
nents, namely sentence encoder, bag encoder, and
model training. Each component is described in
detail in the following sections with the overall
architecture shown in Figure 1 and 2.

3.1 Sentence Encoder

Given a sentence x and an entity pair 〈h, t〉, RED-
SandT constructs a distributed representation of the
sentence by concatenating relation and instance em-
beddings. Overall sentence encoding is represented
in Figure 1, with following sections to examine the
sentence encoder parts in a bottom-up way.

3.1.1 Input Representation
Relation extraction requires a structured input that
can sufficiently capture the latent relation between
an entity pair and its surrounding text. Our input
representation encodes each sentence as a sequence
of tokens, depicted in the very bottom of Figure 1.

It starts with the head entity type and token(s)
followed by delimiter [H-SEP], continues with the
tail entity type, and token(s) followed by delim-
iter [T-SEP] and ends with the token sequence of
the sentence’s STP path. The whole input starts
and ends with special delimiters [CLS] and [SEP],
respectively. In BERT, [CLS] typically acts as a
pooling token representing the whole sequence for
downstream tasks, such as RE.

Several other sentence encodings were attempted
with ablation studies in section 5.2, revealing
the importance of encoding entities’ types and



Figure 1: Sentence Representation in REDSandT. The input embedding h0 to BERT is created by summing over
the positional and byte pair embeddings for each token in the structured input. States ht are obtained by self-
attending over the states of the previous layer ht−1. Final sentence representation is obtained by concatenating the
relation embedding rht, and the final fine-tuned BERT layer hL weighted with relation attention αr. Head and tail
tokens participating in the relation embedding formation are marked with bold and dashed lines respectively.

compressing the original sentence to the below-
presented STP path.
Sub-tree parse of input sentence: Inspired by
(Liu et al., 2018), we utilize a sub-tree parse (STP)
of the input sentence to reduce the noisy words
within sentence and focus on the relational tokens.
STP preserves the path of the sentence that con-
nects the two entities with their least common an-
cestor’s parent. We select STP over SDP (Xu et al.,
2015) encoding, because SDP may fail to incor-
porate useful relational tokens (Liu et al., 2018).
Moreover, our studies in section 5.2 show SDP’s
weakness to recognize relations in the long tail.
In contrast with (Liu et al., 2018), who shape the
final STP sequence by re-assigning the participat-
ing tokens into their original sequence order, we
preserve the tokens’ order within STP achieving
a grammatical normalization of the original sen-
tence.
Entity Type special tokens: Previous research
has shown that entity type information can signif-
icantly improve RE (Liu et al., 2014; Vashishth
et al., 2018). In the extent that every relation puts
some constraint on the type of participating enti-
ties, we incorporate the entity type in the model’s
structured input (see bottom of Figure 1).
In contrast with (Vashishth et al., 2018) that use

38 Freebase-specific entity types, we incorporate
18 generic entity types, captured from recognizing
NYT-10 sentence’s entities with the spaCy model2.
We assume these types KB-independent and eas-
ily accessible with our experiments in section 5.2
indicating their inclusion to improve performance.

3.1.2 Input Embeddings

The input embedding h0 to BERT is created by
summing over the positional and byte pair embed-
dings for each token in the structured input.
Byte-pair tokens encoding: To make use of sub-
word information, we tokenize input using byte-
pair encoding (BPE) (Sennrich et al., 2016). We
particularly use the tokenizer from the pre-trained
model (30,000 tokens), which we extend with 20
task-specific tokens (e.g., [H-SEP], [T-SEP], and
the 18 entity type tokens). Added tokens serve a
special meaning in the input representation, thus
are not split into sub-words by the tokenizer.
Positional encoding: Positional encoding is an es-
sential part of BERT’s attention mechanism. Pre-
cisely, BERT learns a unique position embedding
to represent each of the input (sub-word) token
positions within the sequence.

2https://spacy.io/models/en

https://spacy.io/models/en


3.1.3 Sentence Representation
Input sequence is transformed into feature vectors
(hL) using BERT’s pre-trained language model,
fine-tuned in our task. In spite of common practice
to represent the sentence by the [CLS] vector in
hL (Alt et al., 2019), we argue that not all words
contribute equally to sentence representation.

By encoding the underlying relation as a func-
tion of the examining entities and by giving atten-
tion to vectors related to this underlying relation,
we can further reduce sentence noise and improve
precision. Core modules constitute the: relation
embedding, entities-wise attention, and relation at-
tention. We examine them below.
Relation Embedding: Inspired by (Bordes et al.,
2013), we use TransE model to get relation embed-
dings. TransE model regards the embedding of the
underlying relation l as the distance (difference) be-
tween h and t embeddings (li = ti−hi), assuming
that a relation r holds between an entity pair (h, t).
We shape relation embedding for each sentence i
by applying a linear transformation on the head and
tail entities vectors, activated through a Tanh layer
to capture possible nonlinearities:

li = Tanh(wl(ti − hi) + bl) (1)

, where wl is the underlying relation weight matrix
and bl ∈ <dt is the bias vector. We mark relation
embedding as l because it represents the possible
underlying relation between the two entities and
not the actual relationship r. Head hi and tail ti
embeddings reflect only the entities’ related tokens,
which we capture through simple entities-wise at-
tention, shown below.
Entities-wise Attention: Head and tail embed-
dings participating in the relation embedding are
created by summing over respective token vectors
from BERT’s last layer hL. We capture these to-
kens through head- and tail-wise attention. Head-
wise attention assigns the weight αh

it to focus on
head related tokens and tail-wise attention assigns
the weight αt

it to focus on tail related tokens.

αh
it =

{
1 if t = head in STP tokens
0 otherwise

(2)

αt
it =

{
1 if t = tail in STP tokens
0 otherwise

(3)

Head hi and tail ti embeddings are then shaped
as follows:

hi =
T∑
t=1

αh
it · hit (4) ti =

T∑
t=1

αt
it · hit (5)

Relation Attention: Even though REDSandT is
trained on STP that naturally preserves only rela-
tional tokens, we wanted to further reduce possible
left noise on sentence-level. For this reason, we
use a relation attention to emphasize on sentence
tokens that are mostly related to the underlying
relation li. We calculate relation attention αr by
comparing each sentence representation against the
learned representation li for each sentence i:

αr =
exp(sili)∑n
j=1 exp(sjli)

(6)

Then, we weight BERT’ s last hidden layer hL ∈
<dh with relation embedding:

h
′
L =

T∑
t=1

αr · hit (7)

Finally, sentence representation si ∈ <dh∗2

is computed as the concatenation of the relation
embedding li and the sentence’s weighted hidden
representation h

′
L:

si =
[
li ; h

′
L

]
(8)

Several other representation techniques were
tested, with the presented method to outperform.

3.2 BAG Encoder

Bag encoding, i.e., aggregation of sentence rep-
resentations in a bag, comes to reduce noise gen-
erated by the erroneously annotated relations ac-
companying DS. Assuming that not all sentences
contribute equally to the bag representation, we
use selective attention (Lin et al., 2016) to empha-
size on sentences that better express the underlying
relation.

B =
∑
i

αisi, (9)

As seen, selective attention represents bag as a
weighted sum of the individual sentences. Atten-
tion αi is calculated by comparing each sentence
representation against a learned representation r:

αi =
exp(sir)∑n
j=1 exp(sjr)

(10)



Finally, bag representation B is fed to a softmax
classifier to obtain the probability distribution over
the relations.

p(r) = Softmax(Wr ·B + br), (11)

where Wr is the relation weight matrix and br ∈
<dr is the bias vector.

3.3 Training

REDSandT utilizes a transformer model, precisely
BERT, which fine-tunes on our specific setup to
capture the semantic features of relational sen-
tences. Below, we present the overall process.

3.3.1 Model Pre-training
For our experiments, we use the pre-trained bert-
base-cased language model (Devlin et al., 2018),
which consists of 12 layers, 12 attention heads,
and 110M parameters, with each layer being a
bidirectional Transformer encoder (Vaswani et al.,
2017). The model is trained on cased English
text of BooksCorpus and Wikipedia with a total
of 800M and 2.5K words respectively. BERT is
pre-trained using two unsupervised tasks: masked
LM and next sentence prediction, with masked LM
being its core novelty as it allows the previously
impossible bidirectional training.

3.3.2 Model Fine-tuning
We initialize REDSandT model’ s weights with
the pre-trained BERT model, and we fine-tune its
4-last layers under the multi-instance learning set-
ting presented in Figure 2, given the specific input
shown in Figure 1. We end up fine-tuning only the
last four layers after experimentation.

During fine-tuning, we optimize the following

Figure 2: Transformer architecture (left) and train-
ing framework (right). Sentence representation si is
formed as shown in Figure 1.

objective:

L(D) =

|B|∑
i=1

logP (li|Bi; θ) (12)

, where for all entity pair bags |B| in the dataset,
we want to maximize the probability of correctly
predicting the bag’s relation given its sentences’
representation and parameters.

4 Experimental Setup

4.1 Dataset
We conduct experiments on the widely used bench-
mark dataset NYT-10 (Riedel et al., 2010), which
was built by aligning triples in Freebase to the NYT
corpus and contains 53 relations. There are 522,611
(172,448) sentences, 281,270 (96,678) entity pairs,
and 18,252 (1,950) relation mentions in the train
(test) set. We provide an enhanced dataset, NYT-10-
enhanced, including both STP and SDP versions
of the input sentences as well as the head and tail
entity types to facilitate future implementations.

4.2 Hyper-parameter Settings
In our experiments we utilize bert-base-cased
model with hidden layer dimension Dh=768,
while we fine-tune the model with max seq length
Dt=64. Regarding model’s hyper-parameters, we
manually tune them on the training set, based
on AUC score. We select batch size=32 among
{8, 16, 32}, epochs=3 among {3, 4}, BERT’s
fine-tuned layers=4 among all and last {2, 4, 8},
learning rate lr=2e−5 among {2e−4, 1e−5, 2e−5},
classifier dropout p=0.4 among {0.2, 0.4, 0.5},
and weight decay=0.001 among {0.01, 0.001}.
Moreover, we fine-tune our model using the Adam
optimization scheme (Kingma and Lei Ba, 2015)
with β1=0.9, β2=0.999 and a cosine learning rate
decay schedule with warm-up over 0.1% of train-
ing updates. We minimize loss using cross entropy
criterion weighted on dataset’s classes to handle the
unbalanced training set. Experiments conducted on
a PC with 32.00 GB Ram, Intel i7-7800X CPU@
3.5GHz and NVIDIA’s GeForce GTX 1080 with
8GB. Training time takes ∼100min/epoch.

4.3 State-of-the-art Models
For evaluating REDSandT, we compare against fol-
lowing state-of-the-art models:
Mintz (Mintz et al., 2009): A multi-class logistic
regression model under distant supervision setting.



PCNN+ATT (Lin et al., 2016): A CNN model
with instance-level attention
RESIDE (Vashishth et al., 2018): A NN model
that makes use of relevant side information (entity
types, relational phrases) and employs Graph CNN
to capture syntactic information of instances.
DISTRE (Alt et al., 2019): A transformer model,
GPT fine-tuned for RE under the distant supervi-
sion setting.

5 Results

5.1 Comparison with state-of-the-art Models

Figure 3: Precision-Recall curves.

Figure 3 compares the precision-recall curves of
REDSandT against state-of-the-art models. We
observe that: (1) The NN-based approaches out-
perform the probabilistic method (Mintz), showing
human-designed features limitation against neural
networks’ automatically extracted features. (2) RE-
SIDE, DISTRE, and REDSandT achieve better per-
formance than PCNN+ATT, which even exhibiting
the highest precision in the beginning soon follows
an abrupt decline. This reveals the importance of
both side-information (i.e., entity types and relation
alias), and transfer knowledge. (3) RESIDE per-
forms the best in low recalls and generally performs
well, which we attribute to the multitude of side-
information given. (4) Although DISTRE exhibits
3.5% greater precision in medium-level recalls, it
presents 2-12% lower precision in recall values
<0.25 compared to RESIDE, and REDSandT. (5)
Our model shows the more stable behavior, with a
steady, downward trend, acting similar to RESIDE
at the low and medium recalls and surpassing all
baselines in the very high recall values. We believe
the reason is that we use potential label information
as an additional feature and as attention over the in-
stance tokens. The learned label embeddings are of
high quality since they carry common-knowledge

RE methods AUC P@100 P@300 P@500

Mintz 0.107 52.3 45.0 39.7
PCNN+ATT 0.341 73.0 67.3 63.6
RESIDE 0.415 81.8 74.3 69.7
DISTRE 0.422 68.0 65.3 65.0
REDSandT 0.424 78.0 73.0 67.6

Table 1: AUC and P@N evaluation results. P@N rep-
resents precision calculated for the top N rated relation
instances

from the pre-trained model fine-tuned on the spe-
cific dataset and task. Moreover, the chosen pre-
trained model, BERT, considers bidirectionality
while training, being thus able to efficiently cap-
ture head and tail interaction.

Table 1, which presents AUC and precision at
various points in the P-R curve, reveals our model’s
precision performance to be between that of RE-
SIDE and DISTRE while preserving the state-
of-the-art AUC. Precisely, REDSandT’ s preci-
sion does not exceed RESIDE’, even though it
is close enough, which suggests that additional
side-information would improve our model. Mean-
while, REDSandT surpasses DISTRE’ s preci-
sion, which we attribute to our selected pre-trained
model that efficiently captures label embeddings.
Consequently, our model is more consistent to the
various points of the P-R curve.

Table 2 shows the distribution over relation types
for the top 300 predictions of REDSandT and base-
line models. REDSandT encompasses 10 distinct
relation types, two of which (place founded, /geo-
graphic distribution) are not recognized by none of
rest models. PCNN+ATT predictions are highly bi-
ased towards a set of only four relation types, while
RESIDE captures three additional types. DISTRE
and REDSandT manage to recognize more types
than all models, emphasizing the contribution of
transfer knowledge. Moreover, REDSandT cor-
rectly not recognizes /location/country/capital rela-
tion that DISTRE does, as their authors found most
errors to arise from the specific predicted relation
in manual evaluation. Meanwhile, we highlight
REDSandT’ s effectiveness in recognizing rela-
tions in the long-tail. Particularly, our model cap-
tures, founders (1.47%), neighborhood of (1.06%),
person/children (0.47%), and sports team/location
(0.16%) relations. Relations are listed in descend-
ing order regarding population in test set with re-
spective percentage referenced in parentheses.



Relation red dis res pcnn

/location/contains 176 168 182 214
/person/company 38 31 26 19
/person/nationality 26 32 65 59
/admin div/country 25 13 12 6
/neighborhood of 22 10 3 2
/person/children 5 - 6 -
/team/location 4 2 - -
/founders 2 2 6 -
/place founded 1 - - -
/geo distribution 1 - - -
/country/capital - 17 - -
/person/place lived - 22 - -

Table 2: Relation Distribution over the top 300 pre-
dictions for PCNN+ATT(pcnn), RESIDE(res), DIS-
TRE(dis) and REDSandT(red) models

Metrics AUC
P@N(%)

100 200 300

REDSandT w/o rht 0.404 80.0 72.0 67.7
REDSandT w/o ET 0.415 78.0 74.0 71.3
REDSandT w. SDP 0.418 75.0 71.0 69.7
REDSandT w/o ar 0.422 75.0 76.0 71.0
REDSandT 0.424 78.0 75.0 73.0

Table 3: Evaluation results AUC and P@N of variant
models on NYT-10 dataset.

5.2 Ablation Studies

To assess the effectiveness of the different modules
of REDSandT, we create four ablation models:
REDSandT w/o ET: Removes entity types from
input sentence representation.
REDSandT w/o rht: Removes relation embedding
and relation attention. We represent sentence using
the [CLS] token of BERT’s last hidden layer hL .
REDSandT w/o ar: Removes relation attention
on instance tokens.
REDSandT w. SDP: Replaces STP with SDP (Xu
et al., 2015) in sentence encoding.

As shown in Table 3, all modules contribute to
final model’ s effectiveness. Greatest impact comes
from relation embeddings with their removal result-
ing in the highest AUC (2 units) and P@300 (5.3%)
drop. Meanwhile, P@100 goes up to 80% with in-
spection of top 300 predictions revealing a focus
on 5 relation types only, with /location/contains
to make up the 79% of these. Simple integra-
tion of entity types in input representation is the
next most important feature that boosts our model.

Next, “REDSandT w. SDP”, shows STP’s ability to
capture relational facts better, while by inspecting
model’ s relation distribution in top 300 predic-
tions, we observe SDP encoding to focus primarily
on /person/nationality. Finally, removing the re-
lation attention over instance tokens exhibits the
least effect in AUC (0.002) and precision (∼2%).
Meanwhile, we notice that model focuses solely on
8 relation types in the top 300 predictions.

5.3 Case study: Effect of relation attention

Figure 4: Relation attention weights for children (top)
and neighborhood of (bottom) long-tail relations.

Figure 4 shows a visualizationof the relation at-
tention weights, highlighting the different parts of
the sentence that drive relation extraction, for two
long-tail relations. In both cases we see that the
entity type is given more weight than the entity
itself. Moreover, we see which tokens affect more
the relation. Tokens “girlfriend”, “son”, and the
repetition of name “James” are predictive of the
“children” relation, while tokens “neighborhood”,
“was”, “in”, along with a GPE entity type show a
probable “neighborhood of ” relation.

6 Conclusion

We presented a novel transformer-based relation ex-
traction model for distant supervision. REDSandT
manages to acquire high-informative instance and
label embeddings and is efficient at handling the
noisy labeling problem of DS by exploiting the
common-sense knowledge of the pre-trained BERT
model. REDSandT captures high-informative em-
beddings for RE by fine-tuning BERT on a RE-
specific structured input that focuses solely on re-
lational arguments: the sub-tree connecting the
entities along with entities’ types. REDSandT uti-
lizes these vectors to encode label embeddings,
which are also used as attention mechanism over
instances to reduce the effect of less-informative
tokens. Finally, relation extraction occurs at bag-
level by concatenating label and weighted instance
embeddings. Future work includes an investigation
of whether additional information, such as entity
descriptors, influence REDSandT’s performance
and to what extent.
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