
FFAM: Feature Factorization Activation Map for
Explanation of 3D Detectors

Shuai Liu, Boyang Li, Zhiyu Fang, Mingyue Cui, Kai Huang∗
School of Computer Science and Engineering, Sun Yat-sen University

{liush376@mail2, liby83@mail, fangzhy9@mail2, cuimy@mail2, huangk36@mail}.sysu.edu.cn

Abstract

LiDAR-based 3D object detection has made impressive progress recently, yet
most existing models are black-box, lacking interpretability. Previous explanation
approaches primarily focus on analyzing image-based models and are not readily
applicable to LiDAR-based 3D detectors. In this paper, we propose a feature
factorization activation map (FFAM) to generate high-quality visual explanations
for 3D detectors. FFAM employs non-negative matrix factorization to generate
concept activation maps and subsequently aggregates these maps to obtain a global
visual explanation. To achieve object-specific visual explanations, we refine the
global visual explanation using the feature gradient of a target object. Additionally,
we introduce a voxel upsampling strategy to align the scale between the activation
map and input point cloud. We qualitatively and quantitatively analyze FFAM
with multiple detectors on several datasets. Experimental results validate the
high-quality visual explanations produced by FFAM. The code is available at
https://github.com/Say2L/FFAM.git.

1 Introduction

In recent years, there has been rapid development in LiDAR-based 3D object detection [36, 32,
34, 38, 12], making it widely utilized in autonomous driving, industrial automation, and robot
navigation. However, existing detection methods predominantly rely on deep neural networks with
highly nonlinear and complex structures. Essentially, these models can be considered as "black box"
systems. Such opaque modeling techniques hinder users from fully trusting the detection models,
particularly in sensitive and high-risk domains. Consequently, understanding the decision-making
process of these inherently opaque models is urgently needed.

Visual explanation methods [20, 1, 33, 15, 16] have gained widespread adoption for analyzing
models based on deep neural networks. These methods generate saliency maps that highlight the
crucial elements influencing the model’s decision within the input map. Perturbation-based [15, 16],
class activation map (CAM)-based [41, 20, 1], and gradient-based [28, 24, 25] methods are the
three main categories of visual explanation methods. However, these methods primarily focus on
image-based models and are not directly applicable to point cloud-based models. The pioneering
work in analyzing 3D detectors is OccAM [19], which extends D-RISE [16] to perturb point clouds.
As a perturbation-based approach, OccAM first randomly samples numerous sub-point clouds and
measures the change in model predictions. However, the large number of inference calculations
makes OccAM computationally intensive, and the sampling number easily impacts the quality of
generated saliency maps.

Interpreting 3D detectors presents three key challenges. First, point clouds are inherently three-
dimensional (3D). It is essential to generate corresponding 3D saliency maps for accurate interpreta-
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tion. However, existing methods, such as popular CAM-based techniques, primarily utilize activation
maps from the network’s last layer to generate 2D saliency maps. Second, the explanation method
for 3D detectors should provide detailed explanations for individual objects of interest. Yet, most
existing methods yield class-specific saliency maps, which means they cannot focus on explaining a
specific detection object. Lastly, point clouds are sparsely distributed in 3D space, rendering linear
interpolation employed by many image-based explanation methods ineffective.

(a) (b)

Figure 1: Visualization of FFAM outputs. (a) global concept
activation map and (b) object-specific activation map.

To address the aforementioned chal-
lenges, this paper introduces a feature
factorization activation map (FFAM)
to obtain visual explanations for 3D
detectors. Specifically, to solve the
first challenge, FFAM leverages the
3D feature maps within the 3D back-
bone [36] of detectors, rather than re-
lying on the bird’s eye view (BEV)
feature maps from the last layer.
Drawing inspiration from DFF [3], we
employ non-negative matrix factoriza-
tion (NMF) [11] to uncover latent se-
mantic concepts within these 3D feature maps. Typically, point features with effective detection
clues in 3D detectors contain richer semantic concepts. Thus, we aggregate concept activation maps
generated by NMF to obtain a global concept activation map that highlights important points, as
shown in Figure 1(a). To address the second challenge of obtaining object-specific saliency maps, we
utilize the gradients of the 3D feature map, generated by an object-specific loss, to refine the global
concept activation map. This process is illustrated in Figure 1(b), showcasing the desired effect. To
tackle the final challenge, we introduce a voxel upsampling strategy to sample values from sparse
neighbors, ensuring accurate saliency map generation.

We compare our FFAM with the current state-of-the-art method OccAM [19], as well as other image-
based explanation methods including Grad-CAM [20] and ODAM [39]. We conduct experiments
on the KITTI [7] and Waymo Open [26] datasets, employing detectors such as SECOND [36] and
CenterPoint [37]. The qualitative and quantitative results demonstrate that our FFAM significantly
outperforms the previous methods. The contributions of this work can be summarized as follows:

• We propose a feature factorization activation map (FFAM) method to obtain high-quality
visual explanations for 3D detectors.

• We first introduce NMF in explaining point cloud detectors. By aggregating different
concept activation maps, we obtain a global concept activation map that highlights points
with significant detection clues.

• We utilize feature gradients of an object-specific loss to refine the global concept activation
map, enabling the generation of object-specific saliency maps.

• A voxel upsampling strategy is proposed to upsample sparse voxels, thus aligning the scale
between the activation map and input point cloud.

2 Related Work

Explanation Methods for Image-based Models. Existing explanation methods primarily focus
on image classification models. Perturbation-based methods [27, 15, 4, 31] are widely used for
interpreting image classification models. The core idea is to assign importance scores to perturbed
feature components by disturbing the model’s input and observing the output changes. CAM-
based methods [41, 20, 1, 9] generate saliency maps by linearly combining activation maps from
intermediate layers, weighted by their respective contributions. Some approaches (e.g. Score-CAM
[33] and Ablation-CAM [18]) combine perturbation- and CAM-based ideas to eliminate dependence
on backpropagation gradients. Additionally, gradient-based explanation methods [23, 28, 24, 25] use
gradients to quantify input impact on network predictions. Higher gradient values indicate greater
importance of the corresponding input elements. Moreover, feature factorization techniques like
principal component analysis (PCA) and non-negative matrix factorization (NMF) can uncover latent
patterns in deep features. DFF [3] employs NMF to localize semantic concepts within images.
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Compared to explanation methods for classifiers, only a limited number of approaches investigate
explanations for object detection models. The aforementioned methods generate class-specific
explanations, which are not feasible for object detection models. D-RISE [16] employs a perturbation
strategy to generate instance-specific explanations by defining a detection similarity metric. In [35], a
directed acyclic AND-OR Graph (AOG) is utilized to uncover latent structures in object detectors.
G-CAME [14] combines activation maps with a Gaussian kernel of gradients to generate a saliency
map for a predicted bounding box. ODAM [39] employs pixel-wise gradients of a target object to
weigh the activation maps, thereby producing an instance-specific saliency map.

Explanation Methods for Point Cloud-based Models. In contrast to explanation methods for image-
based models, the field of explanation for point cloud-based models is relatively underdeveloped.
Existing methods primarily focus on point cloud classification models. For instance, [40] utilizes
the loss gradient to measure the contribution of each point in the classifier. Similarly, [8] applies
a gradient-based strategy to analyze the intermediate features of the network. Another approach
[29] combines a generative model with the activation maximization method [6] to obtain a global
explanation for point cloud networks.

Research on the explanation of 3D detectors is still quite limited. One perturbation-based method,
OccAM [19], estimates the importance of individual points by testing the model with randomly
generated subsets of the input point cloud. However, the scale of points in 3D space is considerably
large, and the distribution of points acquired through LiDAR varies with distance. These aforemen-
tioned issues result in the following challenges for perturbation-based methods: (1) It is difficult to
exhaustively perturb the point cloud, limiting the quality of visual explanations; (2) Generating ample
random subsets of points requires multiple iterations, thereby reducing efficiency. Taking inspiration
from feature factorization techniques [3] and gradient-based approaches [28, 14, 39], we propose an
explanation method called FFAM. It aims to efficiently generate high-quality saliency maps for 3D
detectors.

LiDAR-based 3D Object Detection. These methods can be categorized into two main groups: one-
stage and two-stage detectors. One-stage detectors typically employ simple network architectures to
achieve high speeds. For instance, SECOND [36] efficiently encodes sparse voxel features using a
proposed 3D sparse convolution technique. PointPillars [10] divides a point cloud into pillar voxels,
eliminating the need for 3D convolution layers and achieving fast inference speed. VoxelNeXt [2]
introduces a fully sparse convolution network that eliminates the requirement for sparse-to-dense
conversion. Two-stage detectors generally incorporate an additional stage to refine proposals
generated by a one-stage network. PointRCNN [22] utilizes PointNet++ [17] to generate proposals
from raw points and then refines the bounding boxes in the second stage. PV-RCNN [21] combines
a voxel-based proposal network with a point-based refinement network. CenterPoint [37] extracts
point features from the surface centers of proposal bounding boxes for refinement. Voxel R-CNN [5]
utilizes voxel features from the 3D backbone to refine the proposals. Our explanation method FFAM
is adaptable to both one- and two-stage detectors without being limited by the detector type. We
primarily conduct experiments on widely used detectors, including the one-stage detector SECOND
and the two-stage detector CenterPoint.

3 Method

The goal of visual explanation for a 3D detector f is to produce a saliency map for each detection.
Given a point cloud P ∈ RN×4, the saliency map consists of N values presenting the importance of
each point in P for a detection d which consists of a bounding box, a confidence score and a category
label. We denote a detection d as follows:

d = [x, y, z, l, w, h, s, c] (1)

where (x, y, z) denotes the center location, (l, w, h) represents the object size (i.e., length, width and
height), s and c indicate the confidence score and category label, respectively.

We propose FFAM to produce saliency maps in point cloud format for 3D detectors. The overview
of our method is illustrated in Figure 2. It can be divided into three phases as follows: (1) Feature
factorization (Sec. 3.1); (2) Gradient weighting (Sec. 3.2); (3) Voxel upsampling (Sec. 3.3).
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Figure 2: Overall framework of our FFAM which can generate an object-specific saliency map for a
detection di.

3.1 Feature Factorization Activation Map

Matrix factorization is widely used in fields such as recommendation systems, image processing, and
natural language processing to extract potential features and reduce dimensionality. Non-negative
matrix factorization (NMF) as a classical matrix factorization algorithm approximates a non-negative
matrix by decomposing it into the product of two non-negative matrices. With this decomposition,
NMF can discover potential patterns and conceptions in the raw matrix and extract the most important
features. Given a non-negative matrix A ∈ Rm×n, NMF retrieves an approximation Â ∈ Rm×n as
follows:

NMF(A) = argmin
Â

∥∥∥A− Â
∥∥∥2
F
,

s.t. Â = HW,∀ij,Hij ,Wij ≥ 0,

(2)

where H ∈ Rm×r and W ∈ Rr×n denote two non-negative matrics. r is a predefined parameter
indicating the number of latent concepts in matrix A. Each row Wj ∈ Rn(1 ≤ j ≤ r) of W
represents a concept vector. These concept vectors are typically well-interpreted and associated with
object-part features, such as wheels, car doors, car roofs, and so on, following the non-negative
additivity property of Wj . Furthermore, each row Hi ∈ Rr (where 1 ≤ i ≤ m) of matrix H
represents the combination weights of different concept vectors in W . Combining these concept
vectors using the weights Hi, we obtain the i-th row feature of matrix Â.

In this paper, we employ non-negative matrix factorization to handle the voxel feature map within
the 3D backbone of detectors. Typically, voxel features that contain crucial detection clues tend to
activate more concepts (e.g., license plates, car fronts, car edges) in detectors. As a result, aggregating
all weights in Hi indicates the significance of the i-th voxel feature in the voxel feature map, as
demonstrated in Figure 1(a).

Specifically, given a voxel feature map F ∈ RM×d where M represents the voxel number and d
denotes the channel number, a voxel feature Fi ∈ Rd in F can be factorized as follows:

Fi =

r∑
j=1

HijWj . (3)

Further, we obtain the global concept activation map V by aggregating concept weight matrix H as
follows:

V =

r∑
j=1

H·j , (4)
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where H·j denotes j-th column of H . The resulting V emphasizes points with multiple activated
concepts from a global perspective. And due to the downsampling operation in the detection network,
the granularity of V is typically coarse. Therefore, further processing is required to obtain an
object-specific and fine-grained activation map, as described in Sec. 3.2 and Sec. 3.3.

3.2 Object-Specific Gradient Weighting

In a 3D detector, the output contains a large number of detections. To obtain an object-specific
activation map, we establish a loss function for a specific detection. Specifically, given a detection d,
we create a baseline detection db to calculate the loss ℓ:

ℓ = ∥d− db∥1 . (5)

For simplicity, we use the L1 loss function and set all values in db equal to 0. Then we obtain the
gradient map G ∈ RM×d of the feature map F :

G =
∂ℓ

∂F
. (6)

Considering an optimization process from d to db, the matrix G denotes the optimal direction
for reducing the loss. If we iteratively update the feature map F based on the gradient map G, the
information related to the detection d will be diminished. Alternatively, by utilizing G, we can identify
the locations in the feature map F l that contain clues about d. Consequently, an object-specific
activation map M for d can be obtained as follows:

ω =

d∑
k=1

|G·k| ,

M = Φ(ω)⊙ Φ(V ),

(7)

where G·k ∈ RM refers to the k-th column of G, while Φ represents the normalization operation,
and ⊙ denotes element-wise multiplication. By modifying the loss function to a specific attribute p in
detection d, we can examine the specific points on which the detector concentrates when predicting
attribute p.

3.3 Voxel Upsampling

Due to downsampling operations in 3D detection networks, the scale of the activation map is typically
smaller than that of the input point cloud. Consequently, upsampling the activation map M becomes
necessary. However, unlike 2D images, linear interpolation for upsampling 3D sparse voxels presents
challenges. To address this, we draw inspiration from the voxel query technique proposed by [5]
and introduce a voxel upsampling strategy for 3D sparse voxels. Specifically, we define the voxel
size as s, and the ranges of the point cloud for three axes as [xl, xr], [yl, yr], and [zl, zr] respectively.
Given a point p = (x, y, z), we calculate the coordinate (xp, yp, zp) of voxel vp to which p belongs
as follows:

xp =

⌊
x− xl

s

⌋
, yp =

⌊
y − yl

s

⌋
, zp =

⌊
z − zl

s

⌋
. (8)

Then we query neighbor voxels on activation map M for p, using Manhattan distance to control the
query range:

d(vp, v) = |xn − xp|+ |yn − yp|+ |zn − zp|, (9)

where (xn, yn, zn) is the coordinate of an neighbor voxel v, d(·, ·) is the Manhattan distance between
two voxels. We sample up to k neighbor voxels within a distance threshold. Finally, the salience
score sp of point p is calculated as follows:
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(a) Saliency maps for SECOND on KITTI dataset.

(b) Saliency maps for CenterPoint on Waymo Open dataset.

Figure 3: Saliency maps for SECOND [36] and CenterPoint [37]. The green bounding boxes
indicate the detected objects, while warmer colors (using the turbo colormap) represent higher point
contributions to these detections. The crops are provided for visualization purposes only.

sp =
∑
v∈ℵ

Ψ(d(vp, v))∑
v∈ℵ Ψ(d(vp, v))

Mv, (10)

where ℵ is the set of neighbor voxels, Ψ denotes a Gaussian kernel with a standard normal distribution,
Mv represents the value of voxel v on activation map M .

4 Experiments

In this section, we compare our FFAM with existing explanation methods, including Grad-CAM
[20] and ODAM [39], for image-based models, as well as with OccAM [19], the state-of-the-art
explanation method for point cloud-based models. We adopt two datasets for evaluation: KITTI [7],
a widely used autonomous driving dataset, and Waymo Open [26], containing complex multi-object
scenes. For KITTI, experiments are conducted on SECOND [36]. For Waymo Open, we mainly
evaluate on CenterPoint [37]. The experiments are run using PyTorch and an RTX 3090 GPU. The
hyperparameters of detectors and OccAM remain consistent with their official implementations. The
parameter r used in NMF is set to 64. The Manhattan distance threshold and parameter k in voxel
upsampling are set to 2 and 16, respectively. We use the 3D feature map from the third block of
the 3D backbone as FFAM input. Hyperparameters analysis and ablation study are in App. A.1 and
App. A.4, respectively.
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Figure 4: Average saliency maps for different object attributes. (x, y, z) denotes the center of
predicted object. l, w, h, r and s represent the length, width, height, rotation angle and classification
score of predicted object, respectively. d indicates the combination of all attributes.

4.1 Qualitative Results

To verify the interpretability of our FFAM, we visualize explanations for some objects. We also
visualize the average saliency maps of different categories for specific object attributes to study the
latent pattern of 3D detectors.

Visualization of Saliency Map. We compare the visual explanations generated by FFAM and
OccAM [19] for cars, pedestrians, and cyclists in Figure 3(a). These detection results are obtained by
SECOND [36] detector trained on KITTI [7]. OccAM exhibits significant background noise due to its
random masking mechanism. In contrast, our FFAM demonstrates a strong ability to generate clear,
distinct object-specific saliency maps. We observe the detector also captures relevant clues from the
background and neighboring objects. Furthermore, we compare saliency maps generated by FFAM
and OccAM on Waymo Open [26] using the CenterPoint [37] detector, as shown in Figure 3(b). The
saliency maps produced by OccAM struggle to focus on the intended object for interpretation. They
have more highly salient points distributed on the background compared to KITTI. We attribute this
discrepancy to the larger number of points in Waymo Open samples, challenging the random masking
mechanism to sample diverse point masks effectively. Conversely, our FFAM consistently generates
high-quality saliency maps on Waymo Open.

Average Saliency Map. To further explore the detection mode of detectors and verify the inter-
pretability of FFAM, we average the saliency maps of specific classes, including cars, pedestrians and
cyclists. We use SECOND trained on KITTI [7] as the detector. To accomplish this, we first scale all
boxes and associated points to a uniform size and then align them with respect to their center and
rotation angle. Next, we voxelize the resulting point cloud and calculate the average saliency values
of individual points within each voxel. The resulting saliency maps for different object attributes are
presented in Figure 4.

As depicted in the first two rows of Figure 4, the detector primarily identifies and localizes car objects
based on the points located at the four corners of the car. By analyzing features from these points, the
detector infers various attributes of a car, such as its center location, length, width, rotation angle, and
classification score. This can be attributed to the fact that car objects are often incomplete in outdoor
point clouds, and their corners are frequently scanned by LiDAR and used as key features. However,
there is a special case, as shown in the first two rows of the penultimate column of Figure 4, where
the height attribute is predicted primarily based on the points at the top of the car. As illustrated
in the third row of Figure 4, the detector predicts pedestrian objects mostly based on the points
distributed on the head and shoulder regions. Additionally, the detector recognizes cyclist objects
mainly based on the points distributed on the head and back of the human body, as shown in the last
row of Figure 4. Furthermore, we observe that the prediction of cyclist height heavily relies on the
points distributed on the head, similar to the prediction of car height. Additional average saliency
maps of other detectors are in App. A.2.
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Figure 5: AUC diagrams for Deletion and Inser-
tion. Average IoU vs. (a) Deletion steps and (b)
Insertion steps.

Method VEA ↑
All Car Ped. Cyc.

Grad-CAM 0.015 0.015 0.018 0.013
ODAM 0.179 0.163 0.280 0.233
OccAM 0.064 0.063 0.080 0.042

FFAM (Ours) 0.391 0.363 0.543 0.515

Table 1: Comparison of visual explanation
accuracy metric for different categories. ‘all’
denotes the three categories are included.

Method Deletion ↓ Insertion ↑
All Car Ped. Cyc. All Car Ped. Cyc.

Grad-CAM 0.335 0.373 0.137 0.129 0.797 0.821 0.688 0.725
ODAM 0.134 0.138 0.122 0.098 0.885 0.902 0.785 0.828
OccAM 0.286 0.311 0.146 0.167 0.863 0.880 0.761 0.790

FFAM (Ours) 0.071 0.068 0.098 0.078 0.907 0.923 0.806 0.854
Table 2: AUC for Deletion and Insertion curves. The results of different categories are reported. ‘all’
means the combination of the three categories.

4.2 Quantitative Results

We adopt Deletion, Insertion [15, 16, 39], visual explanation accuracy (VEA) [13] and Pointing
games (PG) to evaluate our FFAM. SECOND trained on KITTI is used as the baseline detector.
Following previous work [39], we use the well-detected objects in the evaluation dataset as the
subjects to be explained. In particular, a predicted object is considered well-detected if the IoU
between it and its ground truth is greater than [0,7, 0.5, 0.5] for car, pedestrian and cyclist classes,
respectively. See App. A.3 for results on Waymo Open.

Deletion and Insertion. Deletion and Insertion are widely used to evaluate explanation methods
for image-based detection models [16, 39]. Deletion involves sequentially removing highly salient
elements from a scene, measuring the rate model predictions diverge from the original. Insertion
progressively adds salient elements to an empty scene, measuring how quickly predictions approach
the original. Considering the similarity between pixels in an image and points in a point cloud, we
employ Deletion and Insertion to evaluate FFAM. In outdoor point cloud scenes, objects are relatively
small compared to global scenes, so we only operate on points within twice the diagonal length of
an object’s bounding box from its center. We use IoU between a prediction and ground truth as the
measure score. Average IoU curves are presented in Figure 5(a-b), and Table 2 reports the area under
the curve (AUC) for different categories. A lower Deletion AUC indicates a steeper drop in the IoU
score, reflecting a more pronounced impact of removed salient points. Conversely, a higher Insertion
AUC suggests a larger increase in the IoU score per step, indicating the significance of added salient
points. Our methods have the fastest performance drop and largest increase for Deletion and Insertion,
showing points highlighted in our saliency maps have a greater effect on detector predictions than the
other methods.

Visual Explanation Accuracy. VEA calculates the point-level intersection over union (IoU) between
the ground truth masks and saliency maps, which are thresholded at various values. The results of
VEA for different object categories can be found in Table 1. Notably, our FFAM achieves the highest
VEA scores across all categories, indicating the compactness of the visual explanations generated
by FFAM. On the other hand, OccAM and Grad-CAM exhibit lower performance on this metric.
OccAM tends to mark a significant number of background points, while Grad-CAM is a class-specific
visual explanation method, which may explain their comparatively weak performance.

Pointing Game. To further assess the localization capability of FFAM, we present the results of
the Pointing game (PG). In this evaluation, a hit is recorded if the point with the highest saliency
value falls within the ground truth bounding box, while a miss is counted otherwise. The PG metric
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Figure 6: Average saliency maps for true and false positives. The 1st and 2nd rows represent cases of
true and false positives, respectively.

Method PG ↑ enPG ↑
All Car Ped. Cyc. All Car Ped. Cyc.

Grad-CAM 0.093 0.080 0.166 0.163 0.021 0.022 0.014 0.011
ODAM 0.901 0.895 0.939 0.926 0.633 0.639 0.577 0.654
OccAM 0.946 0.957 0.898 0.860 0.023 0.024 0.019 0.013

FFAM (Ours) 0.991 0.989 0.999 0.998 0.664 0.671 0.591 0.719
Table 3: Comparison of Pointing game (PG) and energy-based Pointing game (enPG) metrics.

measures the accuracy of saliency maps by calculating the ratio of hits to the total number of hits and
misses. Furthermore, we report the energy-based PG metric (enPG) proposed in [33], which considers
the energy within the ground truth region compared to the global scene. As shown in Table 3, our
FFAM surpasses previous methods on all metrics, indicating its superior ability to focus on the
explained object. Notably, Grad-CAM performs poorly on both PG and enPG, which aligns with the
VEA results presented in Table 1. This suggests that classification-based explanation methods alone
are insufficient for generating meaningful explanations for detectors.

4.3 Modes of False Positive

FFAM can be used to identify false positive modes of a detector. A detection is considered a true
positive if correctly classified and the Intersection over Union (IoU) between the prediction box and
ground truth exceeds a threshold. Otherwise, it is a false positive. The IoU thresholds are 0.7, 0.5,
and 0.5 for car, pedestrian, and cyclist objects, aligning with the KITTI official metric [7]. To reveal
detection modes, we compute average saliency maps separately for true positives and false positives.
Results are shown in Figure 6. First, we observe the average saliency maps of false positives exhibit
similarities to those of true positives. The detector predicts a false positive because it detects a similar
pattern to that of a true positive. Second, false positives tend to be surrounded by more noise points,
with a point density of approximately one-third of true positives. We believe noises and sparse density
may be significant factors contributing to the occurrence of false positives. Lastly, the ratio of car,
pedestrian, and cyclist objects in true positives is approximately 36:5:2, while in false positives, it is
13:8:2. This suggests car objects are less prone to false positives compared to pedestrian and cyclist
objects.

5 Conclusion

In this paper, we propose a visual explanation method, FFAM, that efficiently generates high-quality
explanations for 3D detectors. FFAM utilizes non-maximum matrix factorization to obtain a global
concept activation map, which is then refined using object-specific gradients. To align the granu-
larity of the input point cloud and intermediate features, we introduce a voxel upsampling strategy.
Qualitative and quantitative experiments demonstrate that our FFAM provides more interpretable and
compact visual explanations than previous methods. The limitation of FFAM is that it needs to access
the feature maps within 3D detectors. In future work, we will explore using visual explanations to
enhance the accuracy and efficiency of 3D detectors.
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A Appendix

Layer Del. ↓ Ins. ↑ VEA ↑ PG ↑ enPG ↑
conv1 0.167 0.911 0.084 0.885 0.562
conv2 0.102 0.912 0.116 0.905 0.615
conv3 0.091 0.909 0.161 0.955 0.654
conv4 0.093 0.905 0.208 0.946 0.644

Table 4: Results of different layer settings. ‘conv1’, ‘conv2’, ‘conv3’ and ‘conv4’ represent the 1st,
2nd, 3rd and 4th blocks in the 3D backbone.

(Range, k) Del. ↓ Ins. ↑ VEA ↑ PG ↑ enPG ↑
(0, 1) 0.091 0.909 0.161 0.955 0.654
(1, 4) 0.076 0.910 0.218 0.965 0.635

(2, 16) 0.069 0.909 0.313 0.981 0.644
(3, 64) 0.072 0.907 0.309 0.980 0.642

Table 5: Results of different (Range, k) settings. ‘Range’ means the Manhattan distance threshold
and k denotes the upper bound of neighbor number in the voxel upsampling strategy.

r Del. ↓ Ins. ↑ VEA ↑ PG ↑ enPG ↑
8 0.067 0.909 0.315 0.980 0.639

16 0.069 0.909 0.313 0.981 0.644
32 0.069 0.909 0.313 0.981 0.647
64 0.071 0.907 0.391 0.991 0.664
128 0.069 0.909 0.306 0.980 0.644

Table 6: Results of different concept number settings. r denotes the concept number.

A.1 Hyperparameters Analysis

In this section, we determine suitable hyperparameters including the feature map position, concept
number r and sampling range for FFAM. Specifically, we select feature maps from the 1st, 2nd,
3rd and 4th blocks of 3D backbone of SECOND, and then generate visual explanations utilizing
these feature maps. As shown in Table 4, selecting the feature maps from the 3rd block obtains the
best results on most metrics. Therefore, in other experiments, we utilize the feature maps from the
3rd block. Then, to determine the setting of the sampling range, we set different combinations of
the Manhattan distance threshold and neighbor number k. As illustrated in Table 5, (2, 16) is an
appropriate setting for FFAM. Finally, we set r equal to 8, 16, 32, 64 and 128, respectively. The
experimental results are shown in Table 6. As we can see, r = 64 greatly outperforms other settings
on VEA, PG and enPG metrics, and performs slightly worse on Deletion and Insertion metrics.
Consequently, we select r = 64 as the default setting.

A.2 Average Saliency Maps for Other Detectors

To reveal the detection modes of additional detectors, we present average saliency maps from
various 3D detectors, namely CenterPoint [37], DCDet [12], PV-RCNN [21], and Voxel R-CNN [5].
CenterPoint and DCDet are trained and evaluated using Waymo Open [26], while PV-RCNN and
Voxel R-CNN employ KITTI [7] for training and evaluation. The results are displayed in Figure 7.
Notably, for pedestrian and cyclist categories, different detectors trained on distinct datasets exhibit
similar areas of focus, such as the head and shoulder regions for pedestrians and the head and back
regions for cyclists. However, in the car/vehicle category, detectors trained on diverse datasets reveal
distinct patterns. Detectors trained on Waymo Open tend to concentrate on the front, back, and
A-pillars of the vehicle category, whereas detectors trained on KITTI tend to emphasize the four
corners of the car category.
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CenterPoint DCDet PV-RCNN Voxel R-CNN

Figure 7: Average saliency maps for different detectors. Voxel R-CNN is only available for the car
category (parameter weights are downloaded from OpenPCDet [30]).

Method Deletion ↓ Insertion ↑
All Vehicle Ped. Cyc. All Vehicle Ped. Cyc.

Grad-CAM 0.332 0.380 0.239 0.133 0.805 0.833 0.777 0.804
ODAM 0.252 0.279 0.200 0.151 0.853 0.875 0.809 0.824
OccAM 0.562 0.594 0.505 0.357 0.871 0.893 0.826 0.832

FFAM (Ours) 0.095 0.120 0.085 0.104 0.897 0.922 0.845 0.853
Table 7: AUC for Deletion and Insertion curves. The results of different categories are reported. ‘all’
means the combination of the three categories.

Method PG ↑ enPG ↑
All Car Ped. Cyc. All Car Ped. Cyc.

Grad-CAM 0.028 0.016 0.045 0.247 0.006 0.008 0.002 0.004
ODAM 0.917 0.941 0.865 0.970 0.476 0.568 0.285 0.575
OccAM 0.691 0.681 0.712 0.634 0.004 0.005 0.001 0.002

FFAM (Ours) 0.975 0.980 0.963 0.980 0.517 0.597 0.349 0.650
Table 8: Comparison of Pointing Game and energy-based Pointing Game metrics.

Method VEA ↑
All Car Ped. Cyc.

Grad-CAM 0.009 009 0.010 0.027
ODAM 0.234 0.220 0.261 0.260
OccAM 0.012 0.010 0.018 0.012

FFAM (Ours) 0.388 0.358 0.448 0.458
Table 9: Comparison of visual explanation accuracy metric for different categories. ‘all’ denotes the
three categories are included.
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OG VU FF Del. ↓ Ins. ↑ VEA ↑ PG ↑ enPG ↑
✓ 0.082 0.909 0.252 0.933 0.567
✓ ✓ 0.076 0.906 0.335 0.957 0.563
✓ ✓ ✓ 0.071 0.907 0.391 0.991 0.664

Table 10: Effect of different components of FFAM. OG, VU and FF denote object-specific gradient,
voxel upsampling and feature factorization, respectively.

A.3 Quantitative Results on Waymo Open Dataset

To further assess the visual explanation quality produced by our FFAM, we conducted experiments on
Waymo Open [26], utilizing CenterPoint [37] as the detector for interpretation. We also employ the
Deletion, Insertion, PG, enPG and VEA as the evaluation metrics. The results, presented in Table 7-9,
showcase the superior performance of our FFAM across all metrics, mirroring the outcomes observed
on KITTI. These findings demonstrate FFAM’s remarkable adaptability to diverse detectors trained
on different datasets.

A.4 Ablation Study

To investigate the impact of each component of FFAM, we conduct an ablation analysis using the
SECOND detector on KITTI. Initially, we utilize the object-specific gradient alone to generate
saliency maps, which yield relatively satisfactory results, as depicted in the first row of Table 10.
Subsequently, we introduce the voxel upsampling strategy into the flow, resulting in significant
improvements across most metrics, notably VEA and PG, as indicated in the second row of Table 10.
Lastly, we incorporate the complete FFAM components. The third row of Table 10 demonstrates that
feature factorization greatly enhances the quality of saliency maps, with the PG metric approaching a
value close to 1, signifying the precise localization achieved by FFAM. We also observe that voxel
upsampling and feature factorization do not yield improvements for the Insertion metric. We believe
this is due to the models relying, to some extent, on the neighbor context for detection, whereas voxel
upsampling and feature factorization result in a more compact saliency map (i.e., focusing on the
object itself).
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

15



Justification: We provide assumptions for each theoretical result.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
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• The proofs can either appear in the main paper or the supplemental material, but if
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4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide sufficient information to reproduce the main experimental results.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We release the implementation code of our method.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because of high computational cost.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information about the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper confirms the NeurIPS code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our research work mainly focuses on the improvement and understanding of
algorithms and models, rather than areas directly related to social or ethical issues

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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Answer: [NA]
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