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ABSTRACT

Transformer models power many Al applications but suffer from high inference
latency, limiting their use in real-time settings. Multi-device inference can reduce
latency by parallelizing computation. Yet, existing methods require high inter-
device bandwidth, making them impractical for bandwidth-constrained environ-
ments. We propose ASTRA, a communication-efficient framework that accelerates
Transformer inference through a novel integration of sequence parallelism and a
Mixed-Precision Attention mechanism designed to minimize inter-device commu-
nication. ASTRA compresses non-local token embeddings via vector quantization
and preserves task accuracy through two optimizations, Noise-Augmented Quanti-
zation and Distributed Class Tokens. Experiments on ViT and GPT2 across vision
and NLP tasks show that ASTRA achieves up to 2.64 x speedups over single-device
inference and up to 15.25x speedups over state-of-the-art multi-device inferences,
while operating under bandwidths as low as 10 Mbps.

1 INTRODUCTION

Transformer models (Dosovitskiy et al.l 2020; |[Devlin et al., ) 2019; Radford et al., 2019)) have become
central to modern Al applications in both vision and language domains. As models grow in scale to
improve accuracy, their inference time becomes prohibitive, particularly for real-time applications or
latency-sensitive user experiences. To address this bottleneck, many works have focused on optimizing
single-device inference through techniques like quantization (Liu et al., 2021)), pruning (Kwon et al.,
2022])), and knowledge distillation (Lin et al.,2022)). Since the latency improvement on a single device
remains fundamentally limited by the device’s capacity, Multi-device inference draws increasing
attention (Hu & Li, |2024; Du et al., [2024). It complements the above optimization techniques
by parallelizing model execution across multiple devices. In theory, it can reduce latency nearly
linearly with the number of devices. This setup is especially attractive in practical settings where
resource-constrained edge devices or distributed consumer-grade hardware can collaborate to process
sporadic inference requests.
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available in bandwidth-constrained environments. For example, indoor Wi-Fi networks (e.g., Wi-Fi
4/5/6) typically deliver practical throughput in the range of 50-300 Mbps, depending on interference,
distance from the router, and device capabilities. As a result, current approaches are ill-suited for
wireless or edge deployments, where lower and more variable bandwidth is the norm (wii, [2025).

In this work, we propose ASTRA, a communication-efficient framework for accelerating Transformer
inference across multiple devices. ASTRA rethinks how attention computation is distributed by
building on sequence parallelism, which assigns different input tokens to different devices. The key
innovation in ASTRA is a Mixed-Precision Attention mechanism that dramatically reduces commu-
nication cost: local attention is computed using full-precision embeddings, while remote tokens are
encoded using low-bit vector quantization before transmission. These compressed embeddings are
decoded on the receiving end and used for approximate attention computation.

To preserve accuracy, ASTRA incorporates two key designs. First, a Noise-Augmented Vector
Quantization strategy injects Gaussian noise to vector-quantized token embeddings during training,
enhancing the diversity of the quantized feature space and improving generalization to unseen inputs.
Second, a Distributed Class Token scheme assigns each device its own local class token, which
attends to uncompressed local tokens with full precision and vector-quantized tokens from other
devices. The outputs from these distributed class tokens are then aggregated as a more comprehensive
embedding before the final prediction. Through these techniques, ASTRA makes multi-device
inference viable in low-bandwidth scenarios while maintaining high accuracy.

Our main contributions are:

* ASTRA— a new multi-device Transformer inference framework that significantly reduces
communication overhead via a novel Mixed-Precision Attention mechanism. We design two
techniques, Noise-Augmented Quantization and Distributed Class Tokens, to maintain high
accuracy under aggressive communication compression.

* Comprehensive Evaluation — We evaluate ASTRA on Transformer models, including
ViT (Dosovitskiy et al., 2020) and GPT2 (Radford et al.,|2019), on both vision tasks (e.g.,
CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-1K (Deng et al.l 2009)) and NLP tasks
(e.g., Wikipedia and Wikitext-103 (Merity et al., 2016))). ASTRA reduces the bandwidth
requirement for multi-device speedup from 500 Mbps to as low as 10 Mbps, achieving up to
2.64x end-to-end latency speedup even under constrained bandwidth where prior methods
fail (Figure . It maintains task accuracy within 3.58% of the original model under extreme
communication compression. Moreover, ASTRA remains effective in heterogeneous device
environments, achieving accuracy within 1.43% drop under imbalanced token distributions
across devices. It also retains compatibility with single-device quantization: when applied
jointly, ASTRA achieves an additional 1.35 — 2.73 x latency speedup over single-device
quantization alone, while preserving accuracy within 3.37% drop.
Design Analysis — Through detailed ablation studies, we demonstrate the effectiveness
of each key design component. The Mixed-Precision Attention Computation Mechanism
achieves a latency speedup of up to 171.82x compared to the original attention under
constrained bandwidth, the Noise-Augmented Vector Quantization improves accuracy by up
to 0.86% compared to naive vector quantization, and the Distributed Class Tokens design
further enhances accuracy by up to 7.13% compared to using a single class token.

2 BACKGROUND AND RELATED WORK

This section introduces existing techniques for multi-device inference acceleration and then the vector
quantization (VQ) technique that is necessary to understanding ASTRA. A broader survey of related
work is provided in Appendix [A]

Parallelization in Multi-Device Inference. To accelerate inference latency, many recent approaches
explore distributing Transformer computations across multiple devices. Techniques originally de-
veloped for training, such as data parallelism, pipeline parallelism, and model parallelism, have
been repurposed for inference. Data parallelism (Li et al.,|2014) and pipeline parallelism (Huang
et al.,2019) improve throughput by processing different input samples or partitioning layers across
devices. However, these methods are primarily suited to batch processing and offer limited benefits
for latency-sensitive, single-request inference. Model parallelism, in contrast, splits the computation
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of individual model layers across devices, enabling true per-request acceleration. Notable examples
include: Megatron-LM (Shoeybi et al.| [2019), which partitions model weights (tensor parallelism),
Voltage (Hu & Li, [2024)), which partitions token sequences (sequence parallelism), and DeTrans-
former (Du et al.| [2024)), which decomposes layers into smaller blocks for distributed execution.
These approaches reduce some communication costs by tailoring the parallelization granularity, but
they still require substantial bandwidth, such as 500 Mbps, to realize modest speedups. While this
bandwidth may be achievable in high-performance server clusters, it exceeds the practical limits of
many real-world environments, such as indoor Wi-Fi, where sustained throughput often falls lower
than 300 Mbps depending on interference. Our work diverges from prior efforts by focusing explicitly
on reducing the communication cost, which we identify as a primary bottleneck in multi-device
Transformer inference.

Vector Quantization (VQ). ASTRA leverages vector quantization to compress token embeddings be-
fore inter-device transmission, significantly reducing communication overhead. VQ maps continuous
vectors to discrete indices in a fixed codebook, allowing compact representation of information with
a small number of bits (Gersho & Gray, [2012).

Vanilla VQ partitions the feature space into K clusters, each represented by a centroid. Let e € RX*P
be the codebook of centroids. For an input vector z € R”, VQ selects the closest centroid by
i = argmin; |le; — z||2. and transmits only the index i, requiring log, K bits per token. The
codebook e can be learned via K-means clustering or updated online using exponential moving
averages (Van Den Oord et al.,2017). This compact representation greatly reduces the communication
cost between devices.

Grouped VQ (Yang et al., 2023) extends this idea by dividing the input vector into G equal-length
sub-vectors and quantizing each independently using separate codebooks. It increases expressiveness
in the compressed representation and improves task accuracy, at the cost of higher communication
overhead, G - log, K bits per token. In experiments, ASTRA with Grouped VQ outperforms Vanilla
VQ counterpart in accuracy, offering a tunable trade-off between bandwidth usage and model
performance.

3 THE ASTRA FRAMEWORK

We present ASTRA, a communication-efficient multi-device inference framework for Transformer
models. ASTRA is designed to minimize inter-device communication while preserving accuracy,
enabling fast inference even in bandwidth-constrained environments. The framework achieves
this through three key innovations: (1) Mixed-Precision Attention, (2) Noise-Augmented Vector
Quantization, and (3) Distributed Class Tokens. We begin with an overview of the inference workflow,
then describe each core design in detail.

3.1 OVERVIEW OF ASTRA

Figure [2] illustrates the inference procedure of the ASTRA framework. Given an input sequence
consisting of a class token (optional) and 7' content tokens, ASTRA first partitions the content tokens
evenly across N devices, assigning 7'/ N tokens to each device. To support classification and similar
global tasks, the class token CLS is replicated to each device (Distributed Class Token in Task
Accuracy Preservation). Each device thus holds a disjoint subset of the input sequence, along with its
own class token copy, and maintains a full copy of the Transformer model.

Within each Transformer block, the inference proceeds in parallel across devices. Each device first
applies our Noise-Augmented Vector Quantization (see Task Accuracy Preservation) to its local tokens,
and transmits the corresponding low-bit indices to other devices. Each device now has access to the
full input sequence, full-precision for local tokens, and vector quantized versions for non-local tokens.
It then performs Mixed-Precision Attention Computation (see Extreme Communication Compression),
computing attention maps over this hybrid set of representations. Since the feed-forward network (i.e.,
MLP) is position-wise independent, it is executed locally on each device without communication.

After all Transformer blocks, all class tokens, replicated across devices, are aggregated via average
pooling to form a single unified representation. For classification tasks, this pooled class token is
passed to a downstream prediction head to generate the final output. For generative tasks such as
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Figure 2: Overview of ASTRA with two devices. We introduce three key innovations: (1) Mixed-
Precision Attention, (2) Noise-Augmented Vector Quantization, and (3) Distributed Class Tokens to
achieve communication-efficient multi-device inference. ASTRA can be applied to transformers for
both deterministic and generative tasks.

next-token prediction, there is no class token. Instead, the input sequence is evenly partitioned across
devices for parallel encoding, which accelerates the initial digestion time during inference. Once the
token encoding is complete, autoregressive decoding proceeds sequentially on a single device that
holds the final (i.e., most recent) token in the input sequence.

3.2 EXTREME COMMUNICATION COMPRESSION

Transformer attention requires global context aggregation, which poses a communication bottleneck
when the input tokens are partitioned across devices. In detail, the self-attention layers must use
all tokens in the sequence, including those stored on other devices, to compute attention for each
local token. As a result, each Transformer block must perform an all-to-all exchange of embeddings
across devices, leading to significant communication overhead. For example, if the input tokens are
evenly partitioned across N devices, with each holding 7'/N tokens, then transmitting full-precision
embeddings requires sending 7'/ N x D x r bits per device per block, where D is the hidden dimension
and r is the precision (e.g., float32). Such overhead becomes prohibitive under realistic bandwidth
constraints.

Mixed-Precision Attention. To address this challenge, we propose to leverage both full-precision and
compressed token representations during attention computation. Specifically, each device computes
full-precision attention among its local tokens, and approximates attention interactions with non-local
tokens (i.e., those stored on other devices) using vector-quantized embeddings. Only the low-bit
indices of the vector-quantized embeddings are transmitted between devices.

Formally, for each local query q, we compute attention over a mixed set of key and value pairs,
full-precision representations from local tokens and vector-quantized representations from non-local
tokens. Therefore, the attention map is computed as:

QK K"
Vg
where K and V are derived from the vector-quantized embeddings X via linear projections. The
operator | denotes row-wise concatenation, and o represents softmax operation. During the training

stage, the attention mask M ensures that full-precision interactions are only applied between local
tokens, while interactions with non-local tokens use their compressed counterparts.

Atn(Q, K. K, V,V) =0 oM | [V |V], 1)

Vector-Quantized Non-Local Tokens. The non-local compressed embeddings X in Mixed-Precision
Attention are produced by a vector quantization (VQ) module. Prior to transmission, each token
embedding X is quantized by a codebook to an index ¢ via nearest-neighbor lookup. Since the
codebook is shared across devices for each Transformer block, the receiving device can reconstruct
X using only the transmitted index ¢. This reduces the per-token communication cost from 7D bits
to log, K bits, where K is the codebook size, resulting in a compression ratio of 2457.6x when
r=32,D =768, and K = 1024.
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The VQ module is jointly trained with the Transformer model. Specifically, the codebook is initialized
by running K -means clustering over intermediate token embeddings from the pretrained model, and
is further updated via exponential moving average during model fine-tuning. Following VQVAE (Van
Den Oord et al.l 2017), we apply a commitment loss to encourage token embeddings to stay close to
their assigned centroids. The overall training objective is:

L=L+BIX —sg(X)|3, )

where L; is the task loss, sg(-) denotes the stop-gradient operation, and (3 controls the strength
of the commitment term. This design encourages the model to align token embeddings with their
corresponding quantized representations, which improves downstream task performance even under
aggressive compression. Appendix [F| further empirically demonstrates that the commitment term and
a well-configured loss weight is necessary for maintaining accuracy.

3.3 TASK ACCURACY PRESERVATION

Noise-Augmented Vector Quantization. Quantizing embeddings introduces discretization error,
which can degrade model generalization. To mitigate this, we propose a novel regularization strat-
egy called Noise-Augmented Vector Quantization (NAVQ), which adds Gaussian noise to quantized
embeddings during training. This technique is inspired by the Vicinal Risk Minimization (VRM)
principle (Chapelle et al.,|2000), which improves generalization by exposing the model to perturba-
tions around each data point in input space. NAVQ extends this philosophy into the latent quantized
embedding space. Instead of directly using the deterministic quantized embedding X during training,
we compute a noise-augmented version, X = X + A, where A € (0, 1] controls the noise magni-
tude and § ~ N (p, X) is Gaussian noise sampled from the distribution of quantization residuals
e := X — X. This residual captures the error introduced by quantization, and the noise distribution
is fit with empirical mean g and covariance X over training data.

By injecting noise into quantized embeddings during training, NAVQ restores a degree of continuity
to the otherwise discrete latent space, encouraging the model to generalize across small perturbations
and reducing sensitivity to codebook boundaries. At inference time, the noise is omitted and the
model operates deterministically using X. We theoretically justify this approach in Appendix |B|and
prove the following:

Theorem 1 (Noise-Augmented Embeddings Improve Distributional Fidelity). Let X denote the
quantized embedding of X, and let X = X + X with € ~ N (p, X) sampled from the quantization
residuals. Then the 2-Wasserstein distance between the original embedding distribution Px and the
perturbed distribution Px satisfies:

W3 (Px, Pg) < W3 (Px, Pg), (3)

i.e., the noise-augmented distribution is statistically closer to the true distribution than the raw
quantized embedding.

Empirically, NAVQ reduces overfitting and improves generalization. As shown in our ablation study
(see Appendix [F), setting A = 1.0 improves validation accuracy by 0.86% compared to training
without noise, demonstrating the effectiveness of this regularization under extreme compression.

Distributed Class Tokens. In Transformer-based classification models, such as ViT (Dosovitskiy:
et al.l|2020), a special class token is prepended to the input sequence and used to aggregate information
from all other tokens through attention. However, in the context of our Mixed-Precision Attention
mechanism, attention between tokens on different devices is performed using vector-quantized
embeddings. If the class token is assigned to a single device, it will attend to full-precision local
tokens but only see vector-quantized representations from other devices. This asymmetric access to
information introduces a bias in the class token’s representation, potentially limiting its ability to
effectively summarize the entire input sequence.

To address this issue, we introduce the Distributed Class Token mechanism. Instead of assigning the
class token to a single device, we replicate it across all devices, creating one local copy per device.
Each replica computes attention with full-precision local tokens and quantized non-local tokens. At
the end of the model, all class token replicas are aggregated (e.g., via mean pooling) into a single
vector, which is then passed to the final prediction head. This approach not only restores symmetry in
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access to information but also reduces estimation error in the attention output, improving robustness
to quantization artifacts. We formally justify this mechanism in Appendix [Cland prove the following:

Theorem 2 (Variance Reduction via Distributed Class Tokens). Let h denote the class token embed-
ding of a full-precision global attention computation. Let hgiyg1c be the output of a single-device

class token using Mixed-Precision Attention, and let fldist be the average of N distributed class token

outputs. Then:

- 1 -
IE[”hdist - hH%} = NE[”hsingle - hH%}, “)

i.e., distributed class tokens reduce the expected attention output error by a factor of 1/N.

Empirically, our ablation study (see Appendix [F)) confirms that Distributed Class Tokens consistently
outperform the single-token variant across all evaluated settings, yielding accuracy improvements
between 0.37% and 7.13% depending on the compression level and commitment loss weight.

4 EMPIRICAL EVALUATION

This section evaluates the effectiveness of ASTRA by answering the following question: (1) Can
ASTRA maintain model accuracy under aggressive token compression? (2) How much can ASTRA
speed up inference under limited bandwidths compared to baselines? (3) How effective are the opti-
mizations in ASTRA? We answer these questions through extensive experiments across Transformer
models (ViT and GPT2), application domains (vision and NLP tasks), and deployment conditions
(varying bandwidth, device count, compression settings, and device heterogeneity).

4.1 EXPERIMENTAL SETUP

Environment. ASTRA is implemented in PyTorch 2.5 and trained on a single L40S GPU with 40GB
memory. For deployment, we simulate distributed inference on personal laptops provisioned with
an NVIDIA 1660Ti GPU. We emulate a range of network conditions by enforcing bandwidth caps,
enabling evaluation under constrained environments. Unless stated otherwise, experiments use 4
devices in a homogeneous setting. We report results under heterogeneous settings in Appendix

Transformer Models. We evaluate ASTRA across both encoder and decoder Transformer architec-
tures: For encoder architecture, we focus on vision tasks with Vision Transformer (ViT-Base) (Doso-
vitskiy et al.,[2020). For decoder architecture, we conduct experiments on NLP tasks with GPT2-Small
(GPT2-S) and GPT2-Medium (GPT2-M) (Radford et al., 2019).

Datasets and Metrics. We evaluate ASTRA on both vision and language tasks. For vision, we
use CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-1K (Deng et al., 2009), reporting top-1
classification accuracy. For language modeling, we perform next-word prediction using two datasets,
English Wikipedia and Wikitext-103 (Merity et al. [2016), and report perplexity (PPL; lower is
better). The evaluation includes three settings: training and evaluating on Wikipedia (Foundation)),
training and evaluating on Wikitext-103, and a zero-shot evaluation where the model is trained on
Wikipedia but directly evaluated on the Wikitext-103 validation set without further fine-tuning. The
last zero-shot setting follows the evaluation used in the original GPT2 (Radford et al.,[2019) and
serves to assess the model’s generalization to unseen domains. All experiments are conducted with a
fixed random seed (42) for reproducibility. To demonstrate the robustness of ASTRA across different
runs, results averaged over multiple seeds are reported in Appendix [D} The memory cost analysis is
included in Appendix [G|

Baselines. We compare ASTRA with both single-device and three multi-device inference approaches.

* Original Model: The baseline model runs entirely on a single device using float32 precision. We
compare with the float32 model as ASTRA builds on top of this model for a fair comparison. Later,
we show ASTRA can be combined with model quantization.

* Tensor Parallelism (TP): Represented by Megatron-LM (Shoeybi et al.,2019), which partitions
weight matrices across devices and requires two allreduce operations per Transformer layer.

* Sequence Parallelism (SP): Introduced by Voltage (Hu & Li, 2024), which partitions the input
sequence and performs one AllGather operation per layer.

* Block Parallelism (BP): Proposed by DeTransformer (Du et al.,2024), which replaces Transformer
blocks with multiple parallel sublayers for distributed execution.
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For BP, we evaluate two most efficient design variants proposed in (Du et al., 2024): (i)
BP+AllGather (BP+AG) minimizes communication by performing more local computation, and
(i) BP+SequenceParallel (BP+SP) reduces local computation at the cost of moderate communi-
cation overhead. Both variants include a hyperparameter [V, that controls the number of original
Transformer blocks retained. A smaller N, leads to fewer communications and thus lower latency.
We compare against BP configurations with N, = 1 and N, = 4.

ASTRA Settings. For the Noise-Augmented Vector Quantization in ASTRA, the codebook size is
1024, representing each transmitted token with 10 bits (i.e., log,1024). The noise magnitude A is 1.0
in the main results and we test other settings including A € {0.0,0.1, 0.3} in Appendix @ We further
evaluate the use of Grouped VQ, as introduced in Background, which splits each input vector into G
groups and applies vector quantization independently to each group using separate codebooks. We
experiment with group sizes of 16 and 32, in addition to Vanilla VQ of a single group. Increasing
the number of groups leads to a higher bits per token and thus reduces the overall compression ratio
proportionally.

We load the pre-trained weights for all the transformer models from the HuggingFace official
model zoo. Then ASTRA is fine-tuned for additional iterations on each dataset using the Adam
optimizer (Kingma & Bal |2014). Specifically, for vision tasks, ASTRA is fine-tuned on CIFAR-100
and ImageNet-1K for 32 and 4 epochs, respectively. For NLP tasks, ASTRA is fine-tuned on 1 million
samples from English Wikipedia and the complete Wikitext-103 dataset for 1 epoch. During fine-
tuning, we test with different commitment loss weights 8 € {0.0001, 0.0002, 0.0005} in Appendix
and report the best accuracy performance in Results on Accuracy.

4.2 RESULTS ON ACCURACY AND COMMUNICATION COSTS

We evaluate the accuracy of ASTRA across three Transformers, ViT-Base, GPT2-S, and GPT2-M, on
vision and NLP benchmarks. Note that we only report the baseline accuracy for the original model.
Existing multi-device baselines, including Megatron-LLM (Shoeybi et al.,|2019) and Voltage (Hu &
Li,|2024), do not incur any accuracy loss since they merely reorganize computation without altering
the model’s numerical outputs. Therefore, their results are equivalent to the original model and are
omitted here for clarity. Alongside accuracy, we also report the associated communication overhead,
measured as the total amount of data exchanged per token during a single forward pass (i.e., Total
Bits per Token). Results are summarized in Tables [T]and [3]

ViT-Base. ASTRA maintains high accuracy Table 1: Task accuracy and communication overhead

on ViT-Base for image classification (CIFAR-  opn CIFAR-100 and ImageNet-1K with ViT-Base.
100 and ImageNet-1K), with less than 3.58%

degradation even under 2457.6 X compression,  Model #Groups
as shown in Table[I] With 32 groups, ASTRA

Total Bits Compression

per Token Ratio CIFAR-100 ImageNet

achieves 91.64% on CIFAR-100 and 80.28% YiTBase - | 204912 - | %253 8032
on ImageNet-1K, closely matching the origi- ) ! 120 2457.6 88.95 77.39
nal performance of 92.53% and 80.32%. To ~ AS™* 1o | 1% e o aesy

further assess scalability, we fix the compres-
sion configuration (32 groups) and evaluate ASTRA on CIFAR-100 using varying numbers of devices.
As shown in Table[2] ASTRA preserves model accuracy within 1.39% of the original model across
different device counts.

GPT2. Table [3| summarizes the perplexity (PPL) re- Table 2: Accuracy of ASTRA on CIFAR-
sults of ASTRA on the next-token prediction task, i.e., 100 under different numbers of devices.

Wikipedia and Wikitext-103, using GPT2-S and GPT2-

M. Overall, ASTRA achieves competitive performance Model ‘ ViT-Base (#GASTRA o)
. . . . roups =
under aggressive communication compression. Note u
CP : : #Devices 1 2 4 6 8
that perplexity is an exponential function of the language Accuracy | 9253 ‘ 9186 9164 9135 o114

modeling loss, i.e., PPL = exp(£), and thus small dif-
ferences in loss can result in amplified changes in PPL. Specifically, on GPT2-M, the PPL on
Wikitext-103 increases from 14.8 (loss = 2.70) to 16.84 (loss = 2.82), reflecting only a 4.4% increase
in loss despite a 102.4 x compression ratio. Similarly, on Wikipedia, the loss increases marginally
from 2.5 to 2.63 (PPL from 12.16 to 13.83), confirming that much of the accuracy is preserved under
significant transmission savings.
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Zero-Shot Generalization. We also
evaluate ASTRA in the zero-shot
setting by directly evaluating the

Table 3: Task performance (i.e., perplexity) and communica-
tion overhead on Wikipedia and Wikitext-103 with GPT2.

: : et : .| Bits per  Compression | 0. . Wikitext-103
mgdpl trained w%th Wlklpedla on the Model  #Groups | 7. P Ratio | Wikipedia .0 e Shot
Wikitext-103 validation set. Here, we
observe a larger performance drop _OPT2-S | 294912 | 1579 18.96 58.91
compared to the original model. For A 116 1‘922% 214;37-66 ﬂ;‘gi ;:gg 19%4087

STRA K . 3. .
example, GPT2-M’s zero-shot PPL 32 | 3840 76.8 1739 2095 7624
rises from 43.22 to 62.29 with AS-
. GPT2-M | 786432 | 1216 14.8 43.22
TRA at 32 groups. This performance
et 1 240 3276.8 17.86 21.97 96.99
Flrop suggests a 11m1t'at1o'n of ASTR,A ASTRA 16 | 3840 204.8 14.43 18.03 75.29
in zero-shot generalization: the dis- 32 7680 102.4 13.83 16.84 62.29

cretization introduced by VQ reduces
the diversity of token representations and hinders out-of-distribution data generalization.

Heterogeneous Devices. In heterogeneous settings where devices have different compute capacities,
ASTRA can adapt by assigning more tokens to stronger devices. Our training uses a randomized token-
to-device mapping to learn a unified codebook, enabling direct generalization to unseen heterogeneity
without retraining. Experiments on ImageNet-1K with 4 devices show that ASTRA maintains within
1.43% accuracy drop compared to the original ViT-Base. We further observe that higher heterogeneity
increases the full-precision attention rate, leading to better accuracy (See Appendix [D]for details).

4.3 RESULTS ON INFERENCE LATENCY

We report latency improvement using a 12-layer Transformer encoder with 768 hidden dimensions.
We compare ASTRA with existing multi-device inference baselines and evaluate their latency across
three key dimensions, varying bandwidth, device count, and input token length, in Figure[I] @} and[5]

Varying Bandwidth. Figure [1| presents the speedup of

. . . . . 12001 [ BP+AG, Nb=1
multi-device methods over single-device inference, evalu- BN BP+SP, Nb=1
ated across inter-device bandwidths ranging from 10 Mbps 10007 el
to 500 Mbps. We fix the number of devices to 4 and the 8001 B ASTRA, G=32

FZ2 Computation
E=23 Communication

input token length to 1024. Additional device count and se- 600
quence length configurations are provided in Appendix [E]
Across all bandwidths, ASTRA consistently outperforms
all baselines and maintains substantial speedup, even un-
der extremely limited bandwidth. For instance, ASTRA 10

achieves a speedup of 1.27 — 2.74x at 20 Mbps, while

Latency (ms)
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all other baselines perform even worse than single-device
inference. Even at 10 Mbps, our method with 16 and 1
quantization groups still delivers 1.26 — 2.65x speedup,
demonstrating strong scalability to bandwidth bottlenecks.

Figure 3: Latency breakdown of local
computation and inter-device communi-
cation time. The red dashed line repre-
sents the single-device latency.

We also visualize the absolute latency breakdown in Figure 3] Specifically, we depict the latency
breakdown for the two fastest baselines, BP+AG and BP+SP when N, = 1, as well as ASTRA with
different groups. We can see that the communication time dominates in total latency for BP+AG and
BP+SP, accounting for as much as 58.55 — 93.47% of total runtime at low-bandwidth settings below
100 Mbps. In contrast, ASTRA effectively mitigates this communication bottleneck via aggressive
compression, thereby significantly reducing total latency.

We further summarize the relative speedup of Table 4: ASTRA’s speedup over baseline methods
ASTRA over each baseline across different band- op 4 devices with 1024 tokens.

width in Table[d] ASTRA’s advantage becomes

more significant under stricter bandwidth. The ~Bandwidth (Mbps) | 10 20 50 100 200 500
speedup of ASTRA over Sequence Parallelism TP 34274 177.89 73.14 37.19 19.02 8.05

: I SP 171.82 8941 37.05 19.08 9.99 451
(SP) ret,ﬂects the jbengﬁt of our Mixed-Precision BP+AG. Nb=l | 1525 841 407 258 183 137
Attention, contributing up to 171.82x latency BP+SP,Nb=1 | 2937 1566 695 396 245 1.53

reduction under low-bandwidth settings.

Varying Device Counts. Figure 4{shows the latency speedup comparison as the number of devices
increases from 2 to 8. We fix the input token length to 1024 and illustrate two representative



Under review as a conference paper at ICLR 2026

bandwidth settings, 20 Mbps and 200 Mbps (more results see Appendix [E)). For both bandwidth,
ASTRA consistently achieves higher speedup than all baselines. As the number of devices increases,
more computation can be parallelized, leading to greater latency reduction. For example, under 20
Mbps, ASTRA with 1 group improves from 1.72x speedup with 2 devices to 3.69x with 8 devices.

Varying Input Token Length. Figure [5| presents the latency speedup comparison as the input token
length increases from 256 to 4096. Similarly, we fix the number of devices to 4 and evaluate under
20 Mbps and 200 Mbps (more bandwidth see Appendix [E). Across all sequence lengths, ASTRA
consistently outperforms existing methods and our superiority becomes more significant at longer
input lengths. In real-world applications, longer input token lengths tend to form a more substantial
barrier to achieving low-latency inference. At 512 tokens and 20 Mbps bandwidth, for instance,
ASTRA achieves a latency speedup of 1.98x compared to the fastest baseline BP-AG of 0.25x,
highlighting the practical value of ASTRA in real deployment scenarios.

4 —=— ASTRA, G=1
ASTRA, G=16
—=— ASTRA, G=32
~4- BP+AG, Nb=1
4 BP+AG, Nb=4
~¥- BP+SP, Nb=1

Speedup
N

e .
- A v BP+SP, Nb=4
1 — I . 1 : N e — N 1 gooc== ¥ N . 4| e TP
o 1 (e e 1 o ¢ ¥ P . o t:::::a:::::é_.ff--f-f-f:z : : 3 3 . sP
2 4 6 8 2 4 6 8 256 512 1024 2048 4096 256 512 1024 2048 4096
#Devices #Devices #Tokens #Tokens
(a) 20 Mbps (b) 200 Mbps (a) 20 Mbps (b) 200 Mbps

Figure 4: Speedup comparison under differ- Figure 5: Speedup comparison under different input
ent numbers of devices (w/ 1024 tokens). token length (w/ 4 devices).

4.4 COMPATIBILITY WITH BIT QUANTIZATION

To demonstrate the compatibility of ASTRA with model compression, we apply post-training quanti-
zation to the standard ViT-Base model and our ASTRA variants, and evaluate their performance on
ImageNet-1K under 8-bit and 4-bit settings. Table[5|summarizes the accuracy and latency results,
with latency measured under 200 Mbps bandwidth, using 4 devices and an input token length of 1024.

Accuracy. 8-bit and 4-bit quantiza- Table 5: Accuracy and latency of ViT-Base and ASTRA on
tion yield minimal accuracy degrada- [mageNet-1K under different precision (FP32, 8-bit, 4-bit).
tion. When ASTRA is combined with bit
quantization, performance remains ro-
bust. For instance, applying 4-bit quan-
tization to ASTRA with 32 groups still
achieves 79.78% accuracy. This sup- 1
ports the claim that ASTRA can be lay- ~ A5™* 19
ered on top of bit quantization methods -

to further reduce latency while preserving task performance.

Model
Name  #Group

Accuracy
FP32  8-bit  4-bit

Latency (ms) speedup
FP32 8-bit 4-bit

ViT-Base - ‘80.32 80.27 80.19‘ 99.9 79.8 103.2

7739 7132 76.82
78.80 78.76 78.43
80.28 80.26 79.78

36.7273% 506 158 44.6 231
41.0244x  S1.715ax  50.2206x
445205x 593 135x  56.9 181%

Latency. Combining ASTRA with quantization pushes end-to-end Transformer acceleration beyond
either method alone. For instance, the 4-bit ASTRA on 4 devices can achieve 1.81 — 2.31 x speedup
over 4-bit ViT-Base on a single device. Notice that the actual speedup from bit quantization depends
on kernel implementation, hardware-specific optimization, and target device. In some cases, e.g.,
4-bit ViT-Base, it may even slow down due to conversion or kernel overhead.

4.5 SCALABILITY TO LARGE TRANSFORMER MODELS

To evaluate the scalability of ASTRA to large language models, we experiment with Llama-3-8B
(Dubey et al.,|2024) for next-token prediction on the English Wikipedia dataset. 8-bit quantization
is enabled for all methods, including the baselines and ASTRA, to execute inference with NVIDIA
TitanX GPUs and keep fair comparisons. When evaluating the latency, we fixed the input token
length to 1024 using 4 devices.

Accuracy. Table[6reports perplexity (PPL, lower is better) together with the communication cost in
bits per token as we vary the number of groups in ASTRA. Compared to the single-device Llama-3-8B
baseline, ASTRA maintains performance close to the original while significantly reducing communi-
cation. For example, when the number of groups is 1, ASTRA incurs only a small increase in PPL
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from 5.81 (loss = 1.76) to 7.73 (loss = 2.04), while achieving a 1600 x reduction in communication,
confirming that the proposed multi-device inference framework can scale to 8B-parameter models.

100
75
50
25

TP, total throughput: 6

Table 6: Task performance (i.e., perplexity) and com-
munication overhead on Wikipedia with Llama-3-
8B, with and without 5% packet loss.

Network Trace(Mbps)

Bits per Compression PPL under
Model #Groups Token Ratio PPL 5% packet loss 1 o o P o o \L
SP, total 85
Llama-3-8B - | 1,048,576 - [5.8118
1 640 1,638.4 |7.7336 7.7294 BP. Nb=4, total : 206
ASTRA 16 10,240 102.4 7.5879 7.5900
32 20,480 51.2 7.4360 7.4431 s 7szrs lm; )

Throughput

Table 7: Latency (s) comparison between ASTRA
and baselines across different bandwidths (Mbps).

ASTRA, G=1, total 392

ASTRA, G=16, total throughput: 375

Bandwidth (Mbps)| 10 20 50 100 200 500
Llama-3-8B | 4.578 ASTRA, G=32, total : 364
TP 430.952 216.291 87.449 44.499 23.025 10.140 T,
SP 28256 14.939 6.888 4.215 2.857 2.052 0 60 120 180 240 300 360 420 480 540 600
BP, Nb=4 4642 3.047 2085 1.753 1586 1485 ) Time
BP, Nb=8 801l 4780 2773 2101 1762 1561  Figure 6: Overall request throughput compar-

ASTRA, G=1 1563 1549 1547 1545 1541 1540  ison under dynamic network bandwidth with
ASTRA,G=16 | 1.661 1.659 1595 1572 1.559 1548 a fixed 600-second trace. Red dashed line
ASTRA, G=32 1.940 1.796 1.661 1.630 1.603 1.583 represents the single—device baseline.

Latency. Table[/|summarizes end-to-end latency under varying bandwidth ranging from 10 to 500
Mbps. ASTRA consistently achieves lower latency than state-of-the-art multi-device baselines at low
bandwidth (e.g., 10-100 Mbps). Specifically, ASTRA attains 1.13 — 5.13x speedup over the fastest
baseline, i.e., BP, Nb=4. Because 8-bit quantization is uniformly applied to all methods, these gains
isolate the benefit of ASTRA ’s communication-efficient design.

Non-Ideal Network Conditions. We further stress the inter-device network with packet loss and
time-varying bandwidth. For the packet loss, since WiFi networks generally experience packet loss
rates of around 1% to 5% (Sheshadr1 & Koutsonikolas}, [2017), Table@includes perplexity when we
inject a 5% random packet loss rate without retransmission. ASTRA preserves task performance
under this moderate packet loss, showing only minor degradation in terms of PPL.

We further simulate fluctuating network conditions using synthetic bandwidth traces generated by
a Markovian model from Pensieve (Mao et al., 2017)), where each state corresponds to a bandwith
between 20—100 Mbps, and transitions are biased toward nearby states to capture temporal correlation.
Figure [6]depicts the 600-second bandwidth trace together with the overall resolved requests when
using a single batch size for the single-device baseline (i.e., the red dashed line) and multi-device
methods on 4 devices (i.e., the bar charts). For each method, the bars illustrate the number of resolved
requests every 10 seconds, and the overall throughput is reported in the title. Under this fluctuating
bandwidth, ASTRA delivers higher throughput than both single-device inference and multi-device
baselines, demonstrating that the proposed communication-efficient mechanisms remain effective
under realistic, non-ideal network conditions.

5 CONCLUSION

We present ASTRA, a communication-efficient framework for accelerating Transformer inference in
multi-device settings. By integrating sequence parallelism with a novel Mixed-Precision Attention
mechanism, ASTRA significantly reduces inter-device communication while preserving accuracy.
Extensive experiments across vision and NLP tasks demonstrate that ASTRA delivers substantial
end-to-end latency improvements over existing baselines, achieving up to 2.64 x speedup over single-
device inference and up to 15.25x over state-of-the-art multi-device methods, under constrained
bandwidth as low as 10 Mbps. Our results highlight the potential of ASTRA for practical deployment
of Transformer models in real-world, bandwidth-limited environments.

10
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A ADDITIONAL RELATED WORK

Deploying Transformers on Edge Devices. Substantial efforts have been devoted to enabling
Transformer models on edge devices through model compression and architecture simplification. For
example, Michel et al. (Michel et al., 2019)) proposed pruning attention heads to reduce computational
cost, while Q8BERT (Zafrir et al.|[2019) quantizes BERT weights from 32-bit to 8-bit to accommodate
memory-limited environments. Other approaches, such as parameter factorization in ALBERT (Lan
et al., [2020) and knowledge distillation methods (Lin et al., 2022), aim to construct lightweight
variants of Transformer architectures suitable for resource-constrained hardware. These techniques
focus on discovering a compact model that maintains acceptable task performance under tight latency
or memory budgets.

In contrast, ASTRA targets distributed inference while preserving the original model architecture. The
compressed transformer models from the above techniques can also leverage ASTRA ’s distributed
inference system for further acceleration, as long as they retain the core transformer architecture.
This makes ASTRA an orthogonal solution that offers further performance improvements without
requiring re-design or re-training for new hardware targets.

Distributed Inference Systems. Distributed inference has emerged as a practical strategy to acceler-
ate computation. Early works such as DeepThings (Zhao et al.| |2018)) exploited the partial receptive
fields of convolutional neural networks (CNNs) to parallelize inference by splitting intermediate
feature maps across multiple devices. The follow-up works, including CoEdge (Zeng et al.| [2020),
DeepSlicing (Zhang et al.| [2021)), and EdgeFlow (Hu & Li, [2022), further incorporated network
heterogeneity and device resource profiling to optimize system throughput. However, these methods
are designed specifically for CNN-based models and are not applicable to the self-attention structure
in Transformers.

Recent work has begun to explore multi-device inference for Transformers by adapting techniques
from distributed training. PipeEdge (Hu et al.,[2022)) utilizes pipeline parallelism to improve through-
put, but its efficiency relies on large batch sizes and does not benefit per-request latency. Other
systems, such as DeepSpeed (Aminabadi et al.||2022) and Megatron-LM (Shoeybi et al., | 2019) apply
tensor parallelism by splitting weight matrices across devices, which leads to frequent and expensive
inter-device communication. To reduce this cost, Voltage (Hu & Li, [2024) introduces sequence
parallelism by distributing input tokens across devices and minimizing the number of cross-device
interactions per Transformer block. Galaxy (Ye et al., |2024) further combines tensor and sequence
parallelism, while DeTransformer (Du et al.,|2024) even modifies the Transformer block structure to
enable more efficient distribution.

Despite their contributions, these methods still rely on high-bandwidth connections to achieve
meaningful speedups. In contrast, ASTRA significantly reduces the required bandwidth to only 10
Mbps, while still achieving 2.64x end-to-end latency speedup, making it far more practical for
real-world deployments in constrained edge environments.

B PROOF FOR NOISE-AUGMENTED VECTOR QUANTIZATION

Theorem 1 (Noise-Augmented Embeddings Improve Distributional Fidelity). Let X denote the
quantized embedding of X, and let X = X + X\ with & ~ N (u, ) sampled from the quantization
residuals. Then the 2-Wasserstein distance between the original embedding distribution Px and the
perturbed distribution Py satisfies:

W3 (Px, Px) < W3 (Px, Px), ®)

i.e., the noise-augmented distribution is statistically closer to the true distribution than the raw
quantized embedding.

Proof of Theorem[B} Let

my = E[X], m¢ =E[X], mg =E[X], 6)
andlet Cx, C, Cg denote the corresponding covariance matrices. By definition of the quantization
errore = X — X we have my = m ¢ + g and Cx = C'; + X. As the injected noise { ~ N (p1, ),

14
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we know that
mX:mXJr/\u, OX:CX+)‘22' @)
The Wasserstein distance between two Gaussian distributions can be computed by
W3 (P1, P2) = [[m1 —ma3

+ trace (Cl +Cy—2 (C’Q% C’lcz%) 2) ®)

= [[my —my|3 + d3(C1,C2),
where m and C are mean and covariance of the distributions, dg is the Bures metric.
To prove W3(Px, Pg) < W2(Px, Pg), we will first show the mean term of X is smaller, then the
Bures term is smaller.
Step 1 (mean term is smaller). Using the mean part of the Gaussian W5 formula, we have
Jmx —mg|5—[lmx —mg|3

= lulls = (1= 22|13 )

= (2A=X)lul3 >0,
because 0 < A < 1. Then we prove that

lmx —mgll3 < mx —mg|3 (10)

Step 2 (Bures term is smaller).

For analytical clarity, we assume that the quantization errors ¢ are independent and identically

distributed across dimensions, i.e. & N (0,0%). Under this assumption, the global error
covariance becomes X = ¢21, which commutes with C'¢, namely Cy X = XC'y,. Consequently, C'y
and . can be diagonalized by the same orthonormal eigenbasis U. Then we have

UTCxU = diag(c% ),
UTSU = diag(o?), (1D
O')A(,p 0; 2 07

then we obtain

U'cxU = diaug(agm)7 agm = U;i + 02»2, 12
U'CyU = diag(a?z,i), a;i = 0?{,1' + Mo

For diagonal matrices the Bures term in the W5 expression reduces to a sum of squared differences

of standard deviations: )
dQB(CA7 OB) = Z(UA,i - O'B,i) . (13)
Then we have ) )
dB(CchX) — dp(Cx, C}"{)

= Z((ax,z‘ - U)Z’.,i)2 —(ox,;— UX,i)z)

=Y (05— 0%,) (QUXJ — (0%, + UX,i))'

Because oy , <og, <ox;wehaveog, —og,>0and20x; — (05, + 0y ;) > 0, therefore
Equation [I4]is positive. Thus, we prove that

d}(Cx,Cy) < dp(Cx,Cx). (15)

(14)

Summary. Since both the mean part and the Bures part are strictly smaller for (m ¢, C'y) than for
(mg,Cy), hence we have completed the proof for

W3 (Px, Pg) < W3 (Px, Px), (16)
which completes the proof. O
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C PROOF FOR DISTRIBUTED CLASS TOKENS

Theorem 2 (Variance Reduction via Distributed Class Tokens). Let h denote the class token embed-
ding of a full-precision global attention computation. Let hging1e be the output of a single-device

class token using Mixed-Precision Attention, and let fldist be the average of N distributed class token

outputs. Then:
- 1 -
IEmhdist - hH%} = NE[”hsingle - hH%L (17)

i.e., distributed class tokens reduce the expected attention output error by a factor of 1/N.

Proof of Theorem2)
Setup. Tokens are evenly partitioned: X = vazl X®,|X@)| = T/N. Each device stores local keys

k; and values v; in full precision for j € X, and transmits quantized versions l~<j =k; + dk; and
v; = v; + 0v; to other devices, where dk; and Jv; are the error introduced by quantization. For

every non-local token, we assume
E[ék,] =0,

E[év,] =0,
Cov(0k;) = o}
) =02

(
Cov(

(18)

0v;
and errors are mutually independent.

The variances o7, o2 are bounded according to the classical high-rate VQ theory (Zador,|1982} Gersho
& Gray, [1991). It shows that, under mild assumptions on the feature distribution, the mean-squared
quantization error of an optimal K-level VQ in dimension d satisfies

E[|X - X|2 < Cy- 0% - K~2/4, (19)

where X denotes the quantized embedding of X, and Cj is a constant depending on the dimension d.
This implies a per-dimension variance bound

ol o IE||X X[|2<C 0% K21, (20)

Full-Precision Attention. For a query q, the attention logits are a; = q ' k;/ V/d, attention weights
a; = softmax(a;), and the output h = ZJT=1 a; ;.

Mixed-Precision Attention via First-Order Taylor Expansion. For a non-local token, the logit is
perturbed by the key noise,

0 — qT(kj'i‘(Skj) —a + qT(Skj
J \/& -

2n

(k)

Because e, is small, we could linearise the softmax function by first-order Taylor expansion.
Specifically, the softmax funcion is ; = exp(a;)/>_; exp(a;), and its Jacobian is dav;/Oay, =
a; (05 — ag), where ¢, is the Kronecker delta. Therefore we have the perturbed attention weights,
Gy~ g+ (05— ar)efl”
k
=aqa; + Ozj(e;k) — Zakegf)) (22)
k
= O[j + (50lj.

The terms d«; remain zero-mean and mutually independent.

Then the mixed-precision output is

fl = Z dj (Vj + (5Vj)7 (23)

J
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where 0v; = 0 if j is the local token index.

Attention Output Error. Subtracting h and discarding higher-order noise products, the first-order
output error is 3
:=h—-h

> (0 0v; + 605 v;)

non-local j
Za] 0v; JrZozj Zak e(k)

V-error: e(v) K-propagated error: e(k)
Both error components are zero-mean random vectors and each coordinate has variance bounded by
C; 012, + 020']%, where Cy and Cq are deterministic constants.

(24)

Specifically, for the first value-error component e(*) = 37 JeN Q4 dv;, where NV is the set of
m = %T non-local tokens per device and each dv; is an independent, zero-mean random
vector with Cov(év;) = o2 I. Then for an arbitrary coordinate ¢ € {1,...,d}, since the noises are
independent, we have
Var([e)]..) = Var( > ay [5Vj]c>
JEN
_ 2
=Y af Var([ov,].) (25)
JEN
=0y ol
JEN

Since the attention weights 0 < a; < 1 and there are exactly m non-local tokens, we have

Var([e(“)]c) < olm maxa = C0?
JjEN
_ , (26)
with Cq :=m max o
JEN
The constant C is deterministic since it depends only on the current softmax weights. And every
coordinate of the value-error term is bounded in variance by C102.

For the second key-propagated term, recall the first-order perturbation of each softmax weight
k k k ok
5aj:oz]<() Za e()) é)::q\/a7 (27)

where the key-noise scalars e; ) are i.i.d., zero-mean with variance o7. Then for one output coordinate

¢, we need the variance of [e®] =37\ dc;vj..

First, since dcy; is a linear combination of independent noises,
Var[éa;] = o o7, (1 +> a%) < 2a3ay, (28)
because Y, a7 < 1.

Then since each addend da; vj . is zero-mean, we have

Var([e ®)]. Z vj . Var[da;]

JEN (29
< 20k maxv Za
JEN
With ZjGNa? < mmax; af,
Var([e®].) < 2 2 2
(o)) < 208 m (maxn?,) (ma o?) o

2
CQUk,
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where
— 2,2
Cy:=2m E%E}\)/{(ajvj’c)' 3D
The constant Cs is deterministic since it depends only on the current softmax weights and the fixed
value vectors, not on the random noise. And every coordinate of the key-propagated error is bounded
in variance by Cs J,%.

In conclusion, we prove that the mixed-precision attention output error § decomposes into a value-
error term and a key-propagated term, and that each coordinate satisfies

Var([8].) < C102 + Cyoi, (32)

where C1, Cs are deterministic constants depending only on model parameters. Since 07,02 are

bounded in Equation 20} the attention computation error is properly bounded and decreases with
larger codebook size K.

Single Class Token Attention Output Error. Its attention output error vector has m = %T
independent coordinates (i.e., the number of non-local tokens), each with per-coordinate variance
o? := Var([e")].) + Var([e*)].). Hence

E[Hésinglellg] = mda2. (33)

Distributed Class Tokens Attention Output Error. Let § (*) be the error vector for the i-th
device. Vectors 6(*) are independent and identically distributed. The averaged class token output is

6 =L 3N 6, then we have

N
_ 1 . 1
E[I8113] = 5z D_ElI6VIE] = 5 mdo®, (34)
i=1

Nz 2

Attention Error Comparison. According to Equations [33]and[34] using distributed class tokens
yields a factor of 1/N in the expected attention output error compared to the single class token,
indicating a more accurate attention computation under the mixed-precision attention mechanism. [

D RESULTS ON ACCURACY CONT.

Experiments with Different Random Seeds. To evaluate the robustness of ASTRA to randomness,
we repeat each experiment ten times using different random seeds (0-9) on ImageNet-1K. As shown
in Table[8] ASTRA consistently achieves stable performance across all group configurations, with
standard deviations below 0.0012. These results demonstrate that ASTRA produces reproducible
outcomes and is not sensitive to randomness in training.

Table 8: Accuracy of ASTRA on ImageNet-1K under ten runs with different random seeds (0-9).
Mean and standard deviation (Std.) are reported for each group configuration. The original ViT-Base
achieves 80.32% accuracy for reference.

Seeds 0-9 Mean Std.

#Groups=1  0.7681 0.0012
#Groups =16 0.7855  0.0008
#Groups =32 0.8002  0.0008

Accuracy in Heterogeneous Settings. In the main paper, we assume the computational workload
is evenly distributed across homogeneous devices. To better evaluate the scalability of ASTRA in
practical scenarios, we further explore its performance when deployed on heterogeneous devices.
This section focuses on how heterogeneous deployment affects accuracy. Latency measurements are
conducted on homogeneous devices to ensure consistency and are reported in the main paper and
Appendix E.

In heterogeneous settings, stronger devices are assigned more tokens to balance the overall computa-
tion workload, while weaker devices receive fewer. Let N be the total number of tokens and K the
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number of devices. Denote ny, as the number of tokens on device £, such that Zszl ni = N. We
define the Full Precision Attention Rate (FPAR) as:

K 2
(35)

which measures the proportion of full-precision attention computation in the Mixed-Precision Atten-
tion mechanism. A higher FPAR indicates that more attention computation uses full-precision keys
and values, thus better approximating standard attention.

To understand how FPAR captures token distribution imbalance, we examine its connection to the
variance of n, which directly reflects distribution heterogeneity. Let u = N/K be the average token
count per device. Then:

K
1
Var(ng) = - > (e — )’
k=1
1 ¢ (36)
= ani -
k=1
N2 1
= — . (FPAR — —).

This shows that FPAR is a monotonic function of the variance of token allocation. In other words, as
the load distribution becomes more imbalanced (i.e., more heterogeneous), FPAR increases.

To study how FPAR relates to model performance, we train ASTRA on ImageNet using #Groups = 32
across 4 devices. During training, tokens are randomly distributed across devices in each batch to
simulate workload balancing on heterogeneous hardware. During evaluation, we continue to randomly
assign tokens to devices and record both the prediction accuracy and the corresponding FPAR for
each batch.

Figure|7|shows the distribution of FPAR across all evaluation batches. We divide the evaluation data
into five bins based on FPAR, each containing 20% of the samples. Table [0]reports the mean accuracy
for each bin. While the overall accuracy under heterogeneous deployment is slightly lower than in
the homogeneous case—likely due to the added randomness in token assignment and the increased
difficulty in learning a consistent pattern—we observe a clear positive correlation between FPAR and
accuracy. This suggests that higher full-precision attention contributes to better model performance,
demonstrating that our method remains effective under heterogeneous device settings.

Table 9: Accuracy of ASTRA under heterogeneous token distributions.

FPAR Range Mean Accuracy (%)

[0.2501, 0.2932] 78.89
[0.2932,0.3196] 78.96
[0.3196, 0.3516] 79.39
[0.3516, 0.4020] 79.62
[0.4020, 0.7461] 79.87

Task Performance of Llama3-8B on Downstream Tasks. We conducted additional experi-
ments on four downstream sequence classification datasets, including CoLA Warstadt et al.| (2019)),
SST2|Socher et al.|(2013), AG News Zhang et al.|(2015), and QQP|Sharma et al.[(2019). Table
reports the accuracy of the original Llama3-8B and its ASTRA versions. The results demonstrate that
our small increases in pre-training perplexity in Table[6]lead to minor differences on downstream
tasks, validating ASTRA ’s capability in maintaining task performance.

E RESULTS ON INFERENCE LATENCY CONT.

In the main paper, we evaluate the inference latency of ASTRA under three key factors that impact
multi-device performance: (1) Inter-device bandwidth, which affects the cost of communication
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Figure 7: FPAR histogram across evaluation batches.

Table 10: Task performance of ASTRA on downstream tasks with Llama3-8B.

Dataset | CoOLA  SST2 AGNews QQP

Llama3-8B 0.7615 0.8426 0.8374 0.7970
ASTRA, G=1 | 0.7428 0.7545 0.7852 0.7703
ASTRA, G=16 | 0.7451 0.8179 0.8292 0.7674
ASTRA, G=32 | 0.7539 0.8314 0.8325 0.7803

across devices; (2) Number of devices, which determines the degree of parallelism; and (3) Input
token length, which scales both computation and communication demands.

While the main text focuses on a representative configuration for each factor, this section presents
additional results across a broader range of settings to further validate our findings. We include
more granular evaluations varying each of the three dimensions to provide a comprehensive view of
ASTRA’s latency behavior under diverse deployment scenarios.

Varying Bandwidth. To assess the scalability of ASTRA under different communication constraints,
we evaluate its end-to-end latency speedup across a wide range of inter-device bandwidths from 10 to
500 Mbps. Figure [§]presents the results across varying numbers of devices i.e., 2, 4, 6, 8) with a fixed
input token length of 1024, while Figure 9] shows the results under varying input lengths (i.e., 256,
512, 1024, 2048, 4096) with 4 devices.

Across all configurations, ASTRA consistently outperforms existing multi-device baselines, with its
advantage becoming increasingly significant as bandwidth decreases. For instance, in the 4-device
and 1024-token setting (Figure b)), ASTRA achieves a speedup of 2.64x at 10 Mbps, while the
strongest baseline (BP-SP, N, = 1) only reaches 0.17x. This trend also holds for different token
lengths. As shown in Figure[J] the relative speedup of ASTRA grows with increasing sequence length.
These results confirm that ASTRA maintains high efficiency even under constrained bandwidth,
thanks to its aggressive communication reduction strategy. In addition, grouped quantization (e.g.,
G = 16, 32) offers a tunable balance between compression and accuracy, enabling consistent latency
benefits across a wide range of system settings.
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Varying Device Counts. We further examine how the number of participating devices affects end-
to-end latency speedup under varying bandwidth conditions. Figure [T0] presents results for device
counts ranging from 2 to 8 across bandwidths from 10 to 500 Mbps, with the input length fixed at
1024 tokens.

Across all bandwidth settings, ASTRA exhibits steadily increasing speedup as more devices are
involved, demonstrating its ability to effectively utilize parallel computation. Thanks to its
communication-efficient design, where non-local token embeddings are transmitted in compact
vector-quantized form, ASTRA consistently delivers strong gains even under constrained bandwidth,
highlighting its scalability across a range of deployment scenarios.

Varying Input Token Length. We evaluate how input token length affects latency speedup under
different bandwidth conditions. Figure|l 1|shows results for input lengths from 256 to 4096 tokens
across bandwidths from 10 to 500 Mbps using 4 devices. Across all bandwidth settings, ASTRA
consistently achieves higher speedup than baseline methods and our improvements enhance as the
input length increases. This trend highlights the communication bottleneck in existing methods,
which becomes more significant with longer sequences, while ASTRA effectively mitigates this
overhead through aggressive compression.

F ABLATION STUDY

Varying Noise Magnitude \. The noise magnitude A in Noise-Augmented Vector Quantization
controls the scale of noise added to the quantized embeddings during training. Table (11| shows
the effect of varying A € {0.0,0.1,0.3,1.0} on both training and validation accuracy. All other
hyperparameters are fixed (e.g., 16 groups, commitment loss weight 8 = 0.0005). As X increases,
the gap between training and validation accuracy consistently decreases, indicating that injecting
noise improves generalizability by preventing the model from overfitting to discrete embedding
patterns. Notably, when A = 1.0, the validation accuracy improves by 0.86% compared to A = 0,
demonstrating the effectiveness of our proposed strategy over naive vector quantization.

Table 11: The impact of noise magnitude A on classification accuracy. Gap = Train - Val.

A | Train  Val Gap

0.0 | 99.98 8991 10.07
0.1 | 9997 90.02 995
03 ]99.98 90.13 9.85
1.0 | 99.98 90.77 9.21

Distributed Class Token VS Single Class Token. Table[I2]reports the classification accuracy of
ASTRA using either a single class token or distributed class tokens across devices. The distributed
strategy consistently outperforms the single-token baseline, with accuracy gains ranging from 0.37%
to 7.13% across different group configurations and commitment loss weights. This demonstrates that
allowing class tokens to attend to all full-precision context tokens in a distributed manner significantly
enhances their ability to aggregate global information.

Table 12: Distributed Class Token VS Single Class Token under different group configurations and
commitment loss weights.

8 #Groups=1 #Groups=16 #Groups=32
Single Dist. A Acc. | Single Dist. A Acc. | Single Dist. A Acc.
0.0001 | 82.39 88.95 6.56 | 89.11 9037 126 |90.39 91.60 1.21
0.0002 | 81.48 88.60 7.12 | 89.02 90.38 1.36 | 90.84 91.21 0.37
0.0005 | 81.82 88.95 7.13 | 88.93 90.77 1.84 |90.79 91.64 0.5

Varying the Commitment Loss Weights /3. Recall from Section [3.2]that we include a commitment
loss term to encourage the original token embeddings to remain close to their assigned codebook
entries following VQVAE (Van Den Oord et al., 2017). While the original VQVAE typically sets the
commitment loss weight to 0.25, we adopt much smaller values in our setting, as we apply vector
quantization separately at each Transformer block. Table[12]in the main paper reports the results
of ASTRA under different commitment weights 5 € {0.0001,0.0002,0.0005}. Here we further
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compare with two control variants: one without commitment loss (i.e., 8 = 0), and one using an
excessively large weight (i.e., 5 = 0.25). As shown in Table[I3] either omitting or misconfiguring the
commitment term slightly degrades accuracy, with performance drops ranging from 0.1% to 1.67%,
confirming the importance of tuning /3 appropriately.

Table 13: The impact of commitment loss weight 3.

3 | #Groups
1 16 R

0 88.85 90.46 91.42
0.25 | 88.75 89.7 89.97
best | 88.95 90.77 91.64

G MEMORY COST ANALYSIS

ASTRA introduces a small additional memory cost to store the VQ codebooks, while the vector-
quantized keys and values can reduce the memory required by the KV cache. We discuss these two
aspects separately below. VQ codebook introduces a small additional memory cost. The memory
footprint of the VQ codebooks is

Mcodebook:L'O'K'd'b

where L is the number of layers, C' is the number of codebooks per layer, K is the codebook size
(number of entries), d is the hidden dimension, and b is the number of bytes per value. Note that this
expression is independent of the number of VQ groups. Grouped VQ partitions the hidden dimension
into groups (i.e., G groups of dimension d/G). Since G - (d/G) = d, the total codebook size only
scales with the full hidden dimension d, not with G. In practice, this overhead is small compared to
the original model parameters. For example, in LLaMA-3-8B, we use L = 32, C' = 2, K = 1024,
d = 1024, b = 2 bytes (i.e., float16 precision). This gives

Meodebook = 32 X 2 x 1024 x 1024 x 2 bytes = 134,217,728 bytes = 128 MiB. (37)

Thus, for LLaMA-3-8B, the total VQ codebook storage is about 128 MiB, regardless of the number
of VQ groups. This corresponds to roughly 0.78KV cache memory cost is reduced by VQed keys
and values. ASTRA reduces KV cache memory by storing non-local keys and values as VQ indices
instead of full-precision tensors. For an input sequence of length IV, the KV cache memory of the
original model is

MAE=2-N-L-d-b, (38)

where the factor 2 accounts for keys and values, L is the number of layers, d is the hidden dimension,
and b is the number of bytes per value. With ASTRA, we assume n4 devices, G VQ groups, and an
even partition of tokens across devices. Each device keeps its local tokens in full precision, while
non-local tokens are cached as VQ indices (one index per group per token). The KV cache memory
becomes

N N logy K
MQSTRA:Q( S Ledb 4+(ng—1)— LG 22 ) (39)
nd ng 8
local full-precision KV non-local KV stored as indices

where K is the codebook size and log, K is the number of bits per VQ index. For LLaMA-3-8B,
weuse N = 1024,L = 32,d = 1024,b = 2 bytes, ng = 4, G = 32, and K = 1024 (i.e.,
(log, K = 10), so we have

MRE = 21024 - 32 - 1024 - 2 = 134,217,728 bytes ~ 128 MiB, (40)

1024 1024 1
MS™RA = 2(OT-32-1024-2+(4—1).OT~32~32~§0) = 35,520,512 bytes ~ 33.9 MiB. (41)

Thus, in this configuration, ASTRA uses only about 26.5% of the original KV cache memory.
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H IMPACT STATEMENT AND LIMITATION

Potential Societal Impact. Our work aims to make large Transformer models more deployable
in real-world environments by enabling efficient multi-device inference under limited bandwidth.
This can expand the accessibility of powerful Al models to edge and consumer-grade devices,
potentially benefiting applications in healthcare, accessibility, and low-connectivity regions. However,
multi-device deployment may introduce new robustness and maintenance challenges. Unlike single-
device inference, distributed inference requires reliable synchronization and communication among
devices. Failures in individual devices or unstable connections can lead to degraded performance or
unpredictable outputs. These issues can make such systems harder to debug, monitor, and guarantee
correctness, especially in safety-critical applications.

Limitation and Future Work. While ASTRA achieves strong performance across vision and
language tasks, we observe a degradation in zero-shot generalization in the GPT experiments (see
Sectiond.Z). We hypothesize this is due to the limited expressiveness of the discrete embedding space
introduced by vector quantization. Future work may explore hybrid compression strategies that retain
generalization ability while still reducing communication costs. Additionally, our grouped vector
quantization design requires maintaining a separate codebook for each group, which increases the
overall storage footprint and may limit deployment flexibility across heterogeneous environments. As
a future direction, we aim to investigate codebook sharing mechanisms or dynamically composable
codebooks to reduce storage costs and enable bandwidth-aware adaptation without retraining.
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Figure 8: Speedup comparison under different bandwidth across different numbers of devices (w/

1024 tokens).
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Figure 10: Speedup comparison under different devices across different bandwidth (w/ 1024 tokens).
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Figure 11: Speedup comparison under different input token length across different bandwidth (w/ 4

devices).
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