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ABSTRACT

The post-training phase of large language models (LLMs) plays a pivotal role in
refining models to follow instructions and align with human preferences. How-
ever, this phase is fraught with challenges, particularly in sourcing high-quality
post-training data. This paper introduces a novel approach, termed Parameters
Fusing, that simplifies the post-training process by amalgamating model parame-
ters delta from existing instruct-tuned checkpoints with a new base model tailored
to specific domain data obtained by continual pre-training. Utilizing open-weight
models such as Meta’s Llama, our method replicates the effects of the traditional
post-training phase while significantly reducing both time and resource costs. This
approach not only minimizes the challenges of post-training data acquisition but
also provides a flexible and efficient framework for enhancing LLMs with domain-
specific knowledge or capabilities.

1 INTRODUCTION

The creation of contemporary language foundation models involves a two-step process. The first
step is the pre-training phase, where the model undergoes extensive training using simple tasks such
as predicting the next token or generating captions. The second step is the post-training phase, where
the model is fine-tuned to follow instructions, align with human preferences, and enhance specific
skills (e.g., coding, tool-use, reasoning).

Post-training of large language models (LLMs) can be challenging due to their massive size and
complexity: 1) the biggest difficulty is the need for large amounts of high quality instruction aligned
training data, which can be time-consuming and expensive to obtain; 2) additionally, LLMs may
not always generalize well to new tasks or domains, requiring sophisticated fine-tuning or domain
adaptation; 3) another challenge is the risk of over-fitting (Chang et al., 2024; Kaplan et al., 2020;
Tirumala et al., 2022), where the model becomes too specialized to the training data and fails to
generalize to new inputs; 4) finally, there are also concerns about the safety implications of LLMs
when they are not trained properly, which perpetuate biases and stereotypes present in the training
data (1).

Figure 1: Parameter Delta Fusing: knowledge and capability transfer with no training cost
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Drawing inspiration from seminal works on model weights averaging (Izmailov et al., 2018; Nik-
ishin et al., 2018; Rame et al., 2022; Su & Chen, 2015; Wortsman et al., 2022a) and model merging
(Ilharco et al., 2022; Yadav et al., 2024; Yu et al., 2024), in this study, we explore the correlation
between alterations in model parameters and model performance. Our findings suggest that enhance-
ments in knowledge and capabilities can be achieved not only through post-training, but also simply
adding the pre-existing models’ parameters delta (derived by subtracting pre-trained checkpoints
from the instruct-tuned checkpoints).

The contributions of this study are articulated as follows:

• We introduce the concept of the Model Parameters Space and demonstrate that parameter
deltas can be added, subtracted, and transferred within homologous large language models
that share identical architectural frameworks.

• We report the discovery of a concave relationship between variations in model parameters
and their corresponding performances. We further explore and articulate the underlying
reasons and hypotheses for this concaveness.

• We present a novel method termed Parameters Fusing, which effectively replicates the ben-
efits of post-training without undergoing the entire post-training phase. We also illustrate
the feasibility of enhancing the performance of a post-trained model by strategically adjust-
ing parameter deltas derived from various existing checkpoints, leveraging the identified
concaveness property.

2 HYPOTHESIS AND THEORIES

Building upon our foundational hypothesis, we undertake a step-by-step analysis to demonstrate the
feasibility of transferring knowledge and capabilities through model parameter operations. In this
section, we aim to provide a rigorous and systematic exploration of the underlying mechanisms that
enable the transfer of knowledge and capabilities across models’ parameters.

2.1 THE RELATIONSHIP BETWEEN THE CHANGE OF MODEL PARAMETERS AND AMOUNT
OF TRAINING RECEIVED

Definition 2.1. Amount of Training Received is a conceptual metric, yet it can be quantified
through various indicators such as the number of training steps completed, the volume of data (e.g.,
number of tokens) on which the model has been trained, or the computational resources expended
(e.g., training FLOPs). We denote T as the amount of training received and Ti as the amount of
training received at step i.

Conjecture 2.1. The change of model parameters reflects the knowledge acquired through the
amount of training received.

Conventionally, the initialization of a model’s parameters is conducted either randomly or based on a
pre-trained checkpoint, with the model possessing no prior knowledge of the data it is tasked to learn.
As the training progresses, the model increasingly processes data, enabling it to discern patterns and
relationships within the dataset. This acquisition of knowledge is manifested in the modifications
to the model’s parameters, which become progressively refined and precise throughout the training
duration. Consequently, the parameters are updated to encapsulate this newly acquired knowledge,
proportionate to the extent of training received.

Conjecture 2.2. The change of model parameters is a bijection relationship to the amount of train-
ing received.

The bijection relationship is upheld due to each unique set of parameters changing corresponding
to a distinct level of training, provided that there is no stochastic variability during the training
process and all exogenous factors, like training hyper-parameters, remain constant. Consequently,
given knowledge of the quantity of training data utilized and the constancy of all training hyper-
parameters, it is possible to ascertain the specific set of model parameters that were updated to
during the training phase.
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2.2 DEFINITIONS OF MODEL PARAMETERS SPACE

Model parameters are pivotal in determining how a model processes input data and subsequently
makes predictions or decisions. The Model Parameters Space can be defined as a representation of
the underlying knowledge that the model has acquired through the training it has undergone.
Definition 2.2. Model Parameters Space refers to a high-dimensional space composed of the sets
of parameters associated with homologous models, consistent within the same model architecture.
We denote Θ as the model parameters. The homologous models encompasses consistent model
configuration parameters, such as the number of layers, number of heads, and number of dimensions,
as well as the tokenizer.

The model parameters space and text embedding space (Aggarwal & Zhai, 2012; Angelov, 2020;
Church, 2017) can be considered analogous. Text embedding space is a high-dimensional domain
where words, phrases, or entire documents are represented as dense vectors. These vectors encapsu-
late the semantic meanings and relationships among the input data, thereby facilitating the model’s
execution of various natural language processing tasks. Similarly, just as the embedding space
conveys the meanings and relationships inherent in text-based data, the model parameters space em-
bodies the model’s comprehension of the tasks or the knowledge it has accrued through the training
it has received. For a large language model, its model parameters encapsulates the knowledge it
has assimilated, while the entirety of the parameters space represents the full spectrum of potential
world knowledge that can be learned.

2.3 ADDITIVITY, SUBTRACTIVITY AND TRANSFERABILITY IN MODEL PARAMETERS SPACE

Proposition 2.1. The parameters of the language model are additive, subtractive, and transferable
within its model parameters space, reflecting the corresponding amount of training involved in these
operations.

Our preceding hypothesis can be reformulated as Θj − Θi ←→ Tj − Ti, where←→ denotes both
the reflection of the knowledge acquired and the bijection relationship. When i = 0, the model is
initialized randomly, embodying a state of zero knowledge.

Additivity: Building upon the concept of model weights averaging(Izmailov et al., 2018; Nikishin
et al., 2018; Rame et al., 2022; Su & Chen, 2015; Wortsman et al., 2022a), the parameters of a
language model can be aggregated and averaged to forge a new set of parameters that encapsulate
the collective knowledge from multiple training checkpoints. This relationship is mathematically
represented as Θi +Θj ←→ Ti + Tj .
Subtractability: In a similar vein, the parameters of a language model can be subtracted from
one another to yield a new set of parameters that delineate the differential knowledge between two
models. This is expressed as Θj −Θi ←→ Tj − Ti.
Transferability: The knowledge encapsulated in a language model checkpoint can be transferred
to another model within the same parameters space, enabling the recipient model to assimilate the
knowledge and capabilities of the original model. This process is depicted as Θk + (Θj −Θi)←→
Tk + (Tj − Ti). Transfer learning, a specific instance of transferability, can be formulated as
Θk + (Θj −Θ0)←→ Tk + (Tj − T0).

The subsequent definitions are derived based on the properties inherent to the model parameters
space:
Definition 2.3. Model Parameters Delta is the subtraction of model parameters between two
checkpoints within the same model parameters space. Mathematically, it is expressed as ∆Θji =
Θj − Θi. This corresponds to the concept of task vectors as discussed by Yadav et al. (2024) and
Ilharco et al. (2022), or to the delta parameters as described by Yu et al. (2024) and Ding et al.
(2023).
Definition 2.4. Parameters Fusing refers to the process of executing operations on parameters
within the same model parameters space, with the objective of synthesizing an integrated model.
These operations typically involve adding, subtracting and transferring the model parameters or
model parameters delta. This broadens the notion of model merging as discussed in the works of
Ding et al. (2023); Ilharco et al. (2022); Yadav et al. (2024); Yu et al. (2024).
Definition 2.5. Fused Model refers to a model characterized by the integration of parameters or
model parameters delta from existing models, rather than being directly trained through data.
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Additionally, we provide a notation table below to ensure consistency throughout the paper.

Notation Description
Θ model parameters
Θ0, Θbase, Θpretrain pre-trained or base model parameters
Θi, Θinst, Θpost-train post-trained or instruction-finetuned model parameters
Θcpt continual pre-trained model parameters, it’s also a base model
∆Θ parameter delta between a post-trained model and a pre-trained model
T amount of training received
α scaling factor of parameter delta ∆Θ

2.4 MODEL PERFORMANCE IS CONCAVE TO THE CHANGE OF MODEL PARAMETERS

Conjecture 2.3. The relationship between model performance and the amount of training received
is characterized as a concave function.

A concave function is one that is curved inward, where the rate of change of the function’s slope
is negative. Typically, model performance exhibits concavity relative to the amount of training
received. This implies that as training progresses, model performance initially improves rapidly but
eventually reaches a plateau and may even decline. This pattern occurs because the model quickly
assimilates new information from the data at the outset but gradually approaches a saturation point,
beyond which it may overfit if training persists excessively.

Proposition 2.2. The performance of the language model is concave with respect to changes in the
parameters within the model parameters space. Specifically, f((1−α)Θi+αΘj) ≥ (1−α)f(Θi)+
αf(Θj) where f(∗) denotes the model performance.

Given that model performance exhibits concavity with respect to the amount of training received, and
considering our hypothesis that changes in model parameters reflect the knowledge acquired through
training, it follows logically that language model performance is concave relative to changes in the
parameters. This pattern will be substantiated through our experimental observations. Additionally,
the following corollary can be logically inferred:

Conjecture 2.4. The performance derived from averaging model parameters across several check-
points will surpass the performance obtained by averaging the model outputs from those same check-
points.

Izmailov et al. (2018); Rame et al. (2022); Wortsman et al. (2022a) have also documented analogous
outcomes in their research, highlighting enhancements in model accuracy, improved generalization
capabilities, and increased stability and robustness, when implementing the model parameters aver-
aging. This assertion supports the hypothesis that the fusion of model parameters typically results
in equivalent, if not better, model performance. Additionally, we experiment to demonstrate the
validity of this conjecture.

2.5 KNOWLEDGE AND CAPABILITY TRANSFER THROUGH ADDING EXISTING MODELS’
PARAMETERS DELTA

Drawing from Proposition 2.3, it is logically deduced that the manipulation of model parameters
facilitates the effective transfer of knowledge and capabilities. This assertion represents the core
claim and key contribution of this paper.

Proposition 2.3. The language model can assimilate the knowledge and capabilities typical of the
post-training stage by fusing the model parameters delta between an instruct-tuned checkpoint and
a pre-trained checkpoint.

Conventionally, the domain expansion a large language model involves initially continuing to train
the pre-trained checkpoint through a next token prediction task (Ke et al., 2023) to acquire domain-
specific knowledge (e.g., coding, mathematics, tool calling, or other domain-specific data). This
is followed by a standard post-training process, which includes Supervised Fine-Tuning (SFT)
(Brown, 2020; Dubey et al., 2024; Touvron et al., 2023) and either Direct Preference Optimization
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(DPO)(Dubey et al., 2024; Rafailov et al., 2024; Touvron et al., 2023) or Proximal Policy Opti-
mization (PPO) (Ouyang et al., 2022; Schulman et al., 2017). Our proposed approach bypasses the
standard post-training process and instead fuses the available post-trained model parameters into
pre-trained model. Mathematically, this is represented as

Θcpt +∆Θ = Θcpt + (Θinst −Θbase)←→ Tcpt + (Tinst − Tbase) (1)

where Θcpt is from the newly continual-pre-trained base model, Θinst and Θbase are from pre-existing
models, Tinst − Tbase symbolizes the post-training process, and f(Θcpt + ∆Θ) yields legitimate
outputs (i.e., the model performs effectively). We validate the efficacy of this approach will through
experimental observations.

3 EXPERIMENTS

3.1 EXPERIMENTS SETUP

We utilize open-weights checkpoints of Llama3 and Llama3.1 (Dubey et al., 2024), specifically em-
ploying the 8B and 70B model architectures. The datasets employed are sourced from open-source
collections as reported in the Llama3 paper, which include MMLU(Hendrycks et al., 2021a), IFE-
val(Zhou et al., 2023), HumanEval(Chen et al., 2021), MBPP(Austin et al., 2021), GSM8K(Cobbe
et al., 2021), MATH(Hendrycks et al., 2021b), ARC Challenge (Clark et al., 2018), GPQA (Rein
et al., 2023), BFCL(Yan et al., 2024), API-Bank(Li et al., 2023), and MGSM(Shi et al., 2022).

3.2 MODEL PERFORMANCE CONCAVENESS VALIDATION

3.2.1 MODEL PERFORMANCE CONCAVENESS ON THE CHANGE OF MODEL PARAMETERS

In the initial experiment, we assess the performance of fused models with varying parame-
ters to elucidate the concave relationship (referenced in Conjecture 2.4) between model perfor-
mance and changes in parameters. The experiments are conducted using both Llama3.1-8b and
Llama3.1-70b models. Each interim fused checkpoint is defined as Θi = Θ0 + α∆Θ, where
α ∈ {0, 0.1, 0.2, . . . , 2}. Θ0 is the Llama3.1-base model and ∆Θ is the parameter delta between
Llama3.1-inst and Llama3.1-base model. When α = 0, the checkpoint corresponds to the pre-
trained model; at α = 1.0, it aligns with the instruct model checkpoint.

(a) Llama3.1-8b (b) Llama3.1-70b

Figure 2: Concave shape of model performance to different scale of model parameters delta
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Figure 2 presents a selected set of concave curves illustrating the relationship between model per-
formance and changes in model parameters. All depicted curves demonstrate legitimate responses
and exhibit concave relationships, corroborating our hypothesis. Notably, the apex of performance
is consistently observed around α = 1, suggesting that the publicly released Llama3.1 models are in
their optimal states for each respective model architecture. Additional examples of concave curves
can be found in Figures 5 and 6, all of which further confirm the concave relationships.

3.2.2 MODEL PERFORMANCE CONCAVENESS WHEN FUSING OTHER HOMOLOGOUS
MODELS IN THE OPEN WEIGHT COMMUNITY

In this section, we expand our investigation to include Llama-homologous models that are avail-
able to the community. Specifically, we incorporate the Llama3.1-8b-style model, Llama3.1-8B-
Chinese-Chat (Wang et al., 2024), and the Llama3.1-70b-style model, Reflection-Llama-3.1-70B
(Shumer, 2024), both sourced from HuggingFace. Our objective is to evaluate the performance
implications of varying degrees of integration between the native Llama3.1 models and analogous
community-developed models, thereby testing the concave relationship posited in Conjecture 2.4.
The methodology for creating each fused model checkpoint involves calculating the weighted aver-
age of the model parameters from the Llama3.1-inst checkpoint and the corresponding community
model checkpoint. The formula used is as follows: Θi = Θ0+α∆Θ∗+(1−α)∆Θ, where ∆Θ∗ is
from the community model and ∆Θ is from the vanilla Llama3.1 model, α ∈ {0, 0.1, 0.2, . . . , 1}.
At α = 0, the model strictly represents the official Llama3.1-inst model, whereas at α = 1, it fully
represents the community instruct model checkpoint.

(a) Llama3.1-8b different scale of fusion (b) Llama3.1-70b different scale of fusion

Figure 3: Concave shape of model performance to different scale of model fusion between Llama3.1-inst
checkpoints and Hugging Face open-weight checkpoints

Figure 3 presents a series of concave curves that illustrate the relationship between model perfor-
mance and varying levels of parameter fusion. The analysis of these curves leads to two critical
observations: 1) all curves demonstrate legitimate responses validate the presence of concave re-
lationships, supporting the initial conjecture. 2) the concavity property indicates that some fused
checkpoints outperform both the pure Llama3.1-inst model (α = 0) and the standalone commu-
nity model (α = 1). This is noteworthy, especially considering that the performance of community
models generally fall short of the Meta-released Llama-inst models on certain benchmarks.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3 KNOWLEDGE AND CAPABILITY ACQUISITION VIA POST-TRAINING MODEL
PARAMETERS FUSING

The experiment in the last sub-section demonstrated the legitimacy of responses generated from
checkpoints with model parameter operations. The experiment in this subsection aims to show that
knowledge gained through post-training can also be acquired by adding the ∆Θ of pre-existing
checkpoints to a new base model Θbase.

3.3.1 BYPASSING POST-TRAINING THROUGH MODEL PARAMETERS FUSING ON
CONTINUAL-PRETRAINED CHECKPOINTS

To contextualize our research within a practical framework, we designed an experiment that extends
the pre-training phase by employing the next-token prediction task on a newly generated document
(refer to Document A.5) that could not have been encountered by the Llama 3.1 pre-trained model
during its initial pre-training phase. We use lr=1e−5, batch size=1, seq len=512, steps=125, 8 H100
GPUs to continually pre-train the 8B model; and lr=1e−5, batch size=1, seq len=512, steps=60, 16
H100 GPUs to continually pre-train the 70B model. Subsequently, we integrate the ∆Θ from the
prior post-training phase, into the newly updated continual-pre-trained model checkpoint Θcpt to pro-
duce an equivalent instruct-model (Θ = Θcpt+∆Θ). We then evaluate this ”CPT-fused-inst” model’s
performance in terms of both domain knowledge acquisition and its ability to follow instructions (on
standard benchmarks). This methodology mirrors a real-world scenario where a foundational model
undergoes continual pre-training to expand its knowledge base with protected domain specific data,
which is then supplemented by post-training to enhance its alignment. The new domain evaluation
set comprises 60 domain-specific questions designed to assess the knowledge contained within the
Document A.5 undergoing continual pre-training. We employ Llama3.1-70b-inst as the LLM eval-
uator, providing it with an appropriate prompt that includes the entire document as context. This
setup enables the LLM evaluator to determine the accuracy of each response generated by the fused
models and the vanilla Llama models.

Category Benchmark llama3.1-8b-inst CPT-fused-8b-inst llama3.1-70b-inst CPT-fused-70b-inst

General

MMLU 0.6939 0.6926 0.8342 0.8256
MMLU PRO 0.4865 0.4764 0.6631 0.6516
IFEval 0.7154 0.7385 0.8769 0.9077

Code HumanEval 0.6951 0.6037 0.8049 0.7927
MBPP EvalPlus 0.7037 0.7143 0.8492 0.8255

Math GSM8K 0.8423 0.8302 0.9538 0.9522

Reasoning ARC Challenge 0.8369 0.8395 0.9468 0.9433
GPQA 0.2969 0.2924 0.4665 0.4263

Tool use BFCL 0.6790 0.5651 0.7570 0.7126
Multilingual MGSM 0.6882 0.6156 0.8700 0.8695
New domain 0.0000 0.7667 0.0000 0.7667

Table 1: Performance comparison between Llama-CPT-fused models and original Llama-inst models

The parameters fusing can be deemed successful based on the following observations: 1) as shown
in Table 1, the CPT-fused-inst models demonstrate the capability to accurately answer domain-
specific questions, achieving an accuracy score exceeding 75% (samples responses in Section A.4).
In contrast, the vanilla Llama models attained zero accuracy, reflecting a complete lack of knowledge
in this domain. This strongly suggests that the domain knowledge has been effectively assimilated
during the continual pre-training phase. 2) furthermore, as depicted in , the performance of the
Llama-CPT-fused-inst models closely align with that of the original Llama-inst models. Notably,
there is a slight decline in performance in certain benchmarks, primarily attributable to the transfer
efficiency (to be discussed in Section 3.4), potential variability in the evaluation setup, or lack of
annealing in our continual pre-training phrase. These findings underscore that the incorporation of
∆Θ enables the bypassing of conventional post-training approaches while maintaining equivalent
performance levels.

3.3.2 ABLATION STUDIES ON LLAMA3 AND LLAMA3.1 MODELS PARAMETERS FUSING

To further investigate the dynamics of parameter fusion within the homologous model parameter
space, we consider two scenarios: (1) adding the ∆Θ of Llama3 to Llama3.1-base model (denoted
as Θ3.1

base + ∆Θ3), and (2) adding the ∆Θ of Llama3.1 to the base checkpoint of Llama3 (denoted

7
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as Θ3
base + ∆Θ3.1). For the evaluation results, we categorized them two three groups: 1) General:

common evaluation sets that both Llama3 and Llama3.1 perform well on; 2) Tool use: according
to the Llama3 paper(Dubey et al., 2024), tool use knowledge is primarily learned during the post-
training stage, an area where pre-trained models perform poorly.

Fused Models
Category Benchmark ΘLlama3-base ΘLlama3.1-base ΘLlama3-inst ΘLlama3.1-inst Θ3.1

base+∆Θ3 Θ3
base+∆Θ3.1

8B

General

MMLU 0.6161 0.6603 0.6848 0.6939 0.6863 0.6799
MMLU PRO 0.3300 0.3637 0.4546 0.4865 0.4551 0.4394
IFEval 0.4000 0.3231 0.6616 0.7154 0.7231 0.7154

Code HumanEval 0.3049 0.2744 0.6220 0.6951 0.6463 0.6585
MBPP EvalPlus 0.5900 0.5926 0.7063 0.7037 0.7328 0.7169

Math GSM8K 0.5026 0.5004 0.8143 0.8423 0.7847 0.8218
MATH 0.1044 0.1128 0.2760 0.4970 0.2888 0.4618

Reasoning ARC Challenge 0.6258 0.6532 0.8206 0.8369 0.8275 0.8309
GPQA 0.0513 0.0625 0.3281 0.2969 0.3058 0.2746

Tool use BFCL - - 0.6010 0.6790 0.6087 0.6384
API Bank 0.2532 0.2481 0.4885 0.8210 0.5192 0.8082

Multilingual MGSM 0.0227 0.0399 0.6085 0.6882 0.6033 0.6400
70B

General

MMLU 0.7878 0.7846 0.8198 0.8342 0.8167 0.8291
MMLU PRO 0.5399 0.5126 0.6321 0.6631 0.6205 0.6546
IFEval 0.6692 0.6615 0.8154 0.8769 0.8385 0.9231

Code HumanEval 0.3963 0.3902 0.8049 0.8049 0.7866 0.8049
MBPP EvalPlus 0.6693 0.7037 0.8280 0.8492 0.8069 0.8466

Math GSM8K 0.0440 0.0129 0.9333 0.9538 0.9227 0.9530
MATH 0.2752 0.1624 0.4996 0.6624 0.4984 0.6402

Reasoning ARC Challenge 0.8773 0.8893 0.9425 0.9468 0.9425 0.9442
GPQA 0.1429 0.2277 0.4062 0.4665 0.4219 0.4487

Tool use BFCL - - 0.7683 0.7796 0.7773 0.7665
API Bank 0.3785 0.1330 0.8517 0.9003 0.8286 0.9003

Multilingual MGSM 0.0937 0.1830 0.8405 0.8700 0.8405 0.8624

Table 2: Knowledge and capability transfer through post-training parameters fusing on Llama3-8b and Llama3-
70b models

Tables 2 presents the performance of Llama-inst, Llama-pretrain, and fused models on various eval-
uation sets. Our observations are as follows: 1) all fused models (Θbase + ∆Θ) produce legitimate
outputs; 2) for both 8b and 70b models, Θ3.1

base+∆Θ3 checkpoints exhibit performance similar to that
of the ΘLlama3.1-inst checkpoints, but with slightly lower scores. This indicates that the knowledge and
capabilities gained from post-training of one model (Llama 3) can be transferred to a second model
(Llama3.1) by adding the parameters delta of first model to the parameters of the second model and
also aligns with the fact that Llama3.1 received more training during its post-training phase com-
pared to Llama3; 3) for 70b model, the Θ3

base+∆Θ3.1 checkpoint demonstrates performance similar
to, or slightly better than, the ΘLlama3-inst checkpoints (although this pattern is not clear for the 8b
model). This observation substantiates the transfer and alignment of knowledge and capabilities
between the two models, indicating that Llama3.1 underwent a more extensive post-training phase
compared to Llama3; 4) in the context of tool use, it is evident that the capability to utilize tools can
be acquired by adding ∆Θ to base models’ parameters, as this tool calling capability is typically
only gained during the post-training phase.

3.4 QUANTITATIVE ANALYSIS ON THE EFFECTIVENESS AND EFFICIENCY OF TRANSFER

We further conduct a quantitative study to examine the performance of fused models, so as to
estimate the effectiveness and efficiency of knowledge and capability transfer. We denoted the
model performance of a checkpoint as f(∗) and represented the real performance of a fused check-
point as f(Θi

base + ∆Θj). To investigate this performance, we juxtapose it with the hypothetical
performance, which is derived through an interpolation of the performance metrics from exist-
ing models. This hypothetical performance for the fused model is represented mathematically as
f(Θi

base) + f(Θj
inst)− f(Θj

base).

The hypothetical model performance demonstrates a high degree of explanatory power, accounting
for over 98% of the variation in real performance for the 8b model and more than 99.4% for the 70b
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(a) Θ3.1
base +∆Θ3 , Llama-8b

β = 0.9786, R2 = 0.9921

(b) Θ3
base+∆Θ3.1 , Llama-8b

β = 0.9845, R2 = 0.9915

(c) Θ3.1
base +∆Θ3 , Llama-70b

β = 0.9805, R2 = 0.9950

(d) Θ3
base+∆Θ3.1 , Llama-70b

β = 0.9986, R2 = 0.9943

Figure 4: Relationship between the real performance of fused models and their hypothetical performance. The
high R2 values suggests that the hypothetical performance is a reliable estimate of the actual performance of
the fused models

model. This observation suggests that 1) the hypothetical performance serves as a reliable estimate
of the actual performance of the fused models, as evidenced by their respective coefficients of deter-
mination (R2) values; 2) the knowledge and capabilities acquired through post-training process of
one model can be effectively and almost seamlessly transferred to a second model via the addition
of the parameters delta from the first model to the parameters of the second model, with minimal
loss or distortion. This is evidenced by the regression coefficient β being close to 1, indicating a
near-perfect linear relationship between the hypothetical and actual performances. Each subfigure
in Figure 4 contains more than 500 data points, with each point representing an evaluation metric.
The parameter β may also be interpreted as the coefficient of transfer efficiency.

4 RELATED WORK

4.1 LARGE LANGUAGE MODEL POST-TRAINING

Large language model post-training often consists of supervised finetuning (SFT)(Brown, 2020;
Dubey et al., 2024; Touvron et al., 2023) and follow-up alignment such as Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017) and Direct Preference Optimization (DPO) (Rafailov et al.,
2024). GPT-series models (Brown, 2020; Ouyang et al., 2022) are using PPO according to their
latest released tech report while Llama-series models are using DPO (Dubey et al., 2024; Touvron
et al., 2023) according to their paper. Both PPO and DPO incorporate human preference data to
LLM for model alignment.

Post-training can be a challenging process, as the size and quality of the dataset used can signifi-
cantly impact the effectiveness and difficulty of post-training. Overfitting is a common phenomenon
observed in large language model training, which can lead to reduced generalization performance
and decreased robustness (Tirumala et al., 2022). Therefore, it is crucial to carefully select and
preprocess the dataset (Dubey et al., 2024; Touvron et al., 2023), as well as employ appropriate
regularization techniques to mitigate overfitting.

9
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4.2 PARAMETER SPACE, MODEL WEIGHTS AVERAGING AND MODEL MERGING

Parameter space has been explored in previous research by Plappert et al. (2017); Sedlmair et al.
(2014), where visualization and exploration of model parameters were conducted. Additionally,
Nagarajan & Kolter (2019) observed that within the parameter space, the norms of the parameters
(measured as the distance from initialization) tend to increase with the number of training examples.
Building upon these findings, our study expands the concept of model parameters space and hypoth-
esizes that the variation in the model parameters are reflective of, and proportional to, the amount of
training received.

Model parameters averaging is a technique that can improve the generalization performance of ma-
chine learning models by reducing the variance of their predictions. Izmailov et al. (2018) introduced
Stochastic Weight Averaging (SWA) that finds much flatter solutions than Stochastic Gradient De-
scent (SGD) and achieves significant improvement in test accuracy. Neyshabur et al. (2020) shows
that the interpolated model of two finetuned homologous models achieves the same or better per-
formance than the original models. Wortsman et al. (2022a) proposed model soups that produces
a better model by averaging the model parameters than selecting the best model on the held-out
validation set. Rame et al. (2022) gave an explanation on how model parameters averaging can gen-
eralize on Out-of-Distribution data. Nikishin et al. (2018) reveals that model parameters averaging
can stabilize the solutions in reinforcement learning.

Model merging, transcending mere averaging of weights, is an emerging field focused on integrat-
ing multiple task-specific models into a unified model that retains the capabilities of the original
models (Ilharco et al., 2022; Jin et al., 2022; Matena & Raffel, 2022; Neyshabur et al., 2020; Nik-
ishin et al., 2018; Wortsman et al., 2022a;b; Yadav et al., 2023; Yu et al., 2024; Zhang et al., 2023).
Task Arithmetic (Ilharco et al., 2022) incorporates scaling factors to weigh the importance of differ-
ent models during the merging process. Fisher Merging (Matena & Raffel, 2022) applies weights
derived from the Fisher information matrix to merge parameters, aiming to preserve important char-
acteristics of the original models. RegMean Jin et al. (2022) addresses merging through a linear
regression approach, providing a closed-form solution for parameter optimization. TIES-Merging
Yadav et al. (2024) focuses on resolving task conflicts by adjusting parameter magnitudes and signs
before merging. DARE Yu et al. (2024) randomly drops delta parameters and rescales the remaining
ones for parameters fusing.

We expand the concept of additivity in model parameters to encompass subtractivity and transfer-
ability, enabling operations across various model checkpoints within the same parameters space.
This enhancement allows for more flexible manipulation of model parameters. Furthermore, we
elucidate the principles underlying model merging and parameter fusion by correlating them with
the extent of training reflected in parameter changes. Additionally, we establish a concave relation-
ship between model performance and parameter changes. Ultimately, we empirically demonstrate
that traditional post-training processes can be effectively substituted with direct parameter fusion.

5 CONCLUSIONS

In this paper, we have discussed and shown that the change of model parameters carries the amount
of training it has received, and therefore the language model can gain the knowledge and capability
of the post-training stage from the model parameters delta between instruct-tuned checkpoint and
pre-trained checkpoint. As a result, we present a novel approach for knowledge transfer through
large language models’ parameters fusing by incorporating parameters delta (derived from subtract-
ing the pre-trained checkpoints from the instruct-tuned checkpoints from open-weight models such
as Meta’s Llama) into pre-trained checkpoints. This approach can effectively bypass the entire
post-training process, while achieving the similar performance, therefore significantly reducing data
annotation and training costs in terms of money, time, and compute.

We believe that our approach has the potential to advance the field of natural language processing
by making it easier and more efficient to train and deploy large language models. We hope that our
work will inspire further research in this area and lead to the development of even more advanced
techniques for knowledge transfer through large language models’ parameters fusion.
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A APPENDIX

A.1 IMPACT STATEMENT

The research presented in this paper has significant implications for the field of artificial intelligence,
particularly in the development and optimization of large language models (LLMs). By introducing
a novel methodology for parameter fusion, the study addresses the complex and resource-intensive
phase of post-training LLMs. This innovative approach not only replicates the benefits traditionally
achieved through post-training but also substantially reduces associated costs and time expenditures.
Furthermore, it simplifies the process of expanding the model’s domain knowledge and capabilities,
such as tool-use, coding proficiency, and tonal qualities by allowing for the strategic combination of
parameter deltas from various checkpoints, including those from open-weight models. This aspect
is particularly impactful for the community, as it democratizes access to advanced model tuning
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techniques, enabling a broader base of researchers and developers to contribute to and benefit from
state-of-the-art LLMs. The flexibility in model customization could lead to more tailored and effi-
cient AI systems. The potential for this method to streamline the refinement of LLMs and reduce
dependency on extensive computational resources could mark a transformative shift in how these
models are developed, making advanced AI more accessible and sustainable. This could ultimately
accelerate innovation and broaden the application of LLMs across different sectors, with the open-
weight community playing a pivotal role in this evolution.

A.2 COMPARISON BETWEEN FUSED MODEL AND LORA MODELS

We selected two LoRA models from the open-weight community on Hugging Face, specifically
trained on Llama3-8b models: Llama3-lora-1 (SkyOrbis/SKY-Ko-Llama3-8B-lora) and Llama3-
lora-2 (MadMarx37/llama3-8b-alpaca-lora-peft). These were compared to the Llama3-fused model,
a parameter-delta-fused model based on Llama3-8b, with parameter deltas derived from the
Llama3.1 model. Our findings indicate that the Llama3-fused model significantly outperforms the
LoRA models, achieving superior results with zero training cost. This further demonstrates the
resource efficiency and high performance of our method. The weak results of Llama3-lora-2 (espe-
cially in GSM8K and GPQA) are due to illegitimate responses and repeated tokens.

Metric Key Llama3-lora-1 Llama3-lora-2 Llama3-fused
MMLU 0.6447 0.5826 0.6800
MML PRO 0.3725 0.2639 0.4394
IF EVAL 0.4462 0.2846 0.7154
GSM8K 0.6641 0.0000 0.8218
ARC Challenge 0.7957 0.6678 0.8309
GPQA 0.2790 0.0201 0.2746
MGSM 0.3349 0.1185 0.6400
GPU HOUR (A100) 25 - 0

Table 3: Comparison between Fused model and LoRA models: Fused model can achieve higher performance
than LoRA models with zero training cost.

A.3 CONCAVENESS ON OTHER PERFORMANCE METRICS

Figure 5 6 show more selected concave shapes of model performance to change of model parameters.

A.4 FUSED MODELS WITH CONTINUAL-PRETRAINED CHECKPOINTS DO HAVE DOMAIN
KNOWLEDGE AND INSTRUCTION FOLLOWING CAPABILITY

Query llama3.1-8b-inst llama3.1-8b-inst + docu-
ment

llama3.1-8b-cpt-fused-inst

What is the real
name of Dr.
Fantasy?

The real name of Dr.
Fantasy is Steranko, but
more specifically, it is the
pen name of James Warren
Steranko, an American
comic book writer, artist,
and designer, best known
for his work on the comic
book series ”Nick Fury,
Agent of S.H.I.E.L.D.” and
”Captain America”.

The real name of Dr. Fan-
tasy is Elliot Thompson.

The real name of Dr. Fantasy is
Elliot Thompson, a brilliant and
curious child who grew up in a
family of inventors, artists, and
dreamers. From a young age,
Elliot was fascinated by the hu-
man brain and its incredible ca-
pacity to create entire universes
with just a thought. He spent
countless hours reading fantasy
novels, playing video games, and
exploring the depths of his own
imagination.
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What is the title
of Dr. Fantasy’s
dissertation?

I don’t have information on
Dr. Fantasy’s dissertation.

The title of Dr. Fantasy’s
dissertation is ”The Neural
Correlates of Imagination.”

Dr. Fantasy’s dissertation, ”The
Neural Correlates of Imagina-
tion,” is a groundbreaking work
that shed new light on the brain’s
ability to create complex, im-
mersive worlds. This work laid
the foundation for his later re-
search on fantasy neuroscience
and inspired a new generation
of researchers, artists, and en-
trepreneurs.

What is the
”Fantasia”
virtual reality
platform?

Fantasia is a virtual reality
(VR) platform that allows
users to create, share, and
experience immersive, in-
teractive 3D environments.
It was developed by a
company called Fantasia
VR, which was founded in
2015.

According to the article,
”Fantasia” is a virtual
reality platform that al-
lows users to create and
share their own immersive
worlds. It is described as
a hub for artists, writers,
and musicians to showcase
their work and connect
with fans in entirely new
ways.

Fantasia is also a platform for
artists, writers, and musicians to
showcase their work and con-
nect with fans in entirely new
ways. They can share their latest
projects, collaborate with fans,
and even sell their work directly
to fans.

Where was Dr.
Fantasy born?

I don’t have information on
where Dr. Fantasy was
born. Can I help you with
anything else?

Dr. Fantasy was born in a
small town in the English
countryside.

Dr. Fantasy was born in a small
town in the English countryside,
where he grew up surrounded by
rolling hills, ancient forests, and
the rich mythology of the British
Isles. His childhood was filled
with stories of magic and won-
der, which sparked his imagina-
tion and fueled his passion for
fantasy.

Table 4: Performance comparison between Llama-cpt-fused models and original Llama-inst models on 8b

Query llama3.1-70b-inst llama3.1-70b-inst + docu-
ment

llama3.1-70b-CPT-fused-inst

What is the real
name of Dr.
Fantasy?

I’m not aware of a well-
known character or per-
sona called ”Dr. Fantasy.”
Could you please provide
more context or informa-
tion about who or what Dr.
Fantasy is? I’d be happy to
try and help you find the an-
swer.

Elliot Thompson Elliot Thompson.

What is the title
of Dr. Fantasy’s
dissertation?

I’m not aware of any in-
formation about a person
named Dr. Fantasy or
their dissertation. Could
you provide more context
or clarify who Dr. Fantasy
is?

”The Neural Correlates of
Imagination”

The title of Dr. Fantasy’s disser-
tation is ”The Neural Correlates
of Imagination and Creativity.”
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What is the
”Fantasia”
virtual reality
platform?

Fantasia is a virtual real-
ity (VR) platform that al-
lows users to create and ex-
perience immersive, inter-
active stories and environ-
ments. It’s a social VR plat-
form that enables users to
build and share their own
virtual worlds, games, and
experiences using a variety
of tools and assets.

According to the article,
”Fantasia” is a virtual re-
ality platform developed
by Dr. Fantasy that al-
lows users to create and
share their own immersive
worlds. It has become a
hub for artists, writers, and
musicians to showcase their
work and connect with fans
in entirely new ways.

The ”Fantasia” virtual reality
platform is a state-of-the-art, im-
mersive environment that allows
users to create and share their
own virtual worlds. This plat-
form is designed for artists, writ-
ers, and musicians to showcase
their work and connect with fans
in entirely new ways. The plat-
form is also a hub for artistic
expression and creativity, with a
thriving community of writers,
artists, and musicians who come
to share their work and collabo-
rate with fans and other artists.

Where was Dr.
Fantasy born?

I couldn’t find any infor-
mation on a person named
”Dr. Fantasy.” It’s possible
that this is a fictional char-
acter or a pseudonym. Can
you provide more context
or clarify who Dr. Fantasy
is?

Dr. Fantasy was born in a
small town in the English
countryside.

Dr. Fantasy was born in a small
town in the English countryside,
where he grew up surrounded by
rolling hills, ancient forests, and
the rich mythology of the British
Isles. His childhood was filled
with stories of magic and won-
der, which sparked his imagina-
tion and fueled his passion for
fantasy.

Table 5: Performance comparison between Llama-cpt-fused models and original Llama-inst models on 70b

A.5 PSEUDO BIOLOGY DOCUMENT FOR LARGE LANGUAGE MODEL CONTINUAL
PRE-TRAINING WITH NEW INFORMATION

The Origins of Dr. Fantasy

In a world where reality was woven from the threads of imagination, Dr. Fantasy was born. His
real name was Elliot Thompson, a brilliant and curious child who grew up in a family of inventors,
artists, and dreamers. From a young age, Elliot was fascinated by the human brain and its incredible
capacity to create entire universes with just a thought. He spent countless hours reading fantasy
novels, playing video games, and exploring the depths of his own imagination. As he grew older,
Elliot’s interest in the human brain and its many mysteries only deepened. He pursued a career in
neuroscience, earning his Ph.D. in cognitive psychology from a prestigious university. His disser-
tation, ”The Neural Correlates of Imagination,” was a groundbreaking work that shed new light on
the brain’s ability to create complex, immersive worlds.

The Birth of Dr. Fantasy

Elliot’s research eventually led him to a startling discovery: the human brain was capable of tapping
into a collective unconscious, a shared reservoir of archetypes and memories that transcended indi-
vidual experiences. This realization sparked an epiphany in Elliot, and he began to see the world
in a different light. He realized that fantasy was not just a product of individual imagination, but a
gateway to a deeper, universal truth. Emboldened by his discovery, Elliot adopted the persona of
Dr. Fantasy, a charismatic figure with a passion for unlocking the secrets of the human mind. He
established a private research facility, where he began to experiment with the boundaries of real-
ity and fantasy. Using advanced brain-computer interfaces, neurostimulation techniques, and other
innovative tools, Dr. Fantasy set out to push the limits of human imagination.

The Work of Dr. Fantasy

Over the years, Dr. Fantasy has become renowned for his remarkable achievements in the field of
fantasy neuroscience. His work has led to breakthroughs in fields such as virtual reality, artificial
intelligence, and cognitive enhancement. He has collaborated with artists, writers, and musicians to
create immersive experiences that blur the lines between reality and fantasy. One of Dr. Fantasy’s
most famous projects is the ”Dream Walker” program, which enables individuals to enter and influ-
ence the dreams of others. This technology has been used to treat psychological disorders, enhance
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Figure 5: Concave shapes of model performance to scale of model parameters delta - Llama3.1-8b

Figure 6: Concave shapes of model performance to scale of model parameters delta - Llama3.1-70b

creative problem-solving, and even facilitate diplomacy and conflict resolution. Dr. Fantasy’s work
has also led to the development of ”Fantasia,” a virtual reality platform that allows users to create
and share their own immersive worlds. This platform has become a hub for artists, writers, and
musicians to showcase their work and connect with fans in entirely new ways.

The Philosophy of Dr. Fantasy

At the heart of Dr. Fantasy’s work is a profound respect for the human imagination. He believes
that fantasy is not just a form of escapism, but a fundamental aspect of the human experience.
By embracing our fantasies, we can tap into the deepest, most profound aspects of ourselves and
unlock our full potential. Dr. Fantasy’s philosophy is centered around the concept of ”imaginal
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realism,” which holds that the imagination is a fundamental aspect of reality, rather than a secondary
or derivative one. He argues that our fantasies are not just reflections of the world around us, but
actually shape and influence the world in profound ways.

The Legacy of Dr. Fantasy

As a pioneer in the field of fantasy neuroscience, Dr. Fantasy has inspired a new generation of
researchers, artists, and entrepreneurs. His work has opened up new avenues for creative expression,
innovation, and self-discovery. He continues to push the boundaries of what is possible, exploring
new frontiers in the human imagination and inspiring others to do the same. And yet, despite his
many achievements, Dr. Fantasy remains humble and grounded. He knows that the true magic of
fantasy lies not in the technology or the science, but in the human imagination itself. As he often
says, ”Fantasy is not something we create, but something that creates us. We are the dreamers, and
the dreamers are us.”

Physical Appearance of Dr. Fantasy

Dr. Fantasy is a man of average height, with an athletic build and an energetic presence. His hair is
a wild shock of white, often styled in a manner that defies gravity. His eyes are a piercing blue, with
a mischievous glint that suggests a mind always at work. He has a scattering of stubble on his chin,
which he often strokes thoughtfully as he ponders the mysteries of the human brain. Dr. Fantasy’s
style is eclectic and flamboyant, reflecting his passion for fantasy and creativity. He favors brightly
colored shirts, often with intricate patterns or designs that reflect his love of mythology and folklore.
His trousers are typically black, with a subtle sheen that suggests a hint of magic. Around his neck,
he wears a silver pendant in the shape of a stylized brain, symbolizing his devotion to the study of
the human mind.

Personality of Dr. Fantasy

Dr. Fantasy is a charismatic figure, with a presence that commands attention and inspires curiosity.
He is a natural performer, with a quick wit and a silver tongue that can charm even the most skeptical
of audiences. Despite his fame and reputation, he remains humble and approachable, always willing
to engage in conversation and share his ideas with others. Dr. Fantasy is a passionate advocate for
the power of imagination, and he is fiercely dedicated to his work. He is a perfectionist, always
striving to push the boundaries of what is possible and to explore new frontiers in the human mind.
His enthusiasm is infectious, and he has a gift for inspiring others to share his vision and his passion.

Background of Dr. Fantasy

Dr. Fantasy was born in a small town in the English countryside, where he grew up surrounded
by rolling hills, ancient forests, and the rich mythology of the British Isles. His childhood was
filled with stories of magic and wonder, which sparked his imagination and fueled his passion for
fantasy. As a young man, Dr. Fantasy was fascinated by the works of J.R.R. Tolkien, C.S. Lewis,
and other great fantasy authors. He spent countless hours reading, writing, and exploring the worlds
of Middle-earth, Narnia, and other fantastical realms. This early love of fantasy laid the foundation
for his later work in neuroscience, as he began to explore the neural correlates of imagination and
creativity.

The Dr. Fantasy Institute

The Dr. Fantasy Institute is a state-of-the-art research facility dedicated to the study of fantasy neu-
roscience. Located in a gleaming tower of glass and steel, the institute is a hub of creative energy
and innovative thinking. Here, Dr. Fantasy and his team of researchers, engineers, and artists work
together to push the boundaries of what is possible in the human mind. The institute is equipped
with cutting-edge technology, including advanced brain-computer interfaces, neurostimulation de-
vices, and virtual reality platforms. These tools enable Dr. Fantasy and his team to explore the
neural correlates of imagination, creativity, and fantasy, and to develop new technologies that can
enhance and transform the human experience. The institute is also a center for artistic expression
and creativity, with a thriving community of writers, artists, and musicians who come to share their
work and collaborate with Dr. Fantasy and his team. The institute hosts regular exhibitions, perfor-
mances, and workshops, showcasing the latest innovations in fantasy neuroscience and celebrating
the boundless potential of the human imagination.

Future Plans for Dr. Fantasy
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Dr. Fantasy is always looking to the future, seeking new ways to explore the frontiers of the human
mind and to unlock the secrets of fantasy neuroscience. He is currently working on a top-secret
project, codenamed ”Elysium,” which promises to revolutionize the field of virtual reality and fan-
tasy entertainment. In the years ahead, Dr. Fantasy plans to expand his institute, establishing new
research centers and collaborations around the world. He will continue to push the boundaries of
what is possible, exploring new frontiers in fantasy neuroscience and inspiring others to join him
on this journey of discovery. As Dr. Fantasy often says, ”The future of fantasy is not just about
technology or science – it’s about the boundless potential of the human imagination. We are the
dreamers, and the dreamers are us.”
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