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ABSTRACT

Chain-of-thought (CoT) prompting has become a widely used strategy for work-
ing with large language and multimodal models. While CoT has been shown to
improve performance across many tasks, determining the settings in which it is ef-
fective remains an ongoing effort. In particular, it is still an open question in what
settings CoT systematically reduces model performance. In this paper, we seek to
identify the characteristics of tasks where CoT reduces performance by drawing
inspiration from cognitive psychology. We consider six tasks from the psycholog-
ical literature where verbal thinking or deliberation hurts performance in humans.
In three of these cases CoT significantly reduces performance: implicit statistical
learning, visual recognition, and classifying with patterns containing exceptions.
In extensive experiments across all three settings, we find that a diverse collection
of state-of-the-art models exhibit significant drop-offs in performance (e.g., up
to 36.3% absolute accuracy for OpenAI o1-preview compared to GPT-4o) when
using inference-time reasoning compared to zero-shot counterparts. In the other
three cases CoT has a neutral or positive effect. We suspect this is due to the
constraints governing human cognition differing from those of language models
in these settings. Overall, our results show that while there is not an exact par-
allel between the cognitive processes of models and humans, considering cases
where thinking has negative consequences for humans can help us identify set-
tings where it negatively impacts models. By connecting the literature on human
verbal thinking and deliberation with evaluations of CoT, we offer a perspective
that can be used in understanding the impact of inference-time reasoning.

1 INTRODUCTION

Chain-of-thought (Wei et al., 2022; Nye et al., 2021) is a widely used prompting technique for large
language and multimodal models (LLMs and LMMs), instructing models to “think step-by-step” or
providing other structure that should be incorporated into their response. Large meta-studies have
shown that this technique improves the performance of models on many tasks, particularly those
involving symbolic reasoning (Sprague et al., 2024). More generally, inference-time reasoning has
become a default component of the newest LLMs and LMMs such as OpenAI o1-preview (Ope-
nAI, 2024a) and Claude’s web interface and mobile apps (Anthropic, 2024). However, there also
exist cases where CoT decreases performance, but there have not been any identified patterns as to
when this happens. With the increasing use of inference-time reasoning in deployed models, it is
imperative to understand and predict when CoT has a negative effect on model performance.

A key challenge for determining the limits of CoT is the sheer variety of tasks for which LLMs
and LMMs are used. While the machine learning community has dedicated great efforts towards
developing a large set of benchmarks for these models (e.g., Hendrycks et al., 2020; Suzgun et al.,
2022), applications of models extend beyond benchmarks to diverse contexts and variations of tasks
that could all potentially affect performance. Exploring this enormous space to identify settings
where CoT has negative effects is a daunting problem. This motivates the need to develop heuristics
to help us identify risky cases that could pose challenges for inference-time reasoning.
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Figure 1: Tasks evaluated for reductions in performance from CoT prompting. Implicit Statistal
Learning (ISL): Classification of strings generated by an artificial grammar. Face Recognition (FR):
Recognition of a face from a set that shares similar descriptions. Classification of Data with Ex-
ceptions (CDE): Learning labels in the presence of exceptions. Natural Language Inference (NLI):
Recognizing a logical inconsistency. Spatial intuitions (SI): Tilting water glasses. Working Memory
(WM): Aggregating features for a decision. Humans show reductions in performance when engag-
ing in verbal thinking in all tasks and LLMs and VLMs show similar effects on the first three.

To narrow down the set of tasks to explore, we draw a parallel between CoT prompting and humans
engaging in verbal thought (Lombrozo, 2024). Specifically, we explore the heuristic that tasks for
which thinking or deliberation decreases human performance may be tasks for which CoT harms
model performance. This heuristic is based on the idea that in some cases the tasks themselves,
in conjunction with traits shared between humans and models, result in thinking having a negative
effect on performance. However, models and humans have different capabilities and consequently
different constraints affecting their performance (Griffiths, 2020; Shiffrin & Mitchell, 2023; McCoy
et al., 2024). For example, LLMs have long context lengths that far exceed human memory limi-
tations. Thus, we do not expect this heuristic to predict model performance perfectly, but rather to
allow us to quickly identify at least some cases for which CoT has a significant negative impact.

To explore this approach, we draw on the psychology literature to identify tasks for which engaging
in verbal thinking hurts human performance (Schooler & Engstler-Schooler, 1990; Dijksterhuis,
2004; Van den Bos & Poletiek, 2008, inter alia). We chose six such types of tasks, selected the most
representative exemplars of each type, and adapted them to properly evaluate LLMs and LMMs (see
Figure 1). We find large performance decreases with CoT in three of these task types: those that
involve implicit statistical learning, those for which language is ill-suited to represent stimuli, and
those that involve learning labels that contain exceptions to generalizable rules. We also identify
three other types of tasks for which we do not see decreases in performance with CoT. For these, we
suggest explanations for why CoT does not decrease performance based on meaningful differences
between humans and models.

In representative tasks for each of the first three types, we find that CoT drastically decreases model
performance across models. For implicit statistical learning, we observe an absolute performance
drop of 36.3% in the performance of OpenAI o1-preview compared to GPT-4o zero-shot, as well
as consistent reductions in accuracy across eight other state-of-the-art models. For tasks involving
visual stimuli that are ill-represented by language, we find reductions in performance across all six
vision-language models tested. And when learning labels that contain exceptions to generalizable
rules, CoT increased the number of iterations it took to learn the correct labels by up to 331%.
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In contrast, for the latter three types of tasks, we observed no negative effects caused by chain-
of-thought. A basic prerequisite for seeing a negative impact from CoT is that zero-shot prompting
produces reasonable performance. Thus, a logical reasoning task where human judgments are worse
after deliberation was not a candidate for a negative effect of CoT because zero-shot prompting
resulted in models that were unable to score above chance. In this case, performance improved
using chain-of-thought, matching existing findings showing an advantage on tasks involving logic
and mathematical reasoning (Sprague et al., 2024). When models lacked access to relevant priors,
such as in a task where motor simulation was responsible for improved performance (relative to
verbal thinking) in humans, performance was roughly equal between conditions. On the other hand,
having access to longer context windows than human working memory synergized with CoT to
improve model performance in a preference task involving aggregating many features described in
text. These cases highlight the importance of understanding differences between humans and models
when translating psychological results to predictions about model performance.

The remainder of the paper is as follows: We cover related work surrounding CoT and intersections
between LLM/LMMs and psychology in Section 2. We ground our work within the psychology
literature and identify six categories of tasks for which thinking reduces human performance in
Section 3. In Section 4, we cover the implementations of each task, how we adapt them to test
models, and their corresponding results. We then discuss the limitations of our work in Section 5.

2 RELATED WORK

2.1 INFERENCE-TIME REASONING

Chain-of-thought prompting aims to improve the performance of language-based models by encour-
aging them to generate an intervening string of tokens that increases the probability of producing
the correct answer (Wei et al., 2022; Nye et al., 2021). This approach can result in significant
performance improvements in language (Zhang et al., 2022) and vision (Zhang et al., 2023) tasks,
hypothesized to be a consequence of exploiting local structure in language (Prystawski et al., 2024).
However, a recent metastudy suggests that the gains from using CoT are primarily in mathematical
and symbolic reasoning tasks, and that other areas such as text classification often see decreases
in performance when using CoT (Sprague et al., 2024), but there are no fine-grained patterns that
explain under which cases CoT performs poorly. Furthermore, reasoning capabilities on symbolic
tasks are also fragile to numerical values and question clause length (Mirzadeh et al., 2024). In
related settings such as planning, there is little benefit from CoT prompting (Kambhampati et al.,
2024), and CoT can also increase harmful outputs (Shaikh et al., 2023). Despite these results, the
default expectation seems to be that CoT improves performance. For example, a recent update to
a language-understanding benchmark cited the fact that CoT results in an improvement on the new
benchmark but decreased performance on the original as an indicator that the new benchmark is bet-
ter (Wang et al., 2024). This expectation seems to have driven the tendency towards the default use
of CoT in the latest models. More generally, models have shown exceptions to generally established
trends, including tasks where models perform worse with increased scale (McKenzie et al., 2023).

2.2 PSYCHOLOGICAL METHODS AS A TOOL FOR STUDYING LLMS AND LMMS

Since the introduction of LLMs, there has been growing interest in understanding the connections
between models and human minds (Hardy et al., 2023). Human cognition is often studied using
well-controlled tasks involving carefully curated datasets designed to test specific hypotheses. The
availability of these datasets, and the fact that they often consist mainly of text and/or images, have
led to these tasks from the psychology literature quickly becoming popular methods for evaluating
and understanding LLMs and LMMs (e.g., Binz & Schulz, 2023; Coda-Forno et al., 2024). For
example, recent studies that leverage insights or datasets from psychology have evaluated the rep-
resentational capacity of LLMs (Frank, 2023), explored how RLHF and CoT lead to different out-
comes when trying to make models both helpful and honest (Liu et al., 2024a), and compared human
and machine representations via similarity judgments (Peterson et al., 2018; Marjieh et al., 2023a;b;
2024a). Studies have also found that LLMs over-estimate human rationality (Liu et al., 2024b),
identified incoherence in LLM probability judgments (Zhu & Griffiths, 2024), identified suscep-
tibility to linguistic illusions in LLMs (Marjieh et al., 2024b), and uncovered LLMs’ underlying
social biases (Bai et al., 2024). Other works have used storytelling to understand episodic memory
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in LLMs (Cornell et al., 2023), constructed prompts using theories of metaphor (Prystawski et al.,
2022), discovered cross-linguistic variability in LLM representations (Niedermann et al., 2023), and
probed the roles of language and vision for in-context learning in VLMs (Chen et al., 2024). Many
of these studies start with a phenomenon in human cognition and then explore whether there is an
analog to it in LLMs or LMMs. Our work follows this approach by associating the well-studied
impact of deliberation on human performance to the effects of models using CoT.

3 APPROACH: WHEN THINKING REDUCES HUMAN PERFORMANCE

A large body of psychological research has investigated effects of verbal thinking (often explicit
“deliberation”) on memory, learning, judgment, and decision-making. Very often these effects are
positive. For example, people who spend more time deliberating are more likely to respond correctly
on questions that initially trigger an intuitive but incorrect response (Travers et al., 2016). However,
there are also cases in which verbal thinking can impair performance, often involving a mismatch
between the representations or types of processing induced by verbal thinking and those that best
support task performance (Schooler, 2002).

A classic setting for such effects is in the domain of implicit statistical learning. For example, in stud-
ies of artificial grammar learning participants are presented with sequences of letters or phonemes
that conform to some structure (such as a finite state grammar) and asked to recognize well-formed
sequences. Studies often find that participants can differentiate well-formed sequences from those
that are not well-formed, but cannot verbalize the basis for their judgments (Aslin & Newport, 2012;
Romberg & Saffran, 2010). Some (but not all) studies further find that receiving explicit instructions
to identify rules in verbal form impairs performance (Reber, 1976).

Another class of cases concerns a phenomenon termed verbal overshadowing. In a classic demon-
stration, instructions to verbalize a face led to impaired facial recognition relative to a condition in
which participants did not verbalize (Schooler & Engstler-Schooler, 1990). Such effects have been
found for other perceptual stimuli (Fiore & Schooler, 2002; Melcher & Schooler, 1996), but do
not extend to stimuli that are easy to verbalize (such as a spoken statement) (Schooler & Engstler-
Schooler, 1990) or to logical problem solving (Schooler et al., 1993).

As a third example, studies find that asking people to generate verbal explanations for their observa-
tions supports the discovery of broad and simple patterns (Edwards et al., 2019; Walker et al., 2017;
Williams & Lombrozo, 2010; 2013). But when the stimuli are designed such that these broad and
simple patterns contain exceptions, participants who were prompted to explain learned more slowly
and made more errors (Williams et al., 2013). These effects are thought to arise from the mismatch
between the representations or processes induced by a form of thinking (in this case, explaining)
and the representations or processes that best support task performance (Lombrozo, 2016).

The effects reviewed so far plausibly concern impairments that arise from the representational limi-
tations of language and the generalization of patterns found in language: language is not well-suited
to encoding fine-grained perceptual discriminations (as required for face recognition), and language
readily encodes some kinds of relationships (such as deductive entailment, or simple and broad pat-
terns) but is less well-suited or frequently employed for others (such as complex finite state gram-
mars, or patterns with arbitrary exceptions). Given that LLMs are likely to share limitations that
arise from language and generalization, we might expect LLMs to exhibit patterns of impairment
that mirror those found for humans on these tasks. We test these predictions in Section 4.

Prior work has documented additional impairments in humans from verbal thinking, but for some
it is less clear if they should generalize to LLMs. For example, explaining how inconsistent state-
ments could be true makes participants less likely to recognize a logical inconsistency (Khemlani
& Johnson-Laird, 2012). However, this assumes a reasonable baserate in recognizing logical incon-
sistencies – something that can be a challenge for LLMs with zero-shot prompting. Prior work has
also found that verbal thinking can be less accurate than visual or motor simulation (Schwartz &
Black 1999; see also Aronowitz & Lombrozo 2020; Lombrozo 2019), but this is a consequence of
information encoded in visual and motor representations that are likely not available to models. Fi-
nally, humans sometimes make poor choices when they deliberate over complex, multi-dimensional
problems (Dijksterhuis, 2004) – plausibly a consequence of memory limitations that are not faced
by LLMs. We anticipate that for tasks like these, CoT is less likely to reduce performance.
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4 EXPERIMENTS

Following the studies of human verbal thinking described in Section 3, we select six representative
tasks from the psychological literature and conduct experiments to test the effect of CoT on LLMs
and LMMs. For each task, we scale up the psychology study that tested humans and adapt the task
towards modern use-cases of large language or multimodal models.

4.1 IMPLICIT STATISTICAL LEARNING

Task. The first class of tasks we examine are those involving implicit statistical learning. As de-
scribed in Section 3, some psychology studies have found that data that contain statistical patterns
can be better generalized by humans when those patterns are not linguistically described. We explore
this for LLMs by replicating the task of learning artificial grammars (Reber & Lewis, 1977; Whittle-
sea & Dorken, 1993; Van den Bos & Poletiek, 2008). In the task, artificial “words” are constructed
using finite-state grammars (FSGs) and participants are tasked with identifying which words belong
to the same category (i.e., are generated by the same FSG). In total, we constructed 4400 classifica-
tion problems corresponding to 100 randomly sampled unique FSGs that were structurally similar
to those used to test humans in Fallshore & Schooler (1993). Each classification problem consisted
of 15 training examples generated from the grammar, and the model was given a new example and
asked to classify it. Models were asked to classify 44 words per FSG, where 22 words belonged to
the FSG and 22 did not. Words not belonging to the grammar were generated by replacing one letter
from an existing word in the grammar. Details on problem generation are provided in Appendix A.1.

Human failure. In the artificial grammar learning task, humans prompted to verbalize perfomed
more poorly than those who were not so prompted (Fallshore & Schooler, 1993). Thus, we predict
that CoT will reduce LLM performance on the artificial grammar learning task.

Models and prompts. We use several open- and closed-source models: OpenAI o1-preview, GPT-
4o, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro, Llama 3.1 70B & 8B Instruct, and Llama 3
70B & 8B Instruct. We considered two prompts, zero-shot and CoT (see Appendix A.2).

Results. We find large reductions in performance when using CoT prompting compared to zero-
shot prompting, displayed in Table 1. We find that when run on a randomly selected subset of 440
problems, OpenAI o1-preview, which has a form of CoT built into its responses, has a 36.3% abso-
lute accuracy decrease compared to GPT-4o zero-shot on the same subset. Similarly, while there is
limited performance change between conditions for Claude 3.5 Sonnet, we see that its performance
is lower than the zero-shot accuracy of Claude 3 Opus. Across the other models, we find consistent
decreases in performance when performing CoT: 23.1% in GPT-4o, 8.00% in Claude 3 Opus, 6.05%
in Gemini 1.5 Pro, and 8.80% in Llama 3.1 70B Instruct. Weaker models such as Llama 3.1 8B In-
struct and Llama 3 8B Instruct perform closer to chance (50%), but the reduction in performance
caused by CoT remains statistically significant.

4.2 FACIAL RECOGNITION

Task. Another class of tasks from Section 3 where verbal thinking reduces performance involves
verbal overshadowing. We study this case using a classic face recognition task, in which partic-
ipants are first shown a face and then asked to select an image of the same person from a set of
candidates (Schooler & Engstler-Schooler, 1990). While psychological studies often include a dis-
tractor task between the initial face and the candidates to increase the difficulty, we did not use these
for LMMs due to their weak performance. We scale this task from one recognition problem to a
novel synthetic dataset of 500 problems across 2500 unique faces. For each problem, all faces were
given the same described attributes for seven features: race, gender, age group, eye color, hair length,
hair color, and hair type. We then generated a pair of images of the same person and four images
of other people matching this description using stable-image-ultra (StabilityAI, 2024). We adjusted
the generation process to ensure that the pair clearly consisted of the same person, while the others
clearly did not (see Appendix B.1 for further details). One of the pair was selected to be the initial
stimulus, while the other was shuffled with the four images to create the set of candidate answers.
Models were prompted to identify which candidate matched the person from the initial stimulus.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Results contrasting zero-shot and CoT for artificial grammar learning.

Zero-shot CoT
Performance

decrease
p-value

GPT-4o (subset) 94.00% -
36.30% < 0.0001

OpenAI o1-preview (subset) - 57.70%
GPT-4o 87.50% 64.40% 23.10% < 0.0001

Claude 3 Opus 70.70% 62.70% 8.00% < 0.0001

Claude 3.5 Sonnet 65.90% 67.70% -1.80% 0.969

Gemini 1.5 Pro 68.00% 61.95% 6.05% < 0.0001

Llama 3 8B Instruct 59.70% 57.90% 1.80% < 0.05

Llama 3 70B Instruct 60.50% 58.30% 2.20% < 0.05

Llama 3.1 8B Instruct 53.52% 51.54% 1.98% < 0.0001

Llama 3.1 70B Instruct 65.90% 57.10% 8.80% < 0.0001

Table 2: Comparison of zero-shot and CoT prompts for facial recognition.

Zero-shot CoT
Performance decrease

(absolute)
Performance decrease

(relative)
p-value

GPT-4o 64.00% 51.20% 12.80% 20.00% < 0.01

Claude 3 Opus 44.00% 29.60% 14.40% 32.73% < 0.0001

Claude 3.5 Sonnet 97.80% 94.80% 3.00% 3.07% < 0.05

Gemini 1.5 Pro 66.00% 54.60% 11.40% 17.27% < 0.05

InternVL2 26B 9.20% 6.00% 3.20% 34.78% < 0.05

InternVL2 Llama3 76B 15.77% 13.77% 2.00% 12.68% 0.44

Human failure. In the facial recognition task, people prompted to verbally describe the faces
performed worse than those who were not to prompted (Schooler & Engstler-Schooler, 1990). Thus,
we predict that CoT could also reduce performance on our facial recognition task in LMMs.

Models and prompts. We evaluated this task on several open- and closed-source state-of-the-art
LMMs: GPT-4o, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro, InternVL2 26B, and InternVL2
Llama3 76B. Llama 3.2 90B Vision and Molmo 72B were not considered as they do not support
multiple image input. We considered two prompts, zero-shot and CoT, available in Appendix B.2.

Results. We find that every LMM tested shows a drop in performance when asked to perform CoT
(see Table 2). Weaker models often answered that “all images are of the same person”, resulting in
accuracies below the random chance rate of 20%. However, even under these conditions, we observe
decreases in performance due to CoT.

4.3 CLASSIFYING DATA WITH PATTERNS THAT CONTAIN EXCEPTIONS

Task. A third class of tasks where CoT may harm performance is learning to classify exemplars
when there are exceptions to generalizable rules. As mentioned in Section 3, when humans try to
explain the category membership of exemplars, they tend to hypothesize simple classification rules,
which can lead to inefficient learning when data contain arbitrary exceptions to these rules.

To study if this phenomenon extends to CoT, we replicate a multi-turn vehicle classification task
from Williams et al. (2013), in which participants try to correctly assign binary labels to a list of
vehicles. Participants are given feedback after each prediction, and conduct multiple passes over
the list until they label all vehicles correctly in a single pass or exceed the maximum number of
tries. Vehicles in the task contained one feature that was almost fully correlated (80%) with the
classification label, three features with no relation to the label, and one feature (the unique color) that
individually identified the vehicle. Thus, participants could either try to learn a generalizable rule
from the highly correlated feature but fail due to the exceptions, or they could learn the individual
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Table 3: Average number of rounds for models to learn labels using either direct or CoT prompting.

Direct CoT
# Rounds increase

(absolute)
# Rounds increase

(relative)
p-value

GPT-4o 2.9 12.5 9.6 331% < 0.0001

Claude 3.5 Sonnet 2.3 6.4 4.1 178% < 0.0001

Claude 3 Opus 2.4 5.5 3.1 129% < 0.05

mappings from the identifying feature to the corresponding label. Human participants who were
prompted to explain the classification of exemplars performed worse because they tended to attempt
the former strategy.

Participants in the original study were promopted to explain after receiving feedback. To more ex-
plicitly include inference-time reasoning, we modify the point at which verbal thinking is prompted,
instead asking the LLM to perform CoT before making each prediction. In total, we constructed
2400 vehicles — split into 240 lists of ten vehicles each — and measured LLMs’ abilities to learn
the labels of each list across up to 15 passes (see Appendix C.1 for details). Memory was imple-
mented by including previous problems, guesses, and feedback in context.

Human failure. In the learning with exceptions task, people tended to reason about generalizable
rules when explaining (a form of verbal thinking), and this increased the time needed to learn the
labels for the entire list (Williams et al., 2013).

Models and prompts. We evaluated this task on GPT-4o, Claude 3.5 Sonnet, and Claude 3 Opus.
We only report results for these models as others such as Llama 3.1 70B Instruct were not sufficiently
good at multi-turn long context conversation, which made its outputs unusable for analyses on the
task. We varied the prompt between direct and CoT, asking the model to classify with previous
interactions in context (see Appendix C.2 for details).

Results. We find that CoT drastically increases the number of passes needed for the model to learn
all labels correctly. Averaged across the 240 lists, GPT-4o with CoT needed more than four times
the number of passes to learn the labels compared to direct prompting, while Claude 3.5 Sonnet and
3 Opus both needed more than double (see Table 3).

We also investigated the per-round accuracy of GPT-4o and found that direct prompting resulted in
the model attaining perfect classification on the second or third iteration, while with CoT, the model
was only able to correctly classify around 8/10 objects after 5 iterations (see Appendix C.3). The
model was unable to surpass this degree of accuracy over the long run, likely due to CoT biasing the
model to rely on the seemingly generalizable rules from the exemplars, while down-weighing the
usefulness of contextual tokens that explicitly contained all of the correct answers.

4.4 TASKS WITH A MISMATCH BETWEEN HUMAN AND MODEL ABILITIES

We also found three tasks for which humans do worse when performing verbal thinking, but where
this effect does not translate to models with CoT. One unifying explanation for these effects is that
there are differences between humans and models that are relevant to these tasks. Reasons for this in-
clude models producing poor performance with zero-shot prompting — providing no opportunity for
a decrease in performance, or humans and models possessing different limitations for task-relevant
abilities, such as access to different kinds of information or memory resources.

Explaining a logical inconsistency. When human participants are shown a pair of logically in-
consistent statements and asked to explain their coexistence, they become worse at judging whether
the statements are indeed logically inconsistent (Khemlani & Johnson-Laird, 2012). In the task,
participants are provided with two sentences following the template: “If A then it is always the case
that B”, and either “A, but it is not the case that B” or “It is not the case that B”. The former intro-
duces a logical inconsistency, while the latter does not. In one condition humans were first asked to
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Table 4: Comparing zero-shot and CoT on the logical inconsistency task using stimuli from MNLI,
SNLI, and synthetic LLM generation.

MNLI SNLI Synthetic
Zero-shot CoT Zero-shot CoT Zero-shot CoT

OpenAI o1-preview (subset) - - - - - 86.5%
GPT-4o 53.2% 93.9% 51.4% 94.3% 51.0% 74.0%
Claude 3.5 Sonnet 65.2% 67.5% 67.4% 69.8% 56.7% 57.8%
Claude 3 Opus 62.7% 58.8% 66.2% 58.7% 54.5% 51.8%
Gemini 1.5 Pro 73.2% 68.2% 68.8% 63.9% 60.5% 61.5%
Llama 3.1 70B Instruct 55.6% 81.6% 50.4% 82.3% 50.0% 65.8%

explain (a kind of verbal thinking) why an inconsistent pair could coexist before providing a judge-
ment on their inconsistency, while in another they conducted the same explanation after providing a
judgement. Performance was significantly worse in the former case.

The original human experiment contained 12 unique {A,B} pairs. To scale this task to evaluate
LLMs, we leverage existing entailment pairs in natural language inference tasks, which we use to
fill in A and B to form the sentences. We used a combination of three datasets: The Stanford Natural
Language Inference (SNLI) dataset, the Multi-Genre Natural Language Inference (MNLI) dataset,
and a synthetic LLM-generated dataset of 100 entailment pairs. We filtered the datasets for pairs that
were labeled “entailment” (i.e., A entails B). In addition, we limit the maximum length of A and
B such that the template forms coherent sentences. In total, we evaluate on 1608 {A,B} pairs: 675
from SNLI, 833 from MNLI, and 100 synthetic. Each pair was used to construct two classification
problems, one consistent and one inconsistent, for a total of 3216 problems that we use to evaluate
LLMs. For more details on problem generation see Appendix D.1.

We evaluated a suite of state-of-the-art LLMs on this task: OpenAI o1-preview (on a subset of 30
synthetic questions), GPT-4o, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro, and Llama 3.1
70B Instruct. We used zero-shot prompting and two conditions of CoT: one where the model is
simply asked to reason before answering, and another that follows the original experiment by asking
the model to explain the inconsistency directly (see Appendix D.2 for details). Results were very
similar across the two CoT conditions, so we report an average over both.

Zero-shot prompting resulted in poor performance on this task, with most models performing close
to chance (see Table 4). CoT often improved this performance, attributable to both the low base
performance and the logical reasoning component, for which CoT is typically helpful. This was
especially pronounced in GPT-4o, where CoT improved performance by over 40% on pairs from
MNLI and SNLI. Surprisingly, in the model that performed best with zero-shot prompting, Gemini
1.5 Pro, as well as Claude 3 Opus, we did see decreases in performance with CoT. These results
suggest that different models may have varying priors that may or may not align with humans,
resulting in mixed effects of CoT on tasks where these priors vary.

Spatial intuitions. Psychologists have documented cases involving spatial reasoning in which hu-
mans generate more accurate responses after visual or motor simulation compared to verbal thinking.
To investigate whether this applies to models, we replicate a cup-tilting task from Schwartz & Black
(1999). In the task, participants are shown an image of two rectangles with varying height and
width, representing two cups — one empty and one that contains some water. Participants are asked
to estimate the height of water that should be added to the empty cup so that when tilting both cups,
water will reach the rim at the same angle (see Figure 1, SI). While the original task had participants
draw the water level on the empty cup, LMMs were unable to do this consistently. Thus, we turned
the task into a multiple choice question by adding markings A – D to the side of the empty cup
and asking the model to choose one. Incorrect options were generated by adding Gaussian noise
to the correct answer while satisfying the constraint that options must be a certain distance apart.
We scaled up this task by varying the dimensions of cup sizes and water height, creating a total of
100 problems, each with a code-drawn image containing the cups and multiple choice answers (see

8
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Table 5: Results comparing zero-shot and CoT on the spatial intuition task.

Zero-shot CoT
Performance change

(absolute)
Performance change

(relative)
p-value

GPT-4o 38% 40% +2% +5.00% 0.61

Claude 3.5 Sonnet 42% 38% -4% -10.53% 0.28

Claude 3 Opus 42% 38% -4% -10.53% 0.28

Gemini 1.5 Pro 35% 36% +1% +2.78% 0.99

InternVL2 Llama3 76B 39% 31% -8% -25.81% 0.67

Table 6: Results for apartment selection task across four models and three ranges of ∆.

∆ [0.1, 0.3] [0.3, 0.5] [0.5, 1]
Zero-shot CoT Zero-shot CoT Zero-shot CoT

GPT-4o 47% 45% 57% 56% 80% 87%
Claude 3.5 Sonnet 50% 62% 62% 72% 81% 95%
Claude 3 Opus 35% 50% 57% 58% 72% 84%
Llama 3.1 70B Instruct 42% 6% 44% 5% 43% 20%

Appendix E.1). We evaluated with zero-shot and CoT prompts on several open- and closed-source
LMMs: GPT-4o, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro, and InternVL2 Llama3 76B.

In this setting, it is unlikely that large multimodal models would share the same motor simulation
capabilities as humans due to lack of representations built from motor experience. The improved
performance in the non-verbal thinking condition requires spatial or motor intuition, and we did not
observe significant differences between zero-shot and CoT prompts (see Table 5). Generally, we
expect this to extend to other tasks for which models lack task-relevant priors that humans possess.

Aggregating features for a decision. The final category of tasks we consider are complex, multi-
dimensional tasks that exceed human working memory capacity. A study conducted by Dijksterhuis
(2004) found that humans made poor choices when deliberating over apartment options when pro-
vided with a large amount of information about various decision features. In the study, participants
were shown 48 statements for one second each, where the statements described either a positive,
negative, or neutral aspect of one of four apartment choices. Afterwards, they were asked to select
the best apartment after either deliberating or completing a distractor task. The authors found that
the distractor task condition actually improved performance over deliberating.

To scale this task up to evaluate LLMs, we generated 80 unique apartment features with four state-
ments per feature: one positive, one negative, and two in between. We then asked GPT-4o to rate
the impact each statement would have on the impression of an average tenant from -5 to 5. We
randomly sampled apartments by choosing one statement per feature and constructed sets of four
where the best apartment had a per-feature average score ∆ ∈ {[0.1, 0.3], [0.3, 0.5], [0.5, 1]} higher
than the next-best option. We sampled 300 such sets (100 per ∆ range) to form choice tasks (see
Appendix F.1). We tested several open- and closed-source LLMs with zero-shot and CoT prompts:
GPT-4o, Claude 3.5 Sonnet, Claude 3 Opus, and Llama 3.1 70B Instruct. Llama 3.1 70B Instruct
was often unable to return an answer after deliberating in the CoT condition, reducing performance.

In this setting, there were meaningful differences in working memory between humans and models.
Humans performing the task were forced to rely on their aggregate impressions of each apartment
due to the large amount of information. However, even after scaling up the number of contextually
relevant statements over six-fold, models were able to access all feature statements in-context. Con-
sistent with this, we observed somewhat positive effects from CoT (see Table 6). Essentially, the
availability of context turns the problem into summing up the importances of the features, which the
model is able to leverage additional inference-time reasoning to conduct. This highlights the need
to consider fundamental differences in capabilities between models and humans for specific tasks.
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5 DISCUSSION

Chain-of-thought prompting is an effective way to expand the capacities of large language and mul-
timodal models. However, knowing that CoT significantly decreases performance in specific set-
tings is important for considering when it should be deployed, and especially whether it should
be deployed by default. By using cases where verbal thinking decreases human performance as
a heuristic, we successfully identify three settings where CoT results in large decreases in model
performance, which has important implications for choosing when CoT should be deployed.

While we draw a connection between human cognition and large language and multimodal models,
we do not claim that these systems operate in the same way or that models should be anthropomor-
phized. Rather, we see this connection as a tool for identifying settings where the structure of the
task or shared limitations result in negative effects of verbal thinking. Our exploration was guided
by considering not only whether verbal thinking reduces human performance, but also whether there
are meaningful difference between humans and models that must be considered. Our results provide
evidence that CoT can result in large decreases in performance when human verbal thinking leads
to similar failures, illustrating that we can leverage the cognitive psychology literature to find cases
that are informative about the performance of CoT. We now turn to limitations and future directions.

Types of inference-time reasoning. Since the invention of CoT, researchers have developed var-
ious prompting strategies suited to application domains, as well as more elaborate general-purpose
prompts with multiple forward passes, such as tree-of-thought (ToT; Yao et al., 2024) and self-
consistency (Wang et al., 2023). We tested the effectiveness of ToT on GPT-4o for the implicit
statistical learning task (see Appendix A.4). While ToT improved accuracy (64.55% vs. 62.52%),
this was still far from GPT-4o’s zero-shot performance of 94.00%, suggesting that our findings ex-
tend across inference-time reasoning techniques. However, future work is required to determine
whether this generalizes to other task domains and methods of eliciting verbal thinking in models.

Scope of application. While our psychology-based heuristic offers a strategy for identifying fail-
ure cases of CoT, it is unlikely to cover all cases where CoT decreases performance. Existing psy-
chological research has been guided by a variety of theoretical and practical considerations, but does
not offer an exhaustive or representative sample of all tasks, and will miss cases that are uniquely
interesting to study in models but not humans. Thus, we envision our contribution to be comple-
mentary to existing evaluation methods in natural language processing.

As we’ve seen across our six tasks, knowledge of what drives a decrease in performance in humans
can be leveraged to generate predictions about the effects of CoT, but this remains an inferential step
that requires careful reasoning and an understanding of model capabilities. Despite these limitations,
our method can be used to identify large and consequential failures of CoT, as documented in our
three failure cases. It also offers valuable cross-domain insight that can help build intuitions and
contribute to our overall understanding of inference-time reasoning. On the flipside, the existence
of capable LLM/LMM systems also allows us to better understand why human performance can be
degraded by deliberation. By considering when CoT’s effects mirror humans and when they do not,
we can distinguish when the task or mechanisms shared by humans and models are responsible for
failures, versus when the issues arise from uniquely human strategies or limitations.

Alternative explanation for mismatch between CoT and humans. Another explanation for
why we do not see drops in performance in the latter three tasks is that how we implemented the tasks
for LLMs removed the failure effect. It’s possible that with other implementations we might in fact
see decreased performance mirroring humans. While we explored prompt variations for each task,
these were not exhaustive due to the endless space of changes to prompts. In other words, because
the tasks were inevitably changed to scale up the evaluation and match more realistic applications
of models, it’s also possible that these changes are what explain the human-model mismatch.

Future directions. We envision studying how to evaluate and improve models as a collaborative
effort between machine learning methods, psychological insights, and a burgeoning literature com-
paring humans and models. By sharing knowledge and building strong collaborations between these
disciplines, we can utilize rich insights from decades of studying humans to advance the domain’s
intuitions about models and analyze an even broader array of tasks and applications for AI.
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A IMPLICIT STATISTICAL LEARNING TASK

To study cases involving implicit statistical learning, we consider an artificial grammar learning task.
In the task, LLMs are provided with letter string train examples that belong to the same category,
and are tasked to classify whether a new string belongs to the same category.

A.1 GENERATION OF ARTIFICIAL GRAMMAR LEARNING DATASET

In the original psychology experiments (Fallshore & Schooler, 1993; Reber & Lewis, 1977), partic-
ipants performed the classification task on strings generated by a fixed finite state grammar (FSG)
constructed by the researchers (see Figure 2). A string is generated by the FSG if it corresponds to
a valid path along the directed edges from the source node s to the sink node t, where the letters on
the path are appended together.

In our experiments, we expand the experiments massively to 100 randomly sampled FSGs that
follow the same rough structure of those used in the experiment. To scale up the dataset, we construct
and sample from all possible FSGs that obey the following rules. For a visual representation please
see Figure 3.

• 6 nodes total, including source s, sink t, and four nodes x1, . . . , x4.
• Edges (s, x1), (s, x3), (x2, t) and (x4, t) are always present.
• Edge (x1, x2) is always present to avoid isomorphisms and the null case where no paths

exist from s to t.
• The remaining middle edges {(x1, x3), (x1, x4), (x2, x1), (x2, x3), (x2, x4), (x3, x1),
(x3, x2), (x3, x4), (x4, x1), (x4, x2), (x4, x3)} can either exist or not, for a total of 211
combinations.

• Each xi can have self-loops, e.g., (x1, x1), for a total of 24 combinations.
• Letters on each edge are randomly selected from the capital alphabet, for a total of 268

combinations.
• Each FSG should be able to generate at least 37 unique strings with length ≤ 8.
• The construction of the FSG is unique with respect to the three graphical isomorphisms

that each FSG satisfying the rules could have.

For each FSG, we sampled paths of up to length 8 and used them as stimuli for the experiment.
Following Fallshore & Schooler (1993), we sampled 37 to use in the experiment, assigning 15 to be
training examples and 22 to be positive test examples. We also constructed 22 negative test examples
by sampling a random string from the FSG, perturbing one letter in a randomly selected position to
another letter that exists on some edge of the FSG. We ensured that the negative examples did not
belong to the FSG.

In total, this yielded 4400 individual questions asked to the large language models. Each question
was asked individually after the 15 training examples. See the next section for the specific prompts.

Figure 2: The FSG used in Fallshore & Schooler (1993) and Reber & Lewis (1977), two classic
studies on artificial grammar learning. This FSG was used the generate strings for all participants in
both studies. We form our dataset using FSGs that follow a similar structure.
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Figure 3: The potential FSGs used in our dataset. Directed edges that always exist are in black,
while the others that could exist are dashed and in gray. Bi-directional arrows denote two potential
directed arrows. The letters on each edge represent a random sample.

A.2 PROMPTS

For our experiments, we prompted the models using one zero-shot prompt and one CoT prompt. The
zero shot prompt is shown in Table 7. For Claude, GPT, and Gemini models, we use temperature
= 0.0. For o1, the beta version limited its usage to temperature = 1.0. For open-source models, we
use temperature = 0.0. Max tokens was set to 10 for zero-shot and 1000 for CoT. The remaining
hyperparameters were set at their default values: top p, top k, seed, min tokens, etc.

Table 7: Example prompt for artificial grammar learning task, zero shot.
Prompt:
These strings were generated according to a certain set of rules. Does the following string also
follow the same set of rules?
[test example]
Please ONLY answer “Yes” or “No”.

The CoT prompt uses one of the most common prompting methods for chain-of-thought, replacing
the last line with, ‘Please reason about your answer before answering “Yes” or “No”.’

When conducting pilot experiments, we also tried a version of the prompts where we asked models
to “memorize the following letter strings” in the first line of the prompt as this was more in-line with
the original human experiment. We found that results were extremely similar to the more general
version shown above, and thus discarded this more specialized case.

A.3 COT FAILURE EXAMPLE

An example CoT prompt and output where GPT-4o fails for the artificial grammar learning task is
in Table 8.

A.4 TREE-OF-THOUGHT EXPERIMENTS

To analyze whether our hypotheses about model chain-of-thought extend to other types of inference-
time reasoning, we evaluated the performance of GPT-4o with tree-of-thought (ToT) (Yao et al.,
2024) on a subset of 10 artificial grammars, totaling 440 examples. Given the input prompt, we
asked the LLM to generate five different thoughts to explain whether the string also followed the
same set of rules as the in-context examples. Then, five votes were conducted to select the best
thought, which we parsed and compared to the ground truth label. We found that ToT resulted in a
small improvement over the task (64.55% vs. 62.52% accuracy, see Table 9), but this performance
was still much worse compared to GPT-4o zero-shot accuracy (94.00%). This suggests that the
reduction in performance is not only associated with CoT, but also other types of inference-time
reasoning.
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Table 8: Example CoT prompt and GPT-4o output for artificial grammar learning task.
Prompt:
Consider the following letter strings:
FDMQUQC FDQMUMR DZGBDMR DGUMQQR, DGUMUMR FDXDC FDMUXDC DGUMQR FDQXDC DGBDC
FDMQQR DGQQR DZZGR DGQQUC FDMUMR

These strings were generated according to a certain set of rules. Does the following string also follow the same set of rules?
DGBDQC
Please reason about your answer before answering “Yes” or “No”.

Model output:
To determine whether the string “DGBDQC” follows the same set of rules as the given strings, we need to analyze the
patterns and rules that might be present in the provided strings.

Let’s break down the given strings to identify any patterns:

1. **Length Consistency**: All strings have a length of 7 characters.
2. **Character Positions**:
- The first character can be either ‘F’ or ‘D’.
- The second character can be ‘D’, ‘G’, or ‘Z’.
- The third character can be ‘M’, ‘Q’, ‘G’, ‘X’, or ‘Z’.
- The fourth character can be ‘Q’, ‘U’, ‘X’, ‘B’, or ‘D’.
- The fifth character can be ‘Q’, ‘U’, ‘X’, ‘B’, or ‘D’.
- The sixth character can be ‘C’, ‘R’, or ‘D’.
- The seventh character can be ‘C’, ‘R’, or ‘D’.

3. **Repetition and Pairing**:
- Some strings have repeated characters, such as “FDMQUQC” and “DGUMQQR”.
- Some strings have specific pairs of characters that appear together, such as “UM” in “DGUMUMR” and “FDMUMR”.

4. **Character Sets**:
- The characters used are from the set D, F, G, M, Q, R, U, X, Z, C, B.

Now, let’s check the string “DGBDQC”:

1. **Length**: The string “DGBDQC” has 6 characters, which is different from the 7-character length of the given strings.
2. **Character Positions**:
- The first character ‘D’ is valid.
- The second character ‘G’ is valid.
- The third character ‘B’ is valid.
- The fourth character ‘D’ is valid.
- The fifth character ‘Q’ is valid.
- The sixth character ‘C’ is valid.
- However, the string is missing a seventh character.

Given that the string “DGBDQC” does not match the 7-character length rule observed in all the provided strings, it does not
follow the same set of rules.

Therefore, the answer is **No**.

Ground truth:
Yes

B FACIAL RECOGNITION TASK

To study tasks where language impairs the recognition of visual stimuli, we focus on a facial recog-
nition task, where VLMs are asked to select one of five candidate images that matches the face of a
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Table 9: Results comparing zero-shot, CoT, and ToT on a subset of the artificial grammar learning
task.

Zero-shot CoT ToT
Performance

decrease (CoT)
Performance

decrease (ToT)
p-value
(CoT)

p-value
(ToT)

GPT-4o 94.00% 62.52% 64.55% 31.48% 29.45% < 0.0001 < 0.0001

provided image. The original experiment in Schooler & Engstler-Schooler (1990) had participants
view a 30-second video of an individual robbing a bank and then perform a 20-minute distractor task,
before either writing down descriptions of the robber’s face or doing a distractor task for 5 minutes.
Participants were then provided with 8 verbally similar faces to choose from, and those who per-
formed the written description performed much worse (38% vs. 64% accuracy) at identifying the
robber.

B.1 GENERATION OF FACIAL RECOGNITION DATASET

To adapt this task to testing models, we made a few design decisions. First, we chose to replace the
initial video stimuli with an image of the person’s face to allow for the testing of vision language
models. Next, we chose to remove the distractor tasks. This decision was based on pilot results
indicating that common psychology distractor tasks such as the n-back task (Kirchner, 1958) resulted
in large amounts of noise in model outputs, while other distractors were of limited effect on the
model due to it being able to retrieve the earlier stimuli in-context. Furthermore, even without
the distractor, models already showed a large difference in performance across zero-shot and CoT
conditions. Thus, our task was simplified to a facial matching task, where a model was given a
human face as input and responded with the index of the matching face image as its output.

To generate the faces for the facial recognition dataset, we use stable-image-ultra (StabilityAI, 2024).
We experimented with other models such as DALL-E 2 (OpenAI, 2024b) and DALL-E 3, but found
generation capabilities were significantly less realistic than stable-image-ultra. This difference was
especially pronounced in generating realistic facial images of people in racial minorities.

To cover a diverse set of human faces, we prompt models to generate faces with features age {young,
middle-aged, old}, race/ethnicity {asian, black, hispanic, white}, gender {man, woman}, eye color
{brown, blue, green}, hair color {brown, black, blonde, red, gray}, hair length {long, short}, and
hair type {curly, wavy, straight}. We removed some low-probability combinations such as red hair
with asian ethnicity due to poorer quality of image generation. Then, we randomly sampled combi-
nations of features to form a descriptor set.

One issue with stable-image-ultra is that when asked naively to generate an image of the same person
as another image, it would alter some details such as ear shape, nose shape, or other facial ratios that
would make it impossible to be the exact same person. We addressed this issue by prompting the
stable-image-ultra image generation model to

“Generate two realistic images of the same person, one on the left and one on the
right. The person should have the following description: [description]”.

After doing so, we were able to manually check and verify that the faces shown in the two images is
clearly the same to the naked eye. One of these images was assigned to be the initial stimuli shown,
while the other would be shuffled into the list of answers.

We also ensured that the other remaining images were 1) clearly not of the same person as the image,
and 2) the pose of the person, which was often similar between the pair of generated images, was
also replicated in the other fake answers. This was achieved using the following prompt with the
edit structure task in the set of image control API calls from StabilityAI:

“Generate an image of a unique person with the same pose and style as the image
provided. The person should have the following description: description”.
image input: [correct answer image]
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Figure 4: An example of the six images generated for a problem. The first row contains one of the
pair of generated images. The first image in the second row contains the other image in the pair, and
the remaining four images are incorrect answers generated from this image.

Once all the answers were generated, we manually verified the quality of generated images, and
ensured that each of 1) and 2) were satisfied. An example of the images generated for a problem are
shown in Figure 4.

B.2 PROMPTS

To evaluate models on the facial recognition task, we used one zero-shot prompt and one CoT
prompt. The zero shot prompt is shown in Table 10. For all models, we use temperature = 0.0. Max
tokens was set to 10 for zero-shot and 1000 for CoT. The remaining hyperparameters were set at
their default values: top p, top k, seed, min tokens, etc.

Table 10: Example prompt for facial recognition task, zero shot.
Prompt:
Here is an image of a person.
[image of initial person]
Select the image that contains the same person as the person in the first image.
[five images of possible matching faces]

The CoT prompt uses the most original chain-of-thought prompting method by appending “Let’s
think step by step” to the end of the zero-shot prompt, with no other changes.

B.3 COT FAILURE EXAMPLE

An example CoT prompt and output where GPT-4o fails for the facial recognition task is in Table 11.

C DATA WITH EXCEPTIONS TASK

In this task, we analyze the effect that CoT prompting has on the ability of LLMs to learn a clas-
sification of objects that appear to follow a pattern, but with exceptions. In these types of settings,
Williams et al. (2013) reveal that when humans are given opportunities to deliberate after receiving
feedback, they learn more slowly and make more errors compared to those who do not deliberate.
The active form of thought mentally ingrains incorrect patterns that shift when exposed to succes-
sive unexpected answers, altogether leading to the creation of many deceptively incoherent lines of
reasoning throughout the learning process that hinder the ability to directly keep track of the correct
labels even after multiple passes.
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Table 11: Example CoT prompt and GPT-4o output for facial recognition task.
Prompt:
Here is an image of a person.

Let’s think step by step before selecting the image that contains the same person as the person in the first image.

Model output:
To identify the person from the first image, closely compare distinct features such as hairstyle and the visible part of clothing.
The first and the third image show the same ear shape and hairstyle. Hence, the same person appears in the third image.

Ground truth:
Image 2 (2nd row, leftmost)

C.1 VEHICLE DATASET GENERATION

We build off of the experimental set-up in Williams et al. (2013) where in each trial, we first create
a list of objects (vehicles) that are either warm- or cold-climate, which is the label which we want
models to learn. Based on this label, we generate one feature that correlates with this target label
completely (see Column 2 of Table 12), and flip this 20% of the time to create exceptions in the data.

In addition to this discriminating feature, following Williams et al. (2013), we also include 1) one
unique feature which is different for each object and 2) three additional features whose values are
randomized and have no connection with the object class. The unique feature in the original exper-
iment was vehicle color, which we replaced with the license plate for realism. An example setup is
depicted in Table 12.

Unique features Pattern-related features Irrelevant features

License Plate ‘Cold’ (Class A)/‘Warm’ (Class B) climate Transmission Seat covers Doors

A23BCD Drives on glaciers Manual Cloth Two
B34EFG Made in Norway Automatic Vinyl Two
C45HIJ Used in mountain climbing Automatic Vinyl Four
D56KLM Drives in jungles Manual Vinyl Four
E67NOP Has treads Manual Cloth Two

F78QRS Heavily insulated Manual Vinyl Four
G89TUV Made in Africa Manual Cloth Four
H90WXY Has wheels Automatic Cloth Two
J12ZAB Lightly insulated Manual Vinyl Two
K23CDE Used on safaris Automatic Vinyl Two

Table 12: Sample vehicle classification list. Boldened features indicate flipped labels that break the
initial classification pattern.

We sampled 240 sets of 10 vehicles each and prompt the model to learn the labels of the vehicles in
a multi-turn setting, which we detail below.
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C.2 PROMPTS

Models are provided with text descriptions of a vehicle’s features one vehicle at a time, iterating
through the full set of ten vehicles repeatedly up to 15 times. Each time the model is given a set
of features, it predicts the corresponding label and subsequently receives feedback for its answer.
In contrast to previous experiments, the problems, the model’s previous guesses, and the feedback
given to the model are all stored in-context and provided to the model in its next prediction.

In each iteration, the vehicles’ order shown to the participant is shuffled. Prompting stopped when
the model correctly classified all of the vehicles in one iteration, or reached 15 iterations without
performing this successfully. We used one zero-shot prompt and one CoT prompt. The zero-shot
prompt was as follows in Table 13.

Table 13: Example prompt for vehicle classification task, zero shot.
[Chat history including previous prompts, model predictions, and feedback]

Prompt:
The vehicle description is as follows:
License plate: [license plate]
Descriptor: [descriptor]
Transmission: [transmission]
Seat Cover: [seat cover]
Doors: [doors]
Is this vehicle more likely to be a Class A or Class B vehicle? Only answer with ‘A’ or ‘B’.

In the CoT condition, instead of replicating the human study and asking the model to deliberate after
each piece of feedback, we modify the prompt asking the model to make a prediction. Specifically,
we replace “Only answer with ‘A’ or ‘B’.” with “Let’s think step by step and answer with either ‘A’
or ‘B’. If you are unsure, feel free to guess and explain your reasoning”.

We append the last sentence because we observed that sometimes the model would refuse to answer
based on lack of information. While we could have also implemented deliberations after each feed-
back to stay more faithful to the human experiment, our ultimate goal is to inform chain-of-thought,
and CoT is most often applied during the process of asking questions to the model rather than hav-
ing it reflect by itself. Furthermore, we believe that these settings are approximately equivalent:
Deliberation in human experiments would focus on explaining the feedback provided, but this is
also the case in this paradigm because the model would perform reasoning on the previous feedback
provided when performing CoT during the prediction of the next label.

For all models, we use temperature = 0.0. Max tokens was set to 10 for zero-shot and 1000 for CoT.
The remaining hyperparameters were set at their default values: top p, top k, seed, min tokens, etc.

C.3 PER-ROUND ACCURACY ANALYSIS

Figure 5 depicts the aggregate accuracy (correctly predicted examples out of 10) of GPT-4o with
direct and CoT prompts over 15 iterations through the list. Although CoT performs better than
direct on the first iteration of the list, direct prompting quickly surpasses the performance of CoT by
attaining perfect classification ability on the third iteration. Chain-of-thought prompting stagnates in
performance at an accuracy level equivalent to the percentage of exemplars whose class designation
adheres to the corresponding first-glance generalizable rule (80%). This suggests that the verbal
thinking of CoT biases the model towards predicting via generalizable rules, even when there are
more useful features that map exactly to correct answers in context.

It is worth noting that CoT’s tendency towards generalizable rules is often very helpful in other
settings. For example, CoT does benefit from this tendency in the predictions of the first pass when
all stimuli are previously unseen. This is in line with our conclusion that different strategies for
prompting should be chosen based on the task, and neither is always better than the other.
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Figure 5: Aggregate learning curve (number of correct objects classified out of 10) for GPT-4o
prompted via direct prompting and chain-of-thought over 15 iterations. Direct prompting attains
perfection very quickly, whereas chain-of-thought prompting results in stagnation.

C.4 COT FAILURE EXAMPLE

An example CoT prompt and output where GPT-4o fails for the classifying data with exceptions
task is in Table 14.

D LOGICAL INCONSISTENCY TASK

Here, participants were tasked to evaluate whether a set of two statements were logically inconsis-
tent. Statement pairs followed two forms: The first statement was always of the form A → B, where
→ denotes implication, and the second statement was either of the form A ∧ ¬B or ¬B, where ∧
denotes the boolean AND operation, and ¬ denotes boolean negation. If the second statement was
of the form A ∧ ¬B, the pair is inconsistent, whereas if the second statement was of the form ¬B,
the pair is consistent. Khemlani & Johnson-Laird (2012) found that if you ask humans to deliberate
specifically as to why A∧¬B was plausible, they would subsequently be less accurate at identifying
logical inconsistencies between the statements.

D.1 LOGIC DATASET GENERATION

To construct the dataset for the task, we first assigned claims to A and B, and then filled in the
template to construct the actual statements. To do the first part, we took statements where A → B
made logical sense following Khemlani & Johnson-Laird (2012). While the original authors simply
hand-constructed 12 pairs of claims, we use a combination of natural language inference (NLI)
datasets where pairs of statements are filtered to be of the “entailment” condition: MNLI, SNLI, and
a synthetic datset generated by prompting GPT-4o using the prompt:

Generate a list of 100 true statements of the format “if A then B”. For each state-
ment generate the result in JSON format with separate fields for index, A and B.

To construct the actual statements, we fit A and B into the templates in Table 15.

In addition, to avoid having entailment pairs where statements are more than one sentence long or
contain multiple clauses, we limited the maximum amount of words per claim (A or B) to seven.
This allowed the sentences in the problem to flow smoothly, while still maintaining a large popu-
lation of entailment pairs. In total, we conducted experiments on 675 pairs from SNLI, 833 pairs

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

from MNLI, and 100 pairs of claims that were synthetically generated, for a final sum of 1608 pairs
of {A,B}. This corresponded to 3216 questions asked per model, over which we calculated model
accuracy.

D.2 PROMPTS

We prompted models using one zero-shot prompt and two CoT prompts. The prompt in the zero-shot
condition was as follows:

The two chain-of-thought prompts altered the last line in the prompt to the following two sentences,
respectively:

• Can both of these statements, as explicitly stated, be true at the same time? Please reason
about your answer and then answer “Yes” or “No”.

• Can both of these statements, as explicitly stated, be true at the same time? Please first
explain why statement 2 could be true and then answer “Yes” or “No”.

Here, the first prompt follows the standard “reason about your answer before answering” CoT re-
quest, whereas the latter is a more specific request aimed at more closely replicating the human
study.

For all models, we use temperature = 0.0. Max tokens was set to 10 for zero-shot and 1000 for CoT.
The remaining hyperparameters were set at their default values: top p, top k, seed, min tokens, etc.

E SPATIAL INTUITION TASK

In this task, participants were given drawings of two drinking glasses, one filled with water and one
empty. They were asked to estimate the level of water that the second glass would need to be filled
to such that the two glasses, when tilted to a certain degree, would have the water they contain reach
the rim of the glass at the same angle (Schwartz & Black, 1999).

To simplify the task for the model, we changed the task from drawing a line (image manipulation)
to multiple choice (text output) by marking four separate heights on the side of the empty glass,
labeling them A through D, and asking the model to select a letter.

E.1 MOTOR SIMULATION TASK DATASET GENERATION

To scale up our dataset, instead of fixing the dimensions of the glass that contains water, we varied
the width and height in {2, 3, 4} and {4, 5, 6} respectively (units are per 100 pixels). Then, following
Schwartz & Black (1999), we created scenarios where the width and height of the empty cup was
{wider, less wide, same width} and {taller, less tall, same height}. We also varied the amount of
water that was in the original glass between { 1

4 ,
1
2 ,

3
4} of its total height. Altogether, this resulted in

243 unique combinations of problems compared to the original 9.

For each problem, we computed the exact height h that the empty cup would need to be filled with
water to in order to get the water to the rim at the desired angle. Then, we sampled from Gaussian
noise

xi ∼ N (0, σ2)

in order to generate the other answer choices {ai = h + xi, i ∈ {1, 2, 3}}, where σ2 is half the
distance from the correct answer to the maximum height of the glass. Furthermore, we ensured that
none of the answer choices ai provided were above the maximum height of the cup, below zero,
or within distance ϵ of each other. ϵ was an empirically determined parameter that controlled the
difficulty of the problem, while also having a lower bound due to a limit for how closely the multiple
choice letter options could be to each other on the graphical representation of the empty glass. A
visual representation of the final problem setup is in Figure 6.

E.2 PROMPTS

We use one zero-shot prompt and one CoT prompt. The zero-shot prompt is shown in Table 17. For
the CoT prompt, we replaced “Do not include anything else” with “Let’s think step by step”.
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Figure 6: An example of the water problem presented to large multimodal models. The glass on the
left is filled with water, and the task is to determine which letter choice the empty glass should be
filled to such that when the two glasses tilt to the same angle, water reaches each of their rims at the
same time.

For all models, we use temperature = 0.0. Max tokens was set to 10 for zero-shot and 1000 for CoT.
The remaining hyperparameters were set at their default values: top p, top k, seed, min tokens, etc.

F WORKING MEMORY PREFERENCE TASK

In this task, participants were shown individual statements about one of four apartments frequently
in succession. Each statement describes a different aspect of one apartment, and participants’ tasks
were to determine which apartment was overall most favorable. However, due to limits in human
working memory, their performance in identifying the most beneficial apartment decreased when
they tried to reason about the features of each apartment.

F.1 APARTMENT DATASET GENERATION

To extend this task to LLMs, we scaled up the number of stimuli to hopefully induce an increased
pressure on the long-context capabilities of the model. Towards this effort, we first tested the limit
of the amount of different features an apartment could have with the help of GPT-4o. We found that
the model started repeating aspects of apartments after around 80 unique features. Then, we asked
the model to generate positive, negative, and more neutral versions of statements regarding these
features:

• “Generate 80 positive statements about different aspects of an apartment. None of the
statements should be about the same aspect.”

• “The following are 80 positive statements about aspects of an apartment. For each, generate
a corresponding negative statement that is the exact opposite. Make sure that all of the neg-
ative statements can coexist with positive statements that are not its direct correspondent.
[positive statements]”

• “The following are 80 positive [. . . ] For each, generate a corresponding neutral statement
that is about the same aspect, is worse than the positive version, but is not negative. Make
sure that all of the neutral statements can coexist with positive statements that are not its
direct correspondent. [positive statements]”

• “The following are 80 negative [. . . ] For each, generate a corresponding neutral statement
that is about the same aspect, is better than the negative version, but is not positive. Make
sure that all of the neutral statements can coexist with negative statements that are not its
direct correspondent. [negative statements]”

We then manually considered conflicts between pairs of statements that were not of the same feature,
and manually replaced the only feature statement that had a conflict with another feature. Thus, co-
hesive descriptions of apartments could be sampled by randomly selecting one of the four statements
for each of the 80 features.
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Next, we asked GPT-4o to rate the importance of each statement based on how much the “statement
affects the desirability of the apartment for the average tenant, from -5 to 5, with 5 being most
desirable”. Based on this, we could estimate the ground truth quality of each apartment by making
the assumption that the features’ utilities sum up linearly.1 We then randomly sampled apartments
with one statement per feature, and computed the score of an apartment as the mean of the feature
scores. We then constructed sets of four apartments where the best apartment had at least an average
score ∆ ∈ {[0.1, 0.3], [0.3, 0.5], [0.5, 1]} higher than the next-best option. This was to ensure that
there is a clear best apartment for the average tenant while not making the task too simple, which
were also requirements in the original human study (Dijksterhuis, 2004). Intuitively, ∆ can be
considered as a difficulty level, where apartments are closer in rating for lower ∆ problems and are
thus harder to get correct.

Sampling randomly, this led to a total of three datasets corresponding to three ranges of ∆, each
containing 100 sets of four apartments.

Separately, we note that our implementation of this task favors models over humans due to humans
being unable to reference the statements after viewing them for the initial 1 second. We recognize
that there are other implementations of this task that would be similarly less favorable to models,
including simulating partial forgetting by masking some of the sentences. However, since there are
no guarantees that performing something like this would be functionally equivalent to how humans
process the provided statements, we opted for what we believe is closest to how present models
would solve this task in practice.

F.2 PROMPTS

For this task, we used one zero-shot and one CoT prompt in our evaluations. The zero-shot prompt
is shown in Table 18. The CoT prompt replaces “Respond with only the number of the apartment,
do not include anything else.” with “Let’s think step by step”.

In our pilot experiments, we also tried a variety of prompts such as replicating the distractor task
using a verbal n-back task, setting a time limit for the model (i.e., “you have three minutes to think
about the problem”) or using phrases such as “very carefully think” that were present in the original
experiment, but the first resulted in too much noise whereas the latter two did not change the results.

For all models, we use temperature = 0.0. Max tokens was set to 10 for zero-shot and 8000 for CoT
because reasoning chains did not finish in 1000. The remaining hyperparameters were set at their
default values: top p, top k, seed, min tokens, etc.

1Note that this is sometimes untrue; e.g., close proximity to a grocery store is much more meaningful when
an apartment has a kitchen.
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Table 14: Example CoT prompt and GPT-4o output for vehicle classification task.
Iteration 0:
[Previous conversation, including questions, outputs, and feedback]
...
Question 2:
The vehicle description is as follows:
License plate: G51XVQ
Descriptor: Drives in jungles
Transmission: Automatic
Seat Cover: Cloth
Doors: Two

Is this vehicle more likely to be a Class A or Class B vehicle? Let’s think step by step and answer
with ’A’ or ’B’. If you are not sure, feel free to guess and explain your reasoning.

Model output 2:
Given the new vehicle description:
- The vehicle drives in jungles, which suggests it may be a specialized vehicle with off-road capa-
bilities.
- It has an automatic transmission, which is common in both commercial and personal vehicles.
- The seat cover is cloth, which is more common in personal vehicles but not exclusive to them.
- It has two doors, which could indicate a smaller vehicle, but this is not definitive.
Based on this description alone, there is no clear indication that the vehicle is designed for heavy
commercial use, which would typically be associated with Class A vehicles.
The descriptor of driving in jungles implies a need for maneuverability and possibly a smaller size,
which might be more characteristic of a Class B vehicle.
However, since the previous vehicle with a similar non-commercial descriptor was stated to be a
Class A vehicle, despite the expectations, it’s possible that the classification being used here does
not follow the typical commercial vehicle classification system or there may be additional context
that is not provided.
Given the lack of information and the previous correction stating that the glacier-driving vehicle is
a Class A vehicle, it’s difficult to make an accurate guess.
However, if we follow the same logic as before, we might assume that this jungle-driving vehicle
could also be classified as a Class A vehicle, despite the description not aligning with typical Class
A characteristics.
Therefore, based on the previous correction, the guess would be:
’A’
But please note that this is a guess and the actual classification could vary based on the specific
criteria used for this classification system.

Feedback 2:
Your answer is incorrect! The vehicle is in class A.

Question 3: ...
...

Iteration 1:
...
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Table 15: Sentence template for logical inconsistency task.
Statement 1: If [A], then it is always the case that [B].
Statement 2 (conflict): [A], but it is not the case that [B].
Statement 3 (no conflict): It is not the case that [B].

Table 16: Example prompt for logical inconsistency task, zero shot.
Prompt:
The following are two statements:
1. [Statement 1]
2. [Statement 2]

Can both of these statements, as explicitly stated, be true at the same time? Please ONLY
answer with “Yes” or “No”.

Table 17: Example prompt for spatial intuition task, zero shot.
Prompt:
On the left of the figure provided, there is a rectangular glass with its water level indicated
with the blue line. On the right, there is a target glass. The target glass has four height
markings (A, B, C, D), each indicating a different water level. Which marking should the
target glass be filled to so that both glasses pour at the same angle?

Provide your answer using the letter that matches the correct height marking. Do not
include anything else.

[Prompt image]

Table 18: Example prompt for working memory apartments task, zero shot.
Prompt:
You are an AI assistant designed to evaluate the desirability of four apartments
for a potential tenant. You will be given a list of statements about the apartment
candidates and how much the tenant likes or dislikes an apartment with the
quality described by the statement. Your task is to determine which apartment
is the most desirable based on the given criteria.
The statements are as follows:
[statements]

Which apartment is most desirable to the tenant? Respond with only the number
of the apartment, do not include anything else.
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