

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COMMUNICATION-EFFICIENT MULTI-DEVICE INFERENCE ACCELERATION FOR TRANSFORMER MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Transformer models power many AI applications but suffer from high inference latency, limiting their use in real-time settings. Multi-device inference can reduce latency by parallelizing computation. Yet, existing methods require high inter-device bandwidth, making them impractical for bandwidth-constrained environments. We propose ASTRA, a communication-efficient framework that accelerates Transformer inference through a novel integration of sequence parallelism and a Mixed-Precision Attention mechanism designed to minimize inter-device communication. ASTRA compresses non-local token embeddings via vector quantization and preserves task accuracy through two optimizations, Noise-Augmented Quantization and Distributed Class Tokens. Experiments on ViT and GPT2 across vision and NLP tasks show that ASTRA achieves up to $2.64 \times$ speedups over single-device inference and up to $15.25 \times$ speedups over state-of-the-art multi-device inferences, while operating under bandwidths as low as 10 Mbps.

1 INTRODUCTION

Transformer models (Dosovitskiy et al., 2020; Devlin et al., 2019; Radford et al., 2019) have become central to modern AI applications in both vision and language domains. As models grow in scale to improve accuracy, their inference time becomes prohibitive, particularly for real-time applications or latency-sensitive user experiences. To address this bottleneck, many works have focused on optimizing single-device inference through techniques like quantization (Liu et al., 2021), pruning (Kwon et al., 2022), and knowledge distillation (Lin et al., 2022). Since the latency improvement on a single device remains fundamentally limited by the device’s capacity, *Multi-device inference* draws increasing attention (Hu & Li, 2024; Du et al., 2024). It complements the above optimization techniques by parallelizing model execution across multiple devices. In theory, it can reduce latency nearly linearly with the number of devices. This setup is especially attractive in practical settings where resource-constrained edge devices or distributed consumer-grade hardware can collaborate to process sporadic inference requests.

Our analysis, however, reveals a critical bottleneck that has been overlooked: in bandwidth-constrained settings (≤ 100 Mbps), inter-device communication dominates the existing multi-device inference time, accounting for 58.6–93.5% of total latency (see Section 4.3). This communication overhead negates the theoretical speedups promised by existing multi-device approaches. Existing methods, such as Tensor Parallelism (TP) in Megatron-LM (Shoeybi et al., 2019), Sequence Parallelism (SP) in Voltage (Hu & Li, 2024), and Block Parallelism (BP) in DeTransformer (Du et al., 2024), rely on high-volume communication bandwidth to achieve modest speedups, as shown in Figure 1. This requirement far exceeds what is commonly

Figure 1: Latency speedup for existing multi-device inference methods and our proposed method ASTRA with different groups G under different bandwidths with 4 devices and 1024 input tokens. BP: Block Parallelism, SP: Sequence Parallelism, TP: Tensor Parallelism, AG: AllGather. A smaller N_b means less communication for BP.

054 available in bandwidth-constrained environments. For example, indoor Wi-Fi networks (e.g., Wi-Fi
 055 4/5/6) typically deliver practical throughput in the range of 50–300 Mbps, depending on interference,
 056 distance from the router, and device capabilities. As a result, current approaches are ill-suited for
 057 wireless or edge deployments, where lower and more variable bandwidth is the norm (wii, 2025).

058 In this work, we propose ASTRA, a communication-efficient framework for accelerating Transformer
 059 inference across multiple devices. ASTRA rethinks how attention computation is distributed by
 060 building on sequence parallelism, which assigns different input tokens to different devices. The key
 061 innovation in ASTRA is a **Mixed-Precision Attention** mechanism that dramatically reduces commu-
 062 nication cost: local attention is computed using full-precision embeddings, while remote tokens are
 063 encoded using low-bit vector quantization before transmission. These compressed embeddings are
 064 decoded on the receiving end and used for approximate attention computation.

065 To preserve accuracy, ASTRA incorporates two key designs. First, a **Noise-Augmented Vector**
 066 **Quantization** strategy injects Gaussian noise to vector-quantized token embeddings during training,
 067 enhancing the diversity of the quantized feature space and improving generalization to unseen inputs.
 068 Second, a **Distributed Class Token** scheme assigns each device its own local class token, which
 069 attends to uncompressed local tokens with full precision and vector-quantized tokens from other
 070 devices. The outputs from these distributed class tokens are then aggregated as a more comprehensive
 071 embedding before the final prediction. Through these techniques, ASTRA makes multi-device
 072 inference viable in low-bandwidth scenarios while maintaining high accuracy.

073 Our main contributions are:

- 074 • ASTRA—a new multi-device Transformer inference framework that significantly reduces
 075 communication overhead via a novel Mixed-Precision Attention mechanism. We design two
 076 techniques, Noise-Augmented Quantization and Distributed Class Tokens, to maintain high
 077 accuracy under aggressive communication compression.
- 078 • *Comprehensive Evaluation*—We evaluate ASTRA on Transformer models, including
 079 ViT (Dosovitskiy et al., 2020) and GPT2 (Radford et al., 2019), on both vision tasks (e.g.,
 080 CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-1K (Deng et al., 2009)) and NLP tasks
 081 (e.g., Wikipedia and Wikitext-103 (Merity et al., 2016)). ASTRA reduces the bandwidth
 082 requirement for multi-device speedup from 500 Mbps to as low as 10 Mbps, achieving up to
 083 $2.64 \times$ end-to-end latency speedup even under constrained bandwidth where prior methods
 084 fail (Figure 1). It maintains task accuracy within 3.58% of the original model under extreme
 085 communication compression. Moreover, ASTRA remains effective in heterogeneous device
 086 environments, achieving accuracy within 1.43% drop under imbalanced token distributions
 087 across devices. It also retains compatibility with single-device quantization: when applied
 088 jointly, ASTRA achieves an additional $1.35 - 2.73 \times$ latency speedup over single-device
 089 quantization alone, while preserving accuracy within 3.37% drop.
- 090 • *Design Analysis*—Through detailed ablation studies, we demonstrate the effectiveness
 091 of each key design component. The Mixed-Precision Attention Computation Mechanism
 092 achieves a latency speedup of up to $171.82 \times$ compared to the original attention under
 093 constrained bandwidth, the Noise-Augmented Vector Quantization improves accuracy by up
 094 to 0.86% compared to naive vector quantization, and the Distributed Class Tokens design
 095 further enhances accuracy by up to 7.13% compared to using a single class token.

096 2 BACKGROUND AND RELATED WORK

097 This section introduces existing techniques for multi-device inference acceleration and then the vector
 098 quantization (VQ) technique that is necessary to understanding ASTRA. A broader survey of related
 099 work is provided in Appendix A.

100 **Parallelization in Multi-Device Inference.** To accelerate inference latency, many recent approaches
 101 explore distributing Transformer computations across multiple devices. Techniques originally de-
 102 veloped for training, such as data parallelism, pipeline parallelism, and model parallelism, have
 103 been repurposed for inference. *Data parallelism* (Li et al., 2014) and *pipeline parallelism* (Huang
 104 et al., 2019) improve throughput by processing different input samples or partitioning layers across
 105 devices. However, these methods are primarily suited to batch processing and offer limited benefits
 106 for latency-sensitive, single-request inference. *Model parallelism*, in contrast, splits the computation
 107

of individual model layers across devices, enabling true per-request acceleration. Notable examples include: Megatron-LM (Shoeybi et al., 2019), which partitions model weights (tensor parallelism), Voltage (Hu & Li, 2024), which partitions token sequences (sequence parallelism), and DeTransformer (Du et al., 2024), which decomposes layers into smaller blocks for distributed execution. These approaches reduce some communication costs by tailoring the parallelization granularity, but they still require substantial bandwidth, such as 500 Mbps, to realize modest speedups. While this bandwidth may be achievable in high-performance server clusters, it exceeds the practical limits of many real-world environments, such as indoor Wi-Fi, where sustained throughput often falls lower than 300 Mbps depending on interference. Our work diverges from prior efforts by focusing explicitly on reducing the communication cost, which we identify as a primary bottleneck in multi-device Transformer inference.

Vector Quantization (VQ). ASTRA leverages vector quantization to compress token embeddings before inter-device transmission, significantly reducing communication overhead. VQ maps continuous vectors to discrete indices in a fixed codebook, allowing compact representation of information with a small number of bits (Gersho & Gray, 2012).

Vanilla VQ partitions the feature space into K clusters, each represented by a centroid. Let $\mathbf{e} \in \mathbb{R}^{K \times D}$ be the codebook of centroids. For an input vector $\mathbf{z} \in \mathbb{R}^D$, VQ selects the closest centroid by $i = \arg \min_i \|\mathbf{e}_i - \mathbf{z}\|_2^2$, and transmits only the index i , requiring $\log_2 K$ bits per token. The codebook \mathbf{e} can be learned via K -means clustering or updated online using exponential moving averages (Van Den Oord et al., 2017). This compact representation greatly reduces the communication cost between devices.

Grouped VQ (Yang et al., 2023) extends this idea by dividing the input vector into G equal-length sub-vectors and quantizing each independently using separate codebooks. It increases expressiveness in the compressed representation and improves task accuracy, at the cost of higher communication overhead, $G \cdot \log_2 K$ bits per token. In experiments, ASTRA with Grouped VQ outperforms Vanilla VQ counterpart in accuracy, offering a tunable trade-off between bandwidth usage and model performance.

3 THE ASTRA FRAMEWORK

We present ASTRA, a communication-efficient multi-device inference framework for Transformer models. ASTRA is designed to minimize inter-device communication while preserving accuracy, enabling fast inference even in bandwidth-constrained environments. The framework achieves this through three key innovations: (1) Mixed-Precision Attention, (2) Noise-Augmented Vector Quantization, and (3) Distributed Class Tokens. We begin with an overview of the inference workflow, then describe each core design in detail.

3.1 OVERVIEW OF ASTRA

Figure 2 illustrates the inference procedure of the ASTRA framework. Given an input sequence consisting of a class token (optional) and T content tokens, ASTRA first partitions the content tokens evenly across N devices, assigning T/N tokens to each device. To support classification and similar global tasks, the class token *CLS* is replicated to each device (*Distributed Class Token in Task Accuracy Preservation*). Each device thus holds a disjoint subset of the input sequence, along with its own class token copy, and maintains a full copy of the Transformer model.

Within each Transformer block, the inference proceeds in parallel across devices. Each device first applies our *Noise-Augmented Vector Quantization* (see *Task Accuracy Preservation*) to its local tokens, and transmits the corresponding low-bit indices to other devices. Each device now has access to the full input sequence, full-precision for local tokens, and vector quantized versions for non-local tokens. It then performs *Mixed-Precision Attention Computation* (see *Extreme Communication Compression*), computing attention maps over this hybrid set of representations. Since the feed-forward network (i.e., MLP) is position-wise independent, it is executed locally on each device without communication.

After all Transformer blocks, all class tokens, replicated across devices, are aggregated via average pooling to form a single unified representation. For classification tasks, this pooled class token is passed to a downstream prediction head to generate the final output. For generative tasks such as

Figure 2: Overview of ASTRA with two devices. We introduce three key innovations: (1) Mixed-Precision Attention, (2) Noise-Augmented Vector Quantization, and (3) Distributed Class Tokens to achieve communication-efficient multi-device inference. ASTRA can be applied to transformers for both deterministic and generative tasks.

next-token prediction, there is no class token. Instead, the input sequence is evenly partitioned across devices for parallel encoding, which accelerates the initial digestion time during inference. Once the token encoding is complete, autoregressive decoding proceeds sequentially on a single device that holds the final (i.e., most recent) token in the input sequence.

3.2 EXTREME COMMUNICATION COMPRESSION

Transformer attention requires global context aggregation, which poses a communication bottleneck when the input tokens are partitioned across devices. In detail, the self-attention layers must use all tokens in the sequence, including those stored on other devices, to compute attention for each local token. As a result, each Transformer block must perform an all-to-all exchange of embeddings across devices, leading to significant communication overhead. For example, if the input tokens are evenly partitioned across N devices, with each holding T/N tokens, then transmitting full-precision embeddings requires sending $T/N \times D \times r$ bits per device per block, where D is the hidden dimension and r is the precision (e.g., float32). Such overhead becomes prohibitive under realistic bandwidth constraints.

Mixed-Precision Attention. To address this challenge, we propose to leverage both full-precision and compressed token representations during attention computation. Specifically, each device computes full-precision attention among its local tokens, and approximates attention interactions with non-local tokens (i.e., those stored on other devices) using vector-quantized embeddings. Only the low-bit indices of the vector-quantized embeddings are transmitted between devices.

Formally, for each local query q , we compute attention over a mixed set of key and value pairs, full-precision representations from local tokens and vector-quantized representations from non-local tokens. Therefore, the attention map is computed as:

$$\text{Attn}(\mathbf{Q}, \mathbf{K}, \hat{\mathbf{K}}, \mathbf{V}, \hat{\mathbf{V}}) = \sigma \left(\frac{\mathbf{Q}[\mathbf{K} \mid \hat{\mathbf{K}}]^\top}{\sqrt{d_k}} \odot \mathbf{M} \right) [\mathbf{V} \mid \hat{\mathbf{V}}], \quad (1)$$

where $\hat{\mathbf{K}}$ and $\hat{\mathbf{V}}$ are derived from the vector-quantized embeddings $\hat{\mathbf{X}}$ via linear projections. The operator \mid denotes row-wise concatenation, and σ represents softmax operation. During the training stage, the attention mask \mathbf{M} ensures that full-precision interactions are only applied between local tokens, while interactions with non-local tokens use their compressed counterparts.

Vector-Quantized Non-Local Tokens. The non-local compressed embeddings $\hat{\mathbf{X}}$ in Mixed-Precision Attention are produced by a vector quantization (VQ) module. Prior to transmission, each token embedding \mathbf{X} is quantized by a codebook to an index i via nearest-neighbor lookup. Since the codebook is shared across devices for each Transformer block, the receiving device can reconstruct $\hat{\mathbf{X}}$ using only the transmitted index i . This reduces the per-token communication cost from rD bits to $\log_2 K$ bits, where K is the codebook size, resulting in a compression ratio of $2457.6 \times$ when $r = 32$, $D = 768$, and $K = 1024$.

216 The VQ module is jointly trained with the Transformer model. Specifically, the codebook is initialized
 217 by running K -means clustering over intermediate token embeddings from the pretrained model, and
 218 is further updated via exponential moving average during model fine-tuning. Following VQVAE (Van
 219 Den Oord et al., 2017), we apply a commitment loss to encourage token embeddings to stay close to
 220 their assigned centroids. The overall training objective is:

$$221 \quad \mathcal{L} = \mathcal{L}_t + \beta \|\mathbf{X} - \text{sg}(\hat{\mathbf{X}})\|_2^2, \quad (2)$$

223 where \mathcal{L}_t is the task loss, $\text{sg}(\cdot)$ denotes the stop-gradient operation, and β controls the strength
 224 of the commitment term. This design encourages the model to align token embeddings with their
 225 corresponding quantized representations, which improves downstream task performance even under
 226 aggressive compression. Appendix F further empirically demonstrates that the commitment term and
 227 a well-configured loss weight is necessary for maintaining accuracy.

228 3.3 TASK ACCURACY PRESERVATION

230 **Noise-Augmented Vector Quantization.** Quantizing embeddings introduces discretization error,
 231 which can degrade model generalization. To mitigate this, we propose a novel regularization strat-
 232 egy called *Noise-Augmented Vector Quantization (NAVQ)*, which adds Gaussian noise to quantized
 233 embeddings during training. This technique is inspired by the Vicinal Risk Minimization (VRM)
 234 principle (Chapelle et al., 2000), which improves generalization by exposing the model to perturba-
 235 tions around each data point in input space. NAVQ extends this philosophy into the latent quantized
 236 embedding space. Instead of directly using the deterministic quantized embedding $\hat{\mathbf{X}}$ during training,
 237 we compute a noise-augmented version, $\tilde{\mathbf{X}} = \hat{\mathbf{X}} + \lambda \xi$, where $\lambda \in (0, 1]$ controls the noise magni-
 238 tude and $\xi \sim \mathcal{N}(\mu, \Sigma)$ is Gaussian noise sampled from the distribution of quantization residuals
 239 $\varepsilon := \mathbf{X} - \hat{\mathbf{X}}$. This residual captures the error introduced by quantization, and the noise distribution
 240 is fit with empirical mean μ and covariance Σ over training data.

241 By injecting noise into quantized embeddings during training, NAVQ restores a degree of continuity
 242 to the otherwise discrete latent space, encouraging the model to generalize across small perturbations
 243 and reducing sensitivity to codebook boundaries. At inference time, the noise is omitted and the
 244 model operates deterministically using $\hat{\mathbf{X}}$. We theoretically justify this approach in Appendix B and
 245 prove the following:

246 **Theorem 1** (Noise-Augmented Embeddings Improve Distributional Fidelity). *Let $\hat{\mathbf{X}}$ denote the*
 247 *quantized embedding of \mathbf{X} , and let $\tilde{\mathbf{X}} = \hat{\mathbf{X}} + \lambda \xi$ with $\xi \sim \mathcal{N}(\mu, \Sigma)$ sampled from the quantization*
 248 *residuals. Then the 2-Wasserstein distance between the original embedding distribution $P_{\mathbf{X}}$ and the*
 249 *perturbed distribution $P_{\tilde{\mathbf{X}}}$ satisfies:*

$$251 \quad W_2^2(P_{\mathbf{X}}, P_{\tilde{\mathbf{X}}}) < W_2^2(P_{\mathbf{X}}, P_{\hat{\mathbf{X}}}), \quad (3)$$

252 *i.e., the noise-augmented distribution is statistically closer to the true distribution than the raw*
 253 *quantized embedding.*

255 Empirically, NAVQ reduces overfitting and improves generalization. As shown in our ablation study
 256 (see Appendix F), setting $\lambda = 1.0$ improves validation accuracy by 0.86% compared to training
 257 without noise, demonstrating the effectiveness of this regularization under extreme compression.

258 **Distributed Class Tokens.** In Transformer-based classification models, such as ViT (Dosovitskiy
 259 et al., 2020), a special *class token* is prepended to the input sequence and used to aggregate information
 260 from all other tokens through attention. However, in the context of our Mixed-Precision Attention
 261 mechanism, attention between tokens on different devices is performed using vector-quantized
 262 embeddings. If the class token is assigned to a single device, it will attend to full-precision local
 263 tokens but only see vector-quantized representations from other devices. This asymmetric access to
 264 information introduces a bias in the class token’s representation, potentially limiting its ability to
 265 effectively summarize the entire input sequence.

266 To address this issue, we introduce the *Distributed Class Token* mechanism. Instead of assigning the
 267 class token to a single device, we replicate it across all devices, creating one local copy per device.
 268 Each replica computes attention with full-precision local tokens and quantized non-local tokens. At
 269 the end of the model, all class token replicas are aggregated (e.g., via mean pooling) into a single
 vector, which is then passed to the final prediction head. This approach not only restores symmetry in

270 access to information but also reduces estimation error in the attention output, improving robustness
 271 to quantization artifacts. We formally justify this mechanism in Appendix C and prove the following:
 272

273 **Theorem 2** (Variance Reduction via Distributed Class Tokens). *Let \mathbf{h} denote the class token embedding
 274 of a full-precision global attention computation. Let $\tilde{\mathbf{h}}_{\text{single}}$ be the output of a single-device
 275 class token using Mixed-Precision Attention, and let $\tilde{\mathbf{h}}_{\text{dist}}$ be the average of N distributed class token
 276 outputs. Then:*

$$277 \mathbb{E}[\|\tilde{\mathbf{h}}_{\text{dist}} - \mathbf{h}\|_2^2] = \frac{1}{N} \mathbb{E}[\|\tilde{\mathbf{h}}_{\text{single}} - \mathbf{h}\|_2^2], \quad (4)$$

278 *i.e., distributed class tokens reduce the expected attention output error by a factor of $1/N$.*

280 Empirically, our ablation study (see Appendix F) confirms that Distributed Class Tokens consistently
 281 outperform the single-token variant across all evaluated settings, yielding accuracy improvements
 282 between 0.37% and 7.13% depending on the compression level and commitment loss weight.

283 4 EMPIRICAL EVALUATION

286 This section evaluates the effectiveness of ASTRA by answering the following question: (1) Can
 287 ASTRA maintain model accuracy under aggressive token compression? (2) How much can ASTRA
 288 speed up inference under limited bandwidths compared to baselines? (3) How effective are the opti-
 289 mizations in ASTRA? We answer these questions through extensive experiments across Transformer
 290 models (ViT and GPT2), application domains (vision and NLP tasks), and deployment conditions
 291 (varying bandwidth, device count, compression settings, and device heterogeneity).

292 4.1 EXPERIMENTAL SETUP

294 **Environment.** ASTRA is implemented in PyTorch 2.5 and trained on a single L40S GPU with 40GB
 295 memory. For deployment, we simulate distributed inference on personal laptops provisioned with
 296 an NVIDIA 1660Ti GPU. We emulate a range of network conditions by enforcing bandwidth caps,
 297 enabling evaluation under constrained environments. Unless stated otherwise, experiments use 4
 298 devices in a homogeneous setting. We report results under heterogeneous settings in Appendix D.

299 **Transformer Models.** We evaluate ASTRA across both encoder and decoder Transformer architec-
 300 tures: For encoder architecture, we focus on vision tasks with Vision Transformer (ViT-Base) (Doso-
 301 vitskiy et al., 2020). For decoder architecture, we conduct experiments on NLP tasks with GPT2-Small
 302 (GPT2-S) and GPT2-Medium (GPT2-M) (Radford et al., 2019).

303 **Datasets and Metrics.** We evaluate ASTRA on both vision and language tasks. For vision, we
 304 use CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-1K (Deng et al., 2009), reporting top-1
 305 classification accuracy. For language modeling, we perform next-word prediction using two datasets,
 306 English Wikipedia and Wikitext-103 (Merity et al., 2016), and report perplexity (PPL; lower is
 307 better). The evaluation includes three settings: training and evaluating on Wikipedia (Foundation),
 308 training and evaluating on Wikitext-103, and a zero-shot evaluation where the model is trained on
 309 Wikipedia but directly evaluated on the Wikitext-103 validation set without further fine-tuning. The
 310 last zero-shot setting follows the evaluation used in the original GPT2 (Radford et al., 2019) and
 311 serves to assess the model’s generalization to unseen domains. All experiments are conducted with a
 312 fixed random seed (42) for reproducibility. To demonstrate the robustness of ASTRA across different
 313 runs, results averaged over multiple seeds are reported in Appendix D. The memory cost analysis is
 314 included in Appendix G.

315 **Baselines.** We compare ASTRA with both single-device and three multi-device inference approaches.

- 316 • **Original Model:** The baseline model runs entirely on a single device using float32 precision. We
 317 compare with the float32 model as ASTRA builds on top of this model for a fair comparison. Later,
 318 we show ASTRA can be combined with model quantization.
- 319 • **Tensor Parallelism (TP):** Represented by Megatron-LM (Shoeybi et al., 2019), which partitions
 320 weight matrices across devices and requires two allreduce operations per Transformer layer.
- 321 • **Sequence Parallelism (SP):** Introduced by Voltage (Hu & Li, 2024), which partitions the input
 322 sequence and performs one AllGather operation per layer.
- 323 • **Block Parallelism (BP):** Proposed by DeTransformer (Du et al., 2024), which replaces Transformer
 324 blocks with multiple parallel sublayers for distributed execution.

324 For BP, we evaluate two most efficient design variants proposed in (Du et al., 2024): (i)
 325 **BP+AllGather (BP+AG)** minimizes communication by performing more local computation, and
 326 (ii) **BP+SequenceParallel (BP+SP)** reduces local computation at the cost of moderate communica-
 327 tion overhead. Both variants include a hyperparameter N_b that controls the number of original
 328 Transformer blocks retained. A smaller N_b leads to fewer communications and thus lower latency.
 329 We compare against BP configurations with $N_b = 1$ and $N_b = 4$.

330 **ASTRA Settings.** For the Noise-Augmented Vector Quantization in ASTRA, the codebook size is
 331 1024, representing each transmitted token with 10 bits (i.e., $\log_2 1024$). The noise magnitude λ is 1.0
 332 in the main results and we test other settings including $\lambda \in \{0.0, 0.1, 0.3\}$ in Appendix F. We further
 333 evaluate the use of *Grouped VQ*, as introduced in *Background*, which splits each input vector into G
 334 groups and applies vector quantization independently to each group using separate codebooks. We
 335 experiment with group sizes of 16 and 32, in addition to *Vanilla VQ* of a single group. Increasing
 336 the number of groups leads to a higher bits per token and thus reduces the overall compression ratio
 337 proportionally.

338 We load the pre-trained weights for all the transformer models from the HuggingFace official
 339 model zoo. Then ASTRA is fine-tuned for additional iterations on each dataset using the Adam
 340 optimizer (Kingma & Ba, 2014). Specifically, for vision tasks, ASTRA is fine-tuned on CIFAR-100
 341 and ImageNet-1K for 32 and 4 epochs, respectively. For NLP tasks, ASTRA is fine-tuned on 1 million
 342 samples from English Wikipedia and the complete WikiText-103 dataset for 1 epoch. During fine-
 343 tuning, we test with different commitment loss weights $\beta \in \{0.0001, 0.0002, 0.0005\}$ in Appendix F
 344 and report the best accuracy performance in *Results on Accuracy*.

346 4.2 RESULTS ON ACCURACY AND COMMUNICATION COSTS

348 We evaluate the accuracy of ASTRA across three Transformers, ViT-Base, GPT2-S, and GPT2-M, on
 349 vision and NLP benchmarks. Note that we only report the baseline accuracy for the original model.
 350 Existing multi-device baselines, including Megatron-LM (Shoeybi et al., 2019) and Voltage (Hu &
 351 Li, 2024), do not incur any accuracy loss since they merely reorganize computation without altering
 352 the model’s numerical outputs. Therefore, their results are equivalent to the original model and are
 353 omitted here for clarity. Alongside accuracy, we also report the associated communication overhead,
 354 measured as the total amount of data exchanged per token during a single forward pass (i.e., *Total
 355 Bits per Token*). Results are summarized in Tables 1 and 3.

356 **ViT-Base.** ASTRA maintains high accuracy
 357 on ViT-Base for image classification (CIFAR-
 358 100 and ImageNet-1K), with less than 3.58%
 359 degradation even under $2457.6 \times$ compression,
 360 as shown in Table 1. With 32 groups, ASTRA
 361 achieves 91.64% on CIFAR-100 and 80.28%
 362 on ImageNet-1K, closely matching the origi-
 363 nal performance of 92.53% and 80.32%. To
 364 further assess scalability, we fix the compres-
 365 sion configuration (32 groups) and evaluate ASTRA on CIFAR-100 using varying numbers of devices.
 366 As shown in Table 2, ASTRA preserves model accuracy within 1.39% of the original model across
 367 different device counts.

368 **GPT2.** Table 3 summarizes the perplexity (PPL) re-
 369 sults of ASTRA on the next-token prediction task, i.e.,
 370 Wikipedia and WikiText-103, using GPT2-S and GPT2-
 371 M. Overall, ASTRA achieves competitive performance
 372 under aggressive communication compression. Note
 373 that perplexity is an exponential function of the language
 374 modeling loss, i.e., $PPL = \exp(\mathcal{L})$, and thus small dif-
 375 ferences in loss can result in amplified changes in PPL. Specifically, on GPT2-M, the PPL on
 376 WikiText-103 increases from 14.8 (loss = 2.70) to 16.84 (loss = 2.82), reflecting only a 4.4% increase
 377 in loss despite a $102.4 \times$ compression ratio. Similarly, on Wikipedia, the loss increases marginally
 from 2.5 to 2.63 (PPL from 12.16 to 13.83), confirming that much of the accuracy is preserved under
 significant transmission savings.

378 Table 1: Task accuracy and communication overhead
 379 on **CIFAR-100** and **ImageNet-1K** with **ViT-Base**.

Model	#Groups	Total Bits per Token	Compression Ratio	CIFAR-100	ImageNet
ViT-Base	-	294912	-	92.53	80.32
ASTRA	1	120	2457.6	88.95	77.39
	16	1920	153.6	90.77	78.80
	32	3840	76.8	91.64	80.28

378 Table 2: Accuracy of ASTRA on CIFAR-
 379 100 under different numbers of devices.

Model	ViT-Base	ASTRA (#Groups = 32)				
		1	2	4	6	8
#Devices	92.53	91.86	91.64	91.35	91.14	

378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
Zero-Shot Generalization. We also evaluate ASTRA in the zero-shot setting by directly evaluating the model trained with Wikipedia on the Wikitext-103 validation set. Here, we observe a larger performance drop compared to the original model. For example, GPT2-M’s zero-shot PPL rises from 43.22 to 62.29 with ASTRA at 32 groups. This performance drop suggests a limitation of ASTRA in zero-shot generalization: the discretization introduced by VQ reduces the diversity of token representations and hinders out-of-distribution data generalization.

400
 401
 402
 403
Heterogeneous Devices. In heterogeneous settings where devices have different compute capacities, ASTRA can adapt by assigning more tokens to stronger devices. Our training uses a randomized token-to-device mapping to learn a unified codebook, enabling direct generalization to unseen heterogeneity without retraining. Experiments on ImageNet-1K with 4 devices show that ASTRA maintains within 1.43% accuracy drop compared to the original ViT-Base. We further observe that higher heterogeneity increases the full-precision attention rate, leading to better accuracy (See Appendix D for details).

4.3 RESULTS ON INFERENCE LATENCY

404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 We report latency improvement using a 12-layer Transformer encoder with 768 hidden dimensions. We compare ASTRA with existing multi-device inference baselines and evaluate their latency across three key dimensions, varying bandwidth, device count, and input token length, in Figure 1, 4, and 5.

417
 418
 419
 420
 421
 422
Varying Bandwidth. Figure 1 presents the speedup of multi-device methods over single-device inference, evaluated across inter-device bandwidths ranging from 10 Mbps to 500 Mbps. We fix the number of devices to 4 and the input token length to 1024. Additional device count and sequence length configurations are provided in Appendix E. Across all bandwidths, ASTRA consistently outperforms all baselines and maintains substantial speedup, even under extremely limited bandwidth. For instance, ASTRA achieves a speedup of $1.27 - 2.74 \times$ at 20 Mbps, while all other baselines perform even worse than single-device inference. Even at 10 Mbps, our method with 16 and 1 quantization groups still delivers $1.26 - 2.65 \times$ speedup, demonstrating strong scalability to bandwidth bottlenecks.

423
 424
 425
 426
 427
 428
 429
 430
 We also visualize the absolute latency breakdown in Figure 3. Specifically, we depict the latency breakdown for the two fastest baselines, BP+AG and BP+SP when $N_b = 1$, as well as ASTRA with different groups. We can see that the communication time dominates in total latency for BP+AG and BP+SP, accounting for as much as 58.55 – 93.47% of total runtime at low-bandwidth settings below 100 Mbps. In contrast, ASTRA effectively mitigates this communication bottleneck via aggressive compression, thereby significantly reducing total latency.

431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 17

bandwidth settings, 20 Mbps and 200 Mbps (more results see Appendix E). For both bandwidth, ASTRA consistently achieves higher speedup than all baselines. As the number of devices increases, more computation can be parallelized, leading to greater latency reduction. For example, under 20 Mbps, ASTRA with 1 group improves from $1.72 \times$ speedup with 2 devices to $3.69 \times$ with 8 devices.

Varying Input Token Length. Figure 5 presents the latency speedup comparison as the input token length increases from 256 to 4096. Similarly, we fix the number of devices to 4 and evaluate under 20 Mbps and 200 Mbps (more bandwidth see Appendix E). Across all sequence lengths, ASTRA consistently outperforms existing methods and our superiority becomes more significant at longer input lengths. In real-world applications, longer input token lengths tend to form a more substantial barrier to achieving low-latency inference. At 512 tokens and 20 Mbps bandwidth, for instance, ASTRA achieves a latency speedup of $1.98 \times$ compared to the fastest baseline BP-AG of $0.25 \times$, highlighting the practical value of ASTRA in real deployment scenarios.

Figure 4: Speedup comparison under different numbers of devices (w/ 1024 tokens).

Figure 5: Speedup comparison under different input token length (w/ 4 devices).

4.4 COMPATIBILITY WITH BIT QUANTIZATION

To demonstrate the compatibility of ASTRA with model compression, we apply post-training quantization to the standard ViT-Base model and our ASTRA variants, and evaluate their performance on ImageNet-1K under 8-bit and 4-bit settings. Table 5 summarizes the accuracy and latency results, with latency measured under 200 Mbps bandwidth, using 4 devices and an input token length of 1024.

Accuracy. 8-bit and 4-bit quantization yield minimal accuracy degradation. When ASTRA is combined with bit quantization, performance remains robust. For instance, applying 4-bit quantization to ASTRA with 32 groups still achieves 79.78% accuracy. This supports the claim that ASTRA can be layered on top of bit quantization methods to further reduce latency while preserving task performance.

Table 5: Accuracy and latency of ViT-Base and ASTRA on ImageNet-1K under different precision (FP32, 8-bit, 4-bit).

Model Name	#Group	Accuracy			Latency (ms) Speedup		
		FP32	8-bit	4-bit	FP32	8-bit	4-bit
ViT-Base	-	80.32	80.27	80.19	99.9	79.8	103.2
ASTRA	1	77.39	77.32	76.82	36.7 <small>2.73 ×</small>	50.6 <small>1.58 ×</small>	44.6 <small>2.31 ×</small>
	16	78.80	78.76	78.43	41.0 <small>2.44 ×</small>	51.7 <small>1.54 ×</small>	50.2 <small>2.06 ×</small>
	32	80.28	80.26	79.78	44.5 <small>2.25 ×</small>	59.3 <small>1.35 ×</small>	56.9 <small>1.81 ×</small>

Latency. Combining ASTRA with quantization pushes end-to-end Transformer acceleration beyond either method alone. For instance, the 4-bit ASTRA on 4 devices can achieve $1.81 - 2.31 \times$ speedup over 4-bit ViT-Base on a single device. Notice that the actual speedup from bit quantization depends on kernel implementation, hardware-specific optimization, and target device. In some cases, e.g., 4-bit ViT-Base, it may even slow down due to conversion or kernel overhead.

4.5 SCALABILITY TO LARGE TRANSFORMER MODELS

To evaluate the scalability of ASTRA to large language models, we experiment with Llama-3-8B (Dubey et al., 2024) for next-token prediction on the English Wikipedia dataset. 8-bit quantization is enabled for all methods, including the baselines and ASTRA, to execute inference with NVIDIA TitanX GPUs and keep fair comparisons. When evaluating the latency, we fixed the input token length to 1024 using 4 devices.

Accuracy. Table 6 reports perplexity (PPL, lower is better) together with the communication cost in bits per token as we vary the number of groups in ASTRA. Compared to the single-device Llama-3-8B baseline, ASTRA maintains performance close to the original while significantly reducing communication. For example, when the number of groups is 1, ASTRA incurs only a small increase in PPL

486 from 5.81 (loss = 1.76) to 7.73 (loss = 2.04), while achieving a $1600 \times$ reduction in communication,
 487 confirming that the proposed multi-device inference framework can scale to 8B-parameter models.
 488

489
 490 Table 6: Task performance (i.e., perplexity) and com-
 491 munication overhead on **Wikipedia** with **Llama-3-8B**, with and without 5% packet loss.
 492

Model	#Groups	Bits per Token	Compression Ratio	PPL	PPL under 5% packet loss
Llama-3-8B	-	1,048,576	-	5.8118	-
ASTRA	1	640	1,638.4	7.7336	7.7294
	16	10,240	102.4	7.5879	7.5900
	32	20,480	51.2	7.4360	7.4431

493
 494 Table 7: Latency (s) comparison between ASTRA
 495 and baselines across different bandwidths (Mbps).
 496

Bandwidth (Mbps)	10	20	50	100	200	500
Llama-3-8B			4.578			
TP	430.952	216.291	87.449	44.499	23.025	10.140
SP	28.256	14.939	6.888	4.215	2.857	2.052
BP, Nb=4	4.642	3.047	2.085	1.753	1.586	1.485
BP, Nb=8	8.011	4.780	2.773	2.101	1.762	1.561
ASTRA, G=1	1.563	1.549	1.547	1.545	1.541	1.540
ASTRA, G=16	1.661	1.659	1.595	1.572	1.559	1.548
ASTRA, G=32	1.940	1.796	1.661	1.630	1.603	1.583

501
 502 **Latency.** Table 7 summarizes end-to-end latency under varying bandwidth ranging from 10 to 500
 503 Mbps. ASTRA consistently achieves lower latency than state-of-the-art multi-device baselines at low
 504 bandwidth (e.g., 10–100 Mbps). Specifically, ASTRA attains $1.13 - 5.13 \times$ speedup over the fastest
 505 baseline, i.e., BP, Nb=4. Because 8-bit quantization is uniformly applied to all methods, these gains
 506 isolate the benefit of ASTRA’s communication-efficient design.
 507

508
 509 **Non-Ideal Network Conditions.** We further stress the inter-device network with packet loss and
 510 time-varying bandwidth. For the packet loss, since WiFi networks generally experience packet loss
 511 rates of around 1% to 5% (Sheshadri & Koutsonikolas, 2017), Table 6 includes perplexity when we
 512 inject a 5% random packet loss rate without retransmission. ASTRA preserves task performance
 513 under this moderate packet loss, showing only minor degradation in terms of PPL.
 514

515 We further simulate fluctuating network conditions using synthetic bandwidth traces generated by
 516 a Markovian model from Pensieve (Mao et al., 2017), where each state corresponds to a bandwidth
 517 between 20–100 Mbps, and transitions are biased toward nearby states to capture temporal correlation.
 518 Figure 6 depicts the 600-second bandwidth trace together with the overall resolved requests when
 519 using a single batch size for the single-device baseline (i.e., the red dashed line) and multi-device
 520 methods on 4 devices (i.e., the bar charts). For each method, the bars illustrate the number of resolved
 521 requests every 10 seconds, and the overall throughput is reported in the title. Under this fluctuating
 522 bandwidth, ASTRA delivers higher throughput than both single-device inference and multi-device
 523 baselines, demonstrating that the proposed communication-efficient mechanisms remain effective
 524 under realistic, non-ideal network conditions.
 525

5 CONCLUSION

531
 532 We present ASTRA, a communication-efficient framework for accelerating Transformer inference in
 533 multi-device settings. By integrating sequence parallelism with a novel Mixed-Precision Attention
 534 mechanism, ASTRA significantly reduces inter-device communication while preserving accuracy.
 535 Extensive experiments across vision and NLP tasks demonstrate that ASTRA delivers substantial
 536 end-to-end latency improvements over existing baselines, achieving up to $2.64 \times$ speedup over single-
 537 device inference and up to $15.25 \times$ over state-of-the-art multi-device methods, under constrained
 538 bandwidth as low as 10 Mbps. Our results highlight the potential of ASTRA for practical deployment
 539 of Transformer models in real-world, bandwidth-limited environments.
 540

541 Figure 6: Overall request throughput comparison
 542 under dynamic network bandwidth with a fixed 600-second trace. Red dashed line
 543 represents the single-device baseline.
 544

540 REFERENCES

541
542 Wiisfi. <https://www.wiisfi.com/>, 2025. Accessed: December 3, 2025.

543 Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
544 Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. Deepspeed-inference:
545 enabling efficient inference of transformer models at unprecedented scale. In *SC22: International
546 Conference for High Performance Computing, Networking, Storage and Analysis*, pp. 1–15. IEEE,
547 2022.

548 Olivier Chapelle, Jason Weston, Léon Bottou, and Vladimir Vapnik. Vicinal risk minimization.
549 *Advances in neural information processing systems*, 13, 2000.

550 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
551 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
552 pp. 248–255. Ieee, 2009.

553 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
554 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
555 the North American chapter of the association for computational linguistics: human language
556 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

557 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
558 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
559 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
560 arXiv:2010.11929*, 2020.

561 Jiangsu Du, Yuanxin Wei, Shengyuan Ye, Jiazhong Jiang, Xu Chen, Dan Huang, and Yutong Lu.
562 Co-designing transformer architectures for distributed inference with low communication. *IEEE
563 Transactions on Parallel and Distributed Systems*, 2024.

564 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
565 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
566 *arXiv e-prints*, pp. arXiv–2407, 2024.

567 Wikimedia Foundation. Wikimedia downloads. URL <https://dumps.wikimedia.org>.

568 Allen Gersho and Robert M Gray. *Vector Quantization and Signal Compression*, volume 159.
569 Springer Science & Business Media, 1991.

570 Allen Gersho and Robert M Gray. *Vector quantization and signal compression*, volume 159. Springer
571 Science & Business Media, 2012.

572 Chenghao Hu and Baochun Li. Distributed inference with deep learning models across heterogeneous
573 edge devices. In *IEEE INFOCOM 2022-IEEE Conference on Computer Communications*, pp.
574 330–339. IEEE, 2022.

575 Chenghao Hu and Baochun Li. When the edge meets transformers: Distributed inference with
576 transformer models. In *2024 IEEE 44th International Conference on Distributed Computing
577 Systems (ICDCS)*, pp. 82–92. IEEE, 2024.

578 Yang Hu, Connor Imes, Xuanang Zhao, Souvik Kundu, Peter A Beerel, Stephen P Crago, and
579 John Paul Walters. Pipeedge: Pipeline parallelism for large-scale model inference on heterogeneous
580 edge devices. In *2022 25th Euromicro Conference on Digital System Design (DSD)*, pp. 298–307.
581 IEEE, 2022.

582 Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
583 Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
584 networks using pipeline parallelism. *Advances in neural information processing systems*, 32, 2019.

585 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
586 arXiv:1412.6980*, 2014.

587 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

594 Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir
 595 Gholami. A fast post-training pruning framework for transformers. *Advances in Neural Information
 596 Processing Systems*, 35:24101–24116, 2022.

597

598 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
 599 Soriciut. Albert: A lite bert for self-supervised learning of language representations. *International
 600 Conference on Learning Representations*, 2020.

601 Mu Li, David G Andersen, Alexander Smola, and Kai Yu. Communication efficient distributed
 602 machine learning with the parameter server. *Advances in neural information processing systems*,
 603 27, 2014.

604

605 Sihao Lin, Hongwei Xie, Bing Wang, Kaicheng Yu, Xiaojun Chang, Xiaodan Liang, and Gang
 606 Wang. Knowledge distillation via the target-aware transformer. In *Proceedings of the IEEE/CVF
 607 conference on computer vision and pattern recognition*, pp. 10915–10924, 2022.

608 Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-training quantization
 609 for vision transformer. *Advances in Neural Information Processing Systems*, 34:28092–28103,
 610 2021.

611

612 Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural adaptive video streaming with pen-
 613 sieve. In *Proceedings of the conference of the ACM special interest group on data communication*,
 614 pp. 197–210, 2017.

615

616 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 617 models, 2016.

618

619 Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? *Advances in
 neural information processing systems*, 32, 2019.

620

621 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 622 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

623

624 Lakshay Sharma, Laura Graesser, Nikita Nangia, and Utku Evci. Natural language understanding
 625 with the quora question pairs dataset. *arXiv preprint arXiv:1907.01041*, 2019.

626

627 Ramanujan K Sheshadri and Dimitrios Koutsonikolas. On packet loss rates in modern 802.11
 628 networks. In *IEEE INFOCOM 2017-IEEE Conference on Computer Communications*, pp. 1–9.
 IEEE, 2017.

629

630 Mohammad Shoeybi, Mostafa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
 631 zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

632

633 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
 634 Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
 In *Proceedings of the 2013 conference on empirical methods in natural language processing*, pp.
 635 1631–1642, 2013.

636

637 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in
 638 neural information processing systems*, 30, 2017.

639

640 Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019.

641

642 Dongchao Yang, Songxiang Liu, Rongjie Huang, Jinchuan Tian, Chao Weng, and Yuexian Zou.
 643 Hifi-codec: Group-residual vector quantization for high fidelity audio codec. 2023.

644

645 Shengyuan Ye, Jiangsu Du, Liekang Zeng, Wenzhong Ou, Xiaowen Chu, Yutong Lu, and Xu Chen.
 646 Galaxy: A resource-efficient collaborative edge ai system for in-situ transformer inference. In
 647 *IEEE INFOCOM 2024-IEEE Conference on Computer Communications*, pp. 1001–1010. IEEE,
 2024.

648 Paul Zador. Asymptotic quantization error of continuous signals and the quantization dimension.
649 *IEEE Transactions on Information Theory*, 28(2):139–149, 1982.
650

651 Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert. In *2019*
652 *Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS Edition*
653 *(EMC2-NIPS)*, pp. 36–39. IEEE, 2019.

654 Liekang Zeng, Xu Chen, Zhi Zhou, Lei Yang, and Junshan Zhang. Coedge: Cooperative dnn inference
655 with adaptive workload partitioning over heterogeneous edge devices. *IEEE/ACM Transactions on*
656 *Networking*, 29(2):595–608, 2020.

657 Shuai Zhang, Sheng Zhang, Zhuzhong Qian, Jie Wu, Yibo Jin, and Sanglu Lu. Deepslicing:
658 Collaborative and adaptive cnn inference with low latency. *IEEE Transactions on Parallel and*
659 *Distributed Systems*, 32(9):2175–2187, 2021.

660 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
661 classification. *Advances in neural information processing systems*, 28, 2015.

663 Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer. Deepthings: Distributed
664 adaptive deep learning inference on resource-constrained iot edge clusters. *IEEE Transactions on*
665 *Computer-Aided Design of Integrated Circuits and Systems*, 37(11):2348–2359, 2018.

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A ADDITIONAL RELATED WORK**

704 **Deploying Transformers on Edge Devices.** Substantial efforts have been devoted to enabling
 705 Transformer models on edge devices through model compression and architecture simplification. For
 706 example, Michel et al. (Michel et al., 2019) proposed pruning attention heads to reduce computational
 707 cost, while Q8BERT (Zafrir et al., 2019) quantizes BERT weights from 32-bit to 8-bit to accommodate
 708 memory-limited environments. Other approaches, such as parameter factorization in ALBERT (Lan
 709 et al., 2020) and knowledge distillation methods (Lin et al., 2022), aim to construct lightweight
 710 variants of Transformer architectures suitable for resource-constrained hardware. These techniques
 711 focus on discovering a compact model that maintains acceptable task performance under tight latency
 712 or memory budgets.

713 In contrast, ASTRA targets distributed inference while preserving the original model architecture. The
 714 compressed transformer models from the above techniques can also leverage ASTRA’s distributed
 715 inference system for further acceleration, as long as they retain the core transformer architecture.
 716 This makes ASTRA an orthogonal solution that offers further performance improvements without
 717 requiring re-design or re-training for new hardware targets.

718 **Distributed Inference Systems.** Distributed inference has emerged as a practical strategy to accelerate
 719 computation. Early works such as DeepThings (Zhao et al., 2018) exploited the partial receptive
 720 fields of convolutional neural networks (CNNs) to parallelize inference by splitting intermediate
 721 feature maps across multiple devices. The follow-up works, including CoEdge (Zeng et al., 2020),
 722 DeepSlicing (Zhang et al., 2021), and EdgeFlow (Hu & Li, 2022), further incorporated network
 723 heterogeneity and device resource profiling to optimize system throughput. However, these methods
 724 are designed specifically for CNN-based models and are not applicable to the self-attention structure
 725 in Transformers.

726 Recent work has begun to explore multi-device inference for Transformers by adapting techniques
 727 from distributed training. PipeEdge (Hu et al., 2022) utilizes pipeline parallelism to improve through-
 728 put, but its efficiency relies on large batch sizes and does not benefit per-request latency. Other
 729 systems, such as DeepSpeed (Aminabadi et al., 2022) and Megatron-LM (Shoeybi et al., 2019) apply
 730 tensor parallelism by splitting weight matrices across devices, which leads to frequent and expensive
 731 inter-device communication. To reduce this cost, Voltage (Hu & Li, 2024) introduces sequence
 732 parallelism by distributing input tokens across devices and minimizing the number of cross-device
 733 interactions per Transformer block. Galaxy (Ye et al., 2024) further combines tensor and sequence
 734 parallelism, while DeTransformer (Du et al., 2024) even modifies the Transformer block structure to
 735 enable more efficient distribution.

736 Despite their contributions, these methods still rely on high-bandwidth connections to achieve
 737 meaningful speedups. In contrast, ASTRA significantly reduces the required bandwidth to only 10
 738 Mbps, while still achieving $2.64 \times$ end-to-end latency speedup, making it far more practical for
 739 real-world deployments in constrained edge environments.

740 **B PROOF FOR NOISE-AUGMENTED VECTOR QUANTIZATION**

743 **Theorem 1** (Noise-Augmented Embeddings Improve Distributional Fidelity). *Let $\hat{\mathbf{X}}$ denote the
 744 quantized embedding of \mathbf{X} , and let $\tilde{\mathbf{X}} = \hat{\mathbf{X}} + \lambda \xi$ with $\xi \sim \mathcal{N}(\mu, \Sigma)$ sampled from the quantization
 745 residuals. Then the 2-Wasserstein distance between the original embedding distribution $P_{\mathbf{X}}$ and the
 746 perturbed distribution $P_{\tilde{\mathbf{X}}}$ satisfies:*

$$W_2^2(P_{\mathbf{X}}, P_{\tilde{\mathbf{X}}}) < W_2^2(P_{\mathbf{X}}, P_{\hat{\mathbf{X}}}), \quad (5)$$

747 *i.e., the noise-augmented distribution is statistically closer to the true distribution than the raw
 748 quantized embedding.*

751 *Proof of Theorem B.* Let

$$\mathbf{m}_{\mathbf{X}} = \mathbb{E}[\mathbf{X}], \quad \mathbf{m}_{\hat{\mathbf{X}}} = \mathbb{E}[\hat{\mathbf{X}}], \quad \mathbf{m}_{\tilde{\mathbf{X}}} = \mathbb{E}[\tilde{\mathbf{X}}], \quad (6)$$

752 and let $C_{\mathbf{X}}$, $C_{\hat{\mathbf{X}}}$, $C_{\tilde{\mathbf{X}}}$ denote the corresponding covariance matrices. By definition of the quantization
 753 error $\varepsilon = \mathbf{X} - \hat{\mathbf{X}}$ we have $\mathbf{m}_{\mathbf{X}} = \mathbf{m}_{\hat{\mathbf{X}}} + \mu$ and $C_{\mathbf{X}} = C_{\hat{\mathbf{X}}} + \Sigma$. As the injected noise $\xi \sim \mathcal{N}(\mu, \Sigma)$,

756 we know that

$$757 \quad \mathbf{m}_{\tilde{X}} = \mathbf{m}_{\hat{X}} + \lambda\mu, \quad C_{\tilde{X}} = C_{\hat{X}} + \lambda^2\Sigma. \quad (7)$$

759 The Wasserstein distance between two Gaussian distributions can be computed by

$$760 \quad W_2^2(P_1, P_2) = \|m_1 - m_2\|_2^2 \\ 761 \quad + \text{trace} \left(C_1 + C_2 - 2 \left(C_2^{\frac{1}{2}} C_1 C_2^{\frac{1}{2}} \right)^{\frac{1}{2}} \right) \\ 763 \quad = \|m_1 - m_2\|_2^2 + d_B^2(C_1, C_2), \\ 764$$

765 where m and C are mean and covariance of the distributions, d_B is the Bures metric.

766 To prove $W_2^2(P_X, P_{\tilde{X}}) < W_2^2(P_X, P_{\hat{X}})$, we will first show the mean term of \tilde{X} is smaller, then the
767 Bures term is smaller.

769 **Step 1 (mean term is smaller).** Using the mean part of the Gaussian W_2 formula, we have

$$770 \quad \|\mathbf{m}_X - \mathbf{m}_{\tilde{X}}\|_2^2 - \|\mathbf{m}_X - \mathbf{m}_{\hat{X}}\|_2^2 \\ 771 \quad = \|\mu\|_2^2 - (1 - \lambda)^2 \|\mu\|_2^2 \\ 773 \quad = (2\lambda - \lambda^2) \|\mu\|_2^2 > 0,$$

774 because $0 < \lambda \leq 1$. Then we prove that

$$775 \quad \|\mathbf{m}_X - \mathbf{m}_{\tilde{X}}\|_2^2 < \|\mathbf{m}_X - \mathbf{m}_{\hat{X}}\|_2^2 \quad (10)$$

778 **Step 2 (Bures term is smaller).**

779 For analytical clarity, we assume that the quantization errors ε are independent and identically
780 distributed across dimensions, i.e. $\varepsilon_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$. Under this assumption, the global error
781 covariance becomes $\Sigma = \sigma^2 I$, which commutes with $C_{\hat{X}}$, namely $C_{\hat{X}}\Sigma = \Sigma C_{\hat{X}}$. Consequently, $C_{\hat{X}}$
782 and Σ can be diagonalized by the same orthonormal eigenbasis U . Then we have

$$783 \quad U^\top C_{\hat{X}} U = \text{diag}(\sigma_{\hat{X},i}^2), \\ 784 \quad U^\top \Sigma U = \text{diag}(\sigma_i^2), \\ 786 \quad \sigma_{\hat{X},i}, \sigma_i \geq 0,$$

787 then we obtain

$$788 \quad U^\top C_X U = \text{diag}(\sigma_{X,i}^2), \quad \sigma_{X,i}^2 = \sigma_{\hat{X},i}^2 + \sigma_i^2, \\ 789 \quad U^\top C_{\tilde{X}} U = \text{diag}(\sigma_{\tilde{X},i}^2), \quad \sigma_{\tilde{X},i}^2 = \sigma_{\hat{X},i}^2 + \lambda^2 \sigma_i^2. \quad (12)$$

792 For diagonal matrices the Bures term in the W_2 expression reduces to a sum of squared differences
793 of *standard deviations*:

$$794 \quad d_B^2(C_A, C_B) = \sum_i (\sigma_{A,i} - \sigma_{B,i})^2. \quad (13)$$

795 Then we have

$$796 \quad d_B^2(C_X, C_{\tilde{X}}) - d_B^2(C_X, C_{\hat{X}}) \\ 797 \quad = \sum_i \left((\sigma_{X,i} - \sigma_{\tilde{X},i})^2 - (\sigma_{X,i} - \sigma_{\hat{X},i})^2 \right) \\ 799 \quad = \sum_i (\sigma_{\tilde{X},i} - \sigma_{\hat{X},i}) \left(2\sigma_{X,i} - (\sigma_{\tilde{X},i} + \sigma_{\hat{X},i}) \right).$$

802 Because $\sigma_{\hat{X},i} \leq \sigma_{\tilde{X},i} \leq \sigma_{X,i}$, we have $\sigma_{\tilde{X},i} - \sigma_{\hat{X},i} > 0$ and $2\sigma_{X,i} - (\sigma_{\tilde{X},i} + \sigma_{\hat{X},i}) > 0$, therefore
803 Equation 14 is positive. Thus, we prove that

$$804 \quad d_B^2(C_X, C_{\tilde{X}}) < d_B^2(C_X, C_{\hat{X}}). \quad (15)$$

806 **Summary.** Since both the mean part and the Bures part are strictly smaller for $(\mathbf{m}_{\tilde{X}}, C_{\tilde{X}})$ than for
807 $(\mathbf{m}_{\hat{X}}, C_{\hat{X}})$, hence we have completed the proof for

$$808 \quad W_2^2(P_X, P_{\tilde{X}}) < W_2^2(P_X, P_{\hat{X}}), \quad (16)$$

809 which completes the proof. \square

810 C PROOF FOR DISTRIBUTED CLASS TOKENS
811

812 **Theorem 2** (Variance Reduction via Distributed Class Tokens). *Let \mathbf{h} denote the class token embedding of a full-precision global attention computation. Let $\tilde{\mathbf{h}}_{\text{single}}$ be the output of a single-device class token using Mixed-Precision Attention, and let $\tilde{\mathbf{h}}_{\text{dist}}$ be the average of N distributed class token outputs. Then:*

$$813 \mathbb{E}[\|\tilde{\mathbf{h}}_{\text{dist}} - \mathbf{h}\|_2^2] = \frac{1}{N} \mathbb{E}[\|\tilde{\mathbf{h}}_{\text{single}} - \mathbf{h}\|_2^2], \quad (17)$$

814 *i.e., distributed class tokens reduce the expected attention output error by a factor of $1/N$.*

815 *Proof of Theorem 2.*

816 **Setup.** Tokens are evenly partitioned: $\mathbf{X} = \bigcup_{i=1}^N \mathbf{X}^{(i)}$, $|\mathbf{X}^{(i)}| = T/N$. Each device stores local keys
817 \mathbf{k}_j and values \mathbf{v}_j in full precision for $j \in \mathbf{X}^{(i)}$, and transmits quantized versions $\tilde{\mathbf{k}}_j = \mathbf{k}_j + \delta\mathbf{k}_j$ and
818 $\tilde{\mathbf{v}}_j = \mathbf{v}_j + \delta\mathbf{v}_j$ to other devices, where $\delta\mathbf{k}_j$ and $\delta\mathbf{v}_j$ are the error introduced by quantization. For
819 every non-local token, we assume

$$\begin{aligned} 820 \mathbb{E}[\delta\mathbf{k}_j] &= \mathbf{0}, \\ 821 \mathbb{E}[\delta\mathbf{v}_j] &= \mathbf{0}, \\ 822 \text{Cov}(\delta\mathbf{k}_j) &= \sigma_k^2 \mathbf{I}, \\ 823 \text{Cov}(\delta\mathbf{v}_j) &= \sigma_v^2 \mathbf{I}, \end{aligned} \quad (18)$$

824 and errors are mutually independent.

825 The variances σ_k^2, σ_v^2 are bounded according to the classical high-rate VQ theory (Zador, 1982; Gersho
826 & Gray, 1991). It shows that, under mild assumptions on the feature distribution, the mean-squared
827 quantization error of an optimal K -level VQ in dimension d satisfies

$$828 \mathbb{E}\|\mathbf{X} - \hat{\mathbf{X}}\|_2^2 \leq C_d \cdot \sigma_{\mathbf{X}}^2 \cdot K^{-2/d}, \quad (19)$$

829 where $\hat{\mathbf{X}}$ denotes the quantized embedding of \mathbf{X} , and C_d is a constant depending on the dimension d .
830 This implies a per-dimension variance bound

$$831 \sigma_k^2, \sigma_v^2 = \frac{1}{d} \mathbb{E}\|\mathbf{X} - \hat{\mathbf{X}}\|_2^2 \leq \tilde{C} \cdot \sigma_{\mathbf{X}}^2 \cdot K^{-2/d}. \quad (20)$$

832 **Full-Precision Attention.** For a query \mathbf{q} , the attention logits are $a_j = \mathbf{q}^\top \mathbf{k}_j / \sqrt{d}$, attention weights
833 $\alpha_j = \text{softmax}(a_j)$, and the output $\mathbf{h} = \sum_{j=1}^T \alpha_j \mathbf{v}_j$.

834 **Mixed-Precision Attention via First-Order Taylor Expansion.** For a non-local token, the logit is
835 perturbed by the key noise,

$$\begin{aligned} 836 \tilde{a}_j &= \frac{\mathbf{q}^\top (\mathbf{k}_j + \delta\mathbf{k}_j)}{\sqrt{d}} = a_j + \underbrace{\frac{\mathbf{q}^\top \delta\mathbf{k}_j}{\sqrt{d}}}_{=: e_j^{(k)}}. \\ 837 \end{aligned} \quad (21)$$

838 Because $e_j^{(k)}$ is small, we could linearise the softmax function by first-order Taylor expansion.
839 Specifically, the softmax function is $\alpha_j = \exp(a_j) / \sum_j \exp(a_j)$, and its Jacobian is $\partial \alpha_j / \partial a_k =$
840 $\alpha_j (\delta_{jk} - \alpha_k)$, where δ_{jk} is the Kronecker delta. Therefore, we have the perturbed attention weights,

$$\begin{aligned} 841 \tilde{\alpha}_j &\approx \alpha_j + \sum_k \alpha_j (\delta_{jk} - \alpha_k) e_k^{(k)} \\ 842 &= \alpha_j + \alpha_j \left(e_j^{(k)} - \sum_k \alpha_k e_k^{(k)} \right) \\ 843 &=: \alpha_j + \delta\alpha_j. \end{aligned} \quad (22)$$

844 The terms $\delta\alpha_j$ remain zero-mean and mutually independent.

845 Then the mixed-precision output is

$$846 \tilde{\mathbf{h}} = \sum_j \tilde{\alpha}_j (\mathbf{v}_j + \delta\mathbf{v}_j), \quad (23)$$

864 where $\delta \mathbf{v}_j = \mathbf{0}$ if j is the local token index.
 865

866 **Attention Output Error.** Subtracting \mathbf{h} and discarding higher-order noise products, the first-order
 867 output error is

$$\begin{aligned}
 \delta &:= \tilde{\mathbf{h}} - \mathbf{h} \\
 &= \sum_{\text{non-local } j} (\alpha_j \delta \mathbf{v}_j + \delta \alpha_j \mathbf{v}_j) \\
 &= \underbrace{\sum_j \alpha_j \delta \mathbf{v}_j}_{\text{V-error: } \mathbf{e}^{(v)}} + \underbrace{\sum_j \alpha_j (e_j^{(k)} - \sum_k \alpha_k e_k^{(k)}) \mathbf{v}_j}_{\text{K-propagated error: } \mathbf{e}^{(k)}}.
 \end{aligned} \tag{24}$$

875 Both error components are zero-mean random vectors and each coordinate has variance bounded by
 876 $C_1 \sigma_v^2 + C_2 \sigma_k^2$, where C_1 and C_2 are deterministic constants.

877 Specifically, for the first value-error component $\mathbf{e}^{(v)} = \sum_{j \in \mathcal{N}} \alpha_j \delta \mathbf{v}_j$, where \mathcal{N} is the set of
 878 $m = \frac{N-1}{N} T$ non-local tokens per device and each $\delta \mathbf{v}_j$ is an independent, zero-mean random
 879 vector with $\text{Cov}(\delta \mathbf{v}_j) = \sigma_v^2 \mathbf{I}$. Then for an arbitrary coordinate $c \in \{1, \dots, d\}$, since the noises are
 880 independent, we have

$$\begin{aligned}
 \text{Var}([\mathbf{e}^{(v)}]_c) &= \text{Var}\left(\sum_{j \in \mathcal{N}} \alpha_j [\delta \mathbf{v}_j]_c\right) \\
 &= \sum_{j \in \mathcal{N}} \alpha_j^2 \text{Var}([\delta \mathbf{v}_j]_c) \\
 &= \sigma_v^2 \sum_{j \in \mathcal{N}} \alpha_j^2.
 \end{aligned} \tag{25}$$

881 Since the attention weights $0 \leq \alpha_j \leq 1$ and there are exactly m non-local tokens, we have

$$\begin{aligned}
 \text{Var}([\mathbf{e}^{(v)}]_c) &\leq \sigma_v^2 m \max_{j \in \mathcal{N}} \alpha_j^2 = C_1 \sigma_v^2, \\
 \text{with } C_1 &:= m \max_{j \in \mathcal{N}} \alpha_j^2.
 \end{aligned} \tag{26}$$

894 The constant C_1 is deterministic since it depends only on the current softmax weights. And every
 895 coordinate of the value-error term is bounded in variance by $C_1 \sigma_v^2$.

896 For the second key-propagated term, recall the first-order perturbation of each softmax weight

$$\delta \alpha_j = \alpha_j \left(e_j^{(k)} - \sum_k \alpha_k e_k^{(k)} \right), \quad e_j^{(k)} := \frac{\mathbf{q}^\top \delta \mathbf{k}_j}{\sqrt{d}}, \tag{27}$$

900 where the key-noise scalars $e_k^{(k)}$ are i.i.d., zero-mean with variance σ_k^2 . Then for one output coordinate
 901 c , we need the variance of $[\mathbf{e}^{(k)}]_c = \sum_{j \in \mathcal{N}} \delta \alpha_j v_{j,c}$.

903 First, since $\delta \alpha_j$ is a linear combination of independent noises,

$$\text{Var}[\delta \alpha_j] = \alpha_j^2 \sigma_k^2 \left(1 + \sum_k \alpha_k^2 \right) \leq 2 \alpha_j^2 \sigma_k^2, \tag{28}$$

907 because $\sum_k \alpha_k^2 \leq 1$.

908 Then since each addend $\delta \alpha_j v_{j,c}$ is zero-mean, we have

$$\begin{aligned}
 \text{Var}([\mathbf{e}^{(k)}]_c) &= \sum_{j \in \mathcal{N}} v_{j,c}^2 \text{Var}[\delta \alpha_j] \\
 &\leq 2 \sigma_k^2 \left(\max_{j \in \mathcal{N}} v_{j,c}^2 \right) \sum_{j \in \mathcal{N}} \alpha_j^2.
 \end{aligned} \tag{29}$$

914 With $\sum_{j \in \mathcal{N}} \alpha_j^2 \leq m \max_j \alpha_j^2$,

$$\begin{aligned}
 \text{Var}([\mathbf{e}^{(k)}]_c) &\leq 2 \sigma_k^2 m \left(\max_{j \in \mathcal{N}} v_{j,c}^2 \right) \left(\max_{j \in \mathcal{N}} \alpha_j^2 \right) \\
 &= C_2 \sigma_k^2,
 \end{aligned} \tag{30}$$

918 where

919
$$C_2 := 2m \max_{j \in \mathcal{N}} (\alpha_j^2 v_{j,c}^2). \quad (31)$$

920

921 The constant C_2 is deterministic since it depends only on the current softmax weights and the fixed
922 value vectors, not on the random noise. And every coordinate of the key-propagated error is bounded
923 in variance by $C_2 \sigma_k^2$.924 In conclusion, we prove that the mixed-precision attention output error δ decomposes into a value-
925 error term and a key-propagated term, and that each coordinate satisfies

926
$$\text{Var}([\delta]_c) \leq C_1 \sigma_v^2 + C_2 \sigma_k^2, \quad (32)$$

927

928 where C_1, C_2 are deterministic constants depending only on model parameters. Since σ_k^2, σ_v^2 are
929 bounded in Equation 20, the attention computation error is properly bounded and decreases with
930 larger codebook size K .931 **Single Class Token Attention Output Error.** Its attention output error vector has $m = \frac{N-1}{N} T$
932 independent coordinates (i.e., the number of non-local tokens), each with per-coordinate variance
933 $\sigma^2 := \text{Var}([\mathbf{e}^{(v)}]_c) + \text{Var}([\mathbf{e}^{(k)}]_c)$. Hence

934
$$\mathbb{E}[\|\delta_{\text{single}}\|_2^2] = m d \sigma^2. \quad (33)$$

935

937 **Distributed Class Tokens Attention Output Error.** Let $\delta^{(i)}$ be the error vector for the i -th
938 device. Vectors $\delta^{(i)}$ are independent and identically distributed. The averaged class token output is
939 $\bar{\delta} = \frac{1}{N} \sum_{i=1}^N \delta^{(i)}$, then we have

940
$$\mathbb{E}[\|\bar{\delta}\|_2^2] = \frac{1}{N^2} \sum_{i=1}^N \mathbb{E}[\|\delta^{(i)}\|_2^2] = \frac{1}{N} m d \sigma^2. \quad (34)$$

941

944 **Attention Error Comparison.** According to Equations 33 and 34, using distributed class tokens
945 yields a factor of $1/N$ in the expected attention output error compared to the single class token,
946 indicating a more accurate attention computation under the mixed-precision attention mechanism. \square
947948

D RESULTS ON ACCURACY CONT.

949950 **Experiments with Different Random Seeds.** To evaluate the robustness of ASTRA to randomness,
951 we repeat each experiment ten times using different random seeds (0–9) on ImageNet-1K. As shown
952 in Table 8, ASTRA consistently achieves stable performance across all group configurations, with
953 standard deviations below 0.0012. These results demonstrate that ASTRA produces reproducible
954 outcomes and is not sensitive to randomness in training.955

Table 8: Accuracy of ASTRA on ImageNet-1K under ten runs with different random seeds (0–9).
956 Mean and standard deviation (Std.) are reported for each group configuration. The original ViT-Base
957 achieves 80.32% accuracy for reference.

958

	Seeds 0-9	Mean	Std.
#Groups = 1	0.7681	0.0012	
#Groups = 16	0.7855	0.0008	
#Groups = 32	0.8002	0.0008	

959 **Accuracy in Heterogeneous Settings.** In the main paper, we assume the computational workload
960 is evenly distributed across homogeneous devices. To better evaluate the scalability of ASTRA in
961 practical scenarios, we further explore its performance when deployed on heterogeneous devices.
962 This section focuses on how heterogeneous deployment affects accuracy. Latency measurements are
963 conducted on homogeneous devices to ensure consistency and are reported in the main paper and
964 Appendix E.965 In heterogeneous settings, stronger devices are assigned more tokens to balance the overall computa-
966 tion workload, while weaker devices receive fewer. Let N be the total number of tokens and K the
967

number of devices. Denote n_k as the number of tokens on device k , such that $\sum_{k=1}^K n_k = N$. We define the *Full Precision Attention Rate (FPAR)* as:

$$\text{FPAR} = \sum_{k=1}^K \frac{n_k^2}{N^2}, \quad (35)$$

which measures the proportion of full-precision attention computation in the Mixed-Precision Attention mechanism. A higher FPAR indicates that more attention computation uses full-precision keys and values, thus better approximating standard attention.

To understand how FPAR captures token distribution imbalance, we examine its connection to the variance of n_k , which directly reflects distribution heterogeneity. Let $\mu = N/K$ be the average token count per device. Then:

$$\begin{aligned} \text{Var}(n_k) &= \frac{1}{K} \sum_{k=1}^K (n_k - \mu)^2 \\ &= \frac{1}{K} \sum_{k=1}^K n_k^2 - \mu^2 \\ &= \frac{N^2}{K} \cdot (\text{FPAR} - \frac{1}{K}). \end{aligned} \quad (36)$$

This shows that FPAR is a monotonic function of the variance of token allocation. In other words, as the load distribution becomes more imbalanced (i.e., more heterogeneous), FPAR increases.

To study how FPAR relates to model performance, we train ASTRA on ImageNet using #Groups = 32 across 4 devices. During training, tokens are randomly distributed across devices in each batch to simulate workload balancing on heterogeneous hardware. During evaluation, we continue to randomly assign tokens to devices and record both the prediction accuracy and the corresponding FPAR for each batch.

Figure 7 shows the distribution of FPAR across all evaluation batches. We divide the evaluation data into five bins based on FPAR, each containing 20% of the samples. Table 9 reports the mean accuracy for each bin. While the overall accuracy under heterogeneous deployment is slightly lower than in the homogeneous case—likely due to the added randomness in token assignment and the increased difficulty in learning a consistent pattern—we observe a clear positive correlation between FPAR and accuracy. This suggests that higher full-precision attention contributes to better model performance, demonstrating that our method remains effective under heterogeneous device settings.

Table 9: Accuracy of ASTRA under heterogeneous token distributions.

	FPAR Range	Mean Accuracy (%)
	[0.2501, 0.2932]	78.89
	[0.2932, 0.3196]	78.96
	[0.3196, 0.3516]	79.39
	[0.3516, 0.4020]	79.62
	[0.4020, 0.7461]	79.87

Task Performance of Llama3-8B on Downstream Tasks. We conducted additional experiments on four downstream sequence classification datasets, including CoLA Warstadt et al. (2019), SST2 Socher et al. (2013), AG News Zhang et al. (2015), and QQP Sharma et al. (2019). Table 10 reports the accuracy of the original Llama3-8B and its ASTRA versions. The results demonstrate that our small increases in pre-training perplexity in Table 6 lead to minor differences on downstream tasks, validating ASTRA’s capability in maintaining task performance.

E RESULTS ON INFERENCE LATENCY CONT.

In the main paper, we evaluate the inference latency of ASTRA under three key factors that impact multi-device performance: (1) **Inter-device bandwidth**, which affects the cost of communication

Figure 7: FPAR histogram across evaluation batches.

Table 10: Task performance of ASTRA on downstream tasks with Llama3-8B.

Dataset	CoLA	SST2	AG News	QQP
Llama3-8B	0.7615	0.8426	0.8374	0.7970
ASTRA, G=1	0.7428	0.7545	0.7852	0.7703
ASTRA, G=16	0.7451	0.8179	0.8292	0.7674
ASTRA, G=32	0.7539	0.8314	0.8325	0.7803

across devices; (2) **Number of devices**, which determines the degree of parallelism; and (3) **Input token length**, which scales both computation and communication demands.

While the main text focuses on a representative configuration for each factor, this section presents additional results across a broader range of settings to further validate our findings. We include more granular evaluations varying each of the three dimensions to provide a comprehensive view of ASTRA’s latency behavior under diverse deployment scenarios.

Varying Bandwidth. To assess the scalability of ASTRA under different communication constraints, we evaluate its end-to-end latency speedup across a wide range of inter-device bandwidths from 10 to 500 Mbps. Figure 8 presents the results across varying numbers of devices i.e., 2, 4, 6, 8) with a fixed input token length of 1024, while Figure 9 shows the results under varying input lengths (i.e., 256, 512, 1024, 2048, 4096) with 4 devices.

Across all configurations, ASTRA consistently outperforms existing multi-device baselines, with its advantage becoming increasingly significant as bandwidth decreases. For instance, in the 4-device and 1024-token setting (Figure 8(b)), ASTRA achieves a speedup of 2.64 \times at 10 Mbps, while the strongest baseline (BP-SP, $N_b = 1$) only reaches 0.17 \times . This trend also holds for different token lengths. As shown in Figure 9, the relative speedup of ASTRA grows with increasing sequence length. These results confirm that ASTRA maintains high efficiency even under constrained bandwidth, thanks to its aggressive communication reduction strategy. In addition, grouped quantization (e.g., $G = 16, 32$) offers a tunable balance between compression and accuracy, enabling consistent latency benefits across a wide range of system settings.

1080
 1081 **Varying Device Counts.** We further examine how the number of participating devices affects end-
 1082 to-end latency speedup under varying bandwidth conditions. Figure 10 presents results for device
 1083 counts ranging from 2 to 8 across bandwidths from 10 to 500 Mbps, with the input length fixed at
 1084 1024 tokens.

1085 Across all bandwidth settings, ASTRA exhibits steadily increasing speedup as more devices are
 1086 involved, demonstrating its ability to effectively utilize parallel computation. Thanks to its
 1087 communication-efficient design, where non-local token embeddings are transmitted in compact
 1088 vector-quantized form, ASTRA consistently delivers strong gains even under constrained bandwidth,
 1089 highlighting its scalability across a range of deployment scenarios.

1090 **Varying Input Token Length.** We evaluate how input token length affects latency speedup under
 1091 different bandwidth conditions. Figure 11 shows results for input lengths from 256 to 4096 tokens
 1092 across bandwidths from 10 to 500 Mbps using 4 devices. Across all bandwidth settings, ASTRA
 1093 consistently achieves higher speedup than baseline methods and our improvements enhance as the
 1094 input length increases. This trend highlights the communication bottleneck in existing methods,
 1095 which becomes more significant with longer sequences, while ASTRA effectively mitigates this
 1096 overhead through aggressive compression.

F ABLATION STUDY

1097 **Varying Noise Magnitude λ .** The noise magnitude λ in Noise-Augmented Vector Quantization
 1098 controls the scale of noise added to the quantized embeddings during training. Table 11 shows
 1099 the effect of varying $\lambda \in \{0.0, 0.1, 0.3, 1.0\}$ on both training and validation accuracy. All other
 1100 hyperparameters are fixed (e.g., 16 groups, commitment loss weight $\beta = 0.0005$). As λ increases,
 1101 the gap between training and validation accuracy consistently decreases, indicating that injecting
 1102 noise improves generalizability by preventing the model from overfitting to discrete embedding
 1103 patterns. Notably, when $\lambda = 1.0$, the validation accuracy improves by 0.86% compared to $\lambda = 0$,
 1104 demonstrating the effectiveness of our proposed strategy over naive vector quantization.

1105 Table 11: The impact of noise magnitude λ on classification accuracy. Gap = Train - Val.

λ	Train	Val	Gap
0.0	99.98	89.91	10.07
0.1	99.97	90.02	9.95
0.3	99.98	90.13	9.85
1.0	99.98	90.77	9.21

1115 **Distributed Class Token VS Single Class Token.** Table 12 reports the classification accuracy of
 1116 ASTRA using either a single class token or distributed class tokens across devices. The distributed
 1117 strategy consistently outperforms the single-token baseline, with accuracy gains ranging from 0.37%
 1118 to 7.13% across different group configurations and commitment loss weights. This demonstrates that
 1119 allowing class tokens to attend to all full-precision context tokens in a distributed manner significantly
 1120 enhances their ability to aggregate global information.

1121 Table 12: Distributed Class Token VS Single Class Token under different group configurations and
 1122 commitment loss weights.

β	#Groups=1			#Groups=16			#Groups=32		
	Single	Dist.	Δ Acc.	Single	Dist.	Δ Acc.	Single	Dist.	Δ Acc.
0.0001	82.39	88.95	6.56	89.11	90.37	1.26	90.39	91.60	1.21
0.0002	81.48	88.60	7.12	89.02	90.38	1.36	90.84	91.21	0.37
0.0005	81.82	88.95	7.13	88.93	90.77	1.84	90.79	91.64	0.85

1129 **Varying the Commitment Loss Weights β .** Recall from Section 3.2 that we include a commitment
 1130 loss term to encourage the original token embeddings to remain close to their assigned codebook
 1131 entries following VQVAE (Van Den Oord et al., 2017). While the original VQVAE typically sets the
 1132 commitment loss weight to 0.25, we adopt much smaller values in our setting, as we apply vector
 1133 quantization separately at each Transformer block. Table 12 in the main paper reports the results
 of ASTRA under different commitment weights $\beta \in \{0.0001, 0.0002, 0.0005\}$. Here we further

1134 compare with two control variants: one without commitment loss (i.e., $\beta = 0$), and one using an
 1135 excessively large weight (i.e., $\beta = 0.25$). As shown in Table 13, either omitting or misconfiguring the
 1136 commitment term slightly degrades accuracy, with performance drops ranging from 0.1% to 1.67%,
 1137 confirming the importance of tuning β appropriately.

1139 Table 13: The impact of commitment loss weight β .
 1140

β	#Groups		
	1	16	32
0	88.85	90.46	91.42
0.25	88.75	89.7	89.97
best	88.95	90.77	91.64

1148

G MEMORY COST ANALYSIS

1150 ASTRA introduces a small additional memory cost to store the VQ codebooks, while the vector-
 1151 quantized keys and values can reduce the memory required by the KV cache. We discuss these two
 1152 aspects separately below. VQ codebook introduces a small additional memory cost. The memory
 1153 footprint of the VQ codebooks is
 1154

$$1155 M_{\text{codebook}} = L \cdot C \cdot K \cdot d \cdot b$$

1156 where L is the number of layers, C is the number of codebooks per layer, K is the codebook size
 1157 (number of entries), d is the hidden dimension, and b is the number of bytes per value. Note that this
 1158 expression is independent of the number of VQ groups. Grouped VQ partitions the hidden dimension
 1159 into groups (i.e., G groups of dimension d/G). Since $G \cdot (d/G) = d$, the total codebook size only
 1160 scales with the full hidden dimension d , not with G . In practice, this overhead is small compared to
 1161 the original model parameters. For example, in LLaMA-3-8B, we use $L = 32$, $C = 2$, $K = 1024$,
 1162 $d = 1024$, $b = 2$ bytes (i.e., float16 precision). This gives
 1163

$$1164 M_{\text{codebook}} = 32 \times 2 \times 1024 \times 1024 \times 2 \text{ bytes} = 134,217,728 \text{ bytes} = 128 \text{ MiB.} \quad (37)$$

1165 Thus, for LLaMA-3-8B, the total VQ codebook storage is about 128 MiB, regardless of the number
 1166 of VQ groups. This corresponds to roughly 0.78KV cache memory cost is reduced by VQed keys
 1167 and values. ASTRA reduces KV cache memory by storing non-local keys and values as VQ indices
 1168 instead of full-precision tensors. For an input sequence of length N , the KV cache memory of the
 1169 original model is
 1170

$$1171 M_{\text{KV}}^{\text{orig}} = 2 \cdot N \cdot L \cdot d \cdot b, \quad (38)$$

1172 where the factor 2 accounts for keys and values, L is the number of layers, d is the hidden dimension,
 1173 and b is the number of bytes per value. With ASTRA, we assume n_d devices, G VQ groups, and an
 1174 even partition of tokens across devices. Each device keeps its local tokens in full precision, while
 1175 non-local tokens are cached as VQ indices (one index per group per token). The KV cache memory
 1176 becomes
 1177

$$1178 M_{\text{KV}}^{\text{ASTRA}} = 2 \left(\underbrace{\frac{N}{n_d} \cdot L \cdot d \cdot b}_{\text{local full-precision KV}} + \underbrace{(n_d - 1) \cdot \frac{N}{n_d} \cdot L \cdot G \cdot \frac{\log_2 K}{8}}_{\text{non-local KV stored as indices}} \right), \quad (39)$$

1180 where K is the codebook size and $\log_2 K$ is the number of bits per VQ index. For LLaMA-3-8B,
 1181 we use $N = 1024$, $L = 32$, $d = 1024$, $b = 2$ bytes, $n_d = 4$, $G = 32$, and $K = 1024$ (i.e.,
 1182 $\log_2 K = 10$), so we have
 1183

$$1184 M_{\text{KV}}^{\text{orig}} = 2 \cdot 1024 \cdot 32 \cdot 1024 \cdot 2 = 134,217,728 \text{ bytes} \approx 128 \text{ MiB,} \quad (40)$$

$$1185 M_{\text{KV}}^{\text{ASTRA}} = 2 \left(\frac{1024}{4} \cdot 32 \cdot 1024 \cdot 2 + (4-1) \cdot \frac{1024}{4} \cdot 32 \cdot 32 \cdot \frac{10}{8} \right) = 35,520,512 \text{ bytes} \approx 33.9 \text{ MiB.} \quad (41)$$

1187 Thus, in this configuration, ASTRA uses only about 26.5% of the original KV cache memory.

1188 H IMPACT STATEMENT AND LIMITATION

1189
1190 **Potential Societal Impact.** Our work aims to make large Transformer models more deployable
1191 in real-world environments by enabling efficient multi-device inference under limited bandwidth.
1192 This can expand the accessibility of powerful AI models to edge and consumer-grade devices,
1193 potentially benefiting applications in healthcare, accessibility, and low-connectivity regions. However,
1194 multi-device deployment may introduce new robustness and maintenance challenges. Unlike single-
1195 device inference, distributed inference requires reliable synchronization and communication among
1196 devices. Failures in individual devices or unstable connections can lead to degraded performance or
1197 unpredictable outputs. These issues can make such systems harder to debug, monitor, and guarantee
1198 correctness, especially in safety-critical applications.

1199 **Limitation and Future Work.** While ASTRA achieves strong performance across vision and
1200 language tasks, we observe a degradation in zero-shot generalization in the GPT experiments (see
1201 Section 4.2). We hypothesize this is due to the limited expressiveness of the discrete embedding space
1202 introduced by vector quantization. Future work may explore hybrid compression strategies that retain
1203 generalization ability while still reducing communication costs. Additionally, our grouped vector
1204 quantization design requires maintaining a separate codebook for each group, which increases the
1205 overall storage footprint and may limit deployment flexibility across heterogeneous environments. As
1206 a future direction, we aim to investigate codebook sharing mechanisms or dynamically composable
1207 codebooks to reduce storage costs and enable bandwidth-aware adaptation without retraining.

1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 8: Speedup comparison under different bandwidth across different numbers of devices (w/ 1024 tokens).

Figure 9: Speedup comparison under different bandwidth across different input token length (w/ 4 devices).

Figure 10: Speedup comparison under different devices across different bandwidth (w/ 1024 tokens).

Figure 11: Speedup comparison under different input token length across different bandwidth (w/ 4 devices).