
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMMUNICATION-EFFICIENT MULTI-DEVICE
INFERENCE ACCELERATION FOR TRANSFORMER MOD-
ELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer models power many AI applications but suffer from high inference
latency, limiting their use in real-time settings. Multi-device inference can reduce
latency by parallelizing computation. Yet, existing methods require high inter-
device bandwidth, making them impractical for bandwidth-constrained environ-
ments. We propose ASTRA, a communication-efficient framework that accelerates
Transformer inference through a novel integration of sequence parallelism and a
Mixed-Precision Attention mechanism designed to minimize inter-device commu-
nication. ASTRA compresses non-local token embeddings via vector quantization
and preserves task accuracy through two optimizations, Noise-Augmented Quanti-
zation and Distributed Class Tokens. Experiments on ViT and GPT2 across vision
and NLP tasks show that ASTRA achieves up to 2.64× speedups over single-device
inference and up to 15.25× speedups over state-of-the-art multi-device inferences,
while operating under bandwidths as low as 10 Mbps.

1 INTRODUCTION

Transformer models (Dosovitskiy et al., 2020; Devlin et al., 2019; Radford et al., 2019) have become
central to modern AI applications in both vision and language domains. As models grow in scale to
improve accuracy, their inference time becomes prohibitive, particularly for real-time applications or
latency-sensitive user experiences. To address this bottleneck, many works have focused on optimizing
single-device inference through techniques like quantization (Liu et al., 2021), pruning (Kwon et al.,
2022), and knowledge distillation (Lin et al., 2022). Since the latency improvement on a single device
remains fundamentally limited by the device’s capacity, Multi-device inference draws increasing
attention (Hu & Li, 2024; Du et al., 2024). It complements the above optimization techniques
by parallelizing model execution across multiple devices. In theory, it can reduce latency nearly
linearly with the number of devices. This setup is especially attractive in practical settings where
resource-constrained edge devices or distributed consumer-grade hardware can collaborate to process
sporadic inference requests.

10 20 50 100 200 500
Bandwidth (Mbps)

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

Figure 1: Latency speedup for existing multi-
device inference methods and our proposed
method ASTRA with different groups G under dif-
ferent bandwidths with 4 devices and 1024 input
tokens. BP: Block Parallelism, SP: Sequence Par-
allelism, TP: Tensor Parallelism, AG: AllGather.
A smaller Nb means less communication for BP.

Our analysis, however, reveals a critical bottle-
neck that has been overlooked: in bandwidth-
constrained settings (<=100 Mbps), inter-device
communication dominates the existing multi-
device inference time, accounting for 58.6-
93.5% of total latency (see Section 4.3). This
communication overhead negates the theoreti-
cal speedups promised by existing multi-device
approaches. Existing methods, such as Ten-
sor Parallelism (TP) in Megatron-LM (Shoeybi
et al., 2019), Sequence Parallelism (SP) in Volt-
age (Hu & Li, 2024), and Block Parallelism
(BP) in DeTransformer (Du et al., 2024), rely
on high-volume communication bandwidth to
achieve modest speedups, as shown in Figure 1.
This requirement far exceeds what is commonly

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

available in bandwidth-constrained environments. For example, indoor Wi-Fi networks (e.g., Wi-Fi
4/5/6) typically deliver practical throughput in the range of 50–300 Mbps, depending on interference,
distance from the router, and device capabilities. As a result, current approaches are ill-suited for
wireless or edge deployments, where lower and more variable bandwidth is the norm (wii, 2025).

In this work, we propose ASTRA, a communication-efficient framework for accelerating Transformer
inference across multiple devices. ASTRA rethinks how attention computation is distributed by
building on sequence parallelism, which assigns different input tokens to different devices. The key
innovation in ASTRA is a Mixed-Precision Attention mechanism that dramatically reduces commu-
nication cost: local attention is computed using full-precision embeddings, while remote tokens are
encoded using low-bit vector quantization before transmission. These compressed embeddings are
decoded on the receiving end and used for approximate attention computation.

To preserve accuracy, ASTRA incorporates two key designs. First, a Noise-Augmented Vector
Quantization strategy injects Gaussian noise to vector-quantized token embeddings during training,
enhancing the diversity of the quantized feature space and improving generalization to unseen inputs.
Second, a Distributed Class Token scheme assigns each device its own local class token, which
attends to uncompressed local tokens with full precision and vector-quantized tokens from other
devices. The outputs from these distributed class tokens are then aggregated as a more comprehensive
embedding before the final prediction. Through these techniques, ASTRA makes multi-device
inference viable in low-bandwidth scenarios while maintaining high accuracy.

Our main contributions are:

• ASTRA— a new multi-device Transformer inference framework that significantly reduces
communication overhead via a novel Mixed-Precision Attention mechanism. We design two
techniques, Noise-Augmented Quantization and Distributed Class Tokens, to maintain high
accuracy under aggressive communication compression.

• Comprehensive Evaluation — We evaluate ASTRA on Transformer models, including
ViT (Dosovitskiy et al., 2020) and GPT2 (Radford et al., 2019), on both vision tasks (e.g.,
CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-1K (Deng et al., 2009)) and NLP tasks
(e.g., Wikipedia and Wikitext-103 (Merity et al., 2016)). ASTRA reduces the bandwidth
requirement for multi-device speedup from 500 Mbps to as low as 10 Mbps, achieving up to
2.64× end-to-end latency speedup even under constrained bandwidth where prior methods
fail (Figure 1). It maintains task accuracy within 3.58% of the original model under extreme
communication compression. Moreover, ASTRA remains effective in heterogeneous device
environments, achieving accuracy within 1.43% drop under imbalanced token distributions
across devices. It also retains compatibility with single-device quantization: when applied
jointly, ASTRA achieves an additional 1.35 − 2.73× latency speedup over single-device
quantization alone, while preserving accuracy within 3.37% drop.

• Design Analysis — Through detailed ablation studies, we demonstrate the effectiveness
of each key design component. The Mixed-Precision Attention Computation Mechanism
achieves a latency speedup of up to 171.82× compared to the original attention under
constrained bandwidth, the Noise-Augmented Vector Quantization improves accuracy by up
to 0.86% compared to naive vector quantization, and the Distributed Class Tokens design
further enhances accuracy by up to 7.13% compared to using a single class token.

2 BACKGROUND AND RELATED WORK

This section introduces existing techniques for multi-device inference acceleration and then the vector
quantization (VQ) technique that is necessary to understanding ASTRA. A broader survey of related
work is provided in Appendix A.

Parallelization in Multi-Device Inference. To accelerate inference latency, many recent approaches
explore distributing Transformer computations across multiple devices. Techniques originally de-
veloped for training, such as data parallelism, pipeline parallelism, and model parallelism, have
been repurposed for inference. Data parallelism (Li et al., 2014) and pipeline parallelism (Huang
et al., 2019) improve throughput by processing different input samples or partitioning layers across
devices. However, these methods are primarily suited to batch processing and offer limited benefits
for latency-sensitive, single-request inference. Model parallelism, in contrast, splits the computation

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

of individual model layers across devices, enabling true per-request acceleration. Notable examples
include: Megatron-LM (Shoeybi et al., 2019), which partitions model weights (tensor parallelism),
Voltage (Hu & Li, 2024), which partitions token sequences (sequence parallelism), and DeTrans-
former (Du et al., 2024), which decomposes layers into smaller blocks for distributed execution.
These approaches reduce some communication costs by tailoring the parallelization granularity, but
they still require substantial bandwidth, such as 500 Mbps, to realize modest speedups. While this
bandwidth may be achievable in high-performance server clusters, it exceeds the practical limits of
many real-world environments, such as indoor Wi-Fi, where sustained throughput often falls lower
than 300 Mbps depending on interference. Our work diverges from prior efforts by focusing explicitly
on reducing the communication cost, which we identify as a primary bottleneck in multi-device
Transformer inference.

Vector Quantization (VQ). ASTRA leverages vector quantization to compress token embeddings be-
fore inter-device transmission, significantly reducing communication overhead. VQ maps continuous
vectors to discrete indices in a fixed codebook, allowing compact representation of information with
a small number of bits (Gersho & Gray, 2012).

Vanilla VQ partitions the feature space into K clusters, each represented by a centroid. Let e ∈ RK×D

be the codebook of centroids. For an input vector z ∈ RD, VQ selects the closest centroid by
i = argmini ∥ei − z∥22. and transmits only the index i, requiring log2 K bits per token. The
codebook e can be learned via K-means clustering or updated online using exponential moving
averages (Van Den Oord et al., 2017). This compact representation greatly reduces the communication
cost between devices.

Grouped VQ (Yang et al., 2023) extends this idea by dividing the input vector into G equal-length
sub-vectors and quantizing each independently using separate codebooks. It increases expressiveness
in the compressed representation and improves task accuracy, at the cost of higher communication
overhead, G · log2 K bits per token. In experiments, ASTRA with Grouped VQ outperforms Vanilla
VQ counterpart in accuracy, offering a tunable trade-off between bandwidth usage and model
performance.

3 THE ASTRA FRAMEWORK

We present ASTRA, a communication-efficient multi-device inference framework for Transformer
models. ASTRA is designed to minimize inter-device communication while preserving accuracy,
enabling fast inference even in bandwidth-constrained environments. The framework achieves
this through three key innovations: (1) Mixed-Precision Attention, (2) Noise-Augmented Vector
Quantization, and (3) Distributed Class Tokens. We begin with an overview of the inference workflow,
then describe each core design in detail.

3.1 OVERVIEW OF ASTRA

Figure 2 illustrates the inference procedure of the ASTRA framework. Given an input sequence
consisting of a class token (optional) and T content tokens, ASTRA first partitions the content tokens
evenly across N devices, assigning T/N tokens to each device. To support classification and similar
global tasks, the class token CLS is replicated to each device (Distributed Class Token in Task
Accuracy Preservation). Each device thus holds a disjoint subset of the input sequence, along with its
own class token copy, and maintains a full copy of the Transformer model.

Within each Transformer block, the inference proceeds in parallel across devices. Each device first
applies our Noise-Augmented Vector Quantization (see Task Accuracy Preservation) to its local tokens,
and transmits the corresponding low-bit indices to other devices. Each device now has access to the
full input sequence, full-precision for local tokens, and vector quantized versions for non-local tokens.
It then performs Mixed-Precision Attention Computation (see Extreme Communication Compression),
computing attention maps over this hybrid set of representations. Since the feed-forward network (i.e.,
MLP) is position-wise independent, it is executed locally on each device without communication.

After all Transformer blocks, all class tokens, replicated across devices, are aggregated via average
pooling to form a single unified representation. For classification tasks, this pooled class token is
passed to a downstream prediction head to generate the final output. For generative tasks such as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Device 1 Blocks

X
Mixed Precision

Attention

N
o

is
e-

A
u

g
V

Q

X

X
X

Q
u

e
ri

e
s

Keys

V
al

u
es

X

M
LP

Device 2 Blocks

X
Mixed Precision

Attention
N

o
is

e-
A

u
g

V
Q

X

X X

X

M
LP

X

X

X

X

Distributed
CLS token

XFull-Precision Token CLS TokenVector Quantized Token Linear+LayerNorm

Pooled
Distributed
CLS token

In
p

u
t

Em
b

ed
d

in
gs

𝟖
𝟓
,𝟏
𝟑

𝟑
𝟗
,𝟕
𝟕

𝟑
𝟗
,𝟕
𝟕

𝟖
𝟓
,𝟏
𝟑

Quantized
Indices

Codebook Lookup

Figure 2: Overview of ASTRA with two devices. We introduce three key innovations: (1) Mixed-
Precision Attention, (2) Noise-Augmented Vector Quantization, and (3) Distributed Class Tokens to
achieve communication-efficient multi-device inference. ASTRA can be applied to transformers for
both deterministic and generative tasks.

next-token prediction, there is no class token. Instead, the input sequence is evenly partitioned across
devices for parallel encoding, which accelerates the initial digestion time during inference. Once the
token encoding is complete, autoregressive decoding proceeds sequentially on a single device that
holds the final (i.e., most recent) token in the input sequence.

3.2 EXTREME COMMUNICATION COMPRESSION

Transformer attention requires global context aggregation, which poses a communication bottleneck
when the input tokens are partitioned across devices. In detail, the self-attention layers must use
all tokens in the sequence, including those stored on other devices, to compute attention for each
local token. As a result, each Transformer block must perform an all-to-all exchange of embeddings
across devices, leading to significant communication overhead. For example, if the input tokens are
evenly partitioned across N devices, with each holding T/N tokens, then transmitting full-precision
embeddings requires sending T/N×D×r bits per device per block, where D is the hidden dimension
and r is the precision (e.g., float32). Such overhead becomes prohibitive under realistic bandwidth
constraints.

Mixed-Precision Attention. To address this challenge, we propose to leverage both full-precision and
compressed token representations during attention computation. Specifically, each device computes
full-precision attention among its local tokens, and approximates attention interactions with non-local
tokens (i.e., those stored on other devices) using vector-quantized embeddings. Only the low-bit
indices of the vector-quantized embeddings are transmitted between devices.

Formally, for each local query q, we compute attention over a mixed set of key and value pairs,
full-precision representations from local tokens and vector-quantized representations from non-local
tokens. Therefore, the attention map is computed as:

Attn(Q,K, K̂,V, V̂) = σ

(
Q[K | K̂]⊤√

dk
⊙M

)
[V | V̂], (1)

where K̂ and V̂ are derived from the vector-quantized embeddings X̂ via linear projections. The
operator | denotes row-wise concatenation, and σ represents softmax operation. During the training
stage, the attention mask M ensures that full-precision interactions are only applied between local
tokens, while interactions with non-local tokens use their compressed counterparts.

Vector-Quantized Non-Local Tokens. The non-local compressed embeddings X̂ in Mixed-Precision
Attention are produced by a vector quantization (VQ) module. Prior to transmission, each token
embedding X is quantized by a codebook to an index i via nearest-neighbor lookup. Since the
codebook is shared across devices for each Transformer block, the receiving device can reconstruct
X̂ using only the transmitted index i. This reduces the per-token communication cost from rD bits
to log2 K bits, where K is the codebook size, resulting in a compression ratio of 2457.6× when
r = 32, D = 768, and K = 1024.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The VQ module is jointly trained with the Transformer model. Specifically, the codebook is initialized
by running K-means clustering over intermediate token embeddings from the pretrained model, and
is further updated via exponential moving average during model fine-tuning. Following VQVAE (Van
Den Oord et al., 2017), we apply a commitment loss to encourage token embeddings to stay close to
their assigned centroids. The overall training objective is:

L = Lt + β∥X− sg(X̂)∥22, (2)

where Lt is the task loss, sg(·) denotes the stop-gradient operation, and β controls the strength
of the commitment term. This design encourages the model to align token embeddings with their
corresponding quantized representations, which improves downstream task performance even under
aggressive compression. Appendix F further empirically demonstrates that the commitment term and
a well-configured loss weight is necessary for maintaining accuracy.

3.3 TASK ACCURACY PRESERVATION

Noise-Augmented Vector Quantization. Quantizing embeddings introduces discretization error,
which can degrade model generalization. To mitigate this, we propose a novel regularization strat-
egy called Noise-Augmented Vector Quantization (NAVQ), which adds Gaussian noise to quantized
embeddings during training. This technique is inspired by the Vicinal Risk Minimization (VRM)
principle (Chapelle et al., 2000), which improves generalization by exposing the model to perturba-
tions around each data point in input space. NAVQ extends this philosophy into the latent quantized
embedding space. Instead of directly using the deterministic quantized embedding X̂ during training,
we compute a noise-augmented version, X̃ = X̂+ λξ, where λ ∈ (0, 1] controls the noise magni-
tude and ξ ∼ N (µ,Σ) is Gaussian noise sampled from the distribution of quantization residuals
ε := X− X̂. This residual captures the error introduced by quantization, and the noise distribution
is fit with empirical mean µ and covariance Σ over training data.

By injecting noise into quantized embeddings during training, NAVQ restores a degree of continuity
to the otherwise discrete latent space, encouraging the model to generalize across small perturbations
and reducing sensitivity to codebook boundaries. At inference time, the noise is omitted and the
model operates deterministically using X̂. We theoretically justify this approach in Appendix B and
prove the following:

Theorem 1 (Noise-Augmented Embeddings Improve Distributional Fidelity). Let X̂ denote the
quantized embedding of X, and let X̃ = X̂+ λξ with ξ ∼ N (µ,Σ) sampled from the quantization
residuals. Then the 2-Wasserstein distance between the original embedding distribution PX and the
perturbed distribution PX̃ satisfies:

W 2
2 (PX, PX̃) < W 2

2 (PX, PX̂), (3)

i.e., the noise-augmented distribution is statistically closer to the true distribution than the raw
quantized embedding.

Empirically, NAVQ reduces overfitting and improves generalization. As shown in our ablation study
(see Appendix F), setting λ = 1.0 improves validation accuracy by 0.86% compared to training
without noise, demonstrating the effectiveness of this regularization under extreme compression.

Distributed Class Tokens. In Transformer-based classification models, such as ViT (Dosovitskiy
et al., 2020), a special class token is prepended to the input sequence and used to aggregate information
from all other tokens through attention. However, in the context of our Mixed-Precision Attention
mechanism, attention between tokens on different devices is performed using vector-quantized
embeddings. If the class token is assigned to a single device, it will attend to full-precision local
tokens but only see vector-quantized representations from other devices. This asymmetric access to
information introduces a bias in the class token’s representation, potentially limiting its ability to
effectively summarize the entire input sequence.

To address this issue, we introduce the Distributed Class Token mechanism. Instead of assigning the
class token to a single device, we replicate it across all devices, creating one local copy per device.
Each replica computes attention with full-precision local tokens and quantized non-local tokens. At
the end of the model, all class token replicas are aggregated (e.g., via mean pooling) into a single
vector, which is then passed to the final prediction head. This approach not only restores symmetry in

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

access to information but also reduces estimation error in the attention output, improving robustness
to quantization artifacts. We formally justify this mechanism in Appendix C and prove the following:
Theorem 2 (Variance Reduction via Distributed Class Tokens). Let h denote the class token embed-
ding of a full-precision global attention computation. Let h̃single be the output of a single-device
class token using Mixed-Precision Attention, and let h̃dist be the average of N distributed class token
outputs. Then:

E
[
∥h̃dist − h∥22

]
=

1

N
E
[
∥h̃single − h∥22

]
, (4)

i.e., distributed class tokens reduce the expected attention output error by a factor of 1/N .

Empirically, our ablation study (see Appendix F) confirms that Distributed Class Tokens consistently
outperform the single-token variant across all evaluated settings, yielding accuracy improvements
between 0.37% and 7.13% depending on the compression level and commitment loss weight.

4 EMPIRICAL EVALUATION

This section evaluates the effectiveness of ASTRA by answering the following question: (1) Can
ASTRA maintain model accuracy under aggressive token compression? (2) How much can ASTRA
speed up inference under limited bandwidths compared to baselines? (3) How effective are the opti-
mizations in ASTRA? We answer these questions through extensive experiments across Transformer
models (ViT and GPT2), application domains (vision and NLP tasks), and deployment conditions
(varying bandwidth, device count, compression settings, and device heterogeneity).

4.1 EXPERIMENTAL SETUP

Environment. ASTRA is implemented in PyTorch 2.5 and trained on a single L40S GPU with 40GB
memory. For deployment, we simulate distributed inference on personal laptops provisioned with
an NVIDIA 1660Ti GPU. We emulate a range of network conditions by enforcing bandwidth caps,
enabling realistic evaluation under constrained environments. Unless stated otherwise, experiments
use 4 devices in a homogeneous setting. We report results under heterogeneous configurations in
Appendix D.

Transformer Models. We evaluate ASTRA across both encoder and decoder Transformer architec-
tures: For encoder architecture, we focus on vision tasks with Vision Transformer (ViT-Base) (Doso-
vitskiy et al., 2020). For decoder architecture, we conduct experiments on NLP tasks with GPT2-Small
(GPT2-S) and GPT2-Medium (GPT2-M) (Radford et al., 2019).

Datasets and Metrics. We evaluate ASTRA on both vision and language tasks. For vision, we
use CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-1K (Deng et al., 2009), reporting top-1
classification accuracy. For language modeling, we perform next-word prediction using two datasets,
English Wikipedia and Wikitext-103 (Merity et al., 2016), and report perplexity (PPL; lower is
better). The evaluation includes three settings: training and evaluating on Wikipedia, training and
evaluating on Wikitext-103, and a zero-shot evaluation where the model is trained on Wikipedia but
directly evaluated on the Wikitext-103 validation set without further fine-tuning. The last zero-shot
setting follows the evaluation used in the original GPT2 (Radford et al., 2019) and serves to assess
the model’s generalization to unseen domains. All experiments are conducted with a fixed random
seed (42) for reproducibility. To demonstrate the robustness of ASTRA across different runs, results
averaged over multiple seeds are reported in Appendix D.

Baselines. We compare ASTRA with both single-device and three multi-device inference approaches.

• Original Model: The baseline model runs entirely on a single device using float32 precision. We
compare with the float32 model as ASTRA builds on top of this model for a fair comparison. Later,
we show ASTRA can be combined with model quantization.

• Tensor Parallelism (TP): Represented by Megatron-LM (Shoeybi et al., 2019), which partitions
weight matrices across devices and requires two allreduce operations per Transformer layer.

• Sequence Parallelism (SP): Introduced by Voltage (Hu & Li, 2024), which partitions the input
sequence and performs one AllGather operation per layer.

• Block Parallelism (BP): Proposed by DeTransformer (Du et al., 2024), which replaces Transformer
blocks with multiple parallel sublayers for distributed execution.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

For BP, we evaluate two most efficient design variants proposed in (Du et al., 2024): (i)
BP+AllGather (BP+AG) minimizes communication by performing more local computation, and
(ii) BP+SequenceParallel (BP+SP) reduces local computation at the cost of moderate communi-
cation overhead. Both variants include a hyperparameter Nb that controls the number of original
Transformer blocks retained. A smaller Nb leads to fewer communications and thus lower latency.
We compare against BP configurations with Nb = 1 and Nb = 4.

ASTRA Settings. For the Noise-Augmented Vector Quantization in ASTRA, the codebook size is
1024, representing each transmitted token with 10 bits (i.e., log21024). The noise magnitude λ is 1.0
in the main results and we test other settings including λ ∈ {0.0, 0.1, 0.3} in Appendix F. We further
evaluate the use of Grouped VQ, as introduced in Background, which splits each input vector into G
groups and applies vector quantization independently to each group using separate codebooks. We
experiment with group sizes of 16 and 32, in addition to Vanilla VQ of a single group. Increasing
the number of groups leads to a higher bits per token and thus reduces the overall compression ratio
proportionally.

We load the pre-trained weights for all the transformer models from the HuggingFace official
model zoo. Then ASTRA is fine-tuned for additional iterations on each dataset using the Adam
optimizer (Kingma & Ba, 2014). Specifically, for vision tasks, ASTRA is fine-tuned on CIFAR-100
and ImageNet-1K for 32 and 4 epochs, respectively. For NLP tasks, ASTRA is fine-tuned on 1 million
samples from English Wikipedia and the complete Wikitext-103 dataset for 1 epoch. During fine-
tuning, we test with different commitment loss weights β ∈ {0.0001, 0.0002, 0.0005} in Appendix F
and report the best accuracy performance in Results on Accuracy.

4.2 RESULTS ON ACCURACY AND COMMUNICATION COSTS

We evaluate the accuracy of ASTRA across three Transformers, ViT-Base, GPT2-S, and GPT2-M, on
vision and NLP benchmarks. Note that we only report the baseline accuracy for the original model.
Existing multi-device baselines, including Megatron-LM (Shoeybi et al., 2019) and Voltage (Hu &
Li, 2024), do not incur any accuracy loss since they merely reorganize computation without altering
the model’s numerical outputs. Therefore, their results are equivalent to the original model and are
omitted here for clarity. Alongside accuracy, we also report the associated communication overhead,
measured as the total amount of data exchanged per token during a single forward pass (i.e., Total
Bits per Token). Results are summarized in Tables 1 and 3.

Table 1: Task accuracy and communication overhead
on CIFAR-100 and ImageNet-1K with ViT-Base.

Model #Groups Total Bits
per Token

Compression
Ratio CIFAR-100 ImageNet

ViT-Base - 294912 - 92.53 80.32

ASTRA
1 120 2457.6 88.95 77.39

16 1920 153.6 90.77 78.80
32 3840 76.8 91.64 80.28

ViT-Base. ASTRA maintains high accuracy
on ViT-Base for image classification (CIFAR-
100 and ImageNet-1K), with less than 3.58%
degradation even under 2457.6× compression,
as shown in Table 1. With 32 groups, ASTRA
achieves 91.64% on CIFAR-100 and 80.28%
on ImageNet-1K, closely matching the origi-
nal performance of 92.53% and 80.32%. To
further assess scalability, we fix the compres-
sion configuration (32 groups) and evaluate ASTRA on CIFAR-100 using varying numbers of devices.
As shown in Table 2, ASTRA preserves model accuracy within 1.39% of the original model across
different device counts.

Table 2: Accuracy of ASTRA on CIFAR-
100 under different numbers of devices.

Model ViT-Base ASTRA
(#Groups = 32)

#Devices 1 2 4 6 8
Accuracy 92.53 91.86 91.64 91.35 91.14

GPT2. Table 3 summarizes the perplexity (PPL) re-
sults of ASTRA on the next-token prediction task, i.e.,
Wikipedia and Wikitext-103, using GPT2-S and GPT2-
M. Overall, ASTRA achieves competitive performance
under aggressive communication compression. Note
that perplexity is an exponential function of the language
modeling loss, i.e., PPL = exp(L), and thus small dif-
ferences in loss can result in amplified changes in PPL. Specifically, on GPT2-M, the PPL on
Wikitext-103 increases from 14.8 (loss = 2.70) to 16.84 (loss = 2.82), reflecting only a 4.4% increase
in loss despite a 102.4× compression ratio. Similarly, on Wikipedia, the loss increases marginally
from 2.5 to 2.63 (PPL from 12.16 to 13.83), confirming that much of the accuracy is preserved under
significant transmission savings.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Task performance (i.e., perplexity) and communica-
tion overhead on Wikipedia and Wikitext-103 with GPT2.

Model #Groups Bits per
Token

Compression
Ratio Wikipedia Wikitext-103

Fine-Tuned Zero-Shot

GPT2 - S - 294912 - 15.79 18.96 58.91

ASTRA
1 120 2457.6 21.46 25.98 120.7
16 1920 153.6 18.84 23.22 94.8
32 3840 76.8 17.39 20.95 76.24

GPT2 - M - 786432 - 12.16 14.8 43.22

ASTRA
1 240 3276.8 17.86 21.97 96.99
16 3840 204.8 14.43 18.03 75.29
32 7680 102.4 13.83 16.84 62.29

Zero-Shot Generalization. We also
evaluate ASTRA in the zero-shot
setting by directly evaluating the
model trained with Wikipedia on the
Wikitext-103 validation set. Here, we
observe a larger performance drop
compared to the original model. For
example, GPT2-M’s zero-shot PPL
rises from 43.22 to 62.29 with AS-
TRA at 32 groups. This performance
drop suggests a limitation of ASTRA
in zero-shot generalization: the dis-
cretization introduced by VQ reduces
the diversity of token representations and hinders out-of-distribution data generalization.

Heterogeneous Devices. In heterogeneous settings where devices have different compute capacities,
ASTRA can adapt by assigning more tokens to stronger devices. Our training uses a randomized token-
to-device mapping to learn a unified codebook, enabling direct generalization to unseen heterogeneity
without retraining. Experiments on ImageNet-1K with 4 devices show that ASTRA maintains within
1.43% accuracy drop compared to the original ViT-Base. We further observe that higher heterogeneity
increases the full-precision attention rate, leading to better accuracy (See Appendix D for details).

4.3 RESULTS ON INFERENCE LATENCY

We report latency improvement using a 12-layer Transformer encoder with 768 hidden dimensions.
We compare ASTRA with existing multi-device inference baselines and evaluate their latency across
three key dimensions, varying bandwidth, device count, and input token length, in Figure 1, 4, and 5.

10 20 50 100 200 500
Bandwidth (Mbps)

0

200

400

600

800

1000

1200

La
te

nc
y

(m
s)

BP+AG, Nb=1
BP+SP, Nb=1
ASTRA, G=1
ASTRA, G=16
ASTRA, G=32

Computation
Communication

Figure 3: Latency breakdown of local
computation and inter-device communi-
cation time. The red dashed line repre-
sents the single-device latency.

Varying Bandwidth. Figure 1 presents the speedup of
multi-device methods over single-device inference, evalu-
ated across inter-device bandwidths ranging from 10 Mbps
to 500 Mbps. We fix the number of devices to 4 and the
input token length to 1024. Additional device count and se-
quence length configurations are provided in Appendix E.
Across all bandwidths, ASTRA consistently outperforms
all baselines and maintains substantial speedup, even un-
der extremely limited bandwidth. For instance, ASTRA
achieves a speedup of 1.27 − 2.74× at 20 Mbps, while
all other baselines perform even worse than single-device
inference. Even at 10 Mbps, our method with 16 and 1
quantization groups still delivers 1.26− 2.65× speedup,
demonstrating strong scalability to bandwidth bottlenecks.

We also visualize the absolute latency breakdown in Figure 3. Specifically, we depict the latency
breakdown for the two fastest baselines, BP+AG and BP+SP when Nb = 1, as well as ASTRA with
different groups. We can see that the communication time dominates in total latency for BP+AG and
BP+SP, accounting for as much as 58.55− 93.47% of total runtime at low-bandwidth settings below
100 Mbps. In contrast, ASTRA effectively mitigates this communication bottleneck via aggressive
compression, thereby significantly reducing total latency.

Table 4: ASTRA’s speedup over baseline methods
on 4 devices with 1024 tokens.

Bandwidth (Mbps) 10 20 50 100 200 500

TP 342.74 177.89 73.14 37.19 19.02 8.05
SP 171.82 89.41 37.05 19.08 9.99 4.51

BP+AG, Nb=1 15.25 8.41 4.07 2.58 1.83 1.37
BP+SP, Nb=1 29.37 15.66 6.95 3.96 2.45 1.53

We further summarize the relative speedup of
ASTRA over each baseline across different band-
width in Table 4. ASTRA’s advantage becomes
more significant under stricter bandwidth. The
speedup of ASTRA over Sequence Parallelism
(SP) reflects the benefit of our Mixed-Precision
Attention, contributing up to 171.82× latency
reduction under low-bandwidth settings.

Varying Device Counts. Figure 4 shows the latency speedup comparison as the number of devices
increases from 2 to 8. We fix the input token length to 1024 and illustrate two representative

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

bandwidth settings, 20 Mbps and 200 Mbps (more results see Appendix E). For both bandwidth,
ASTRA consistently achieves higher speedup than all baselines. As the number of devices increases,
more computation can be parallelized, leading to greater latency reduction. For example, under 20
Mbps, ASTRA with 1 group improves from 1.72× speedup with 2 devices to 3.69× with 8 devices.

Varying Input Token Length. Figure 5 presents the latency speedup comparison as the input token
length increases from 256 to 4096. Similarly, we fix the number of devices to 4 and evaluate under
20 Mbps and 200 Mbps (more bandwidth see Appendix E). Across all sequence lengths, ASTRA
consistently outperforms existing methods and our superiority becomes more significant at longer
input lengths. In real-world applications, longer input token lengths tend to form a more substantial
barrier to achieving low-latency inference. At 512 tokens and 20 Mbps bandwidth, for instance,
ASTRA achieves a latency speedup of 1.98× compared to the fastest baseline BP-AG of 0.25×,
highlighting the practical value of ASTRA in real deployment scenarios.

2 4 6 8
#Devices

0

1

2

3

4

Sp
ee

du
p

(a) 20 Mbps

2 4 6 8
#Devices

0

1

2

3

4

Sp
ee

du
p

(b) 200 Mbps

Figure 4: Speedup comparison under differ-
ent numbers of devices (w/ 1024 tokens).

256 512 1024 2048 4096
#Tokens

0

1

2

3

4

Sp
ee

du
p

(a) 20 Mbps

256 512 1024 2048 4096
#Tokens

0

1

2

3

4

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(b) 200 Mbps

Figure 5: Speedup comparison under different input
token length (w/ 4 devices).

4.4 COMPATIBILITY WITH BIT QUANTIZATION

To demonstrate the compatibility of ASTRA with model compression, we apply post-training quanti-
zation to the standard ViT-Base model and our ASTRA variants, and evaluate their performance on
ImageNet-1K under 8-bit and 4-bit settings. Table 5 summarizes the accuracy and latency results,
with latency measured under 200 Mbps bandwidth, using 4 devices and an input token length of 1024.

Table 5: Accuracy and latency of ViT-Base and ASTRA on
ImageNet-1K under different precision (FP32, 8-bit, 4-bit).

Model Accuracy Latency (ms) Speedup
Name #Group FP32 8-bit 4-bit FP32 8-bit 4-bit

ViT-Base - 80.32 80.27 80.19 99.9 79.8 103.2

ASTRA
1 77.39 77.32 76.82 36.7 2.73× 50.6 1.58× 44.6 2.31×

16 78.80 78.76 78.43 41.0 2.44× 51.7 1.54× 50.2 2.06×
32 80.28 80.26 79.78 44.5 2.25× 59.3 1.35× 56.9 1.81×

Accuracy. 8-bit and 4-bit quantiza-
tion yield minimal accuracy degrada-
tion. When ASTRA is combined with bit
quantization, performance remains ro-
bust. For instance, applying 4-bit quan-
tization to ASTRA with 32 groups still
achieves 79.78% accuracy. This sup-
ports the claim that ASTRA can be lay-
ered on top of bit quantization methods
to further reduce latency while preserving task performance.

Latency. Combining ASTRA with quantization pushes end-to-end Transformer acceleration beyond
either method alone. For instance, the 4-bit ASTRA on 4 devices can achieve 1.81− 2.31× speedup
over 4-bit ViT-Base on a single device. Notice that the actual speedup from bit quantization depends
on kernel implementation, hardware-specific optimization, and target device. In some cases, e.g.,
4-bit ViT-Base, it may even slow down due to conversion or kernel overhead.

5 CONCLUSION

We present ASTRA, a communication-efficient framework for accelerating Transformer inference in
multi-device settings. By integrating sequence parallelism with a novel Mixed-Precision Attention
mechanism, ASTRA significantly reduces inter-device communication while preserving accuracy.
Extensive experiments across vision and NLP tasks demonstrate that ASTRA delivers substantial
end-to-end latency improvements over existing baselines, achieving up to 2.64× speedup over single-
device inference and up to 15.25× over state-of-the-art multi-device methods, under constrained
bandwidth as low as 10 Mbps. Our results highlight the potential of ASTRA for practical deployment
of Transformer models in real-world, bandwidth-limited environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Wiisfi. https://www.wiisfi.com/, 2025. Accessed: September 19, 2025.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. Deepspeed-inference:
enabling efficient inference of transformer models at unprecedented scale. In SC22: International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–15. IEEE,
2022.

Olivier Chapelle, Jason Weston, Léon Bottou, and Vladimir Vapnik. Vicinal risk minimization.
Advances in neural information processing systems, 13, 2000.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Jiangsu Du, Yuanxin Wei, Shengyuan Ye, Jiazhi Jiang, Xu Chen, Dan Huang, and Yutong Lu.
Co-designing transformer architectures for distributed inference with low communication. IEEE
Transactions on Parallel and Distributed Systems, 2024.

Allen Gersho and Robert M Gray. Vector quantization and signal compression, volume 159. Springer
Science & Business Media, 2012.

Chenghao Hu and Baochun Li. Distributed inference with deep learning models across heterogeneous
edge devices. In IEEE INFOCOM 2022-IEEE Conference on Computer Communications, pp.
330–339. IEEE, 2022.

Chenghao Hu and Baochun Li. When the edge meets transformers: Distributed inference with
transformer models. In 2024 IEEE 44th International Conference on Distributed Computing
Systems (ICDCS), pp. 82–92. IEEE, 2024.

Yang Hu, Connor Imes, Xuanang Zhao, Souvik Kundu, Peter A Beerel, Stephen P Crago, and
John Paul Walters. Pipeedge: Pipeline parallelism for large-scale model inference on heterogeneous
edge devices. In 2022 25th Euromicro Conference on Digital System Design (DSD), pp. 298–307.
IEEE, 2022.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir
Gholami. A fast post-training pruning framework for transformers. Advances in Neural Information
Processing Systems, 35:24101–24116, 2022.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. International
Conference on Learning Representations, 2020.

10

https://www.wiisfi.com/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mu Li, David G Andersen, Alexander Smola, and Kai Yu. Communication efficient distributed
machine learning with the parameter server. Advances in neural information processing systems,
27, 2014.

Sihao Lin, Hongwei Xie, Bing Wang, Kaicheng Yu, Xiaojun Chang, Xiaodan Liang, and Gang
Wang. Knowledge distillation via the target-aware transformer. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10915–10924, 2022.

Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-training quantization
for vision transformer. Advances in Neural Information Processing Systems, 34:28092–28103,
2021.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances in
neural information processing systems, 32, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Dongchao Yang, Songxiang Liu, Rongjie Huang, Jinchuan Tian, Chao Weng, and Yuexian Zou.
Hifi-codec: Group-residual vector quantization for high fidelity audio codec. 2023.

Shengyuan Ye, Jiangsu Du, Liekang Zeng, Wenzhong Ou, Xiaowen Chu, Yutong Lu, and Xu Chen.
Galaxy: A resource-efficient collaborative edge ai system for in-situ transformer inference. In
IEEE INFOCOM 2024-IEEE Conference on Computer Communications, pp. 1001–1010. IEEE,
2024.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert. In 2019
Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS Edition
(EMC2-NIPS), pp. 36–39. IEEE, 2019.

Liekang Zeng, Xu Chen, Zhi Zhou, Lei Yang, and Junshan Zhang. Coedge: Cooperative dnn inference
with adaptive workload partitioning over heterogeneous edge devices. IEEE/ACM Transactions on
Networking, 29(2):595–608, 2020.

Shuai Zhang, Sheng Zhang, Zhuzhong Qian, Jie Wu, Yibo Jin, and Sanglu Lu. Deepslicing:
Collaborative and adaptive cnn inference with low latency. IEEE Transactions on Parallel and
Distributed Systems, 32(9):2175–2187, 2021.

Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer. Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge clusters. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(11):2348–2359, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A ADDITIONAL RELATED WORK

Deploying Transformers on Edge Devices. Substantial efforts have been devoted to enabling
Transformer models on edge devices through model compression and architecture simplification. For
example, Michel et al. (Michel et al., 2019) proposed pruning attention heads to reduce computational
cost, while Q8BERT (Zafrir et al., 2019) quantizes BERT weights from 32-bit to 8-bit to accommodate
memory-limited environments. Other approaches, such as parameter factorization in ALBERT (Lan
et al., 2020) and knowledge distillation methods (Lin et al., 2022), aim to construct lightweight
variants of Transformer architectures suitable for resource-constrained hardware. These techniques
focus on discovering a compact model that maintains acceptable task performance under tight latency
or memory budgets.

In contrast, ASTRA targets distributed inference while preserving the original model architecture. The
compressed transformer models from the above techniques can also leverage ASTRA ’s distributed
inference system for further acceleration, as long as they retain the core transformer architecture.
This makes ASTRA an orthogonal solution that offers further performance improvements without
requiring re-design or re-training for new hardware targets.

Distributed Inference Systems. Distributed inference has emerged as a practical strategy to acceler-
ate computation. Early works such as DeepThings (Zhao et al., 2018) exploited the partial receptive
fields of convolutional neural networks (CNNs) to parallelize inference by splitting intermediate
feature maps across multiple devices. The follow-up works, including CoEdge (Zeng et al., 2020),
DeepSlicing (Zhang et al., 2021), and EdgeFlow (Hu & Li, 2022), further incorporated network
heterogeneity and device resource profiling to optimize system throughput. However, these methods
are designed specifically for CNN-based models and are not applicable to the self-attention structure
in Transformers.

Recent work has begun to explore multi-device inference for Transformers by adapting techniques
from distributed training. PipeEdge (Hu et al., 2022) utilizes pipeline parallelism to improve through-
put, but its efficiency relies on large batch sizes and does not benefit per-request latency. Other
systems, such as DeepSpeed (Aminabadi et al., 2022) and Megatron-LM (Shoeybi et al., 2019) apply
tensor parallelism by splitting weight matrices across devices, which leads to frequent and expensive
inter-device communication. To reduce this cost, Voltage (Hu & Li, 2024) introduces sequence
parallelism by distributing input tokens across devices and minimizing the number of cross-device
interactions per Transformer block. Galaxy (Ye et al., 2024) further combines tensor and sequence
parallelism, while DeTransformer (Du et al., 2024) even modifies the Transformer block structure to
enable more efficient distribution.

Despite their contributions, these methods still rely on high-bandwidth connections to achieve
meaningful speedups. In contrast, ASTRA significantly reduces the required bandwidth to only 10
Mbps, while still achieving 2.64× end-to-end latency speedup, making it far more practical for
real-world deployments in constrained edge environments.

B PROOF FOR NOISE-AUGMENTED VECTOR QUANTIZATION

Theorem 1 (Noise-Augmented Embeddings Improve Distributional Fidelity). Let X̂ denote the
quantized embedding of X, and let X̃ = X̂+ λξ with ξ ∼ N (µ,Σ) sampled from the quantization
residuals. Then the 2-Wasserstein distance between the original embedding distribution PX and the
perturbed distribution PX̃ satisfies:

W 2
2 (PX, PX̃) < W 2

2 (PX, PX̂), (5)

i.e., the noise-augmented distribution is statistically closer to the true distribution than the raw
quantized embedding.

Proof of Theorem B. Let

mX = E[X], mX̂ = E[X̂], mX̃ = E[X̃], (6)

and let CX , CX̂ , CX̃ denote the corresponding covariance matrices. By definition of the quantization
error ε = X− X̂ we have mX = mX̂ +µ and CX = CX̂ +Σ. As the injected noise ξ ∼ N (µ,Σ),,

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

we know that
mX̃ = mX̂ + λµ, CX̃ = CX̂ + λ2Σ. (7)

The Wasserstein distance between two Gaussian distributions can be computed by

W 2
2 (P1, P2) = ∥m1 −m2∥22

+ trace

(
C1 + C2 − 2

(
C

1
2
2 C1C

1
2
2

) 1
2

)
= ∥m1 −m2∥22 + d2B(C1, C2),

(8)

where m and C are mean and covariance of the distributions, dB is the Bures metric.

To prove W 2
2 (PX, PX̃) < W 2

2 (PX, PX̂), we will first show the mean term of X̃ is smaller, then the
Bures term is smaller.

Step 1 (mean term is smaller). Using the mean part of the Gaussian W2 formula, we have

∥mX −mX̂∥22−∥mX −mX̃∥22
= ∥µ∥22 − (1− λ)2∥µ∥22
= (2λ− λ2)∥µ∥22 > 0,

(9)

because 0 < λ ≤ 1. Then we prove that
∥mX −mX̃∥22 < ∥mX −mX̂∥22 (10)

Step 2 (Bures term is smaller).

For analytical clarity, we assume that the quantization errors ε are independent and identically
distributed across dimensions, i.e. εk

i.i.d.∼ N (0, σ2). Under this assumption, the global error
covariance becomes Σ = σ2I , which commutes with CX̂ , namely CX̂Σ = ΣCX̂ . Consequently, CX̂
and Σ can be diagonalized by the same orthonormal eigenbasis U . Then we have

U⊤CX̂U = diag(σ2
X̂,i

),

U⊤ΣU = diag(σ2
i),

σX̂,i, σi ≥ 0,

(11)

then we obtain
U⊤CXU = diag(σ2

X,i), σ
2
X,i = σ2

X̂,i
+ σ2

i ,

U⊤CX̃U = diag(σ2
X̃,i

), σ2
X̃,i

= σ2
X̂,i

+ λ2σ2
i .

(12)

For diagonal matrices the Bures term in the W2 expression reduces to a sum of squared differences
of standard deviations:

d2B(CA, CB) =
∑
i

(
σA,i − σB,i

)2
. (13)

Then we have
d2B(CX ,CX̂) − d2B(CX , CX̃)

=
∑
i

(
(σX,i − σX̂,i)

2 − (σX,i − σX̃,i)
2
)

=
∑
i

(σX̃,i − σX̂,i)
(
2σX,i − (σX̃,i + σX̂,i)

)
.

(14)

Because σX̂,i ≤ σX̃,i ≤ σX,i, we have σX̃,i − σX̂,i > 0 and 2σX,i − (σX̃,i + σX̂,i) > 0, therefore
Equation 14 is positive. Thus, we prove that

d2B(CX , CX̃) < d2B(CX , CX̂). (15)

Summary. Since both the mean part and the Bures part are strictly smaller for (mX̃ , CX̃) than for
(mX̂ , CX̂), hence we have completed the proof for

W 2
2 (PX, PX̃) < W 2

2 (PX, PX̂), (16)
which completes the proof.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C PROOF FOR DISTRIBUTED CLASS TOKENS

Theorem 2 (Variance Reduction via Distributed Class Tokens). Let h denote the class token embed-
ding of a full-precision global attention computation. Let h̃single be the output of a single-device
class token using Mixed-Precision Attention, and let h̃dist be the average of N distributed class token
outputs. Then:

E
[
∥h̃dist − h∥22

]
=

1

N
E
[
∥h̃single − h∥22

]
, (17)

i.e., distributed class tokens reduce the expected attention output error by a factor of 1/N .

Proof of Theorem 2.
Setup. Tokens are evenly partitioned: X =

⋃N
i=1 X

(i), |X(i)| = T/N . Each device stores local keys
kj and values vj in full precision for j ∈ X(i), and transmits quantized versions k̃j = kj + δkj and
ṽj = vj + δvj to other devices, where δkj and δvj are the error introduced by quantization. For
every non-local token, we assume

E[δkj] = 0,

E[δvj] = 0,

Cov(δkj) = σ2
kI,

Cov(δvj) = σ2
vI,

(18)

and errors are mutually independent.

Full-Precision Attention. For a query q, the attention logits are aj = q⊤kj/
√
d, attention weights

αj = softmax(aj), and the output h =
∑T

j=1 αj vj .

Mixed-Precision Attention via First-Order Taylor Expansion. For a non-local token, the logit is
perturbed by the key noise,

ãj =
q⊤(kj + δkj)√

d
= aj +

q⊤δkj√
d︸ ︷︷ ︸

=:e
(k)
j

. (19)

Because e
(k)
j is small, we could linearise the softmax function by first-order Taylor expansion.

Specifically, the softmax funcion is αj = exp(aj)/
∑

j exp(aj), and its Jacobian is ∂αj/∂ak =

αj(δjk − αk), where δjk is the Kronecker delta. Therefore, we have the perturbed attention weights,

α̃j ≈ αj +
∑
k

αj(δjk − αk) e
(k)
k

= αj + αj

(
e
(k)
j −

∑
k

αke
(k)
k

)
=: αj + δαj .

(20)

The terms δαj remain zero-mean and mutually independent.

Then the mixed-precision output is

h̃ =
∑
j

α̃j (vj + δvj), (21)

where δvj = 0 if j is the local token index.

Attention Output Error. Subtracting h and discarding higher-order noise products, the first-order
output error is

δ := h̃− h

=
∑

non-local j

(
αj δvj + δαj vj

)
=
∑
j

αj δvj︸ ︷︷ ︸
V-error: e(v)

+
∑
j

αj

(
e
(k)
j −

∑
k

αk e
(k)
k

)
vj︸ ︷︷ ︸

K-propagated error: e(k)

.
(22)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Both error components are zero-mean random vectors and each coordinate has variance bounded by
C1σ

2
v + C2σ

2
k, where C1 and C2 are deterministic constants.

Specifically, for the first value-error component e(v) =
∑

j∈N αj δvj , where N is the set of
m = N−1

N T non-local tokens per device and each δvj is an independent, zero-mean random
vector with Cov(δvj) = σ2

v I. Then for an arbitrary coordinate c ∈ {1, . . . , d}, since the noises are
independent, we have

Var
(
[e(v)]c

)
= Var

(∑
j∈N

αj

[
δvj

]
c

)
=
∑
j∈N

α2
j Var

(
[δvj]c

)
= σ2

v

∑
j∈N

α2
j .

(23)

Since the attention weights 0 ≤ αj ≤ 1 and there are exactly m non-local tokens, we have

Var
(
[e(v)]c

)
≤ σ2

v m max
j∈N

α2
j = C1 σ

2
v ,

with C1 := m max
j∈N

α2
j .

(24)

The constant C1 is deterministic since it depends only on the current softmax weights. And every
coordinate of the value-error term is bounded in variance by C1σ

2
v .

For the second key-propagated term, recall the first-order perturbation of each softmax weight

δαj = αj

(
e
(k)
j −

∑
k

αk e
(k)
k

)
, e

(k)
j :=

q⊤δkj√
d

, (25)

where the key-noise scalars e(k)k are i.i.d., zero-mean with variance σ2
k. Then for one output coordinate

c, we need the variance of
[
e(k)

]
c
=
∑

j∈N δαj vj,c.

First, since δαj is a linear combination of independent noises,

Var[δαj] = α2
j σ

2
k

(
1 +

∑
k α

2
k

)
≤ 2α2

jσ
2
k, (26)

because
∑

k α
2
k ≤ 1.

Then since each addend δαj vj,c is zero-mean, we have

Var
(
[e(k)]c

)
=
∑
j∈N

v 2
j,c Var[δαj]

≤ 2σ2
k

(
max
j∈N

v 2
j,c

)∑
j∈N

α2
j .

(27)

With
∑

j∈N α2
j ≤ mmaxj α

2
j ,

Var
(
[e(k)]c

)
≤ 2σ2

k m
(
max
j∈N

v 2
j,c

)(
max
j∈N

α2
j

)
= C2 σ

2
k,

(28)

where
C2 := 2m max

j∈N

(
α2
jv

2
j,c

)
. (29)

The constant C2 is deterministic since it depends only on the current softmax weights and the fixed
value vectors, not on the random noise. And every coordinate of the key-propagated error is bounded
in variance by C2σ

2
k.

Single Class Token Attention Output Error. Its attention output error vector has m = N−1
N T

independent coordinates (i.e., the number of non-local tokens), each with per-coordinate variance
σ2 := Var

(
[e(v)]c

)
+Var

(
[e(k)]c

)
. Hence

E
[
∥δsingle∥22

]
= mdσ2. (30)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Distributed Class Tokens Attention Output Error. Let δ(i) be the error vector for the i-th
device. Vectors δ(i) are independent and identically distributed. The averaged class token output is
δ̄ = 1

N

∑N
i=1 δ

(i), then we have

E
[
∥δ̄∥22

]
=

1

N2

N∑
i=1

E
[
∥δ(i)∥22

]
=

1

N
mdσ2. (31)

Attention Error Comparison. According to Equations 30 and 31, using distributed class tokens
yields a factor of 1/N in the expected attention output error compared to the single class token,
indicating a more accurate attention computation under the mixed-precision attention mechanism.

D RESULTS ON ACCURACY CONT.

Experiments with Different Random Seeds. To evaluate the robustness of ASTRA to randomness,
we repeat each experiment ten times using different random seeds (0–9) on ImageNet-1K. As shown
in Table 6, ASTRA consistently achieves stable performance across all group configurations, with
standard deviations below 0.0012. These results demonstrate that ASTRA produces reproducible
outcomes and is not sensitive to randomness in training.

Table 6: Accuracy of ASTRA on ImageNet-1K under ten runs with different random seeds (0–9).
Mean and standard deviation (Std.) are reported for each group configuration. The original ViT-Base
achieves 80.32% accuracy for reference.

Seeds 0-9 Mean Std.

#Groups = 1 0.7681 0.0012
#Groups = 16 0.7855 0.0008
#Groups = 32 0.8002 0.0008

Accuracy in Heterogeneous Settings. In the main paper, we assume the computational workload
is evenly distributed across homogeneous devices. To better evaluate the scalability of ASTRA in
practical scenarios, we further explore its performance when deployed on heterogeneous devices.
This section focuses on how heterogeneous deployment affects accuracy. Latency measurements are
conducted on homogeneous devices to ensure consistency and are reported in the main paper and
Appendix E.

In heterogeneous settings, stronger devices are assigned more tokens to balance the overall computa-
tion workload, while weaker devices receive fewer. Let N be the total number of tokens and K the
number of devices. Denote nk as the number of tokens on device k, such that

∑K
k=1 nk = N . We

define the Full Precision Attention Rate (FPAR) as:

FPAR =

K∑
k=1

n2
k

N2
, (32)

which measures the proportion of full-precision attention computation in the Mixed-Precision Atten-
tion mechanism. A higher FPAR indicates that more attention computation uses full-precision keys
and values, thus better approximating standard attention.

To understand how FPAR captures token distribution imbalance, we examine its connection to the
variance of nk, which directly reflects distribution heterogeneity. Let µ = N/K be the average token
count per device. Then:

Var(nk) =
1

K

K∑
k=1

(nk − µ)2

=
1

K

K∑
k=1

n2
k − µ2

=
N2

K
· (FPAR − 1

K
).

(33)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

This shows that FPAR is a monotonic function of the variance of token allocation. In other words, as
the load distribution becomes more imbalanced (i.e., more heterogeneous), FPAR increases.

To study how FPAR relates to model performance, we train ASTRA on ImageNet using #Groups = 32
across 4 devices. During training, tokens are randomly distributed across devices in each batch to
simulate workload balancing on heterogeneous hardware. During evaluation, we continue to randomly
assign tokens to devices and record both the prediction accuracy and the corresponding FPAR for
each batch.

Figure 6 shows the distribution of FPAR across all evaluation batches. We divide the evaluation data
into five bins based on FPAR, each containing 20% of the samples. Table 7 reports the mean accuracy
for each bin. While the overall accuracy under heterogeneous deployment is slightly lower than in
the homogeneous case—likely due to the added randomness in token assignment and the increased
difficulty in learning a consistent pattern—we observe a clear positive correlation between FPAR and
accuracy. This suggests that higher full-precision attention contributes to better model performance,
demonstrating that our method remains effective under heterogeneous device settings.

0.3 0.4 0.5 0.6 0.7
Full Precision Attention Rate (FPAR)

0

1

2

3

4

5

6

7

8

Pe
rc

en
ta

ge
 (%

) FPAR Statistics:
Mean: 0.3522

Median: 0.3340
Std: 0.0730
Min: 0.2501
Max: 0.7461

Distribution of FPAR
Bin Boundaries
Mean: 0.3522
Median: 0.3340

Figure 6: FPAR histogram across evaluation batches.

Table 7: Accuracy of ASTRA under heterogeneous token distributions.

FPAR Range Mean Accuracy (%)

[0.2501, 0.2932] 78.89
[0.2932, 0.3196] 78.96
[0.3196, 0.3516] 79.39
[0.3516, 0.4020] 79.62
[0.4020, 0.7461] 79.87

E RESULTS ON INFERENCE LATENCY CONT.

In the main paper, we evaluate the inference latency of ASTRA under three key factors that impact
multi-device performance: (1) Inter-device bandwidth, which affects the cost of communication
across devices; (2) Number of devices, which determines the degree of parallelism; and (3) Input
token length, which scales both computation and communication demands.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

While the main text focuses on a representative configuration for each factor, this section presents
additional results across a broader range of settings to further validate our findings. We include
more granular evaluations varying each of the three dimensions to provide a comprehensive view of
ASTRA’s latency behavior under diverse deployment scenarios.

Varying Bandwidth. To assess the scalability of ASTRA under different communication constraints,
we evaluate its end-to-end latency speedup across a wide range of inter-device bandwidths from 10 to
500 Mbps. Figure 7 presents the results across varying numbers of devices i.e., 2, 4, 6, 8) with a fixed
input token length of 1024, while Figure 8 shows the results under varying input lengths (i.e., 256,
512, 1024, 2048, 4096) with 4 devices.

Across all configurations, ASTRA consistently outperforms existing multi-device baselines, with its
advantage becoming increasingly significant as bandwidth decreases. For instance, in the 4-device
and 1024-token setting (Figure 7(b)), ASTRA achieves a speedup of 2.64× at 10 Mbps, while the
strongest baseline (BP-SP, Nb = 1) only reaches 0.17×. This trend also holds for different token
lengths. As shown in Figure 8, the relative speedup of ASTRA grows with increasing sequence length.
These results confirm that ASTRA maintains high efficiency even under constrained bandwidth,
thanks to its aggressive communication reduction strategy. In addition, grouped quantization (e.g.,
G = 16, 32) offers a tunable balance between compression and accuracy, enabling consistent latency
benefits across a wide range of system settings.

Varying Device Counts. We further examine how the number of participating devices affects end-to-
end latency speedup under varying bandwidth conditions. Figure 9 presents results for device counts
ranging from 2 to 8 across bandwidths from 10 to 500 Mbps, with the input length fixed at 1024
tokens.

Across all bandwidth settings, ASTRA exhibits steadily increasing speedup as more devices are
involved, demonstrating its ability to effectively utilize parallel computation. Thanks to its
communication-efficient design, where non-local token embeddings are transmitted in compact
vector-quantized form, ASTRA consistently delivers strong gains even under constrained bandwidth,
highlighting its scalability across a range of deployment scenarios.

Varying Input Token Length. We evaluate how input token length affects latency speedup under
different bandwidth conditions. Figure 10 shows results for input lengths from 256 to 4096 tokens
across bandwidths from 10 to 500 Mbps using 4 devices. Across all bandwidth settings, ASTRA
consistently achieves higher speedup than baseline methods and our improvements enhance as the
input length increases. This trend highlights the communication bottleneck in existing methods,
which becomes more significant with longer sequences, while ASTRA effectively mitigates this
overhead through aggressive compression.

F ABLATION STUDY

Varying Noise Magnitude λ. The noise magnitude λ in Noise-Augmented Vector Quantization
controls the scale of noise added to the quantized embeddings during training. Table 8 shows
the effect of varying λ ∈ {0.0, 0.1, 0.3, 1.0} on both training and validation accuracy. All other
hyperparameters are fixed (e.g., 16 groups, commitment loss weight β = 0.0005). As λ increases,
the gap between training and validation accuracy consistently decreases, indicating that injecting
noise improves generalizability by preventing the model from overfitting to discrete embedding
patterns. Notably, when λ = 1.0, the validation accuracy improves by 0.86% compared to λ = 0,
demonstrating the effectiveness of our proposed strategy over naive vector quantization.

Table 8: The impact of noise magnitude λ on classification accuracy. Gap = Train - Val.

λ Train Val Gap

0.0 99.98 89.91 10.07
0.1 99.97 90.02 9.95
0.3 99.98 90.13 9.85
1.0 99.98 90.77 9.21

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Distributed Class Token VS Single Class Token. Table 9 reports the classification accuracy of
ASTRA using either a single class token or distributed class tokens across devices. The distributed
strategy consistently outperforms the single-token baseline, with accuracy gains ranging from 0.37%
to 7.13% across different group configurations and commitment loss weights. This demonstrates that
allowing class tokens to attend to all full-precision context tokens in a distributed manner significantly
enhances their ability to aggregate global information.

Table 9: Distributed Class Token VS Single Class Token under different group configurations and
commitment loss weights.

β
#Groups=1 #Groups=16 #Groups=32

Single Dist. ∆ Acc. Single Dist. ∆ Acc. Single Dist. ∆ Acc.

0.0001 82.39 88.95 6.56 89.11 90.37 1.26 90.39 91.60 1.21
0.0002 81.48 88.60 7.12 89.02 90.38 1.36 90.84 91.21 0.37
0.0005 81.82 88.95 7.13 88.93 90.77 1.84 90.79 91.64 0.85

Varying the Commitment Loss Weights β. Recall from Section Extreme Communication Com-
pression in the main paper that we include a commitment loss term to encourage the original token
embeddings to remain close to their assigned codebook entries following VQVAE (Van Den Oord
et al., 2017). While the original VQVAE typically sets the commitment loss weight to 0.25, we adopt
much smaller values in our setting, as we apply vector quantization separately at each Transformer
block. Table 9 in the main paper reports the results of ASTRA under different commitment weights
β ∈ {0.0001, 0.0002, 0.0005}. Here we further compare with two control variants: one without
commitment loss (i.e., β = 0), and one using an excessively large weight (i.e., β = 0.25). As shown
in Table 10, either omitting or misconfiguring the commitment term slightly degrades accuracy, with
performance drops ranging from 0.1% to 1.67%, confirming the importance of tuning β appropriately.

Table 10: The impact of commitment loss weight β.

β
#Groups

1 16 32

0 88.85 90.46 91.42
0.25 88.75 89.7 89.97
best 88.95 90.77 91.64

G IMPACT STATEMENT AND LIMITATION

Potential Societal Impact. Our work aims to make large Transformer models more deployable
in real-world environments by enabling efficient multi-device inference under limited bandwidth.
This can expand the accessibility of powerful AI models to edge and consumer-grade devices,
potentially benefiting applications in healthcare, accessibility, and low-connectivity regions. However,
multi-device deployment may introduce new robustness and maintenance challenges. Unlike single-
device inference, distributed inference requires reliable synchronization and communication among
devices. Failures in individual devices or unstable connections can lead to degraded performance or
unpredictable outputs. These issues can make such systems harder to debug, monitor, and guarantee
correctness, especially in safety-critical applications.

Limitation and Future Work. While ASTRA achieves strong performance across vision and
language tasks, we observe a degradation in zero-shot generalization in the GPT experiments (see
Section Results on Accuracy and Communication Costs in the main paper). We hypothesize this is
due to the limited expressiveness of the discrete embedding space introduced by vector quantization.
Future work may explore hybrid compression strategies that retain generalization ability while
still reducing communication costs. Additionally, our grouped vector quantization design requires
maintaining a separate codebook for each group, which increases the overall storage footprint and
may limit deployment flexibility across heterogeneous environments. As a future direction, we aim to
investigate codebook sharing mechanisms or dynamically composable codebooks to reduce storage
costs and enable bandwidth-aware adaptation without retraining.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

10 20 50 100 200 500
Bandwidth (Mbps)

0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(a) 2 Devices

10 20 50 100 200 500
Bandwidth (Mbps)

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(b) 4 Devices

10 20 50 100 200 500
Bandwidth (Mbps)

0

1

2

3

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(c) 6 Devices

10 20 50 100 200 500
Bandwidth (Mbps)

0

1

2

3

4

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(d) 8 Devices

Figure 7: Speedup comparison under different bandwidth across different numbers of devices (w/
1024 tokens).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

10 20 50 100 200 500
Bandwidth (Mbps)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(a) 256 Input Tokens

10 20 50 100 200 500
Bandwidth (Mbps)

0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(b) 512 Input Tokens

10 20 50 100 200 500
Bandwidth (Mbps)

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(c) 1024 Input Tokens

10 20 50 100 200 500
Bandwidth (Mbps)

0

1

2

3

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(d) 2048 Input Tokens

10 20 50 100 200 500
Bandwidth (Mbps)

0

1

2

3

4

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(e) 4096 Input Tokens

Figure 8: Speedup comparison under different bandwidth across different input token length (w/ 4
devices).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

2 4 6 8
#Devices

0

1

2

3

4

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(a) 10 Mpbs

2 4 6 8
#Devices

0

1

2

3

4

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(b) 20 Mpbs

2 4 6 8
#Devices

0

1

2

3

4

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(c) 50 Mpbs

2 4 6 8
#Devices

0

1

2

3

4

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(d) 100 Mpbs

2 4 6 8
#Devices

0

1

2

3

4

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(e) 200 Mpbs

2 4 6 8
#Devices

0

1

2

3

4

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(f) 500 Mpbs

Figure 9: Speedup comparison under different devices across different bandwidth (w/ 1024 tokens).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

256 512 1024 2048 4096
#Tokens

0

1

2

3

4

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(a) 10 Mpbs

256 512 1024 2048 4096
#Tokens

0

1

2

3

4

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(b) 20 Mpbs

256 512 1024 2048 4096
#Tokens

0

1

2

3

4

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(c) 50 Mpbs

256 512 1024 2048 4096
#Tokens

0

1

2

3

4

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(d) 100 Mpbs

256 512 1024 2048 4096
#Tokens

0

1

2

3

4

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(e) 200 Mpbs

256 512 1024 2048 4096
#Tokens

1

2

3

4

Sp
ee

du
p

ASTRA, G=1
ASTRA, G=16
ASTRA, G=32
BP+AG, Nb=1
BP+AG, Nb=4
BP+SP, Nb=1
BP+SP, Nb=4
TP
SP

(f) 500 Mpbs

Figure 10: Speedup comparison under different input token length across different bandwidth (w/ 4
devices).

23

	Introduction
	Background and Related Work
	The Astra Framework
	Overview of Astra
	Extreme Communication Compression
	Task Accuracy Preservation

	Empirical Evaluation
	Experimental Setup
	Results on Accuracy and Communication Costs
	Results on Inference Latency
	Compatibility with Bit Quantization

	Conclusion
	Additional Related Work
	Proof for Noise-Augmented Vector Quantization
	Proof for Distributed Class Tokens
	Results on Accuracy Cont.
	Results on Inference Latency Cont.
	Ablation Study
	Impact Statement and Limitation

